

A Pumping Lemma for Pushdown Graphs
of Any Level

Paweł Parys

University of Warsaw

Higher order pushdown systems/automata [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack
(resp. (n + 1)-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s
i
 are 1-stacks. Top of stack is on right.

push
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
s

i
s

i
]

pop
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
]

push
1
x : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
a

j
x]]

pop
1
 : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
]]

An order-n PDA has an order-n stack, and
has push

i
 and pop

i
 for each 1 ≤ i ≤ n.

Higher order pushdown systems

Higher order pushdown systems can be used as:

● word language recognizers

● tree generators

● graph generators

Higher order pushdown systems

Higher order pushdown systems can be used as:

● word language recognizers

● tree generators

● graph generators

We concentrate here on graph generators.

● The same results can be used for tree generators and
 deterministic word language recognizers,

● but NOT for (nondeterministic) word language recognizers.

Higher order pushdown graphs

How higher order pushdown systems generate graphs?

We consider -contractions of configuration graphs.

initial

● drop unreachable configurations
● nodes = configurations after letter-edges
● edges = any number of epsilons, one letter

a

a a

c
a

b

Higher order pushdown graphs

How higher order pushdown systems generate graphs?

We consider -contractions of configuration graphs.

initial

● drop unreachable configurations
● nodes = configurations after letter-edges
● edges = any number of epsilons, one letter

a

a a

c
a

b

Higher order pushdown graphs

How higher order pushdown systems generate graphs?

We consider -contractions of configuration graphs.

initial

● drop unreachable configurations
● nodes = configurations after letter-edges
● edges = any number of epsilons, one letter

a b

c
a

a
b

b

ac

aa

Higher order pushdown graphs

Example: {akbm : m≤2k}

a

b

...

a

a

a

b b

b

b b

b b

b b b b

b b

b

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

x

x
x

Input: a a a

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

#

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

x

x
x

x

x
x

Input: a a a

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

#

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

x

x
x

x

x

x

x

Input: a a a

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

#

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

x

x
x

x

x

x

x

Input: a a a

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

#

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

x

x
x

x

x

x

Input: a a a

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

(,q
4
,b,pop

2
, q

4
)

Input: a a a b

#

x

x
x

x

x

x

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

(,q
4
,b,pop

2
, q

4
)

Input: a a a b b

#

x

x
x

x

x

x

Higher order pushdown graphs

Example: {akbm : m≤2k}

● level 2
● 3 stack symbols: , x, #

a

a

a
a

b

b b

b b b b

b b b b b b b b

...

(?,q
1
,a,push

1
(x),q

1
)

(?,q
1
,,push

1
(#),q

2
)

(#,q
2
,,push

2
, q

3
)

(#,q
3
,,pop

1
, q

4
)

(x,q
4
,,pop

1
, q

5
)

(?,q
5
,,push

2
, q

4
)

(,q
4
,b,pop

2
, q

4
)stack with k letters x ⇒ 2k letters b

stack with k letters x ⇒ 2 stacks with k-1 letters x

stack with 0 letters x ⇒ 20 letters bproof:

Input: a a a b b b b b b b b

#

x

x
x

Higher order pushdown graphs

Example:

 {akbm : m≤2k} - system of level 2

Similarly:

 {akbm : m≤2 } - system of level 3

 {akbm : m≤2 } - system of level 4

2k

2k
2

Higher order pushdown systems

Other characterizations:

● trees generated by safe recursion schemes of level n
 (Knapik, Niwiński, Urzyczyn 2002)

Higher order pushdown systems

Other characterizations:

● Caucal hierarchy:

 graphs

 finite graphs (lev 0)

 level 1

 level 2

 trees

level 0

level 1

level 2

unfolding

unfolding
MSO-interpretation

MSO-interpretation

● trees generated by safe recursion schemes of level n

unfolding

Higher order pushdown systems

Other characterizations:

● Caucal hierarchy:

 graphs

 finite graphs (lev 0)

 level 1

 level 2

● trees generated by safe recursion schemes of level n

● they have decidable MSO theory (both trees and graphs)

 trees

level 0

level 1

level 2

unfolding

unfolding
MSO-interpretation

MSO-interpretation
unfolding

Higher order pushdown graphs

But is a given graph generated by a level-n pushdown system?

