On a Fragment of AMSO and Tiling Systems

Achim Blumensath - Masaryk University (Brno)
Thomas Colcombet - IRIF / CNRS
Paweł Parys - University of Warsaw

STACS 2016

Plan of the talk
 1) Tiling Systems
 2) Asymptotic Monadic Second-Order Logic (AMSO)

(a fragment of AMSO can be reduced to appropriate tiling systems)

Tiling systems

Problem:

Input: regular languages K, L
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L ?

Example: $\mathrm{K}=\mathrm{L}=\{$ words with at exactly one ' a '\} Answer: yes

Tiling systems

Problem:

Input: regular languages K, L
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L ?

Example: $\mathrm{K}=\mathrm{L}=\{$ words with at exactly one ' a ' $\}$ Answer: yes

Observation: This problem is undecidable.

Lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L ?

Example: $L=\{$ words with exactly one 'a'\}
$K=\{$ words with at most one 'a'\}
Answer: yes

Lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L ?

Example: $L=\{$ words with exactly one 'a'\}
$K=\{$ words with at most one 'a'\}
Answer: yes

Observation: removing lines from a solution gives a solution,

In this example: every solution of height n has width $\geq \mathrm{n}$.

Symmetric lossy tiling systems

Problem:
Input: regular languages K, L where K is closed under letter removal and under permutations of letters
Question: $\forall n \in \mathbb{N}$, there exists a rectangle of height n with all Kolumns in K and all Lines in L?

Example: $L=\{$ words with exactly one 'a'\}
$K=\{$ words with at most one 'a'\}
Answer: yes

Observation: removing lines from a solution gives a solution, permuting lines in a solution gives a solution.

In this example: every solution of height n has width $\geq \mathrm{n}$.

Contribution

Thm.
 Symmetric lossy tiling problem is decidable.

Is the (non-symmetric) lossy tiling problem decidable? - open

Symmetric lossy tiling systems

Another example:
$L=\left(\left(d^{*} c d^{*}\right)^{*}(a+b)\right)^{*} \cap(b+c+d)^{*} a(b+c+d)^{*}$ exactly one c between any two a/b \& exactly one a
$K=d^{*} c^{?} d^{*} \cup b^{*} a^{?} b^{*}$ either many d and at most one c , or many b and at most one a

In this example: every solution of height n has width $\geq \mathrm{n}^{2}$

Symmetric lossy tiling systems - decision procedure

General idea

Solution to every instance is a "generalization" of our examples.
We generate some images that can be part of a solution. They are of this form:

```
                                    special row (one)
```

global rows (one kind)

We have:

- some number of special rows
- some number of kinds of global rows, global rows of each kind can be repeated as many times as we want

We use monoid for L-every row is characterized by its value in this monoid

Symmetric lossy tiling systems - decision procedure
General idea
Solution to every instance is a "generalization" of our examples.
We generate some images that can be part of a solution. Possible operations:

- diagonal schema
- product schema

Thm. If a solution exists $\forall \mathrm{n}$, it can be generated in at most C steps, using in meantime images with at most C special rows, and at most C kinds of global rows.

Symmetric lossy tiling systems - decision procedure

General idea
Solution to every instance is a "generalization" of our examples.
We generate some images that can be part of a solution. Possible operations:

- diagonal schema

Thm. If a solution exists $\forall \mathrm{n}$, it can be generated in at most C steps, using in meantime images with at most C special rows, and at most C kinds of global rows.

Proof. We develop a new generalization of the factorization forests theorem of Simon.

Non-symmetric lossy tiling systems (decidability open)

Example:
$\mathrm{L}=\mathrm{a} 1^{*}+\left(\mathrm{b} 1^{*} \mathrm{a} 1^{*}\right)^{*}$ a and b are alternating after ignoring all 1 \& at least one a
$K=b * a ? 1^{*}$ first some b, then at most one a, then some 1

In this example: every solution of height n has width $\geq 2^{n}-1$ (not covered by our algorithm)

Asymptotic Monadic Second-Order Logic

(introduced by Blumensath, Carton \& Colcombet, 2014)

Logic	MSO+U	AMSO
Idea	verification of asymptotic behavior (something is bounded / unbounded)	
Structure	ω-words	weighted ω-words (a number is assigned to every position)
Quantities to be measured	set sizes (arbitrary quantities)	weights

Asymptotic Monadic Second-Order Logic

Def. $\mathrm{AMSO}=\mathrm{MSO}$ extended by:

- quantification over number variables $\exists \mathrm{s} \forall \mathrm{r}$
- construction $f(x) \leq S$ appearing positively if s quantified existentially (negatively if s quantified universally)

Examples:

- weights are bounded: $\exists s \forall x(f(x) \leq s)$
- weights $\rightarrow \infty$: $\quad \forall s \exists x(\forall y>x)(f(y)>s)$
$-\infty$ many weights occur ∞ often: $\forall s \exists r \forall x(\exists y>x)(\mathrm{s}<f(y) \leq r)$

Considered problem - satisfiability Input: $\phi \in \mathrm{AMSO}$
Question: $\exists \mathrm{w}(\mathrm{w}=\phi)$?

Asymptotic Monadic Second-Order Logic

Considered problem - satisfiability Input: $\phi \in \mathrm{AMSO}$
Question: $\exists \mathrm{w}(\mathrm{w}=\phi)$?
undecidable for MSO $+\mathrm{U} \Rightarrow$ undecidable for AMSO

Asymptotic Monadic Second-Order Logic

Considered problem - satisfiability Input: $\phi \in$ AMSO
Question: $\exists \mathrm{w}(\mathrm{w}=\phi)$?
undecidable for MSO $+\mathrm{U} \Rightarrow$ undecidable for AMSO

What about fragments of AMSO?
We have reductions: (no number quantifiers in ψ)
$\exists r \forall s \exists t \psi(r, s, t)$
only $s<f(y) \leq t$ allowed
$\exists r \forall s \exists t \psi(r, s, t) \longrightarrow$ lossy tiling system
number quantifiers $\psi(\ldots) \longrightarrow$ multi-dimensional lossy tiling system
Conjecture: satisfiability decidable for these fragments.

Thank you!

