How Many Numbers
 Can a Lambda-Term Contain?

Paweł Parys

University of Warsaw

Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x \cdot \underbrace{f(f(f \ldots(f x) \ldots))}_{n}
$$

(Church numerals)

Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x \cdot \underbrace{f(f(f \ldots(f) \ldots))}_{n}
$$

(Church numerals)

We can implement several functions working on such numbers, e.g. addition:

```
add = \lambdan }\mp@subsup{n}{1}{}\cdot\lambda\mp@subsup{n}{2}{}.\lambdaf.\lambdax. \mp@subsup{n}{1}{}f(\mp@subsup{n}{2}{}fx
```


Representing numbers in λ-terms

$$
[n]=\lambda f . \lambda x . \underbrace{\mathrm{f}(\mathrm{f}(\mathrm{f} \ldots(\mathrm{f} x) \ldots))}_{n}
$$

We can implement several functions working on such numbers, e.g. addition:
$\operatorname{add}=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . \lambda x . n_{1} f\left(n_{2} f x\right)$

In this talk we consider simply-typed λ-calculus (types are of the form $\tau \rightarrow \sigma$ constructed out of a base type o).
The type of "numbers" is $\mathbb{N}=(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$.
In fact each closed β-normalized term of this type represents some number.

Representing pairs

We can also represent pairs (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right]=\lambda \mathrm{f} . \mathrm{f}\left[\mathrm{n}_{1}\right]\left[\mathrm{n}_{2}\right]
$$

Representing pairs

We can also represent pairs (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right]=\lambda \mathrm{f} . \mathrm{f}\left[\mathrm{n}_{1}\right]\left[\mathrm{n}_{2}\right]
$$

constructor of pairs:

$$
\text { pair }=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}
$$

extractors:

$$
\begin{aligned}
& e^{2} t_{1}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x) \\
& e x t_{2}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

Representing pairs

We can also represent pairs (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N})$:

$$
\left[\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right]=\lambda \mathrm{f} . \mathrm{f}\left[\mathrm{n}_{1}\right]\left[\mathrm{n}_{2}\right]
$$

constructor of pairs:

$$
\text { pair }=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}
$$

extractors:

$$
\begin{aligned}
& e^{2} t_{1}=\lambda p . p(\lambda x . \lambda y . x) \\
& e x t_{2}=\lambda p . p(\lambda x \cdot \lambda y . y)
\end{aligned}
$$

it holds:
$\operatorname{ext}_{1}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow_{\beta} n_{1}$
$\operatorname{ext}_{2}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow \beta n_{2}$

Representing pairs

We can also represent pairs (in terms of type $(\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}) \rightarrow \mathbb{N}$):

$$
\left[\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)\right]=\lambda \mathrm{f} . \mathrm{f}\left[\mathrm{n}_{1}\right]\left[\mathrm{n}_{2}\right]
$$

constructor of pairs:

$$
\text { pair }=\lambda n_{1} \cdot \lambda n_{2} \cdot \lambda f . f n_{1} n_{2}
$$

extractors:

$$
\begin{aligned}
& e x t_{1}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x) \\
& e x t_{2}=\lambda p \cdot p(\lambda x \cdot \lambda y \cdot y)
\end{aligned}
$$

it holds:
$\operatorname{ext}_{1}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow_{\beta} n_{1}$
$\operatorname{ext}_{2}\left(\right.$ pair $\left.n_{1} n_{2}\right) \rightarrow \beta n_{2}$
In a similar way we can represent triples, quadruples, ...
But (with such natural representation) for tuples of bigger arities we need to use terms of a more complicated type. Natural question:
Maybe in terms of some type τ
we can represent arbitrarily long tuples (arrays) of integers?

Representing tuples

Natural question:

Maybe in terms of some type τ we can represent arbitrarily long tuples (arrays) of integers?

What would it mean?
Of course we can represent k numbers in this way:
$\left[\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right]=\lambda f . f n_{1}\left(f n_{2}\left(\ldots\left(n_{k-1} n_{k}\right) \ldots\right)\right)$
but the numbers cannot be extracted...

Representing tuples

Natural question:

Maybe in terms of some type τ we can represent arbitrarily long tuples (arrays) of integers?

