The MSO+U Theory of $(\mathrm{N},<)$ Is Undecidable

Mikołaj Bojańczyk, Paweł Parys, Szymon Toruńczyk
University of Warsaw

MSO+U logic

MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(X)$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall \mathrm{n} \in \mathbb{N} \exists \mathrm{X}(\mathrm{n}<|\mathrm{X}|<\infty \wedge \phi(\mathrm{X}))
$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X .
(MSO+U was introduced by Bojańczyk in 2004)

MSO+U logic

MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(\mathrm{X})$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall \mathrm{n} \in \mathbb{N} \exists \mathrm{X}(\mathrm{n}<|\mathrm{X}|<\infty \wedge \phi(\mathrm{X}))
$$ have unbounded size

$$
\left\{b^{n_{1}} \text { a b } b^{n_{2}} \text { a } \ldots \mid \limsup n_{i}=\infty\right\}
$$

(contains no ultimately periodic word)

Consider the following "Myhill-Nerode" relation: $v \sim v^{\prime}$ when for all words $u \in A^{*}, w \in A^{\omega} \quad u v w \equiv \phi \Leftrightarrow u v^{\prime} w \equiv \phi$

This relation has finitely many equivalence classes.

Slogan: The non-regularity of $\mathrm{MSO}+\mathrm{U}$ is seen only in the asymptotic behavior.

Considered problem: satisfiability for ω-words

Input: formula $\phi \in \mathrm{MSO}+\mathrm{U}$
Question: $\exists \mathrm{w} \in \mathrm{A}^{\omega} . \mathrm{w} \equiv \phi$?

Equivalently:

Input: formula $\phi \in$ MSO $+U$
Question: $a^{\omega} \equiv \phi$?

Our result: This problem is undecidable!!!

MSO+U logic

Plan of the talk:

1) Some fragments of MSO+U are decidable - earlier work
a) BS-formulas
b) $\mathrm{WMSO}+\mathrm{U}$
2) $\mathrm{MSO}+\mathrm{U}$ is not decidable over ω-words - this paper

Decidable fragments of $\mathrm{MSO}+\mathrm{U}$

negation allowed
BS-formulas: boolean combinations of formulas in which U appears positively
(+ existential quantification outside)
Theorem (Bojańczyk \& Colcombet, 2006):
Satisfiability of BS-formulas is decidable over ω-words.

Decidable fragments of MSO+U

BS-formulas: boolean combinations of formulas in which U appears positively
(+ existential quantification outside)
Theorem (Bojańczyk \& Colcombet, 2006):
Satisfiability of BS-formulas is decidable over ω-words.

Solution: ω BS-automata
Nondeterministic automata with counters that can be incremented and reset to 0 , but cannot be read. Accepting condition: counter is bounded/unbounded.
(Colcombet \& others) Automata with counters were developed into a theory of „regular cost functions" of the form:

$$
f: A^{*} \rightarrow \mathbb{N}
$$

Decidable fragments of MSO+U

Weak logics: \exists / \forall quantifier range only over finite sets.

Satisfiability is decidable for:
WMSO+U on infinite words (Bojańczyk, 2009)
WMSO+R on infinite words (Bojańczyk \& Toruńczyk, 2009)
$R=$ exists infinitely many sets of bounded size
WMSO+U on infinite trees (Bojańczyk \& Toruńczyk, 2012)
WMSO+U+P on infinite trees (Bojańczyk, 2014)
$P=$ exists path

Solution: equivalent automata models

Undecidability of MSO+U - earlier work

Thm. (Hummel \& Skrzypczak 2010/2012) - topology
On every level of the projective hierarchy for infinite words, there is a complete language that is definable in MSO+U.

Undecidability of MSO+U - earlier work

Thm. (Hummel \& Skrzypczak 2010/2012) - topology On every level of the projective hierarchy for infinite words, there is a complete language that is definable in MSO+U.

