HORS & Weak MSO+U Logic

Pawet Parys, Szymon Torunczyk

University of Warsaw

NIl Shonan Meeting "Higher-Order Model Checking"

MSO+U logic (introduced by Bojariczyk in 2004)
MSO+U extends MSO by the following ,,U” quantifier:
UX.0(X)

¢(X) holds for sets of arbitrarily large size

VnelN IX (n<|X|<oo A ¢(X))

This construction may be nested inside other quantifiers,
and ¢ may have free variables other than X.

MSO+U logic (introduced by Bojariczyk in 2004)

MSO+U extends MSO by the following ,,U” quantifier:

UX.0(X)
¢(X) holds for sets of arbitrarily large size

VnelN X (n<|X|<o A ¢(X))

This construction may be nested inside other quantifiers,
and ¢ may have free variables other than X.

We consider Weak MSO+U (quantification over finite sets only):

X - 3_X

Decision problems

Satisfiability
Input: formula ¢, question: is ¢ true in some tree?

e undecidable for MSO+U, even for words [Bojanczyk, P., Toruriczyk 2016]
some fragments of MSO+U decidable for words [Bojanczyk, Colcombet 2006]

e decidable for WMSO+U [Bojariczyk, Toruriczyk 2012]
also extended by the quantifier ,exists path” [Bojanczyk 2014]

Decision problems

Satisfiability
Input: formula ¢, question: is ¢ true in some tree?

e undecidable for MSO+U, even for words [Bojanczyk, P., Toruriczyk 2016]
some fragments of MSO+U decidable for words [Bojanczyk, Colcombet 2006]

e decidable for WMSO+U [Bojariczyk, Toruriczyk 2012]
also extended by the quantifier ,exists path” [Bojanczyk 2014]

HORS model-checking
Input: formula ¢, HORS ¢,

question: is ¢ true in the tree generated by G
» undecidable for MSO+U (generalizes satifiability)

Decision problems

Satisfiability
Input: formula ¢, question: is ¢ true in some tree?

e undecidable for MSO+U, even for words [Bojanczyk, P., Toruriczyk 2016]
some fragments of MSO+U decidable for words [Bojanczyk, Colcombet 2006]

e decidable for WMSO+U [Bojariczyk, Toruriczyk 2012]
also extended by the quantifier ,exists path” [Bojanczyk 2014]

HORS model-checking

Input: formula ¢, HORS ¢,

question: is ¢ true in the tree generated by G
» undecidable for MSO+U (generalizes satifiability)

 decidable when ¢ (quasi-weak cost-MSO) and G safe
follows from [Blumensath, Colcombet, Kuperberg, P., Vanden Boom 2014]

(in quasi-weak cost-MSO we can express the diagonal problem)

Decision problems

Satisfiability
Input: formula ¢, question: is ¢ true in some tree?

e undecidable for MSO+U, even for words [Bojanczyk, P., Toruriczyk 2016]
some fragments of MSO+U decidable for words [Bojanczyk, Colcombet 2006]

e decidable for WMSO+U [Bojariczyk, Toruriczyk 2012]
also extended by the quantifier ,exists path” [Bojanczyk 2014]

HORS model-checking

Input: formula ¢, HORS ¢,

question: is ¢ true in the tree generated by G
» undecidable for MSO+U (generalizes satifiability)

 decidable when ¢ (quasi-weak cost-MSO) and G safe
follows from [Blumensath, Colcombet, Kuperberg, P., Vanden Boom 2014]

(in quasi-weak cost-MSO we can express the diagonal problem)

 Contribution: decidable for ¢ WMSO+U & all G

Decision problems

HORS model-checking
iInput: formula ¢, HORS g,

question: is ¢ true in the tree generated by G
Contribution: decidable for e WMSO+U & all G

Moreover: for every e WMSO+U we construct a "model" of AY-calculus recognizing ¢

sort o —»-finite set D 0]

term Kofsorta, _ anelement [K,v].eD.[o
valuation of free variables v K, ”‘P ¢[]

compositional!

