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-terms:
● variables: x, y, ...
● constants: a, b, … – only for sorts of order ≤1
● -abstraction: (x.K)

● application: (KL)

+ coinduction

Every term has a particular sort.
We allow infinite terms, but the set of types of subterms should be finite.



  

Our setting – Y-calculus

Y-term is a finite representation of an infinite -term:
● In a -term we may use a binder “Y”
● Meaning:

(Yx.M)  - this is the unique (infinite) -term such that
Yx.M = M[Yx.M/x]

Example: 
    the Y-term: Yx.((y.a y) x) 
    represents the -term: ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))
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Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:
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Example:
    Yx.((y.a y) x) = ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))
        

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a  (a (a (a ...))))
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Our setting – Böhm trees

Example:
    Yx.((y.b y y) x) = ((y.b y y) ((y.b y y) ((y.b y y) ((y.b y y) ...))))
        

(b (b (b …) (b ...)) (b (b …) (b ...)))

b

b b

b b b b

Equivalent formalism:
trees generated by Higher Order Recursion Schemes (HORSes)
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Considered problem

Input: closed Y-term K of sort o (i.e. infinite -term represented in a finite way)

Question: In the Böhm tree of K, are there finite paths 
                with arbitrarily many symbols “a”?
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Input: closed Y-term K of sort o (i.e. infinite -term represented in a finite way)

Question: In the Böhm tree of K, are there finite paths 
                with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…Equivalent problem:

Input: nondeterministic HORS S
Question: is L(S) finite?
      L(S) = the set of finite trees generated by S

=deterministic HORS



  

History

Thm [Ong 2006].
The following problem is decidable (MSO model-checking):
Input: closed Y-term K of sort o, regular property 
Question: Is  true in the Böhm tree of K?
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Considered problem

Input: closed Y-term K of sort o
Question: In the Böhm tree of K, are there finite paths 
                with arbitrarily many symbols “a”?
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…

Notice:
There may be no path with infinitely many „a”.
Our property is not regular!!!
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every symbol from appears on P at least N times)
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                arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that 

every symbol from appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

We present a new solution, using intersection types.

Proof: perform a sequence of transformations of the input HORS,
           reducing its order. 
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History

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

[P. 2014]

An intersection type system for (finite) -terms s.t. 
the “size” of the (unique) derivation for K ≈ the number of symbols “a”
                                                      in the normal form of Knumber of flags

Here we need an additional existential quantifier in the front:

       there exist “big” derivations for K 
in the Böhm tree of K 
there exist paths with 
arbitrarily many „a”



  

Intersection types - idea

term K Böhm tree of K
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approximating the
number of „a” on P
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Intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Almost standard use of intersection types:
● which „a” of K will appear on P in the Böhm tree 

Difficulty:
● single „a” of K may result in many „a” on P ( y. y (y bo)).aoo 

Idea of solution:
● detect (and count) places where variable containing „a” is duplicated



  

Intersection types refining sort o:  =1→...→→o:

                                               T ={ (F,M,o)}

Intersection types

flags used in the derivation

markers used in the derivation

Solution: type derivations are labeled by flags and markers.

(for each order m we have flags of order m, 
and a marker of order m)



  

Intersection types refining sort  =1→...→k→o:

                          T ={T1→...→Tk→(F,M,o)}

Intersection types

(for each order m we have flags of order m, 
and a marker of order m)

sets of types refining 1, ..., k 

flags used in the derivation

markers used in the derivation

Only finite derivations!

Solution: type derivations are labeled by flags and markers.



  

Flags & markers

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

Böhm tree of K



  

Flags & markers

tree

terms

(after many -reductions)

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

N1 Nk
...N2 N3 N4



  

Flags & markers

  ... 

only variables of order 0

N1 Nk
...N4 N3 N2

@
x

x

number of order-1 flags unchanged!

the type system ensures that a variable 
with marker is used exactly once!

one marker of order 0
flags of order 1

N1 Nk
...N2 N3 N4
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Flags & markers
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Flags & markers

  ... 

only variables of order 0
log(fl1)fl2fl1

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

for some location of order-1 marker 
(we always go to a subtree with more order-1 flags)



  

Flags & markers

K  ...   ...   ... 

continue like this...

        fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2



  

Flags & markers

K  ...   ...   ... 

continue like this...

        fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2

We put all the flags & markers in derivations for K.
The number of order-n flags approximates the number of „a” on some path in
the Böhm tree of K.

       there exist derivations for K with 
       arbitrarily many order-n flags 

Details in the paper... 

in the Böhm tree of K 
there exist paths with 
arbitrarily many „a”

easy to decide
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● different flags for every a∈
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Question: In the tree generated by K, are there finite paths with
                arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that 

every symbol from appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

Our type system works for ||=1.
Can be extended to ||>1:
● || markers of every order
● different flags for every a∈

Thm.(Conjecture)

The diagonal problem for order-n HORSes is (n-1)-EXPTIME-complete.

algorithm of high complexity:
f(n)-EXPTIME
for some f(n)=O(n2),
where n = order of the HORS

Carefull optimization (reduction of number of types) required.



  

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X ( n<|X|< ∧ (X) )

This construction may be nested inside other quantifiers, 
and  may have free variables other than X.

Extensions (work in progress)

MSO+U logic (introduced by Bojańczyk in 2004)
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UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X ( n<|X|< ∧ (X) )

This construction may be nested inside other quantifiers, 
and  may have free variables other than X.

Extensions (work in progress)

WMSO+U logic (introduced by Bojańczyk in 2004)

We consider Weak MSO+U (quantification over finite sets only):

X → 
fin

X

e.g. we can express that there exist paths with arbitrarily many „a”



Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]
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Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G 
● undecidable for MSO+U (generalizes satifiability)

● Thm (conjecture): decidable for WMSO+U 

Solution: this work + a model of -calculus recognizing WMSO properties



  

Thank you!
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