Intersection Types and Counting

Paweł Parys

University of Warsaw

Our setting

We consider infinitary, simply typed λ-calculus.

Our setting

We consider infinitary, simply typed λ-calculus.
Simple types (sorts): $0,0 \rightarrow(0 \rightarrow 0),(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow(((0 \rightarrow 0) \rightarrow 0) \rightarrow 0)$

Our setting

We consider infinitary, simply typed λ-calculus.
Simple types (sorts): $0,0 \rightarrow 0 \rightarrow 0,(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$

Order: $\operatorname{ord}(0)=0, \operatorname{ord}(\alpha \rightarrow \beta)=\max (\operatorname{ord}(\alpha)+1, \operatorname{ord}(\beta))$

Our setting

We consider infinitary, simply typed λ-calculus.
Simple types (sorts): $0,0 \rightarrow 0 \rightarrow 0,(0 \rightarrow 0) \rightarrow 0,(0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$

Order: $\operatorname{ord}(0)=0, \operatorname{ord}(\alpha \rightarrow \beta)=\max (\operatorname{ord}(\alpha)+1, \operatorname{ord}(\beta))$
λ-terms:

- variables: $x^{\alpha}, y^{\beta}, \ldots$
- constants: $a^{\alpha}, b^{\beta}, \ldots-$ only for sorts of order ≤ 1
- λ-abstraction: $\left(\lambda x^{\alpha} . K^{\beta}\right)^{\alpha \rightarrow \beta}$
- application: $\left(\mathrm{K}^{\alpha \rightarrow \beta} \mathrm{L}^{\alpha}\right)^{\beta}$
+ coinduction
Every term has a particular sort.
We allow infinite terms, but the set of types of subterms should be finite.

Our setting - λY-calculus

λY-term is a finite representation of an infinite λ-term:

- In a λ-term we may use a binder " Y "
- Meaning:
$\left(Y x^{\alpha} \cdot M^{\alpha}\right)^{\alpha}$ - this is the unique (infinite) λ-term such that Yx.M = M[Yx.M/x]

Example:
the λ Y-term: Yx.(($\lambda \mathrm{y} . a \mathrm{a}) \mathrm{x})$
represents the λ-term: (($\lambda \mathrm{y} \cdot \mathrm{ay})$ (($\lambda \mathrm{y} \cdot \mathrm{ay})$ (($\lambda \mathrm{y} \cdot \mathrm{ay})((\lambda y \cdot a y) . .)))$.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot a M_{1} \ldots M_{k}$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
\rightarrow K has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx. $((\lambda y \cdot a y) x)=((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))$

$$
(a((\lambda y \cdot a y)((\lambda y \cdot a y)((\lambda y \cdot a y) \ldots))))
$$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx.((גy.ay) x) = ((גy.ay) ((גy.ay) ((גy.ay) ((גy.ay) ...))))

$$
\text { (a (a ((גy.ay) }((\lambda y . a y) \ldots))))
$$

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow \mathrm{K}$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.

Example:

Yx.((גy.ay) x) = ((גy.ay) ((גy.ay) ((גy.ay) ((خy.ay) ...))))
(a (a (a ((גy.ay) ...))))

Our setting - Böhm trees

- Every finite λ-term K reduces to a term in β-normal form.
- Every (infinite) λ-term K reduces to term in head- β-normal form, i.e.: $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} \cdot y M_{1} \ldots M_{k}$ or $\lambda x_{1} \cdot \cdots \cdot \lambda x_{n} . a M_{1} \ldots M_{k}$
- We may reduce each M_{1}, \ldots, M_{k} to head- β-normal form, etc.
- The limit is called the Böhm tree of K .

Suppose that:
$\rightarrow K$ is of sort o
$\rightarrow K$ has no free variables
\rightarrow we only use constants of order ≤ 1.
Then the Böhm tree is a tree built out of constants.
Example:
Yx.((גy.ay) x) = ((גy.ay) ((גy.ay) ((גy.ay) ((גy.ay) ...))))

$$
\left(\mathrm{a}\left(\mathrm{a}\left(\mathrm{a}^{\gamma}(\mathrm{a} \ldots)\right)\right)\right)
$$

Our setting - Böhm trees

Example:

$$
\begin{gathered}
Y x \cdot((\lambda y \cdot b y y) x)=((\lambda y \cdot b y y)((\lambda y \cdot b y y)((\lambda y \cdot b y y)((\lambda y \cdot b y y) \ldots)))) \\
(b(b \quad(b \ldots)(b \ldots))(b(b \ldots)(b \ldots)))
\end{gathered}
$$

Equivalent formalism: trees generated by Higher Order Recursion Schemes (HORSes)

Considered problem

Input: closed λ Y-term K of sort o (i.e. infinite λ-term represented in a finite way) Question: In the Böhm tree of K, are there finite paths with arbitrarily many symbols "a"?

