

A Characterization of Lambda-terms
Transforming Numbers

Paweł Parys

University of Warsaw

Results presented on FLOPS 2014

n

Representing numbers in -terms

[n] = f.x. f (f (f … (f x)...)) (Church numerals)

n

Representing numbers in -terms

[n] = f.x. f (f (f … (f x)...))

We can implement several functions working on such numbers,
e.g. addition:

add = n1.n2.f.x. n1 f (n2 f x)

(Church numerals)

n

Representing numbers in -terms

[n] = f.x. f (f (f … (f x)...))

We can implement several functions working on such numbers,
e.g. addition:

add = n1.n2.f.x. n1 f (n2 f x)

In this talk we consider simply-typed -calculus
(sorts are of the form constructed out of a base sort o).
The sort of “numbers” is ℕ=(.
In fact every closed -normalized term of this sort represents
some number.

(Church numerals)

Higher-order functions on numbers

We can construct higher-order functions operating on numbers,
for example:

g(f) = n
1
+f(n

2
+f(n

3
+f(...+f(n

k
)...)))

Goal of this work: characterize all such functions.

Higher-order functions on numbers

We can construct higher-order functions operating on numbers,
for example:

g(f) = n
1
+f(n

2
+f(n

3
+f(...+f(n

k
)...)))

Goal of this work: characterize all such functions.

In order to know precisely the result of g for each f, we need
to remember all the numbers n

1
, …, n

k
 (where k arbitrarily big).

Higher-order functions on numbers

We can construct higher-order functions operating on numbers,
for example:

g(f) = n
1
+f(n

2
+f(n

3
+f(...+f(n

k
)...)))

Goal of this work: characterize all such functions.

In order to know precisely the result of g for each f, we need
to remember all the numbers n

1
, …, n

k
 (where k arbitrarily big).

What if it is enough to approximate the result?
We can take

It contains only two numbers (n
1
, m) and approximates g.

g'(f) = n
1
+f(m) where m=n

2
+...+n

k
 (assume n

i
>0)

Higher-order functions on numbers

We can construct higher-order functions operating on numbers,
for example:

g(f) = n
1
+f(n

2
+f(n

3
+f(...+f(n

k
)...)))

Goal of this work: characterize all such functions.

In order to know precisely the result of g for each f, we need
to remember all the numbers n

1
, …, n

k
 (where k arbitrarily big).

What if it is enough to approximate the result?
We can take

It contains only two numbers (n
1
, m) and approximates g.

e.g. for f(x)=2*x we have g'(f) g(f) g'(f)*2g'(f)

We have similar relationship for each fixed f (depending on f,
but not on the numbers used in g/g').

g'(f) = n
1
+f(m) where m=n

2
+...+n

k
 (assume n

i
>0)

Contribution

We prove that for every sort, eg. (((
there are finitely many types (shapes) of functions,
each of them using a fixed amount of natural numbers.

term M types(M), vec(M)
vector of numbers of length determined by types(M)from finite set

Contribution

We prove that for every sort, eg. (((
there are finitely many types (shapes) of functions,
each of them using a fixed amount of natural numbers.

term M types(M), vec(M)

Compositionality

types(M), types(N) types(M N)

vector of numbers of length determined by types(M)from finite set

Contribution

We prove that for every sort, eg. (((
there are finitely many types (shapes) of functions,
each of them using a fixed amount of natural numbers.

term M types(M), vec(M)

Compositionality

types(M), types(N) types(M N), linear transformation L

vec(M N) = L(vec(M), vec(N))

vector of numbers of length determined by types(M)from finite set

Contribution

We prove that for every sort, eg. (((
there are finitely many types (shapes) of functions,
each of them using a fixed amount of natural numbers.

term M types(M), vec(M)

Compositionality

types(M), types(N) types(M N), linear transformation L

vec(M N) = L(vec(M), vec(N))

For a term M of sort ℕ=(representing a number n,
a number m in vec(M) approximates n:
 m H(n) and n H(m)

for a fixed (but fast-growing) function H

vector of numbers of length determined by types(M)from finite set

Remark: Our result holds for every representation
of natural numbers in lambda-terms

Consequences: representing tuples

We can represent pairs of numbers (in terms of type (ℕℕℕ)ℕ):

[(n1, n2)] = f. f [n1] [n2]

We can represent pairs of numbers (in terms of type (ℕℕℕ)ℕ):

pair = n1.n2.f. f n1 n2

[(n1, n2)] = f. f [n1] [n2]

constructor of pairs:

ext1 = p.p (x.y. x)
extractors:

ext2 = p.p (x.y. y)

Consequences: representing tuples

We can represent pairs of numbers (in terms of type (ℕℕℕ)ℕ):

pair = n1.n2.f. f n1 n2

[(n1, n2)] = f. f [n1] [n2]

constructor of pairs:

ext1 = p.p (x.y. x)
extractors:

ext2 = p.p (x.y. y)

it holds:

ext1 (pair n1 n2) n1

ext2 (pair n1 n2) n2

Consequences: representing tuples

We can represent pairs of numbers (in terms of type (ℕℕℕ)ℕ):

pair = n1.n2.f. f n1 n2

[(n1, n2)] = f. f [n1] [n2]

constructor of pairs:

ext1 = p.p (x.y. x)
extractors:

ext2 = p.p (x.y. y)

it holds:

ext1 (pair n1 n2) n1

ext2 (pair n1 n2) n2

In a similar way we can represent
triples, quadruples, …

But (with such standard representation)
for tuples of bigger arities we need to
use terms of a more complicated sorts.

Natural question:
Maybe in terms of some sort
we can represent arbitrarily long
tuples (arrays) of integers?

Consequences: representing tuples

Natural question:
Maybe in terms of some sort we can represent arbitrarily long
tuples (arrays) of integers?

