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Representing numbers in λ-terms

[n] = λf.λx. f (f (f … (f x)...))

We can implement several functions working on such numbers,
e.g. addition:

add = λn1.λn2.λf.λx. n1 f (n2 f x)

In this talk we consider simply-typed λ-calculus
(types are of the form τ→σ constructed out of a base type o).
The type of “numbers” is ℕ=(ο→ο)→ο→ο.
In fact each closed β-normalized term of this type represents 
some number.

(Church numerals)
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Representing pairs

We can also represent pairs (in terms of type (ℕ→ℕ→ℕ)→ℕ):

pair = λn1.λn2.λf. f n1 n2

[(n1, n2)] = λf. f [n1] [n2]

constructor of pairs:

ext1 = λp. p (λx.λy. x)
extractors:

ext2 = λp. p (λx.λy. y)

it holds:

ext1 (pair n1 n2) →β n1

ext2 (pair n1 n2) →β n2

In a similar way we can represent
triples, quadruples, …

But (with such natural representation)
for tuples of bigger arities we need to
use terms of a more complicated type.

Natural question:
Maybe in terms of some type τ
we can represent arbitrarily long
tuples (arrays) of integers?



  

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

What would it mean?

  Of course we can represent k numbers in this way:
    [(n1, n2, …, nk)] = λf. f n1 (f n2 (… (f nk-1 nk)...))

  but the numbers cannot be extracted...



  

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that:
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    ∀i    kexti (ktuple n1 n2 … nk) →β ni
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Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that (a weaker statement):
  For each k there exist closed terms
    kext1, ..., kextk : τ→ℕ

  and for all n1, n2, …, nk∈ℕ there exists a closed term T of type τ 
  (a representation of this tuple) such that 
    ∀i    kexti T →β ni

Theorem 1
The answer is NO – such type τ does not exist.



  

Consider the equivalence relation ~ on terms of the same type τ→ℕ:

K~L if for each sequence N1,N2,... of terms of type τ, 
      seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded

e.g. (λn. n) and (λn. add n n) are equivalent.

Another point of view
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Consider the equivalence relation ~ on terms of the same type τ→ℕ:

K~L if for each sequence N1,N2,... of terms of type τ, 
      seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded

e.g. (λn. n) and (λn. add n n) are equivalent.

Theorem 2. 
For each type τ the relation ~ has finitely many equivalence classes.

Theorem 1 follows immediately from Theorem 2: the extractors cannot
be equivalent, so length of representable tuples is not greater than
the number of equivalence classes of ~.

(Longer tuples cannot be represented even when we allow approximate
 extraction, up to some error).

Another point of view



  

A similar theorem turns out to be useful while proving that all 
higher-order recursion schemes (that is λY-terms) generate more
trees than those of them which are “safe”. 

Motivation (related work)

they generate Böhm trees,
which are infinite trees“Safety” is a widely considered

syntactic restriction, which simplifies
some reasonings.



  

To simplify the analysis we add constants: 0 : ο and 1+ : ο→ο.
For each n of type ℕ, the term (n 1+ 0) after normalization is of the form
1+ (1+ (… (1+ 0)...))

Techniques used

n



  

Intersection type system:
● Intersection types refine simple types.
● To a term we assign a pair (flag, type),
 where flag∈{pr, np}  (“productive”, “nonproductive”).

● One base type: ο.
● The types are of the form (f1, τ1)∧(f2, τ2)∧...∧(fm, τm)→τ.

●  It will turn out that the equivalence class of ~ depends only on the set
   of such pairs (flag, type) which can be assigned to a term.

Techniques used

flags types



  

The types are of the form (f1, τ1)∧(f2, τ2)∧...∧(fm, τm)→τ.

When a term M has such type, it means that if to the argument of the
function M we can assign all pairs (f1, τ1), (f2, τ2), ..., (fm, τm), then

the result has type τ.

Moreover M is required to use its argument in each of these types
(we have type ⊤→τ (with m=0) when the argument is not used at all).

Thus we know precisely which arguments are used and with 
which types.

Intersection types

flags types



  

Beside of a type, to a term M we also assign a flag.

Flag “productive” means that M adds something to the resulting value
(in addition to the value supported by the arguments):
– the use of 1+ is productive (a 1+ has to appear in the derivation of a type, 
    which means that it is really used),
– M is productive also when it uses some of its productive arguments
   more than once (again, we look at the derivation tree).
   e.g. F=(λf. f (f 0)) is productive, because (f 1+) = (1+ (1+ 0))
    but F=(λf. f) is nonproductive (even when f is productive),
          because (F (F (F f))) = f.

Intersection types

To one term we may assign multiple pairs (flag, type).



  

Step 2: count “how much a term is productive”.

To each typed term M (in fact to a derivation tree for M:(f,τ)) we assign 
a number val(M), which counts:
– the number of 1+ nodes in the derivation tree, and
– the number of application nodes KL such that a productive variable
   is used both in K and in L.

Techniques used

Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds
val(M) ≤ the number represented by M ≤ 22 

2
2...

val(M)

the maximal order of 
a subterm of M



  

Techniques used

Quite difficult lemma:
For closed terms of base type it holds
val(M) ≤ the number represented by M ≤ 22 

2
2...

val(M)

the maximal order of 
a subterm of M

To prove this lemma, we need to:
– isolate closed subterms in M,
– replace the tower of 22 by an appropriately defined high(M),
– perform the head β-reduction first (closed subterms remain closed),
   and prove that val(M) increases and high(M) decreases. 



  

Proof of the theorem
Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds

val(M) ≤ the number represented by M ≤ 22 
2

2...
val(M)

the maximal order of 
a subterm of M

seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded
We want to prove that:

The sequences are almost: (lemma)
    val(KN1), val(KN2), … and val(LN1), val(LN2), …    
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Proof of the theorem
Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds

val(M) ≤ the number represented by M ≤ 22 
2

2...
val(M)

the maximal order of 
a subterm of M

seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded
We want to prove that:

The sequences are almost: (lemma + observation)
    val(K)+val(N1), val(K)+val(N2), … and val(L)+val(N1), val(L)+val(N2), …

so they differ only by a constant val(L)-val(K).

This is true assuming that we can use the same types for K and L,
that is the same type for Ni in both sequences...



  

Thank you.
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