Intersection Types and Counting

Paweł Parys

University of Warsaw

We consider infinitary, simply typed λ -calculus.

We consider infinitary, simply typed λ -calculus.

Simple types (sorts): $0, 0 \rightarrow (0 \rightarrow 0), (0 \rightarrow 0) \rightarrow 0, (0 \rightarrow 0) \rightarrow (((0 \rightarrow 0) \rightarrow 0) \rightarrow 0)$

We consider infinitary, simply typed λ -calculus.

Simple types (sorts): 0,
$$0 \rightarrow 0 \rightarrow 0$$
, $(0 \rightarrow 0) \rightarrow 0$, $(0 \rightarrow 0) \rightarrow ((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$

Order: ord(o)=0, ord($\alpha \rightarrow \beta$)=max(ord(α)+1, ord(β))

We consider infinitary, simply typed λ -calculus.

Simple types (sorts):
$$0, 0 \rightarrow 0 \rightarrow 0, (0 \rightarrow 0) \rightarrow 0, (0 \rightarrow 0) \rightarrow ((0 \rightarrow 0) \rightarrow 0) \rightarrow 0$$

Order: ord(o)=0, ord($\alpha \rightarrow \beta$)=max(ord(α)+1, ord(β))

λ-terms:

- variables: x^{α} , y^{β} , ...
- constants: a^{α} , b^{β} , ... only for sorts of order ≤ 1
- λ -abstraction: $(\lambda x^{\alpha}.K^{\beta})^{\alpha \to \beta}$
- application: $(K^{\alpha \to \beta}L^{\alpha})^{\beta}$
 - + coinduction

Every term has a particular sort.

We allow infinite terms, but the set of types of subterms should be finite.

Our setting – λY -calculus

 λ Y-term is a finite representation of an infinite λ -term:

- In a λ -term we may use a binder "Y"
- Meaning:

```
(Yx^{\alpha}.M^{\alpha})^{\alpha} - this is the unique (infinite) \lambda-term such that Yx.M = M[Yx.M/x]
```

```
the \lambda Y-term: Yx.((\lambda y.ay) x) represents the \lambda-term: ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ...))))
```

• Every finite λ -term K reduces to a term in β -normal form.

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n \cdot y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n \cdot a M_1 \cdots M_k$

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.: $\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$ or $\lambda x_1 \cdots \lambda x_n M_k \cdots M_k$
- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the Böhm tree of K.

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n a M_1 \cdots M_k$

- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the *Böhm tree* of K.

Suppose that:

- → K is of sort o
- → K has no free variables
- \rightarrow we only use constants of order ≤ 1 .

Then the Böhm tree is a tree built out of constants.

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n a M_1 \cdots M_k$

- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the *Böhm tree* of K.

Suppose that:

- → K is of sort o
- → K has no free variables
- \rightarrow we only use constants of order ≤ 1 .

Then the Böhm tree is a tree built out of constants.

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n a M_1 \cdots M_k$

- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the *Böhm tree* of K.

Suppose that:

- → K is of sort o
- → K has no free variables
- \rightarrow we only use constants of order ≤ 1 .

Then the Böhm tree is a tree built out of constants.

Yx.
$$((\lambda y.ay) x) = ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ...))))$$
(a (a ((\lambda y.ay) ((\lambda y.ay) ...))))

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n a M_1 \cdots M_k$

- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the *Böhm tree* of K.

Suppose that:

- → K is of sort o
- → K has no free variables
- \rightarrow we only use constants of order ≤ 1 .

Then the Böhm tree is a tree built out of constants.

Yx.
$$((\lambda y.ay) x) = ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ((\lambda y.ay) ...))))$$
(a (a (a (a ((\lambda y.ay) ...))))

- Every finite λ -term K reduces to a term in β -normal form.
- Every (infinite) λ -term K reduces to term in head- β -normal form, i.e.:

$$\lambda x_1 \cdots \lambda x_n y M_1 \cdots M_k$$
 or $\lambda x_1 \cdots \lambda x_n a M_1 \cdots M_k$

- We may reduce each $M_1, ..., M_k$ to head- β -normal form, etc.
- The limit is called the Böhm tree of K.