It would mean that:
For each k there exist closed terms
ktuple : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \ldots \rightarrow \mathbb{N} \rightarrow \tau$ $k^{e x t}{ }_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
such that
$\forall \mathrm{i} \quad$ kext $_{\mathrm{i}}\left(k\right.$ tuple $\left.\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}}\right) \rightarrow_{\beta} \mathrm{n}_{\mathrm{i}}$

Representing tuples

Natural question:

Maybe in terms of some type τ we can represent arbitrarily long tuples (arrays) of integers?
It would mean that (a weaker statement):
For each k there exist closed terms
kext $_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
and for all $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$ there exists a closed term T of type τ (a representation of this tuple) such that
$\forall \mathrm{i} \quad \mathrm{kext}_{\mathrm{i}} \mathrm{T} \rightarrow \beta \mathrm{n}_{\mathrm{i}}$

Representing tuples

Natural question:

Maybe in terms of some type τ we can represent arbitrarily long tuples (arrays) of integers?
It would mean that (a weaker statement):
For each k there exist closed terms
kext $_{1}, \ldots$, kext $_{k}: \tau \rightarrow \mathbb{N}$
and for all $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}} \in \mathbb{N}$ there exists a closed term T of type τ (a representation of this tuple) such that
$\forall \mathrm{i} \quad \mathrm{kext}_{\mathrm{i}} \mathrm{T} \rightarrow \beta \mathrm{n}_{\mathrm{i}}$
Theorem 1
The answer is NO - such type τ does not exist.

Another point of view

Consider the equivalence relation \sim on terms of the same type $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of type τ,
seq. $K N_{1}, K N_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Another point of view

Consider the equivalence relation \sim on terms of the same type $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of type τ,
seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Theorem 2.
For each type τ the relation \sim has finitely many equivalence classes.

Another point of view

Consider the equivalence relation \sim on terms of the same type $\tau \rightarrow \mathbb{N}$:
$K \sim L$ if for each sequence N_{1}, N_{2}, \ldots of terms of type τ,
seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded e.g. ($\lambda n . n$) and (λn. add $n n$) are equivalent.

Theorem 2.

For each type τ the relation \sim has finitely many equivalence classes.
Theorem 1 follows immediately from Theorem 2: the extractors cannot be equivalent, so length of representable tuples is not greater than the number of equivalence classes of \sim.
(Longer tuples cannot be represented even when we allow approximate extraction, up to some error).

Motivation (related work)

A similar theorem turns out to be useful while proving that all higher-order recursion schemes (that is λY-terms) generate more trees than those of them which are "safe".
"Safety" is a widely considered syntactic restriction, which simplifies some reasonings.
they generate Böhm trees, which are infinite trees

Techniques used

To simplify the analysis we add constants: $\mathbf{0}$: o and 1+ : o $\rightarrow 0$. For each n of type \mathbb{N}, the term ($\mathrm{n} 1+0$) after normalization is of the form $1+(1+(\ldots(1+0) \ldots))$
n

Techniques used

Intersection type system:

- Intersection types refine simple types.
- To a term we assign a pair (flag, type), where flag $\in\{p r, n p\}$ ("productive", "nonproductive").
- One base type: o.
- The types are of the form $\left(\mathrm{f}_{1}, \tau_{1}\right) \wedge\left(\mathrm{f}_{2}, \tau_{2}\right) \wedge \ldots \wedge\left(\mathrm{f}_{\mathrm{m}}, \tau_{\mathrm{m}}\right) \rightarrow \tau$.
- It will turn out that the equivalence class of \sim depends only on the set of such pairs (flag, type) which can be assigned to a term.

Intersection types

The types are of the form $\left(\mathrm{f}_{1}, \tau_{1}\right) \wedge\left(\mathrm{f}_{2}, \tau_{2}\right) \wedge \ldots \wedge\left(\mathrm{f}_{\mathrm{m}}, \tau_{\mathrm{m}}\right) \rightarrow \tau$.

When a term M has such type, it means that if to the argument of the function M we can assign all pairs $\left(f_{1}, \tau_{1}\right),\left(f_{2}, \tau_{2}\right), \ldots,\left(f_{m}, \tau_{m}\right)$, then the result has type τ.

Moreover M is required to use its argument in each of these types (we have type $T \rightarrow \tau$ (with $\mathrm{m}=0$) when the argument is not used at all).

Thus we know precisely which arguments are used and with which types.

