

Intersection Types and Counting

Paweł Parys

University of Warsaw

ITRS 2016

Our setting

We consider infinitary, simply typed -calculus.

Our setting

We consider infinitary, simply typed -calculus.

Simple types (sorts): o, o(oo), (oo)o, (oo)(((oo)o)o)

Our setting

We consider infinitary, simply typed -calculus.

Simple types (sorts): o, ooo, (oo)o, (oo)((oo)o)o

Order: ord(o)=0, ord()=max(ord()+1, ord())

0 1 2 3

Our setting

We consider infinitary, simply typed -calculus.

Simple types (sorts): o, ooo, (oo)o, (oo)((oo)o)o

Order: ord(o)=0, ord()=max(ord()+1, ord())

0 1 2 3

-terms:
● variables: x, y, ...
● constants: a, b, … – only for sorts of order ≤1
● -abstraction: (x.K)

● application: (KL)

+ coinduction

Every term has a particular sort.
We allow infinite terms, but the set of types of subterms should be finite.

Our setting – Y-calculus

Y-term is a finite representation of an infinite -term:
● In a -term we may use a binder “Y”
● Meaning:

(Yx.M) - this is the unique (infinite) -term such that
Yx.M = M[Yx.M/x]

Example:
 the Y-term: Yx.((y.a y) x)
 represents the -term: ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((y.a y) x) = ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a ((y.a y) ((y.a y) ((y.a y) ...))))

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((y.a y) x) = ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a ((y.a y) ((y.a y) ...))))

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((y.a y) x) = ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a (a ((y.a y) ...))))

Our setting – Böhm trees

● Every finite -term K reduces to a term in -normal form.
● Every (infinite) -term K reduces to term in head--normal form, i.e.:

x1.
....xn.y M1 … Mk or x1.

....xn.a M1 … Mk

● We may reduce each M1, …, Mk to head--normal form, etc.
● The limit is called the Böhm tree of K.

Example:
 Yx.((y.a y) x) = ((y.a y) ((y.a y) ((y.a y) ((y.a y) ...))))

Suppose that:
➔ K is of sort o
➔ K has no free variables
➔ we only use constants of order ≤1.
Then the Böhm tree is a tree built out of constants.

(a (a (a (a ...))))

a

a

a

a

...

Our setting – Böhm trees

Example:
 Yx.((y.b y y) x) = ((y.b y y) ((y.b y y) ((y.b y y) ((y.b y y) ...))))

(b (b (b …) (b ...)) (b (b …) (b ...)))

b

b b

b b b b

Equivalent formalism:
trees generated by Higher Order Recursion Schemes (HORSes)

a

Considered problem

Input: closed Y-term K of sort o (i.e. infinite -term represented in a finite way)

Question: In the Böhm tree of K, are there finite paths
 with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…

a

Considered problem

Input: closed Y-term K of sort o (i.e. infinite -term represented in a finite way)

Question: In the Böhm tree of K, are there finite paths
 with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…Equivalent problem:

Input: nondeterministic HORS S
Question: is L(S) finite?
 L(S) = the set of finite trees generated by S

=deterministic HORS

History

Thm [Ong 2006].
The following problem is decidable (MSO model-checking):
Input: closed Y-term K of sort o, regular property 
Question: Is  true in the Böhm tree of K?

a

Considered problem

Input: closed Y-term K of sort o
Question: In the Böhm tree of K, are there finite paths
 with arbitrarily many symbols “a”?

a

a
a

a

a
a

a

a
a

a
a

a

a
…

Notice:
There may be no path with infinitely many „a”.
Our property is not regular!!!

History

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Our problem is a special case of the diagonal problem:
Input: closed Y-term K of sort o, set  of symbols
Question: In the Böhm tree of K, are there finite paths with
 arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that

every symbol from appears on P at least N times)

History

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Our problem is a special case of the diagonal problem:
Input: closed Y-term K of sort o, set  of symbols
Question: In the Böhm tree of K, are there finite paths with
 arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that

every symbol from appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

We present a new solution, using intersection types.

Proof: perform a sequence of transformations of the input HORS,
 reducing its order.

