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MSO+U logic (introduced by Bojariczyk in 2004)
MSO+U extends MSO by the following ,,U” quantifier:
UX.0(X)

¢(X) holds for sets of arbitrarily large size

VnelN IX (n<|X|<oo A ¢(X))

This construction may be nested inside other quantifiers,
and ¢ may have free variables other than X.
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This construction may be nested inside other quantifiers,
and ¢ may have free variables other than X.

We consider Weak MSO+U (quantification over finite sets only):

X - 3_X




Decision problems

Satisfiability
Input: formula ¢, question: is ¢ true in some tree?
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Decision problems

HORS model-checking
iInput: formula ¢, HORS g,

question: is ¢ true in the tree generated by G
Contribution: decidable for e WMSO+U & all G

Moreover: for every e WMSO+U we construct a "model" of AY-calculus recognizing ¢

sort o —»-finite set D 0]

term Kofsorta,  _ anelement [K,v].eD.[o
valuation of free variables v K, ”‘P ¢[ ]

compositional!

(current version: for every n we have a different model that works well for terms of orders <n)
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Step 2: assume (w.l.0.g.) that all types are homogeneous

l.e. in o, —...—o,—0 we have ord(o,)=...>ord(o,))

Then we can perform B-reductions starting from variables of the highest order

M —

e B T e s T
b P 5 . P B/ . P P y tree (arbitrarily large)
Y Y Y
ordner oLc_lir oriler N, N, terms

infinite A-term (obtained by replacing every nonterminal A by its rule Ax,."*.AX,.K,
or by replacing every Y by appropriate infinite term)
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Let p=UX.@
Goal: construct a model for UX.@

term K* — » value [[K]]q,e finite set for each o
[K°], determines [BT(K)],

for each t: does there exist arbitrarily large set X s.t. [BT(K),X](p:r ?

. o
Inductive construction! (where free variables of ¢ are empty sets)

4

We have a model for ¢ (such that [N°], determines [BT(N),&],)

We design an intersection type system, where we put flags in derivations.
(we can derive N°:(F,M,1) using k flags) < ([BT(N),X](p:’C)
where |X|~k
Then [NJ, = (IN],

types of N,
types of N that can be derived with arb. many flags)
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Intersection types

Intersection types refining sort o= oy — ... = 0o~ O:
To={(1,T)~..~ (2, T)~ (E,M,TZ\}

¢-type of Bohm tree

. markers used in the derivation
values in the ¢-model A

flags used in the derivation
sets of types refining o, ..., o |

(for each order m we have flags of order m,
and a marker of order m)

Only finite derivations!
(after finitely many steps we use a rule that extracts a type from the ¢-model)
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flags of order O = nodes in X
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flags of order 1
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flags of order 2

log(fl )<=l only variables of order O
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Flags & markers

only order 1

fl,~fl,

only order O

continue like this...
fl, ~|X]

\

fl, unchanged

X

fl; unchanged



Model vs decidability

1) While considering UX.p, we need a model for ¢ (decidability not enough)

2) Having a model gives some advantages:
« reflection

e transfer theorem

« WMSO+U gives the same Caucal hierarchy as MSO



Caucal hierarchy for WMSO+U

Caucal hierarchy for logic L

finite trees=Treey = e PO, Graph,

unfold

A

Tl‘eel L—IﬂtGl’pI’Gt&thﬂ»G raph 1

unfold

!

-I-ree2 L—IﬂtGl’pI’Gt&thﬂ»G raphz

unfold

L-interpretation
>

Tree, Graph,

\

FO-hierarchy = WMSO-hierarchy = MSO-hierarchy = WMSO+U-hierarchy
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Caucal hierarchy for WMSO+U

d(X,y)e MSO/WMSO+U
l[CoIcombet 2007]

¢'(x,y)e (FO using as predicates
Y l formulae ¢(z)e MSO/WMSO+U)

0"(x,y)e (FO reading MSO/WMSO+U-
types from labels)

Tree,, Is closed for labeling by values of ¢(z)e MSO/WMSO+U

because:
- Tree ~Bohm trees of safe HORSes

e we can enrich a safe HORS by the labeling, using our model (reflection)



What next? - ideas

 Model independent from the maximal order of terms

* A similar type system, but with separate marker/flag for each
pair (order, input letter) allows (?) to solve the diagonal problem
In ~(n-1)-EXPTIME

 Pumping lemma for nondeterministic HORSes (?7??)
= bound on size of ideals = complexity of computing downward closure



Thank you!
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