Intersection types

Beside of a type, to a term M we also assign a flag.
Flag "productive" means that M adds something to the resulting value (in addition to the value supported by the arguments):

- the use of 1+ is productive (a 1+ has to appear in the derivation of a type, which means that it is really used),
- M is productive also when it uses some of its productive arguments more than once (again, we look at the derivation tree).
e.g. $F=(\lambda f . f(f 0))$ is productive, because (f $\mathbf{1 +})=(\mathbf{1 + (1 + 0)})$ but $F=(\lambda f . f)$ is nonproductive (even when f is productive), because (F (F (F f)) $)=\mathrm{f}$.

To one term we may assign multiple pairs (flag, type).

Techniques used

Step 2: count "how much a term is productive".
To each typed term M (in fact to a derivation tree for $\mathrm{M}:(\mathrm{f}, \tau)$) we assign a number val(M), which counts:

- the number of 1+ nodes in the derivation tree, and
- the number of application nodes KL such that a productive variable is used both in K and in L .

Easy observation - compositionality:
For closed terms it holds val(KL)=val(K)+val(L).
Quite difficult lemma:
For closed terms of base type it holds
$\operatorname{val}(M) \leq$ the number represented by $M \leq 2^{2^{2}}$
2
$2^{\mathrm{val}(\mathrm{M})}$
\checkmark the maximal order of a subterm of M

Techniques used

Quite difficult lemma:
For closed terms of base type it holds
$\operatorname{val}(M) \leq$ the number represented by $M \leq 2^{2^{2}} \quad$.
the maximal order of a subterm of M

To prove this lemma, we need to:

- isolate closed subterms in M,
- replace the tower of 2^{2} by an appropriately defined high(M),
- perform the head β-reduction first (closed subterms remain closed), and prove that val(M) increases and high(M) decreases.

Proof of the theorem

Easy observation - compositionality: For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds $\quad 2^{. . .2^{\text {val(M) }} \text {) }}$
$\operatorname{val}(M) \leq$ the number represented by $\mathrm{M} \leq 2^{2^{2}}$
the maximal order of a subterm of M

We want to prove that:
seq. $K N_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $L N_{1}, L N_{2}, \ldots$ is bounded
The sequences are almost: (lemma) $\operatorname{val}\left(\mathrm{KN}_{1}\right), \operatorname{val}\left(\mathrm{KN}_{2}\right), \ldots$ and $\operatorname{val}\left(\mathrm{LN}_{1}\right), \operatorname{val}\left(\mathrm{LN}_{2}\right), \ldots$

Proof of the theorem

Easy observation - compositionality: For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds $\quad . . .2^{\text {val(M) }}$
$\operatorname{val}(\mathrm{M}) \leq$ the number represented by $\mathrm{M} \leq 2^{2^{2}}$
the maximal order of a subterm of M

We want to prove that:
seq. $\mathrm{KN}_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $\mathrm{LN}_{1}, \mathrm{LN}_{2}, \ldots$ is bounded
The sequences are almost: (lemma + observation) $\operatorname{val}(\mathrm{K})+\operatorname{val}\left(\mathrm{N}_{1}\right), \operatorname{val}(\mathrm{K})+\operatorname{val}\left(\mathrm{N}_{2}\right), \ldots$ and $\operatorname{val}(\mathrm{L})+\operatorname{val}\left(\mathrm{N}_{1}\right), \operatorname{val}(\mathrm{L})+\operatorname{val}\left(\mathrm{N}_{2}\right), \ldots$
so they differ only by a constant val(L)-val(K).

Proof of the theorem

Easy observation - compositionality: For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds
the maximal order of a subterm of M

We want to prove that:
seq. $\mathrm{KN}_{1}, \mathrm{KN}_{2}, \ldots$ is bounded \Leftrightarrow seq. $\mathrm{LN}_{1}, \mathrm{LN}_{2}, \ldots$ is bounded
The sequences are almost: (lemma + observation) $\operatorname{val}(\mathrm{K})+\operatorname{val}\left(\mathrm{N}_{1}\right), \operatorname{val}(\mathrm{K})+\operatorname{val}\left(\mathrm{N}_{2}\right), \ldots$ and $\operatorname{val}(\mathrm{L})+\operatorname{val}\left(\mathrm{N}_{1}\right), \operatorname{val}(\mathrm{L})+\operatorname{val}\left(\mathrm{N}_{2}\right), \ldots$
so they differ only by a constant val(L)-val(K).

This is true assuming that we can use the same types for K and L, that is the same type for N_{i} in both sequences...

Thank you.

