

Expressive Power
of Collapsible Pushdown Automata

Paweł Parys

University of Warsaw

Higher order pushdown automata (H-O PDA)

A 1-stack is an ordinary stack. A 2-stack
(resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s
i
 are 1-stacks. Top of stack is on right.

push
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
s

i
s

i
]

pop
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
]

push
1
x : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
a

j
x]]

pop
1
 : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
]]

An order-n PDA has an order-n stack, and
has push

i
 and pop

i
 for each 1 ≤ i ≤ n.

Two hierarchies (of trees):

trees generated by
H-O pushdown systems

trees generated by
H-O recursion schemes

0

1

2

3

4

0

1

2

3

4

Are these two hierarchies equal?
● orders 0 and 1 – yes

Two hierarchies (of trees):

trees generated by
H-O pushdown systems

trees generated by
H-O schemes

Are these two hierarchies equal?

=
?

=
trees generated by
safe H-O schemes

● Knapik, Niwiński, Urzyczyn 2002

Two hierarchies (of trees):

trees generated by
H-O pushdown systems

trees generated by
H-O schemes

Are these two hierarchies equal?

=
?

=
trees generated by
safe H-O schemes

● Knapik, Niwiński, Urzyczyn 2002
● Caucal 2002

Caucal hierarchy

=

Two hierarchies (of trees):

Are these two hierarchies equal?
● Hague, Murawski, Ong, Serre 2008

trees generated by
H-O pushdown systems

trees generated by
H-O schemes=

?

=
trees generated by
safe H-O schemes

Caucal hierarchy

=

trees generated by collapsible
H-O pushdown systems =

Two hierarchies (of trees):

H-O pushdown systems

safe H-O schemes

Caucal hierarchy

collapsible H-O
pushdown systems

all H-O schemes

0

1

2

3

4

0

1

2

3

4

Equivalently: two hierarchies of word languages

deterministic H-O
pushdown automata

deterministic collapsible H-O
pushdown automata

regular lang.0

1

2

3

4

0

1

2

3

4

det. context-free lang.

First result (STACS 2011):

regular lang.

language U

0

1

2

3

4

0

1

2

3

4

● order 2 is different

deterministic H-O
pushdown automata

deterministic collapsible H-O
pushdown automata

det. context-free lang.

Stronger result (LICS 2012):

regular lang.

det. context-free lang.

language U

0

1

2

3

4

0

1

2

3

4

● the union of the hierarchies is different

deterministic H-O
pushdown automata

deterministic collapsible H-O
pushdown automata

First result (STACS 2011):
● order 2 is different

Collapsible Pushdown Automata

Each 0-stack (stack symbol) is created with a fresh identifier.

For 2≤i≤n we have a new operation collapse
i

It removes all (i-1)-stacks which contain the topmost symbol.

Collapsible PDA are an extension of H-O PDA

Notice: collapse
1
= pop

1

alphabet: [,], ∗ , #
U contains words of the form:

[∗∗ [∗∗∗]∗ [∗ [∗∗]∗ [[∗∗]∗] ######

● brackets in segment A form a prefix of a well-bracketed word
 that ends in [which is not matched in the entire word

● brackets in segment B form a well-bracketed word
● the number of sharps in C equals to the number of stars in A

Example: Urzyczyn's language U (improved)

A B C

∗ = []

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

● on the first sharp we perform the collapse
● we count the number of stacks

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

Collapse = remove all
stacks on which this
stack symbol is present

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each star

● on the first sharp we perform the collapse
● we count the number of stacks

 ∗ [∗ ∗]∗ [∗ [∗ ∗] ∗ ∗ # # # #

Collapse = remove all
stacks on which this
stack symbol is present

How to recognize U by an automaton with collapse?

Language U cannot be recognized – order 1 case

We prove now that deterministic order-1 PDA cannot recognize U.

We read the word:

∗∗ ...∗[∗∗ ...∗ [∗∗ ...∗ [∗∗ ...∗]∗∗...∗]∗∗...∗]∗∗...∗[
k

6
k

2
k

3
k

4

At each of the red points in the word, the stack has to be:

aaaa...aa $ aaaa...aa $ aaaa...aa $ something

k
1

k
1

k
2

k
3

(erasing something is wrong, because the number of sharps
 after the last [should be k

1
+k

2
+k

3
+k

4
+k

5
+k

6
+k

7
)

k
5 k

7

We prove now that deterministic order-1 PDA cannot recognize U.

