A Characterization of Lambda-terms Transforming Numbers

Paweł Parys
University of Warsaw

Results presented on FLOPS 2014

Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x \cdot \underbrace{f(f(f \ldots(f x) \ldots))}_{n}
$$

(Church numerals)

Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x \cdot \underbrace{f(f(f \ldots(f x) \ldots))}_{n}
$$

(Church numerals)

We can implement several functions working on such numbers, e.g. addition:

$$
\operatorname{add}=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f \cdot \lambda x \cdot n_{1} f\left(n_{2} f x\right)
$$

Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x \cdot \underbrace{f(f(f \ldots(f x) . . .))}_{n}
$$

We can implement several functions working on such numbers, e.g. addition:
$\operatorname{add}=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f \cdot \lambda x . n_{1} f\left(n_{2} f x\right)$

In this talk we consider simply-typed λ-calculus (sorts are of the form $\tau \rightarrow \sigma$ constructed out of a base sort o).
The sort of "numbers" is $\mathbb{N}=(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$.
In fact every closed β-normalized term of this sort represents some number.

Higher-order functions on numbers

We can construct higher-order functions operating on numbers, for example:

$$
g(f)=n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right)
$$

Goal of this work: characterize all such functions.

Higher-order functions on numbers

We can construct higher-order functions operating on numbers, for example:

$$
g(f)=n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right)
$$

Goal of this work: characterize all such functions.
In order to know precisely the result of g for each f, we need to remember all the numbers $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ (where k arbitrarily big).

Higher-order functions on numbers

We can construct higher-order functions operating on numbers, for example:

$$
g(f)=n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right)
$$

Goal of this work: characterize all such functions.
In order to know precisely the result of g for each f, we need to remember all the numbers n_{1}, \ldots, n_{k} (where k arbitrarily big).

What if it is enough to approximate the result?
We can take

$$
\left.g^{\prime}(f)=n_{1}+f(m) \quad \text { where } m=n_{2}+\ldots+n_{k} \quad \text { assume } n_{>}>0\right)
$$

It contains only two numbers $\left(\mathrm{n}_{1}, \mathrm{~m}\right)$ and approximates g .

Higher-order functions on numbers

We can construct higher-order functions operating on numbers, for example:

$$
g(f)=n_{1}+f\left(n_{2}+f\left(n_{3}+f\left(\ldots+f\left(n_{k}\right) \ldots\right)\right)\right)
$$

Goal of this work: characterize all such functions.
In order to know precisely the result of g for each f, we need to remember all the numbers $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ (where k arbitrarily big).

What if it is enough to approximate the result?
We can take

$$
\left.g^{\prime}(f)=n_{1}+f(m) \quad \text { where } m=n_{2}+\ldots+n_{k} \quad \text { assume } n_{>}>0\right)
$$

It contains only two numbers $\left(\mathrm{n}_{1}, \mathrm{~m}\right)$ and approximates g .
e.g. for $f(x)=2^{*} x$ we have $g^{\prime}(f) \leqslant g(f) \leqslant g^{\prime}(f)^{*} 2^{g^{\prime}(f)}$

We have similar relationship for each fixed f (depending on f, but not on the numbers used in g / g ').

Contribution

We prove that for every sort, eg. $(((0 \rightarrow 0) \rightarrow 0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)$ there are finitely many types (shapes) of functions, each of them using a fixed amount of natural numbers.

```
term M }\longrightarrow\mathrm{ types(M), vec(M)
from finite set vector of numbers of length determined by types(M)
```


Contribution

We prove that for every sort, eg. $(((0 \rightarrow 0) \rightarrow 0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)$ there are finitely many types (shapes) of functions, each of them using a fixed amount of natural numbers.

```
term M }\longrightarrow\mathrm{ types(M), vec(M)
from finite set vector of numbers of length determined by types(M)
```

Compositionality types (M), types $(N) \longrightarrow \operatorname{types}(M)$

Contribution

We prove that for every sort, eg. $(((0 \rightarrow 0) \rightarrow 0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)$ there are finitely many types (shapes) of functions, each of them using a fixed amount of natural numbers.

```
term M }\longrightarrow\mathrm{ types(M), vec(M)
from finite set vector of numbers of length determined by types(M)
```