What would it mean?

 Of course we can represent k numbers in this way:
 [(n1, n2, …, nk)] = f. f n1 (f n2 (… (f nk-1 nk)...))

 but the numbers cannot be extracted...

Consequences: representing tuples

Natural question:
Maybe in terms of some sort we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that:
 For each k there exist closed terms
 ktuple : ℕℕ.ℕ
 kext1, ..., kextk : ℕ

 such that
 ∀i kexti (ktuple n1 n2 … nk) ni

Consequences: representing tuples

Natural question:
Maybe in terms of some sort we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that (a weaker statement):
 For each k there exist closed terms
 kext1, ..., kextk : ℕ

 and for all n1, n2, …, nk∈ℕ there exists a closed term T of type
 (a representation of this tuple) such that
 ∀i kexti T ni

Consequences: representing tuples

Natural question:
Maybe in terms of some sort we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that (a weaker statement):
 For each k there exist closed terms
 kext1, ..., kextk : ℕ

 and for all n1, n2, …, nk∈ℕ there exists a closed term T of type
 (a representation of this tuple) such that
 ∀i kexti T ni

Theorem 1
The answer is NO – such type does not exist.

Consequences: representing tuples

Consider the equivalence relation ~ on terms of the same sort ℕ:

K~L if for each sequence N1,N2,... of terms of sort ,
 seq. KN1, KN2,... is bounded seq. LN1, LN2,... is bounded

e.g. (n. n) and (n. add n n) are equivalent.

Another point of view

Consider the equivalence relation ~ on terms of the same sort ℕ:

K~L if for each sequence N1,N2,... of terms of sort ,
 seq. KN1, KN2,... is bounded seq. LN1, LN2,... is bounded

e.g. (n. n) and (n. add n n) are equivalent.

Theorem 2.
For each sort the relation ~ has finitely many equivalence classes.

Another point of view

Consider the equivalence relation ~ on terms of the same sort ℕ:

K~L if for each sequence N1,N2,... of terms of sort ,
 seq. KN1, KN2,... is bounded seq. LN1, LN2,... is bounded

e.g. (n. n) and (n. add n n) are equivalent.

Theorem 2.
For each sort the relation ~ has finitely many equivalence classes.

Theorem 1 follows immediately from Theorem 2: the extractors cannot
be equivalent, so length of representable tuples is not greater than
the number of equivalence classes of ~.

(Longer tuples cannot be represented even when we allow approximate
 extraction, up to some error).

Another point of view

Consider the equivalence relation ~ on terms of the same sort ℕ:

K~L if for each sequence N1,N2,... of terms of sort ,
 seq. KN1, KN2,... is bounded seq. LN1, LN2,... is bounded

Theorem 2.
For each sort the relation ~ has finitely many equivalence classes.

Proof of Theorem 2: if types(K)=types(L), then K~L.

Take K, L such that types(K)=types(L), and take N1,N2,... such that
seq. KN1, KN2,... is bounded. Goal: seq. LN1, LN2,... is bounded.

W.l.o.g. types(N1)=types(N2)=...

value of KNj ≈ a number in vec(KNj),
value of LNj ≈ a number in vec(LNj),

vec(KNj) = Lin(vec(K), vec(Nj)) ≈ Lin(vec(L), vec(Nj)) = vec(LNj)
(where Lin is determined by types(K) and types(N1) – the same for each j)

Thus LN1, LN2,... is bounded.

Another point of view

Intersection type system:
● Intersection types refine sorts (simple types).
● To a term we assign a pair (flag, type),
 where flag∈{pr, np} (“productive”, “nonproductive”).

● One base type:
● The types are of the form (f1, 1)∧(f2, 2)∧...∧(fm, m)

Techniques used

flags types

To one term we may assign multiple pairs (flag, type).

The types are of the form (f1, 1)∧(f2, 2)∧...∧(fm, m)

When a term M has such type, it means that if to the argument of the
function M we can assign all pairs (f1, 1), (f2,), ..., (fm,m), then

the result has type .

Moreover M is required to use its argument in each of these types
(we have type ⊤ (with m=0) when the argument is not used at all).

Thus we know precisely which arguments are used and with
which types.

Intersection types

flags types

Beside of a type, to a term M we also assign a flag.

Flag “productive” means that M adds something to the resulting value
(in addition to the value supported by the arguments):
– M is productive when it uses some of its productive arguments
 more than once (we look at the derivation tree, not at the term itself).
 e.g. F=(f.x. f (f x)) is productive for productive f
 because if f adds 1, then (F f x) is bigger than (f x)
 but F=(f.x. f x) is nonproductive (even when f is productive),
 because (F (F (F f))) = f.

Intersection types

To one term we may assign multiple pairs (flag, type).

Typing rules

Typing rules - example

Step 2: count “how much a term is productive”.

To each typed term M (in fact to a derivation tree for M:(f,)) we assign
a number val(M,), which counts:
– the number of application subterms KL such that a productive variable
 is used both in K and in L.

Techniques used

Easy observation – compositionality:
For closed terms it holds
val(KL,)=val(K,(f1, 1)∧...∧(fm, m))+val(L, 1)+...+val(L, m).

Quite difficult lemma:
For closed terms M N of base sort it holds

val(M,) ≤ val(N,) ≤ 22
2

2...
val(M,)

val(M,)

Techniques used

To prove this lemma, we need to:
– isolate closed subterms in M,
– replace the tower of 22 by an appropriately defined high(M),
– perform the head -reduction first (closed subterms remain closed),
 and prove that val(M) increases and high(M) decreases.

Quite difficult lemma:
For closed terms M N of base sort it holds

val(M,) ≤ val(N,) ≤ 22
2

2...
val(M,)

val(M,)

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 36