Suppose that:

- → K is of sort o
- → K has no free variables
- \rightarrow we only use constants of order ≤ 1 .

Then the Böhm tree is a tree built out of constants.

Example:

a-a-a-a-

Example:

Equivalent formalism: trees generated by Higher Order Recursion Schemes (HORSes)

Considered problem

Input: closed λY -term K of sort o (i.e. infinite λ -term represented in a finite way) Question: In the Böhm tree of K, are there finite paths with arbitrarily many symbols "a"?

Considered problem

=deterministic HORS

Input: closed λY -term K of sort o (i.e. infinite λ -term represented in a finite way)

Question: In the Böhm tree of K, are there finite paths

with arbitrarily many symbols "a"?

Equivalent problem:

Input: nondeterministic HORS S

Question: is L(S) finite?

L(S) = the set of finite trees generated by S

Thm [Ong 2006].

The following problem is decidable (MSO model-checking):

Input: closed λY -term K of sort o, regular property ϕ

Question: Is \$\phi\$ true in the B\u00f6hm tree of K?

Considered problem

Input: closed λY -term K of sort o

Question: In the Böhm tree of K, are there finite paths

with arbitrarily many symbols "a"?

Notice:

There may be no path with infinitely many "a".

Our property is not regular!!!

Thm [Ong 2006].
The MSO model-checking problem for HORS is decidable.

Our problem is a special case of the *diagonal problem*: Input: closed λY -term K of sort o, set Σ of symbols Question: In the Böhm tree of K, are there finite paths with arbitrarily many appearances of every symbol from Σ ? (i.e. for every N there exists a path P such that every symbol from Σ appears on P at least N times)

Thm [Ong 2006].

The MSO model-checking problem for HORS is decidable.

Our problem is a special case of the *diagonal problem*: Input: closed λY -term K of sort o, set Σ of symbols

Question: In the Böhm tree of K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?

(i.e. for every N there exists a path P such that every symbol from Σ appears on P at least N times)

<u>Thm</u> [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

Proof: perform a sequence of transformations of the input HORS, reducing its order.

We present a new solution, using intersection types.

Thm [Ong 2006].

The MSO model-checking problem for HORS is decidable.

<u>Thm</u> [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

[P. 2014]

An intersection type system for (finite) λ -terms s.t. the "size" of the (unique) derivation for K \approx the number of symbols "a" number of flags in the normal form of K

Thm [Ong 2006].

The MSO model-checking problem for HORS is decidable.

<u>Thm</u> [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

[P. 2014]

An intersection type system for (finite) λ -terms s.t. the "size" of the (unique) derivation for K \approx the number of symbols "a" in the normal form of K

Here we need an additional existential quantifier in the front:

in the Böhm tree of K there exist "big" derivations for K there exist paths with arbitrarily many "a"

<u>Intersection types - idea</u>

derivation for K approximating the

number of "a" on P

Böhm tree of K

path P in Böhm tree

Intersection types - idea

Standard use of intersection types:

• which "a" of K will appear in the Böhm tree

Intersection types - idea

Almost standard use of intersection types:

• which "a" of K will appear on P in the Böhm tree

Intersection types - idea

Almost standard use of intersection types:

• which "a" of K will appear on P in the Böhm tree

Difficulty:

• single "a" of K may result in many "a" on P

$$(\lambda y. y (y b^{\circ})).a^{\circ \to \circ}$$

Idea of solution:

detect (and count) places where variable containing "a" is duplicated

Intersection types

Solution: type derivations are labeled by flags and markers.

Intersection types refining sort o:

Intersection types

Solution: type derivations are labeled by flags and markers.