Compositionality
types (M), types $(N) \longrightarrow$ types $(M N)$, linear transformation L
$\operatorname{vec}(\mathrm{M} \mathrm{N})=\mathrm{L}(\operatorname{vec}(\mathrm{M}), \operatorname{vec}(\mathrm{N}))$

Contribution

We prove that for every sort, eg. $(((0 \rightarrow 0) \rightarrow 0 \rightarrow 0) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)) \rightarrow((0 \rightarrow 0) \rightarrow 0 \rightarrow 0)$ there are finitely many types (shapes) of functions, each of them using a fixed amount of natural numbers.

```
term M }\longrightarrow\mathrm{ types(M), vec(M)
```

 from finite set vector of numbers of length determined by types(M)

Compositionality

 types (M), types $(N) \longrightarrow$ types $(M N)$, linear transformation L $\operatorname{vec}(\mathrm{M} \mathrm{N})=\mathrm{L}(\operatorname{vec}(\mathrm{M}), \operatorname{vec}(\mathrm{N}))$For a term M of sort $\mathbb{N}=(\mathrm{o} \rightarrow \mathrm{o}) \rightarrow \mathrm{o} \rightarrow \mathrm{o}$ representing a number n , a number m in $\operatorname{vec}(M)$ approximates n :

$$
\mathrm{m} \leqslant \mathrm{H}(\mathrm{n}) \text { and } \mathrm{n} \leqslant \mathrm{H}(\mathrm{~m})
$$

for a fixed (but fast-growing) function H

Consequences: representing tuples

We can represent pairs of numbers (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(n_{1}, n_{2}\right)\right]=\lambda f . f\left[n_{1}\right]\left[n_{2}\right]
$$

Consequences: representing tuples

We can represent pairs of numbers (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(n_{1}, n_{2}\right)\right]=\lambda f . f\left[n_{1}\right]\left[n_{2}\right]
$$

constructor of pairs:
pair $=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}$
extractors:

$$
\begin{aligned}
& e x t_{1}=\lambda p . p(\lambda x \cdot \lambda y \cdot x) \\
& \text { ext }_{2}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

Consequences: representing tuples

We can represent pairs of numbers (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(n_{1}, n_{2}\right)\right]=\lambda f . f\left[n_{1}\right]\left[n_{2}\right]
$$

constructor of pairs:
pair $=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}$
extractors:

$$
\begin{aligned}
& e x t_{1}=\lambda p . p(\lambda x \cdot \lambda y \cdot x) \\
& \text { ext }_{2}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

it holds:
$\operatorname{ext}_{1}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow \beta n_{1}$
$\operatorname{ext}_{2}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow \beta n_{2}$

Consequences: representing tuples

We can represent pairs of numbers (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right]=\lambda \mathrm{f} . \mathrm{f}\left[\mathrm{n}_{1}\right]\left[\mathrm{n}_{2}\right]
$$

constructor of pairs:

$$
\text { pair }=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}
$$

extractors:

$$
\begin{aligned}
& e x t_{1}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x) \\
& e x t_{2}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

it holds:
$\operatorname{ext}_{1}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow_{\beta} n_{1}$
$\operatorname{ext}_{2}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow \beta n_{2}$

In a similar way we can represent triples, quadruples, ...
But (with such standard representation) for tuples of bigger arities we need to use terms of a more complicated sorts.

Natural question:

Maybe in terms of some sort τ we can represent arbitrarily long tuples (arrays) of integers?

Consequences: representing tuples

Natural question:

Maybe in terms of some sort τ we can represent arbitrarily long tuples (arrays) of integers?
What would it mean?
Of course we can represent k numbers in this way:
$\left[\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right]=\lambda f . f n_{1}\left(f n_{2}\left(\ldots\left(n_{k-1} n_{k}\right) \ldots\right)\right)$
but the numbers cannot be extracted...

Consequences: representing tuples

Natural question:

Maybe in terms of some sort τ we can represent arbitrarily long tuples (arrays) of integers?