What if we give # at a red point?
We should accept after k

1
 or k

1
+k

2
 or k

1
+k

2
+k

3
 sharps.

If |Q|<3, this is impossible (see: state while crossing blue line).

Language U cannot be recognized – order 1 case

We read the word:

∗∗ ...∗[∗∗ ...∗ [∗∗ ...∗ [∗∗ ...∗]∗∗...∗]∗∗...∗]∗∗...∗[
k

6
k

2
k

3
k

4

At each of the red points in the word, the stack has to be:

aaaa...aa $ aaaa...aa $ aaaa...aa $ something

k
1

k
1

k
2

k
3

k
5 k

7

Consider an CPDA of order 2 (or higher).

Language U cannot be recognized – higher order case

We read the word:

∗∗ ...∗[∗∗ ...∗ [∗∗ ...∗ [∗∗ ...∗]∗∗...∗]∗∗...∗]∗∗...∗[
k

6
k

2
k

3
k

4
k

1
k

5 k
7

What do we know now?

w
1
=

It was impossible to use only
the topmost order-1 stack!

So after reading w1 some of

the numbers ki (denote it n1)

is not present on the topmost
order-1 stack.

We nest the same argument... k
1

k
2

k
3

k
4

k
1

k
2

k
5

k
1

k
6

k
7

Consider an CPDA of order 2 (or higher).

Language U cannot be recognized – higher order case

We read the word:

n
6

n
4

n
5

n
7

(the words w2, w3 have the same shape as w1,

but they have different numbers inside)

 ∗∗ ...∗]∗∗...∗]∗∗...∗]∗∗...∗[
contains n1

contains n2

contains n3

each ends with one
opening bracket

w1

w2 w3

At each of the red points in the word, the part of the stack
below the blue line has to be the same (we cannot erase n

4
):

n
4

n
4

but n
1
, n

2
, n

3
 are not present

above the blue line
(by the order-1 argument)!n

1
n

1

n
2

n
3

Language U cannot be recognized – higher order case

We read the word:

n
6

n
4

n
5

n
7

 ∗∗ ...∗]∗∗...∗]∗∗...∗]∗∗...∗[
contains n1

contains n2

contains n3

each ends with one
opening bracket

w1

w2 w3

At each of the red points in the word, the part of the stack
below the blue line has to be the same (we cannot erase n

4
):

n
4

n
4

but n
1
, n

2
, n

3
 are not present

above the blue line
(by the order-1 argument)!n

1
n

1

n
2

n
3

What if we give # at a red point?
The result should include n

1
 or n

1
+n

2
 or n

1
+n

2
+n

3
.

If |Q|<3, this is impossible (see: state while crossing blue line).

We nest the same argument again...

The overall idea is simple, but the proof is difficult to formalize.
There are several problems:

Summing up the proof...

The overall idea is simple, but the proof is difficult to formalize.
There are several problems:

Summing up the proof...

1) Where a number is stored on the stack? What does it mean that
 a number is not present in the topmost order-k stack?
 Key observation: deterministic automaton reading always the same
 symbol ∗ modifies the stack in a “regular” way.

The overall idea is simple, but the proof is difficult to formalize.
There are several problems:

Summing up the proof...

1) Where a number is stored on the stack? What does it mean that
 a number is not present in the topmost order-k stack?
2) We say that we cannot read n sharps at the end without inspecting
 a place in the stack where n is written. But maybe “by accident” n is
 present somewhere else?
 Solution: a pumping lemma (very purpose-specific)

Pumping lemma

If n is not present in the topmost order-k stack after reading a word,
then we can change n into some other (arbitrarily big) number n'
without changing the prefix before n and without changing the topmost
order-k stack at the end.

prefix n sufix

no n

prefix n' new sufix

after pumping:

unchanged

unchanged

Pumping lemma

If n is not present in the topmost order-k stack after reading a word,
then we can change n into some other (arbitrarily big) number n'
without changing the prefix before n and without changing the topmost
order-k stack at the end.