History

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

[P. 2014]

An intersection type system for (finite) -terms s.t.
the “size” of the (unique) derivation for K ≈ the number of symbols “a”
 in the normal form of Knumber of flags

History

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

[P. 2014]

An intersection type system for (finite) -terms s.t.
the “size” of the (unique) derivation for K ≈ the number of symbols “a”
 in the normal form of Knumber of flags

Here we need an additional existential quantifier in the front:

 there exist “big” derivations for K
in the Böhm tree of K
there exist paths with
arbitrarily many „a”

Intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Standard use of intersection types:
● which „a” of K will appear in the Böhm tree

Intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Almost standard use of intersection types:
● which „a” of K will appear on P in the Böhm tree

Intersection types - idea

term K Böhm tree of K

a

a

a
a

a
a

a

a

a

path P in Böhm tree
derivation for K
approximating the
number of „a” on P

Almost standard use of intersection types:
● which „a” of K will appear on P in the Böhm tree

Difficulty:
● single „a” of K may result in many „a” on P ( y. y (y bo)).aoo

Idea of solution:
● detect (and count) places where variable containing „a” is duplicated

Intersection types refining sort o: =1→...→→o:

 T ={ (F,M,o)}

Intersection types

flags used in the derivation

markers used in the derivation

Solution: type derivations are labeled by flags and markers.

(for each order m we have flags of order m,
and a marker of order m)

Intersection types refining sort =1→...→k→o:

 T ={T1→...→Tk→(F,M,o)}

Intersection types

(for each order m we have flags of order m,
and a marker of order m)

sets of types refining 1, ..., k

flags used in the derivation

markers used in the derivation

Only finite derivations!

Solution: type derivations are labeled by flags and markers.

Flags & markers

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

Böhm tree of K

Flags & markers

tree

terms

(after many -reductions)

one marker of order 0 (= end of path)
flags of order 1 (= „a” on the path)

N1 Nk
...N2 N3 N4

Flags & markers

  ... 

only variables of order 0

N1 Nk
...N4 N3 N2

@
x

x

number of order-1 flags unchanged!

the type system ensures that a variable
with marker is used exactly once!

one marker of order 0
flags of order 1

N1 Nk
...N2 N3 N4

Flags & markers

  ... 

only variables of order 0

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1

Flags & markers

  ... 

only variables of order 0

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

Flags & markers

  ... 

only variables of order 0
log(fl1)fl2fl1

number of order-1 flags unchanged!

N1 Nk
...N2 N3 N4N1 Nk

...N4 N3 N2

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

for some location of order-1 marker
(we always go to a subtree with more order-1 flags)

Flags & markers

K  ...   ...   ... 

continue like this...

 fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2

Flags & markers

K  ...   ...   ... 

continue like this...

 fln ≈ fl1

only order 0only order 1

fl1 unchangedfl2 unchanged

fl2≈fl1fl3≈fl2

We put all the flags & markers in derivations for K.
The number of order-n flags approximates the number of „a” on some path in
the Böhm tree of K.

 there exist derivations for K with
 arbitrarily many order-n flags

Details in the paper...

in the Böhm tree of K
there exist paths with
arbitrarily many „a”

easy to decide

Extensions (work in progress)

Diagonal problem:
Input: HORS K, set  of symbols
Question: In the tree generated by K, are there finite paths with
 arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that

every symbol from appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

Our type system works for ||=1.
Can be extended to ||>1:
● || markers of every order
● different flags for every a∈

Extensions (work in progress)

Diagonal problem:
Input: HORS K, set  of symbols
Question: In the tree generated by K, are there finite paths with
 arbitrarily many appearances of every symbol from ?

(i.e. for every N there exists a path P such that

every symbol from appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.

Our type system works for ||=1.
Can be extended to ||>1:
● || markers of every order
● different flags for every a∈

Thm.(Conjecture)

The diagonal problem for order-n HORSes is (n-1)-EXPTIME-complete.

algorithm of high complexity:
f(n)-EXPTIME
for some f(n)=O(n2),
where n = order of the HORS

Carefull optimization (reduction of number of types) required.

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ (X))

This construction may be nested inside other quantifiers,
and  may have free variables other than X.

Extensions (work in progress)

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U” quantifier:

UX.(X)
(X) holds for sets of arbitrarily large size

n∈ℕ X (n<|X|< ∧ (X))

This construction may be nested inside other quantifiers,
and  may have free variables other than X.

Extensions (work in progress)

WMSO+U logic (introduced by Bojańczyk in 2004)

We consider Weak MSO+U (quantification over finite sets only):

X → 
fin

X

e.g. we can express that there exist paths with arbitrarily many „a”

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G
● undecidable for MSO+U (generalizes satifiability)

Decision problems

Satisfiability
input: formula , question: is  true in some tree?
● undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016]

some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
● decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]

also extended by the quantifier „exists path” [Bojańczyk 2014]

HORS model-checking
input: formula , HORS G,
question: is  true in the tree generated by G
● undecidable for MSO+U (generalizes satifiability)

● Thm (conjecture): decidable for WMSO+U

Solution: this work + a model of -calculus recognizing WMSO properties

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