It would mean that:
For each k there exist closed terms ktuple : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \ldots \rightarrow \mathbb{N} \rightarrow \tau$
kext $_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
such that
$\forall \mathrm{i} \quad$ kext $_{\mathrm{i}}\left(\right.$ ktuple $\left.\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}}\right) \rightarrow \beta \mathrm{n}_{\mathrm{i}}$

Consequences: representing tuples

Natural question:

Maybe in terms of some sort τ we can represent arbitrarily long tuples (arrays) of integers?
It would mean that (a weaker statement):
For each k there exist closed terms kext $_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
and for all $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$ there exists a closed term T of type τ (a representation of this tuple) such that
$\forall \mathrm{i} \quad \mathrm{kext}_{\mathrm{i}} \mathrm{T} \rightarrow \beta \mathrm{n}_{\mathrm{i}}$

Consequences: representing tuples

Natural question:

Maybe in terms of some sort τ we can represent arbitrarily long tuples (arrays) of integers?

It would mean that (a weaker statement):
For each k there exist closed terms kext $_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
and for all $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$ there exists a closed term T of type τ (a representation of this tuple) such that
$\forall \mathrm{i} \quad \mathrm{kext}_{\mathrm{i}} \mathrm{T} \rightarrow \beta \mathrm{n}_{\mathrm{i}}$
Theorem 1
The answer is NO - such type τ does not exist.

Another point of view

Consider the equivalence relation \sim on terms of the same sort $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of sort τ,
seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded
e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Another point of view

Consider the equivalence relation \sim on terms of the same sort $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of sort τ, seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Theorem 2.
For each sort τ the relation \sim has finitely many equivalence classes.

Another point of view

Consider the equivalence relation \sim on terms of the same sort $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of sort τ,
seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Theorem 2.
For each sort τ the relation \sim has finitely many equivalence classes.
Theorem 1 follows immediately from Theorem 2: the extractors cannot be equivalent, so length of representable tuples is not greater than the number of equivalence classes of \sim.
(Longer tuples cannot be represented even when we allow approximate extraction, up to some error).

Another point of view

Consider the equivalence relation \sim on terms of the same sort $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of sort τ, seq. $\mathrm{KN}_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $\mathrm{LN}, \mathrm{LN}_{2}, \ldots$ is bounded

Theorem 2.

For each sort τ the relation \sim has finitely many equivalence classes.
Proof of Theorem 2: if types(K)=types(L), then K~L.
Take K, L such that types(K)=types(L), and take $\mathrm{N}_{1}, \mathrm{~N}_{2}, \ldots$ such that seq. $\mathrm{KN}_{1}, \mathrm{KN}_{2}, \ldots$ is bounded. Goal: seq. $\mathrm{LN}_{1}, \mathrm{LN}_{2}, \ldots$ is bounded.
W.I.o.g. types $\left(\mathrm{N}_{1}\right)=\operatorname{types}\left(\mathrm{N}_{2}\right)=$...
value of $\mathrm{KN}_{\mathrm{j}} \approx$ a number in $\operatorname{vec}\left(\mathrm{KN}_{\mathrm{j}}\right)$,
value of $\mathrm{LN} \mathrm{N}_{\mathrm{j}} \approx$ a number in $\operatorname{vec}\left(\mathrm{LN} \mathrm{N}_{\mathrm{j}}\right)$,
$\operatorname{vec}\left(\mathrm{KN}_{\mathrm{j}}\right)=\operatorname{Lin}\left(\operatorname{vec}(\mathrm{K}), \operatorname{vec}\left(\mathrm{N}_{\mathrm{j}}\right)\right) \approx \operatorname{Lin}\left(\operatorname{vec}(\mathrm{L}), \operatorname{vec}\left(\mathrm{N}_{\mathrm{j}}\right)\right)=\operatorname{vec}\left(\mathrm{LN}_{\mathrm{j}}\right)$
(where Lin is determined by types (K) and types $\left(\mathrm{N}_{1}\right)$ - the same for each j)
Thus $\mathrm{LN}_{1}, \mathrm{LN}_{2}, \ldots$ is bounded.

