

HORS & Weak MSO+U Logic

Paweł Parys, Szymon Toruńczyk

University of Warsaw

NII Shonan Meeting "Higher-Order Model Checking"

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ (X))

This construction may be nested inside other quantifiers,
and  may have free variables other than X.

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ (X))

This construction may be nested inside other quantifiers,
and  may have free variables other than X.

We consider Weak MSO+U (quantification over finite sets only):

X → 
fin

X

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G
● undecidable for MSO+U (generalizes satifiability)

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G
● undecidable for MSO+U (generalizes satifiability)

● decidable when (quasi-weak cost-MSO) and G safe
follows from [Blumensath, Colcombet, Kuperberg, P., Vanden Boom 2014]

(in quasi-weak cost-MSO we can express the diagonal problem)

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G
● undecidable for MSO+U (generalizes satifiability)

● decidable when (quasi-weak cost-MSO) and G safe
follows from [Blumensath, Colcombet, Kuperberg, P., Vanden Boom 2014]

(in quasi-weak cost-MSO we can express the diagonal problem)

● Contribution: decidable for WMSO+U & all G

Decision problems

HORS model-checking
input: formula , HORS G,

question: is  true in the tree generated by G

Contribution: decidable for WMSO+U & all G
Moreover: for every WMSO+U we construct a "model" of Y-calculus recognizing 

sort 

term K of sort ,
valuation of free variables v

finite set D[]

an element ⟦K,v⟧D[]

compositional!

(current version: for every n we have a different model that works well for terms of orders n)

Construction of the model – preparation

Step 1: WMSO+U is compositional

t [t]  finite set (of phenotypes)

[t] determines whether t =|

[a(t1,...,tn)] determined by a, [t1], ..., [tn]

(only logic, no automata!)

Construction of the model – preparation

Step 1: WMSO+U is compositional

t,v [t,v]  finite set (of phenotypes)

[t,v] determines whether t,v =|

[a(t1,...,tn),v] determined by a, vroot, [t1,vt1], ..., [tn,vtn]

v = valuation of free variables of 

e.g. [t,v]UX.=({ : 
fin

X. [t,v[X→X]]=}, { : UX. [t,v[X→X]]=})

(only logic, no automata!)

Construction of the model – preparation

Step 1: WMSO+U is compositional

Step 2: assume (w.l.o.g.) that all types are homogeneous
i.e. in 1.no we have ord(1)...ord(n)

t,v [t,v]  finite set (of phenotypes)

[a(t1,...,tn),v] determined by a, vroot, [t1,vt1], ..., [tn,vtn]

v = valuation of free variables of 

(only logic, no automata!)

[t,v] determines whether t,v =|

e.g. [t,v]UX.=({ : 
fin

X. [t,v[X→X]]=}, { : UX. [t,v[X→X]]=})

Construction of the model – preparation

Step 1: WMSO+U is compositional

Step 2: assume (w.l.o.g.) that all types are homogeneous
i.e. in 1.no we have ord(1)...ord(n)

Then we can perform -reductions starting from variables of the highest order

M  ...   ... …  ... 

N1 Nk
...

tree (arbitrarily large)

terms
order
 n

order …
 n-1

order
 1

infinite -term (obtained by replacing every nonterminal A by its rule x1.....xm.K,

 or by replacing every Y by appropriate infinite term)

t,v [t,v]  finite set (of phenotypes)

[a(t1,...,tn),v] determined by a, vroot, [t1,vt1], ..., [tn,vtn]

v = valuation of free variables of 

(only logic, no automata!)

[t,v] determines whether t,v =|

e.g. [t,v]UX.=({ : 
fin

X. [t,v[X→X]]=}, { : UX. [t,v[X→X]]=})

Construction of the model

term K value ⟦K⟧finite set for each 

Let =UX.
Goal: construct a model for UX.

⟦Ko⟧ determines [BT(K)]

for each : does there exist arbitrarily large set X s.t. [BT(K),X]=?
 (where free variables of  are empty sets)

We have a model for  (such that ⟦No⟧ determines [BT(N),Ø])

We design an intersection type system, where we put flags in derivations.

Construction of the model

where |X|≈k

(we can derive No:(F,M,) using k flags) ⇔ ([BT(N),X]=)

Then ⟦N⟧ = (⟦N⟧,

 types of N,
 types of N that can be derived with arb. many flags)

term K value ⟦K⟧finite set for each 

Let =UX.
Goal: construct a model for UX.

