

How Many Numbers
Can a Lambda-Term Contain?

Paweł Parys

University of Warsaw

n

Representing numbers in λ-terms

[n] = λf.λx. f (f (f … (f x)...)) (Church numerals)

n

Representing numbers in λ-terms

[n] = λf.λx. f (f (f … (f x)...))

We can implement several functions working on such numbers,
e.g. addition:

add = λn1.λn2.λf.λx. n1 f (n2 f x)

(Church numerals)

n

Representing numbers in λ-terms

[n] = λf.λx. f (f (f … (f x)...))

We can implement several functions working on such numbers,
e.g. addition:

add = λn1.λn2.λf.λx. n1 f (n2 f x)

In this talk we consider simply-typed λ-calculus
(types are of the form τ→σ constructed out of a base type o).
The type of “numbers” is ℕ=(ο→ο)→ο→ο.
In fact each closed β-normalized term of this type represents
some number.

(Church numerals)

Representing pairs

We can also represent pairs (in terms of type (ℕ→ℕ→ℕ)→ℕ):

[(n1, n2)] = λf. f [n1] [n2]

Representing pairs

We can also represent pairs (in terms of type (ℕ→ℕ→ℕ)→ℕ):

pair = λn1.λn2.λf. f n1 n2

[(n1, n2)] = λf. f [n1] [n2]

constructor of pairs:

ext1 = λp. p (λx.λy. x)
extractors:

ext2 = λp. p (λx.λy. y)

Representing pairs

We can also represent pairs (in terms of type (ℕ→ℕ→ℕ)→ℕ):

pair = λn1.λn2.λf. f n1 n2

[(n1, n2)] = λf. f [n1] [n2]

constructor of pairs:

ext1 = λp. p (λx.λy. x)
extractors:

ext2 = λp. p (λx.λy. y)

it holds:

ext1 (pair n1 n2) →β n1

ext2 (pair n1 n2) →β n2

Representing pairs

We can also represent pairs (in terms of type (ℕ→ℕ→ℕ)→ℕ):

pair = λn1.λn2.λf. f n1 n2

[(n1, n2)] = λf. f [n1] [n2]

constructor of pairs:

ext1 = λp. p (λx.λy. x)
extractors:

ext2 = λp. p (λx.λy. y)

it holds:

ext1 (pair n1 n2) →β n1

ext2 (pair n1 n2) →β n2

In a similar way we can represent
triples, quadruples, …

But (with such natural representation)
for tuples of bigger arities we need to
use terms of a more complicated type.

Natural question:
Maybe in terms of some type τ
we can represent arbitrarily long
tuples (arrays) of integers?

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

What would it mean?

 Of course we can represent k numbers in this way:
 [(n1, n2, …, nk)] = λf. f n1 (f n2 (… (f nk-1 nk)...))

 but the numbers cannot be extracted...

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that:
 For each k there exist closed terms
 ktuple : ℕ→ℕ→...→ℕ→τ
 kext1, ..., kextk : τ→ℕ

 such that
 ∀i kexti (ktuple n1 n2 … nk) →β ni

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that (a weaker statement):
 For each k there exist closed terms
 kext1, ..., kextk : τ→ℕ

 and for all n1, n2, …, nk∈ℕ there exists a closed term T of type τ
 (a representation of this tuple) such that
 ∀i kexti T →β ni

Representing tuples

Natural question:
Maybe in terms of some type τ we can represent arbitrarily long
tuples (arrays) of integers?

It would mean that (a weaker statement):
 For each k there exist closed terms
 kext1, ..., kextk : τ→ℕ

 and for all n1, n2, …, nk∈ℕ there exists a closed term T of type τ
 (a representation of this tuple) such that
 ∀i kexti T →β ni

Theorem 1
The answer is NO – such type τ does not exist.

Consider the equivalence relation ~ on terms of the same type τ→ℕ:

K~L if for each sequence N1,N2,... of terms of type τ,
 seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded

e.g. (λn. n) and (λn. add n n) are equivalent.

Another point of view

Consider the equivalence relation ~ on terms of the same type τ→ℕ:

K~L if for each sequence N1,N2,... of terms of type τ,
 seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded

e.g. (λn. n) and (λn. add n n) are equivalent.

Theorem 2.
For each type τ the relation ~ has finitely many equivalence classes.

Another point of view

Consider the equivalence relation ~ on terms of the same type τ→ℕ:

K~L if for each sequence N1,N2,... of terms of type τ,
 seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded

e.g. (λn. n) and (λn. add n n) are equivalent.