Techniques used

Intersection type system:

- Intersection types refine sorts (simple types).
- To a term we assign a pair (flag, type), where flag $\in\{p r, n p\}$ ("productive", "nonproductive").
- One base type: o.
- The types are of the form $\left(\mathrm{f}_{1}, \tau_{1}\right) \wedge\left(\mathrm{f}_{2}, \tau_{2}\right) \wedge \ldots \wedge\left(\mathrm{f}_{\mathrm{m}}, \tau_{\mathrm{m}}\right) \rightarrow \tau$.

To one term we may assign multiple pairs (flag, type).

Intersection types

The types are of the form $\left(\mathrm{f}_{1}, \tau_{1}\right) \wedge\left(\mathrm{f}_{2}, \tau_{2}\right) \wedge \ldots \wedge\left(\mathrm{f}_{\mathrm{m}}, \tau_{\mathrm{m}}\right) \rightarrow \tau$.

When a term M has such type, it means that if to the argument of the function M we can assign all pairs $\left(f_{1}, \tau_{1}\right),\left(f_{2}, \tau_{2}\right), \ldots,\left(f_{m}, \tau_{m}\right)$, then the result has type τ.

Moreover M is required to use its argument in each of these types (we have type $T \rightarrow \tau$ (with $\mathrm{m}=0$) when the argument is not used at all).

Thus we know precisely which arguments are used and with which types.

Intersection types

Beside of a type, to a term M we also assign a flag.
Flag "productive" means that M adds something to the resulting value (in addition to the value supported by the arguments):
$-M$ is productive when it uses some of its productive arguments
more than once (we look at the derivation tree, not at the term itself).
e.g. $F=(\lambda f . \lambda x . f(f x))$ is productive for productive f because if f adds 1 , then ($F f x$) is bigger than ($f x$) but $F=(\lambda f . \lambda x . f x)$ is nonproductive (even when f is productive), because $(F(F(F f)))=f$.

To one term we may assign multiple pairs (flag, type).

Typing rules

$$
\begin{gather*}
\frac{\alpha=\overbrace{o \rightarrow \cdots \rightarrow o}^{k} \rightarrow o}{\emptyset \vdash \mathbf{c}^{\alpha}:(\mathrm{pr},(\underbrace{(\mathrm{pr}, o) \rightarrow \cdots \rightarrow(\mathrm{pr}, o)}_{k} \rightarrow o)} \quad x:(f, \tau) \vdash x:(\mathrm{np}, \tau) \\
\frac{\Gamma \cup\left\{x:\left(f_{i}, \tau_{i}\right) \mid i \in I\right\} \vdash M:(f, \tau) \quad x \notin \operatorname{dom}(\Gamma)}{\Gamma \vdash \lambda x \cdot M:\left(f, \bigwedge_{i \in I}\left(f_{i}, \tau_{i}\right) \rightarrow \tau\right)}(\lambda) \\
\Gamma \vdash M:\left(f^{\prime}, \bigwedge_{i \in I}\left(f_{i}^{\bullet}, \tau_{i}\right) \rightarrow \tau\right) \quad \Gamma_{i} \vdash N:\left(f_{i}^{\circ}, \tau_{i}\right) \text { for each } i \in I \tag{@}\\
\Gamma \cup \bigcup_{i \in I} \Gamma_{i} \vdash M N:(f, \tau)
\end{gather*}
$$

where in the (@) rule we assume that

- each pair $\left(f_{i}^{\bullet}, \tau_{i}\right)$ is different (where $i \in I$), and
- for each $i \in I, f_{i}^{\bullet}=\mathrm{pr}$ if and only if $f_{i}^{\circ}=\mathrm{pr}$ or $\Gamma_{i} \upharpoonright_{\mathrm{pr}} \neq \emptyset$, and
$-f=$ pr if and only if $f^{\prime}=\mathrm{pr}$, or $f_{i}^{\circ}=\mathrm{pr}$ for some $i \in I$, or $\left|\Gamma \upharpoonright_{\mathrm{pr}}\right|+$ $\sum_{i \in I}\left|\Gamma_{i} \upharpoonright_{\mathrm{pr}}\right|>\left|\left(\Gamma \cup \bigcup_{i \in I} \Gamma_{i}\right) \upharpoonright_{\mathrm{pr}}\right|$.