Intersection types refining sort $\alpha = \alpha_1 \rightarrow ... \rightarrow \alpha_k \rightarrow o$:

Only finite derivations!

one marker of order 0 (= end of path)
flags of order 1 (= "a" on the path)

one marker of order 0 (= end of path)
flags of order 1 (= "a" on the path)

one marker of order 0 flags of order 1

the type system ensures that a variable with marker is used exactly once!

number of order-1 flags unchanged!

one marker of order 0 flags of order 1 one marker of order 1

one marker of order 0

flags of order 1

one marker of order 1

flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

number of order-1 flags unchanged!

one marker of order 0

flags of order 1

one marker of order 1

flags of order 2 – places on the path to order-1 marker having a descendant with order-1 flag

We put all the flags & markers in derivations for K. The number of order-n flags approximates the number of "a" on some path in the Böhm tree of K.

in the Böhm tree of K arbitrarily many order-n flags

in the Böhm tree of K there exist paths with arbitrarily many "a"

easy to decide

Details in the paper...

Diagonal problem:

Input: HORS K, set Σ of symbols

Question: In the tree generated by K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?

(i.e. for every N there exists a path P such that every symbol from Σ appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

Our type system works for $|\Sigma|=1$. Can be extended to $|\Sigma|>1$:

- $|\Sigma|$ markers of every order
- different flags for every $a \in \Sigma$

Diagonal problem:

Input: HORS K, set Σ of symbols

Question: In the tree generated by K, are there finite paths with arbitrarily many appearances of every symbol from Σ ?

(i.e. for every N there exists a path P such that every symbol from Σ appears on P at least N times)

Thm [Hague, Kochems, Ong 2016], [Clemente, P., Salvati, Walukiewicz 2016]. The diagonal problem is decidable.

Our type system works for $|\Sigma|=1$.

Can be extended to $|\Sigma| > 1$:

- $|\Sigma|$ markers of every order
- different flags for every $a \in \Sigma$

algorithm of high complexity: f(n)-EXPTIME for some f(n)=O(n^2), where n = order of the HORS

Thm.(Conjecture)

The diagonal problem for order-n HORSes is (n-1)-EXPTIME-complete.

Carefull optimization (reduction of number of types) required.

MSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following "U" quantifier:

$$UX.\phi(X)$$

 $\phi(X)$ holds for sets of arbitrarily large size

$$\forall n \in \mathbb{N} \exists X (n < |X| < \infty \land \phi(X))$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X.

WMSO+U logic (introduced by Bojańczyk in 2004)

MSO+U extends MSO by the following "U" quantifier:

$$UX.\phi(X)$$

 $\phi(X)$ holds for sets of arbitrarily large size

$$\forall n \in \mathbb{N} \exists X (n < |X| < \infty \land \phi(X))$$

This construction may be nested inside other quantifiers, and ϕ may have free variables other than X.

We consider <u>Weak MSO+U</u> (quantification over finite sets only):

$$\exists X \rightarrow \exists_{fin} X$$

e.g. we can express that there exist paths with arbitrarily many "a"

Decision problems

Satisfiability

input: formula ϕ , question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012]
 also extended by the quantifier "exists path" [Bojańczyk 2014]

Decision problems

Satisfiability

input: formula ϕ , question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012] also extended by the quantifier "exists path" [Bojańczyk 2014]

HORS model-checking

input: formula ϕ , HORS G,

question: is ϕ true in the tree generated by \mathcal{G}

• undecidable for $\phi \in MSO+U$ (generalizes satisfiability)

Decision problems

Satisfiability

input: formula ϕ , question: is ϕ true in some tree?

- undecidable for MSO+U, even for words [Bojańczyk, P., Toruńczyk 2016] some fragments of MSO+U decidable for words [Bojańczyk, Colcombet 2006]
- decidable for WMSO+U [Bojańczyk, Toruńczyk 2012] also extended by the quantifier "exists path" [Bojańczyk 2014]

HORS model-checking

input: formula ϕ , HORS G,

question: is ϕ true in the tree generated by \mathcal{G}

- undecidable for $\phi \in MSO+U$ (generalizes satisfiability)
- Thm (conjecture): decidable for φ∈ WMSO+U

Solution: this work + a model of λ -calculus recognizing WMSO properties

