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MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X ( n<|X|< ∧ (X) )

This construction may be nested inside other quantifiers, 
and  may have free variables other than X.
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MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X ( n<|X|< ∧ (X) )

This construction may be nested inside other quantifiers, 
and  may have free variables other than X.

We consider Weak MSO+U (quantification over finite sets only):

X → 
fin

X



Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]
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● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]
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Decision problems

HORS model-checking
input: formula , HORS G,

question: is  true in the tree generated by G 

Contribution: decidable for WMSO+U & all G 
Moreover: for every WMSO+U we construct a "model" of Y-calculus recognizing 

sort 

term K of sort ,
valuation of free variables v

finite set D[]

an element ⟦K,v⟧D[]

compositional!

(current version: for every n we have a different model that works well for terms of orders n) 



Construction of the model – preparation

Step 1: WMSO+U is compositional

t           [t]  finite set (of phenotypes)                 

[t] determines whether t  =|

[a(t1,...,tn)] determined by a, [t1], ..., [tn]

(only logic, no automata!)
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Step 1: WMSO+U is compositional

Step 2: assume (w.l.o.g.) that all types are homogeneous
i.e. in 1.no we have ord(1)...ord(n)

Then we can perform -reductions starting from variables of the highest order

M  ...   ... …  ... 

N1 Nk
...

tree (arbitrarily large)

terms
order
    n

order     …
  n-1

order
   1

infinite -term (obtained by replacing every nonterminal A by its rule x1.....xm.K,

                        or by replacing every Y by appropriate infinite term)
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Construction of the model

term K value ⟦K⟧finite set for each 

Let =UX. 
Goal: construct a model for UX.

⟦Ko⟧ determines [BT(K)]

for each : does there exist arbitrarily large set X s.t. [BT(K),X]=?
                 (where free variables of  are empty sets)



We have a model for  (such that ⟦No⟧ determines [BT(N),Ø])

We design an intersection type system, where we put flags in derivations.

Construction of the model

where |X|≈k

(we can derive No:(F,M,) using k flags) ⇔ ([BT(N),X]=) 

Then ⟦N⟧ = (⟦N⟧, 

     types of N, 
     types of N that can be derived with arb. many flags)

term K value ⟦K⟧finite set for each 

Let =UX. 
Goal: construct a model for UX.

⟦Ko⟧ determines [BT(K)]

for each : does there exist arbitrarily large set X s.t. [BT(K),X]=?
                 (where free variables of  are empty sets)

Inductive construction!



Intersection types refining sort o:  =1→...→k→o:

                                               T ={ (F,M,)}

Intersection types

(for each order m we have flags of order m, 
and a marker of order m)

flags used in the derivation

markers used in the derivation

-type of Böhm tree



Intersection types refining sort  =1→...→k→o:

             T ={(1,T1)→...→(1,Tk)→(F,M,)}

Intersection types

(for each order m we have flags of order m, 
and a marker of order m)

sets of types refining 1, ..., k 

flags used in the derivation

markers used in the derivation

-type of Böhm tree

values in the -model

Only finite derivations!
(after finitely many steps we use a rule that extracts a type from the -model)



  

Flags & markers

N1 Nk
...

tree

terms

(after many -reductions)

N2 N3 N4

flags of order 0 = nodes in Xflags of order 0 = nodes in X

X is empty below – -type known from the model for 

-type of the whole tree obtained by compositionality
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-type of the whole tree obtained by compositionality



  

Flags & markers

N1 Nk
...

tree

terms

(after many -reductions)

N2 N3 N4

flags of order 0 = nodes in Xflags of order 0 = nodes in X
one marker of order 0
flags of order 1

log(fl0)fl1fl0

if path chosen correctly 



  

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
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N1 Nk
...N4 N3 N2

@
x

x

number of order-1 flags unchanged!

the type system ensures that a variable 
with marker is used exactly once!



  

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
one marker of order 0
flags of order 1
one marker of order 1

log(fl0)fl1fl0

N1 Nk
...N4 N3 N2

number of order-1 flags unchanged!



  

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
one marker of order 0
flags of order 1
one marker of order 1
flags of order 2

log(fl0)fl1fl0

N1 Nk
...N4 N3 N2

log(fl1)fl2fl1

number of order-1 flags unchanged!



  

Flags & markers

M  ...   ...   ... 

continue like this...

        fln ≈ |X|

only order 0only order 1

fl1 unchangedfl2 unchanged

fl1≈fl0
fl2≈fl1



Model vs decidability

1) While considering UX., we need a model for  (decidability not enough)

2) Having a model gives some advantages:
● reflection
● transfer theorem
● …
● WMSO+U gives the same Caucal hierarchy as MSO



Caucal hierarchy for WMSO+U

Tree0 Graph0

Caucal hierarchy for logic L
L-interpretation

unfold

Tree1 Graph1
L-interpretation

unfold

Tree2 Graph2
L-interpretation

unfold

Tree3 Graph3
L-interpretation

finite trees=

...

FO-hierarchy = WMSO-hierarchy = MSO-hierarchy = WMSO+U-hierarchy



Caucal hierarchy for WMSO+U

x

y

(x,y)MSO/WMSO+U

'(x,y)(WMSO using as predicates
             formulae (z)MSO/WMSO+U)
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Caucal hierarchy for WMSO+U

x

y

(x,y)MSO/WMSO+U

'(x,y)(FO using as predicates
             formulae (z)MSO/WMSO+U)

''(x,y)(FO reading MSO/WMSO+U-
              types from labels)

[Colcombet 2007]

Treen is closed for labeling by values of (z)MSO/WMSO+U

because:
● Treen≈Böhm trees of safe HORSes
● we can enrich a safe HORS by the labeling, using our model (reflection)



What next? - ideas
● Model independent from the maximal order of terms

● A similar type system, but with separate marker/flag for each 

pair (order, input letter) allows (?) to solve the diagonal problem

in ≈(n-1)-EXPTIME

● Pumping lemma for nondeterministic HORSes (???)

⇒ bound on size of ideals ⇒ complexity of computing downward closure



  

Thank you!
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