Typing rules - example

$$
\begin{align*}
& b_{x}=x:(\mathrm{pr}, o) \\
& b_{y}=y:(\mathrm{pr},(\mathrm{pr}, o) \rightarrow o) \\
& \frac{b_{y} \vdash y:(\mathrm{np},(\mathrm{pr}, o) \rightarrow o) \quad \frac{b_{y} \vdash y:(\mathrm{np},(\mathrm{pr}, o) \rightarrow o) \quad b_{x} \vdash x:(\mathrm{np}, o)}{b_{x}, b_{y} \vdash y x:(\mathrm{np}, o)}}{\frac{b_{x}, b_{y} \vdash y(y x):(\mathrm{pr}, o)}{\frac{b_{y} \vdash \lambda x \cdot y(y x):(\mathrm{pr},(\mathrm{pr}, o) \rightarrow o)}{\vdash \lambda y \cdot \lambda x \cdot y(y x):(\mathrm{pr},(\mathrm{pr},(\mathrm{pr}, o) \rightarrow o) \rightarrow(\mathrm{pr}, o) \rightarrow o)}(\lambda)}} \tag{@}\\
& b_{y}^{\prime}=y:(\mathrm{pr},(\mathrm{pr}, o) \rightarrow o) \\
& \frac{b_{y}^{\prime} \vdash y:(\mathrm{np},(\mathrm{pr}, o) \rightarrow o) \quad \frac{b_{y}^{\prime} \vdash y:(\mathrm{np},(\mathrm{pr}, o) \rightarrow o) \quad b_{x} \vdash x:(\mathrm{np}, o)}{b_{x}, b_{y}^{\prime} \vdash y x:(\mathrm{np}, o)}}{\frac{b_{x}, b_{y}^{\prime} \vdash y(y x):(\mathrm{np}, o)}{\frac{b_{y}^{\prime} \vdash \lambda x \cdot y(y x):(\mathrm{np},(\mathrm{pr}, o) \rightarrow o)}{\vdash \lambda y \cdot \lambda x \cdot y(y x):(\mathrm{np},(\mathrm{np},(\mathrm{pr}, o) \rightarrow o) \rightarrow(\mathrm{pr}, o) \rightarrow o)}(\lambda)}} \tag{@}
\end{align*}
$$

Techniques used

Step 2: count "how much a term is productive".
To each typed term M (in fact to a derivation tree for $\mathrm{M}:(\mathrm{f}, \tau)$) we assign a number val(M, $\tau)$, which counts:

- the number of application subterms KL such that a productive variable is used both in K and in L.

Easy observation - compositionality:
For closed terms it holds
$\operatorname{val}(\mathrm{KL}, \tau)=\operatorname{val}\left(\mathrm{K},\left(\mathrm{f}_{1}, \tau_{1}\right) \wedge \ldots \wedge\left(\mathrm{f}_{\mathrm{m}}, \tau_{\mathrm{m}}\right) \rightarrow \tau\right)+\operatorname{val}\left(\mathrm{L}, \tau_{1}\right)+\ldots+\operatorname{val}\left(\mathrm{L}, \tau_{\mathrm{m}}\right)$.

Quite difficult lemma:
For closed terms $\mathrm{M} \rightarrow_{\beta} \mathrm{N}$ of base sort it holds

$$
\operatorname{val}(M, o) \leq \operatorname{val}(N, o) \leq 2^{2^{2}} 2^{\operatorname{val}(M, o)} \operatorname{val}(M, o)
$$

Techniques used

Quite difficult lemma:
For closed terms $\mathrm{M} \rightarrow_{\beta} \mathrm{N}$ of base sort it holds

$$
\operatorname{val}(\mathrm{M}, \mathrm{o}) \leq \operatorname{val}(\mathrm{N}, \mathrm{O}) \leq 2^{2^{2}} \mathrm{~m}^{\operatorname{val}(\mathrm{M}, \mathrm{o})}
$$

To prove this lemma, we need to:

- isolate closed subterms in M ,
- replace the tower of 2^{2} by an appropriately defined high(M),
- perform the head β-reduction first (closed subterms remain closed), and prove that val (M) increases and high (M) decreases.

Thank you.