(current version: for every n we have a different model that works well for terms of orders <n)

Construction of the model — preparation

Step 1: WMSO+U is compositional
t —»[t], € finite set (of phenotypes)
[t], determines whether tE¢
[a(ty,....t,)], determined by a, [t;],, ..., [ty

(only logic, no automata!)

Construction of the model — preparation

(only logic, no automata!)

Step 1: WMSO+U is compositional
tv —»[tV], € finite set (of phenotypes) _ _
v = valuation of free variables of ¢
[t,v], determines whether t,vE ¢

[a(ty,....t,).v], determined by a, varoot, [t;,vnt,],, ..., [t,,vnt]y

e.g. [tVlux.e=({t : 35 X. [L,V[X = X]]=1}, {T : UX. [t,v[X = X]],=1})

Construction of the model — preparation

(only logic, no automata!)

Step 1: WMSO+U is compositional
tv —»[tV], € finite set (of phenotypes) _ _
v = valuation of free variables of ¢
[t,v], determines whether t,vE ¢

[a(ty,....t,).v], determined by a, varoot, [t;,vnt,]y, ..., [t,,vnt]y

e.g. [tVlux.e=({t : 35 X. [L,V[X = X]]=1}, {T : UX. [t,v[X = X]],=1})

Step 2: assume (w.l.0.g.) that all types are homogeneous
l.e. in o, —...—o,—0 we have ord(o,)=...>ord(o,))

Construction of the model — preparation

(only logic, no automata!)

Step 1: WMSO+U is compositional
tv —»[tV], € finite set (of phenotypes) _ _
v = valuation of free variables of ¢
[t,v], determines whether t,vE ¢

[a(ty,....t,).v], determined by a, varoot, [t;,vnt,]y, ..., [t,,vnt]y
e.g. [tVlux.e=({t : 35 X. [L,V[X = X]]=1}, {T : UX. [t,v[X = X]],=1})
Step 2: assume (w.l.0.g.) that all types are homogeneous

l.e. in o, —...—o,—0 we have ord(o,)=...>ord(o,))

Then we can perform B-reductions starting from variables of the highest order

M —

e B T e s T
b P 5 . P B/ . P P y tree (arbitrarily large)
Y Y Y
ordner oLc_lir oriler N, N, terms

infinite A-term (obtained by replacing every nonterminal A by its rule Ax,."*.AX,.K,
or by replacing every Y by appropriate infinite term)

Construction of the model
Let p=UX.@
Goal: construct a model for UX.@

term K* — » value [[K]]¢e finite set for each o
[K°], determines [BT(K)],

for each t: does there exist arbitrarily large set X s.t. [BT(K),X](p:r ?
(where free variables of ¢ are empty sets)

Construction of the model
Let p=UX.@
Goal: construct a model for UX.@

term K* — » value [[K]]q,e finite set for each o
[K°], determines [BT(K)],

for each t: does there exist arbitrarily large set X s.t. [BT(K),X](p:r ?

. o
Inductive construction! (where free variables of ¢ are empty sets)

4

We have a model for ¢ (such that [N°], determines [BT(N),&],)

We design an intersection type system, where we put flags in derivations.
(we can derive N°:(F,M,1) using k flags) < ([BT(N),X](p:’C)
where |X|~k
Then [NJ, = (IN],

types of N,
types of N that can be derived with arb. many flags)

Intersection types

Intersection types refining sort o:
TJo={ (E,M,tg

¢-type of BOhm tree
mzirkers used in the derivation

flags used in the derivation

(for each order m we have flags of order m,
and a marker of order m)

Intersection types

Intersection types refining sort o= oy — ... = 0o~ O:
To={(1,T)~..~ (2, T)~ (E,M,TZ\}