Corollary: $\mathrm{MSO}+\mathrm{U}$ is not covered by any automata model (alternating/nondeterm./determ., acceptance condition of bounded projective complexity)

Undecidability of MSO+U - earlier work

Thm 1. (Hummel \& Skrzypczak 2010/2012)
On every level of the projective hierarchy for infinite words, there is a complete language that is definable in MSO+U.

Thm 2. (Bojańczyk, Gogacz, Michalewski, Skrzypczak 2014) $\mathrm{MSO}+\mathrm{U}$ is not decidable over infinite trees...
...assuming that there exists a projective ordering on the Cantor set 2^{ω}.
assumption of set theory consistent with ZFC
Corollary: No algorithm can decide MSO+U over infinite trees and have a correctness proof in ZFC.

Proof:
Bases on Thm 1 \& the proof of Shelah that MSO is undecidable in 2^{ω}. Altogether rather complicated.

Undecidability of MSO+U

Thm. (Bojańczyk, P., Toruńczyk - this paper) $\mathrm{MSO}+\mathrm{U}$ is not decidable over infinite words.
Proof - short \& elementary.

Undecidability of MSO+U

Thm. (Bojańczyk, P., Toruńczyk - this paper) $\mathrm{MSO}+\mathrm{U}$ is not decidable over infinite words.
Proof - short \& elementary.
Proof sketch
Step 1: words = trees (forests) of bounded depth

Undecidability of MSO+U

Thm. (Bojańczyk, P., Toruńczyk - this paper) $\mathrm{MSO}+\mathrm{U}$ is not decidable over infinite words.
Proof - short \& elementary.
Proof sketch
Step 1: words = trees (forests) of bounded depth
Step 2 - Key Lemma:
There is an MSO+U formula defining the set of depth-3 forests s.t.
a) the degree of depth-2 nodes tends to infinity
b) all but finitely many nodes of depth 1 have the same degree.

Undecidability of MSO+U

Thm. (Bojańczyk, P., Toruńczyk - this paper) $\mathrm{MSO}+\mathrm{U}$ is not decidable over infinite words.
Proof - short \& elementary.
Proof sketch
Step 1: words = trees (forests) of bounded depth
Step 2 - Key Lemma:
There is an MSO+U formula defining the set of depth-3 forests s.t.
a) the degree of depth-2 nodes tends to infinity
b) all but finitely many nodes of depth 1 have the same degree.

Step 3:

equality!!!!
Having equality, it is easy to encode e.g. runs of a Minsky machine. Equality of „all but finitely many" (=,,from some moment") is enough we can repeat the finite run of the M.M. infinitely many times.

Step 2-Key Lemma:

There is an MSO+U formula defining the set of depth-3 forests s.t.
(a) the degree of depth- 2 nodes tends to infinity
(b) all but finitely many depth-1 nodes have the same degree.

Proof. We use number sequences and vector sequences.
Def. $f \sim g \Leftrightarrow f$ and g are bounded on the same sets of positions.
(where f, g - sequences of numbers)

Def. $f \sim g \Leftrightarrow f$ and g are bounded on the same sets of positions.

Def. A vector sequence \mathbf{f} is an asymptotic mix of a vector sequence \mathbf{g} if $\forall \mathrm{f} \in \mathbf{f} . \exists \mathrm{g} \in \mathbf{g} . \mathrm{f} \sim \mathrm{g}$

$$
\begin{aligned}
& \mathbf{f}=(3, \underline{1}, 2),(\underline{1}), \quad(7, \underline{1}),(\underline{1}, 2,5),(1,4, \underline{1}, 3),(5, \underline{1}), \ldots \\
& \mathbf{g}=(\underline{2}, 8),(9, \underline{2}, 3),(8, \underline{2}),(2, \underline{2}, 2), \quad(\underline{2}, 7), \quad(8,1, \underline{2}), \ldots
\end{aligned}
$$

Def. $f \sim g \Leftrightarrow f$ and g are bounded on the same sets of positions.