Considered problem

=deterministic HORS

Input: closed λ Y-term K of sort O (i.e. infinite λ-term represented in a finite way) Question: In the Böhm tree of K, are there finite paths with arbitrarily many symbols "a"?

Equivalent problem:

History

Thm [Ong 2006].

The following problem is decidable (MSO model-checking): Input: closed λ Y-term K of sort o, regular property ϕ Question: Is ϕ true in the Böhm tree of K ?

Considered problem

Input: closed λ Y-term K of sort o

Question: In the Böhm tree of K, are there finite paths with arbitrarily many symbols "a"?

Notice:

There may be no path with infinitely many „a".
Our property is not regular!!!

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.
Our problem is a special case of the diagonal problem:
Input: closed λ Y-term K of sort o, set Σ of symbols
Question: In the Böhm tree of K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?
(i.e. for every N there exists a path P such that
every symbol from Σ appears on P at least N times)

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.
Our problem is a special case of the diagonal problem: Input: closed λ Y-term K of sort o, set Σ of symbols
Question: In the Böhm tree of K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?
(i.e. for every N there exists a path P such that
every symbol from Σ appears on P at least N times)
Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016].
The diagonal problem is decidable.
Proof: perform a sequence of transformations of the input HORS, reducing its order.

We present a new solution, using intersection types.

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.
Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.
[P. 2014]
An intersection type system for (finite) λ-terms s.t. the "size" of the (unique) derivation for $\mathrm{K} \approx$ the number of symbols "a" number of flags in the normal form of K

The MSO model-checking problem for HORS is decidable.
Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.
[P. 2014]
An intersection type system for (finite) λ-terms s.t.
the "size" of the (unique) derivation for $K \approx$ the number of symbols "a" number of flags in the normal form of K

Here we need an additional existential quantifier in the front:
there exist "big" derivations for K
in the Böhm tree of K there exist paths with arbitrarily many „a"

Intersection types - idea

derivation for K approximating the -

Böhm tree of K

path P in Böhm tree number of „a" on P

Intersection types - idea

\longrightarrow
derivation for K approximating the number of , a^{\prime} on P

Standard use of intersection types:

- which „a" of K will appear in the Böhm tree

Intersection types - idea

derivation for K approximating the \downarrow path P in Böhm tree number of „a" on P

Almost standard use of intersection types:

- which „a" of K will appear on P in the Böhm tree

Intersection types - idea

\longrightarrow Bönm tree of K

path P in Böhm tree derivation for K
approximating the \triangleleft number of „a" on P

Almost standard use of intersection types:

- which „a" of K will appear on P in the Böhm tree

Difficulty:

- single „a" of K may result in many „a" on P
$\left(\lambda y \cdot y\left(y b^{0}\right)\right) \cdot a^{0 \rightarrow 0}$

Idea of solution:

- detect (and count) places where variable containing „a" is duplicated

Intersection types

Solution: type derivations are labeled by flags and markers.
Intersection types refining sort o:

$$
\begin{gathered}
\mathcal{T}^{0}=\{(F, M, 0)\} \\
\quad \text { markers used in the derivation } \\
\text { flags used in the derivation }
\end{gathered}
$$

(for each order m we have flags of order m, and a marker of order m)

Intersection types

Solution: type derivations are labeled by flags and markers.
Intersection types refining sort $\alpha=\alpha_{1} \rightarrow \ldots \rightarrow \alpha_{k} \rightarrow 0$:

$$
\begin{aligned}
& \mathcal{T}^{\alpha}=\left\{\mathrm{T}_{1} \rightarrow \ldots \rightarrow \mathrm{~T}_{\mathrm{k}} \rightarrow(\mathrm{~F}, \mathrm{M}, 0)\right\} \\
& \text { flags used in the derivation } \\
& \text { sets of types refining } \alpha_{1}, \ldots, \alpha_{\mathrm{k}}
\end{aligned}
$$

(for each order m we have flags of order m, and a marker of order m)

Only finite derivations!