Theorem 2.
For each type τ the relation ~ has finitely many equivalence classes.

Theorem 1 follows immediately from Theorem 2: the extractors cannot
be equivalent, so length of representable tuples is not greater than
the number of equivalence classes of ~.

(Longer tuples cannot be represented even when we allow approximate
 extraction, up to some error).

Another point of view

A similar theorem turns out to be useful while proving that all
higher-order recursion schemes (that is λY-terms) generate more
trees than those of them which are “safe”.

Motivation (related work)

they generate Böhm trees,
which are infinite trees“Safety” is a widely considered

syntactic restriction, which simplifies
some reasonings.

To simplify the analysis we add constants: 0 : ο and 1+ : ο→ο.
For each n of type ℕ, the term (n 1+ 0) after normalization is of the form
1+ (1+ (… (1+ 0)...))

Techniques used

n

Intersection type system:
● Intersection types refine simple types.
● To a term we assign a pair (flag, type),
 where flag∈{pr, np} (“productive”, “nonproductive”).

● One base type: ο.
● The types are of the form (f1, τ1)∧(f2, τ2)∧...∧(fm, τm)→τ.

● It will turn out that the equivalence class of ~ depends only on the set
 of such pairs (flag, type) which can be assigned to a term.

Techniques used

flags types

The types are of the form (f1, τ1)∧(f2, τ2)∧...∧(fm, τm)→τ.

When a term M has such type, it means that if to the argument of the
function M we can assign all pairs (f1, τ1), (f2, τ2), ..., (fm, τm), then

the result has type τ.

Moreover M is required to use its argument in each of these types
(we have type ⊤→τ (with m=0) when the argument is not used at all).

Thus we know precisely which arguments are used and with
which types.

Intersection types

flags types

Beside of a type, to a term M we also assign a flag.

Flag “productive” means that M adds something to the resulting value
(in addition to the value supported by the arguments):
– the use of 1+ is productive (a 1+ has to appear in the derivation of a type,
 which means that it is really used),
– M is productive also when it uses some of its productive arguments
 more than once (again, we look at the derivation tree).
 e.g. F=(λf. f (f 0)) is productive, because (f 1+) = (1+ (1+ 0))
 but F=(λf. f) is nonproductive (even when f is productive),
 because (F (F (F f))) = f.

Intersection types

To one term we may assign multiple pairs (flag, type).

Step 2: count “how much a term is productive”.

To each typed term M (in fact to a derivation tree for M:(f,τ)) we assign
a number val(M), which counts:
– the number of 1+ nodes in the derivation tree, and
– the number of application nodes KL such that a productive variable
 is used both in K and in L.

Techniques used

Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds
val(M) ≤ the number represented by M ≤ 22

2
2...

val(M)

the maximal order of
a subterm of M

Techniques used

Quite difficult lemma:
For closed terms of base type it holds
val(M) ≤ the number represented by M ≤ 22

2
2...

val(M)

the maximal order of
a subterm of M

To prove this lemma, we need to:
– isolate closed subterms in M,
– replace the tower of 22 by an appropriately defined high(M),
– perform the head β-reduction first (closed subterms remain closed),
 and prove that val(M) increases and high(M) decreases.

Proof of the theorem
Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds

val(M) ≤ the number represented by M ≤ 22
2

2...
val(M)

the maximal order of
a subterm of M

seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded
We want to prove that:

The sequences are almost: (lemma)
 val(KN1), val(KN2), … and val(LN1), val(LN2), …

Proof of the theorem
Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds

val(M) ≤ the number represented by M ≤ 22
2

2...
val(M)

the maximal order of
a subterm of M

seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded
We want to prove that:

The sequences are almost: (lemma + observation)
 val(K)+val(N1), val(K)+val(N2), … and val(L)+val(N1), val(L)+val(N2), …

so they differ only by a constant val(L)-val(K).

Proof of the theorem
Easy observation – compositionality:
For closed terms it holds val(KL)=val(K)+val(L).

Quite difficult lemma:
For closed terms of base type it holds

val(M) ≤ the number represented by M ≤ 22
2

2...
val(M)

the maximal order of
a subterm of M

seq. KN1, KN2,... is bounded ⇔ seq. LN1, LN2,... is bounded
We want to prove that:

The sequences are almost: (lemma + observation)
 val(K)+val(N1), val(K)+val(N2), … and val(L)+val(N1), val(L)+val(N2), …

so they differ only by a constant val(L)-val(K).

This is true assuming that we can use the same types for K and L,
that is the same type for Ni in both sequences...

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