¢-type of Bohm tree

. markers used in the derivation
values in the ¢-model A

flags used in the derivation
sets of types refining o, ..., o |

(for each order m we have flags of order m,
and a marker of order m)

Only finite derivations!
(after finitely many steps we use a rule that extracts a type from the ¢-model)

Flags & markers

flags of order O = nodes in X

¢@-type of the whole tree obtained by compositionality

¢ > tree

N1 Nz N3 |\|4 Nk«terms

(after many B-reductions)

XIs empty below — @-type known from the model for ¢

Flags & markers

flags of order O = nodes in X
one marker of order O

¢-type of the whole tree obtained by compositionality

> tree

N1 Nz N3 |\|4 Nk«terms

/ (after many B-reductions)

X is empty below — ¢-type known from the model for ¢

Flags & markers

flags of order O = nodes in X
one marker of order O

flags of order 1 if path chosen correctly

log(flo)<fl,<fl,

> tree

N1 Nz N3 |\|4 Nk«terms

(after many B-reductions)

Flags & markers

flags of order O = nodes in X
one marker of order O

flags of order 1 the type system ensures that a variable

with marker is used exactly once!

log(fl,)<fl, <fl
only variables of order 0 9(flg)<fl, <My

N3 N4 Nk

LI] \Nk /Nl N2

number of order-1 flags unchanged!

Flags & markers

flags of order O = nodes in X
one marker of order O

flags of order 1

one marker of order 1

only variables of order O

log(flo)<fl,<fl,

N3

LI] \Nk /Nl N2

number of order-1 flags unchanged!

N,

Flags & markers

flags of order O = nodes in X
one marker of order O

flags of order 1

one marker of order 1

flags of order 2

log(fl)<=l only variables of order O

log(flo)<fl,<fl,

N3

LI] \Nk /Nl N2

number of order-1 flags unchanged!

N,

Flags & markers

only order 1

fl,~fl,

only order O

continue like this...
fl, ~|X]

\

fl, unchanged

X

fl; unchanged

Model vs decidability

1) While considering UX.p, we need a model for ¢ (decidability not enough)

2) Having a model gives some advantages:
« reflection

e transfer theorem

« WMSO+U gives the same Caucal hierarchy as MSO

Caucal hierarchy for WMSO+U

Caucal hierarchy for logic L

finite trees=Treey = e PO, Graph,

unfold

A

Tl‘eel L—IﬂtGl’pI’Gt&thﬂ»G raph 1

unfold

!

-I-ree2 L—IﬂtGl’pI’Gt&thﬂ»G raphz

unfold

L-interpretation
>

Tree, Graph,

\

FO-hierarchy = WMSO-hierarchy = MSO-hierarchy = WMSO+U-hierarchy

Caucal hierarchy for WMSO+U

d(X,y)e MSO/WMSO+U

d'(x,y)e (WMSO using as predicates
y formulae ¢(z)e MSO/WMSO+U)

Caucal hierarchy for WMSO+U

o(X,y)e MSO/WMSO+U
[Colcombet 2007]

¢'(x,y)e (FO using as predicates
Y formulae ¢(z)e MSO/WMSO+U)

Caucal hierarchy for WMSO+U

d(X,y)e MSO/WMSO+U
l[CoIcombet 2007]

¢'(x,y)e (FO using as predicates
Y l formulae ¢(z)e MSO/WMSO+U)

0"(x,y)e (FO reading MSO/WMSO+U-
types from labels)

Tree,, Is closed for labeling by values of ¢(z)e MSO/WMSO+U

because:
- Tree ~Bohm trees of safe HORSes

e we can enrich a safe HORS by the labeling, using our model (reflection)

What next? - ideas

 Model independent from the maximal order of terms

* A similar type system, but with separate marker/flag for each
pair (order, input letter) allows (?) to solve the diagonal problem
In ~(n-1)-EXPTIME

 Pumping lemma for nondeterministic HORSes (?7??)
= bound on size of ideals = complexity of computing downward closure

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