Def. A vector sequence \mathbf{f} is an asymptotic mix of a vector sequence \mathbf{g} if $\forall \mathrm{f} \in \mathbf{f} . \exists \mathrm{g} \in \mathbf{g} . \mathrm{f} \sim \mathrm{g}$

$$
\begin{aligned}
& \mathbf{f}=(3, \underline{1}, 2),(\underline{1}), \quad(7, \underline{1}),(\underline{1}, 2,5),(1,4, \underline{1}, 3),(5, \underline{1}), \ldots \\
& \mathbf{g}=(\underline{2}, 8),(9, \underline{2}, 3),(8, \underline{2}),(2, \underline{2}, 2), \quad(\underline{2}, 7), \quad(8,1, \underline{2}), \ldots
\end{aligned}
$$

Lemma
$\exists \mathbf{f}: \mathbb{N} \rightarrow \mathbb{N}^{d} . \mathbf{f}$ is not a asymptotic mix of any $\mathbf{g}: \mathbb{N} \rightarrow \mathbb{N}^{d-1}$
Proof
For f we take all vectors from \mathbb{N}^{d}.

Lemma

$\exists \mathbf{f}: \mathbb{N} \rightarrow \mathbb{N}^{d} . \mathbf{f}$ is not a asymptotic mix of any $\mathbf{g}: \mathbb{N} \rightarrow \mathbb{N}^{d-1}$

Corollary

Let f_{1}, f_{2} be vector sequences of bounded dimension, whose entries tend to infinity. Then
on infinitely many positions f_{1} has vector of higher dimension than corresponding vector in f_{2}
some $g_{1}<f_{1}$ is not an
asymptotic mix of any $\mathbf{g}_{2}<\mathbf{f}$

We prove the Key Lemma (step 2):
There is an MSO+U formula defining the set of depth-3 forests s.t.
(a) the degree of depth-2 nodes tends to infinity
(b) all but finitely many depth-1 nodes have the same degree.

Forests of depth 3 encode vector sequences:

$$
(2,4,3)(3,5) \ldots
$$

tree $=$ vector degree of depth-1 node $=$ dimension of vector degrees of depth-2 nodes = numbers in the vector

It is easy to express (a), and that depth-1 nodes have bounded degree, i.e. dimensions of vectors are bounded, and entries tend to infinity.

We prove the Key Lemma (step 2):
There is an MSO+U formula defining the set of depth-3 forests s.t.
(a) the degree of depth-2 nodes tends to infinity
(b) all but finitely many depth-1 nodes have the same degree.

It is easy to express (a), and that depth-1 nodes have bounded degree, i.e. dimensions of vectors are bounded, and entries tend to infinity.

It remains to say that one cannot find two alternating sets X, Y of dimensions (order-1 nodes) such that dimensions in X are smaller than in Y .
dimensions: $55 \underline{5} \underline{\sigma}^{6} \underline{4} \frac{4}{6} \frac{5}{4} 5 \frac{1}{6} 7 \underline{5} 555 \overline{6} \ldots$

We prove the Key Lemma (step 2):
There is an MSO+U formula defining the set of depth-3 forests s.t.
(a) the degree of depth-2 nodes tends to infinity
(b) all but finitely many depth-1 nodes have the same degree.

It is easy to express (a), and that depth-1 nodes have bounded degree, i.e. dimensions of vectors are bounded, and entries tend to infinity.

It remains to say that one cannot find two alternating sets X, Y of dimensions (order-1 nodes) such that dimensions in X are smaller than in Y.

To say this, we use the corollary:

Corollary

Let f_{1}, f_{2} be vector sequences of bounded dimension, whose entries tend to infinity. Then
on infinitely many positions f_{1} has vector of higher dimension than f_{2}
some $\mathbf{g}_{1}<\mathrm{f}_{1}$ is not an
$\Leftrightarrow \quad$ asymptotic mix of any $\mathbf{g}_{2}<\mathbf{f}_{2}$

Thank you!