⟦Ko⟧ determines [BT(K)]

for each : does there exist arbitrarily large set X s.t. [BT(K),X]=?
 (where free variables of  are empty sets)

Inductive construction!

Intersection types refining sort o: =1→...→k→o:

 T ={ (F,M,)}

Intersection types

(for each order m we have flags of order m,
and a marker of order m)

flags used in the derivation

markers used in the derivation

-type of Böhm tree

Intersection types refining sort =1→...→k→o:

 T ={(1,T1)→...→(1,Tk)→(F,M,)}

Intersection types

(for each order m we have flags of order m,
and a marker of order m)

sets of types refining 1, ..., k

flags used in the derivation

markers used in the derivation

-type of Böhm tree

values in the -model

Only finite derivations!
(after finitely many steps we use a rule that extracts a type from the -model)

Flags & markers

N1 Nk
...

tree

terms

(after many -reductions)

N2 N3 N4

flags of order 0 = nodes in Xflags of order 0 = nodes in X

X is empty below – -type known from the model for 

-type of the whole tree obtained by compositionality

Flags & markers

N1 Nk
...

tree

terms

(after many -reductions)

N2 N3 N4

flags of order 0 = nodes in Xflags of order 0 = nodes in X
one marker of order 0

X is empty below – -type known from the model for 

-type of the whole tree obtained by compositionality

Flags & markers

N1 Nk
...

tree

terms

(after many -reductions)

N2 N3 N4

flags of order 0 = nodes in Xflags of order 0 = nodes in X
one marker of order 0
flags of order 1

log(fl0)fl1fl0

if path chosen correctly

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
one marker of order 0
flags of order 1

log(fl0)fl1fl0

N1 Nk
...N4 N3 N2

@
x

x

number of order-1 flags unchanged!

the type system ensures that a variable
with marker is used exactly once!

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
one marker of order 0
flags of order 1
one marker of order 1

log(fl0)fl1fl0

N1 Nk
...N4 N3 N2

number of order-1 flags unchanged!

Flags & markers

N1 Nk
...N2 N3 N4

flags of order 0 = nodes in X

  ... 

only variables of order 0

flags of order 0 = nodes in X
one marker of order 0
flags of order 1
one marker of order 1
flags of order 2

log(fl0)fl1fl0

N1 Nk
...N4 N3 N2

log(fl1)fl2fl1

number of order-1 flags unchanged!

Flags & markers

M  ...   ...   ... 

continue like this...

 fln ≈ |X|

only order 0only order 1

fl1 unchangedfl2 unchanged

fl1≈fl0
fl2≈fl1

Model vs decidability

1) While considering UX., we need a model for  (decidability not enough)

2) Having a model gives some advantages:
● reflection
● transfer theorem
● …
● WMSO+U gives the same Caucal hierarchy as MSO

Caucal hierarchy for WMSO+U

Tree0 Graph0

Caucal hierarchy for logic L
L-interpretation

unfold

Tree1 Graph1
L-interpretation

unfold

Tree2 Graph2
L-interpretation

unfold

Tree3 Graph3
L-interpretation

finite trees=

...

FO-hierarchy = WMSO-hierarchy = MSO-hierarchy = WMSO+U-hierarchy

Caucal hierarchy for WMSO+U

x

y

(x,y)MSO/WMSO+U

'(x,y)(WMSO using as predicates
 formulae (z)MSO/WMSO+U)

Caucal hierarchy for WMSO+U

x

y

(x,y)MSO/WMSO+U

'(x,y)(FO using as predicates
 formulae (z)MSO/WMSO+U)

[Colcombet 2007]

Caucal hierarchy for WMSO+U

x

y

(x,y)MSO/WMSO+U

'(x,y)(FO using as predicates
 formulae (z)MSO/WMSO+U)

''(x,y)(FO reading MSO/WMSO+U-
 types from labels)

[Colcombet 2007]

Treen is closed for labeling by values of (z)MSO/WMSO+U

because:
● Treen≈Böhm trees of safe HORSes
● we can enrich a safe HORS by the labeling, using our model (reflection)

What next? - ideas
● Model independent from the maximal order of terms

● A similar type system, but with separate marker/flag for each

pair (order, input letter) allows (?) to solve the diagonal problem

in ≈(n-1)-EXPTIME

● Pumping lemma for nondeterministic HORSes (???)

⇒ bound on size of ideals ⇒ complexity of computing downward closure

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