Flags \& markers
one marker of order 0 (= end of path) flags of order 1 (= „a" on the path)

Flags \& markers
one marker of order 0 (= end of path) flags of order 1 (= „a" on the path)

Flags \& markers
one marker of order 0
flags of order 1
the type system ensures that a variable with marker is used exactly once!

number of order-1 flags unchanged!

Flags \& markers
one marker of order 0 flags of order 1
one marker of order 1

number of order-1 flags unchanged!

Flags \& markers

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 - places on the path to order-1 marker having a descendant with order-1 flag

number of order-1 flags unchanged!

Flags \& markers

one marker of order 0
flags of order 1
one marker of order 1
flags of order 2 - places on the path to order-1 marker having a descendant with order-1 flag

number of order-1 flags unchanged!

Flags \& markers

Flags \& markers

We put all the flags \& markers in derivations for K.
The number of order-n flags approximates the number of „a" on some path in the Böhm tree of K .
there exist derivations for K with arbitrarily many order-n flags
in the Böhm tree of K there exist paths with arbitrarily many „a"

Extensions (work in progress)

Diagonal problem:

Input: HORS K, set Σ of symbols
Question: In the tree generated by K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?
(i.e. for every N there exists a path P such that
every symbol from Σ appears on P at least N times)
Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

Our type system works for $|\Sigma|=1$.
Can be extended to $|\Sigma|>1$:

- | $\Sigma \mid$ markers of every order
- different flags for every $a \in \Sigma$

Extensions (work in progress)

Diagonal problem:

Input: HORS K, set Σ of symbols
Question: In the tree generated by K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?
(i.e. for every N there exists a path P such that
every symbol from Σ appears on P at least N times)
Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

Our type system works for $|\Sigma|=1$.
Can be extended to $|\Sigma|>1$:

- | $\Sigma \mid$ markers of every order
- different flags for every $a \in \Sigma$
algorithm of high complexity:
f(n)-EXPTIME
for some $f(n)=O\left(n^{2}\right)$,
where $\mathrm{n}=$ order of the HORS

Thm.(Conjecture)
The diagonal problem for order-n HORSes is (n-1)-EXPTIME-complete.
Carefull optimization (reduction of number of types) required.

Extensions (work in progress)
MSO+U logic (introduced by Bojańczyk in 2004)
MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(X)$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall n \in \mathbb{N} \exists X(\mathrm{n}<|\mathrm{X}|<\infty \wedge \phi(\mathrm{X}))
$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X.

Extensions (work in progress)

WMSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following „U" quantifier:

UX. $\phi(X)$

$\phi(X)$ holds for sets of arbitrarily large size

$$
\forall \mathrm{n} \in \mathbb{N} \exists \mathrm{X}(\mathrm{n}<|\mathrm{X}|<\infty \wedge \phi(\mathrm{X}))
$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X.

We consider Weak MSO+U (quantification over finite sets only):

$$
\exists X \rightarrow \exists_{\mathrm{fin}} X
$$

e.g. we can express that there exist paths with arbitrarily many „a"

Decision problems

Satisfiability

input: formula ϕ, question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012] also extended by the quantifier „exists path" [Bojańczyk 2014]

Decision problems

Satisfiability

input: formula ϕ, question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012] also extended by the quantifier „exists path" [Bojańczyk 2014]

HORS model-checking

input: formula ϕ, HORS \mathcal{G},
question: is ϕ true in the tree generated by \mathcal{G}

- undecidable for $\phi \in$ MSO +U (generalizes satifiability)

Decision problems

Satisfiability

input: formula ϕ, question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012] also extended by the quantifier „exists path" [Bojańczyk 2014]

HORS model-checking
input: formula ϕ, HORS \mathcal{G},
question: is ϕ true in the tree generated by \mathcal{G}

- undecidable for $\phi \in$ MSO +U (generalizes satifiability)
- Thm (conjecture): decidable for $\phi \in$ WMSO+U

Solution: this work + a model of λ-calculus recognizing WMSO properties

Thank you!