A similar pumping lemma allows us to prove that the hierarchy
of CPDA trees is strict (joint work with A.Kartzow).
Differences:
● generalized to CPDA
● the stack at the end is not important
● instead, we bound the length of the new suffix
Considered words are of the form:

but: there is an earlier proof of strictness for HO PDA without collapse by Engelfriet
(based on complexity arguments), which works also in the case of CPDA.

aa...abbbb.....b

k k2
2
...

2
height = order of CPDA-1

The overall idea is simple, but the proof is difficult to formalize.
There are several problems:

Summing up the proof...

1) Where a number is stored on the stack? What does it mean that
 a number is not present in the topmost order-k stack?
2) We say that we cannot read n sharps at the end without inspecting
 a place in the stack where n is written. But maybe “by accident” n is
 present somewhere else?
3) In a k-PDA we have infinitely many ways of inspecting an order-1
 stack (not just |Q| as in 1-CPDA): we may have an arbitrary order-2
 (order-3, …) stack below.
 Solution: a stack may be described by its “intersection type”
 coming from a finite set (like the types of N.Kobayashi and like “stack
 automata” of Broadbent, Carayol, Ong, Serre).
 Stacks of low order correspond to terms of high order; we can say something
 about a stack of order k, if we know the types of stacks of higher order placed
 below it (“its arguments”).
 (these “intersection types” are also present in the proof of the pumping lemma)

Consider simply-typed λ-terms build over constants 0, 1+ of arity 0 and 1.
The β-normal form of each term M of type o is 1+ (1+ (… (1+ 0)...)),
it represents a number, denoted val(M).

A connected result

Consider simply-typed λ-terms build over constants 0, 1+ of arity 0 and 1.
The β-normal form of each term M of type o is 1+ (1+ (… (1+ 0)...)),
it represents a number, denoted val(M).

For two terms M, M' of type α→o we say that M~M' if for each sequence
N1,N2,... of terms of type α,
 val(MN1),val(MN2),... bounded ⇔ val(MN1),val(MN2),... bounded

e.g. λx.x and λx.(1+ x) are equivalent.

Thm. For each type α the relation ~ has finitely many equivalence classes.

A connected result

Consider simply-typed λ-terms build over constants 0, 1+ of arity 0 and 1.
The β-normal form of each term M of type o is 1+ (1+ (… (1+ 0)...)),
it represents a number, denoted val(M).

For two terms M, M' of type α→o we say that M~M' if for each sequence
N1,N2,... of terms of type α,
 val(MN1),val(MN2),... bounded ⇔ val(MN1),val(MN2),... bounded

e.g. λx.x and λx.(1+ x) are equivalent.

Thm. For each type α the relation ~ has finitely many equivalence classes.

Corollary. We cannot represent arbitrarily long tuples of integers in
 terms of type α.

A connected result

Def. We can represent tuples of length k in terms of type α if there exist
 terms M1,...,Mk of type α→o (extractors) and for each t∈ℕk there
 exists N of type α such that (val(M1N),...,val(MkN))=t.

Another idea: CPDA with data

Consider a restricted variant of CPDA: when a symbol on input is
repeated k times, the CPDA reads it just once, but it can store the
number k on the stack (the stack alphabet is extended by natural
numbers), or it can compare k with the number in the topmost stack
symbol.

Another idea: CPDA with data

Consider a restricted variant of CPDA: when a symbol on input is
repeated k times, the CPDA reads it just once, but it can store the
number k on the stack (the stack alphabet is extended by natural
numbers), or it can compare k with the number in the topmost stack
symbol.

Such automata are much easier to analyze...
(obvious where a number is written on the stack,
 no pumping lemma needed)

Hypothesis: Assume that L is “permutation invariant” (we can change
numbers in words in L, and they remain in L). Then
 L is recognized by a normal CPDA
 if and only if

L is recognized by a CPDA with data.

The same question for nondeterministic word languages:

Is there a language
● not recognized by any nondeterministic H-O PDA
● recognized by a nondeterministic Collapsible H-O PDA

Related open problem

(here the second orders are equal,
possibly there is a difference on level 3)

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