YES
give example system

NO
a pumping lemma

would be useful

But is a given graph generated by a level-n pushdown system?

YES
give example system

NO
a pumping lemma

would be useful

Known pumping lemmas for level 2:

● Hayashi (1973) – pumping lemma for word languages

● Gilman (1996) – shrinking lemma for word languages

● Kartzow (2011) – pumping lemma for (collapsible) graphs

For arbitrary level:

● Blumensath (2008) – pumping lemma for graphs

incorrect proof

Higher order pushdown graphs

Our pumping lemma:

G – finitely-branching pushdown graph of level n

Then there exists a constant C
G
 such that:

if c – configuration reachable by k edges from the initial one
 such that a path of length exp

n-1
(k.C

G
) starts in c

then there exist arbitrary long paths starting in c

k exp
n-1

(k.C
G
) exp

n
(x) = 2

2x

2
...

n

initial c

Higher order pushdown graphs

Our pumping lemma:

G – finitely-branching pushdown graph of level n

Then there exists a constant C
G
 such that:

if c – configuration reachable by k edges from the initial one
 such that a path of length exp

n-1
(k.C

GL
) starts in c

then there exist arbitrary long paths starting in c,
ending in the same state

k exp
n-1

(k.C
G
) exp

n
(x) = 2

2x

2
...

n

q

q
q

initial c
q

Higher order pushdown graphs

Our pumping lemma:

G – finitely-branching pushdown graph of level n

L – regular language

Then there exists a constant C
GL

 such that:

if c – configuration reachable by k edges from the initial one
 such that a path from L of length exp

n-1
(k.C

GL
) starts in c

then there exist arbitrary long paths from L starting in c,
ending in the same state

k exp
n-1

(k.C
G
) exp

n
(x) = 2

2x

2
...

n

initial c
q

q
q

L L
L

Higher order pushdown graphs

Higher order pushdown graphs

Example:

 {akbm : m≤exp
n-1

(k)} - is a graph of level n

 {akbm : m≤exp
n-1

(f(k).k)} - is NOT a graph of level n

 if f(k) unbounded

Higher order pushdown graphs

Example:

 {akbm : m≤exp
n-1

(k)} - is a graph of level n

 {akbm : m≤exp
n-1

(f(k).k)} - is NOT a graph of level n

 if f(k) unbounded

Proof: Choose k such that

 exp
n-1

(f(k).k)-1 ≥ exp
n-1

((k+1)C
G
)

k exp
n-1

((k+1).C
G
)

initial a a a a b

Our pumping lemma – more insight:

G – finitely-branching pushdown graph of level n

part 1

c – configuration reachable by m edges from the initial one.

Then the size of every k-stack of c is at most exp
k-1

(m.C
GL

)

part 2

c – configuration such that the size of every k-stack of c is at
 most exp

k-1
(m.C

GL
), and a path of length exp

n-1
(k.C

G
) starts in c

Then there exist arbitrary long paths starting in c.

Higher order pushdown graphs

We define a homomorphism from stacks to a finite algebra having:

● n+1 sorts (for levels 0, 1, ..., n)

● operations: empty
k
 : level-k

 compose
k
 : level-k × level-(k-1) level-k

“Types” of stacks

putting level-(k-1) stack
on top of level-k stack

type(c) says (for example):
● can we reach from c to a configuration with state q ?
● is there a run from c reading letter 'a' ?
● in which state can we remove the topmost k-stack ?
● can we reach a “bigger” configuration having the same type ?

(for level-1 systems this homomorphism is a finite automaton)

Furure work (together with A.Kartzow)

push
1
(x) pushes not only the x symbol, but also a fresh marker

new operation: collapse
k
 – removes all those (k-1)-stack from

 the topmost k-stack, which contain the marker
 present in the topmost symbol

The same results hold for collapsible pushdown graphs.

Collapsible PDS are an extension of a higher-order PDS

This implies that the hierarchy of collapsible pushdown graphs
is strict (a new result).

Open problems

1) Describe more precisely how the arbitrarily long paths
 are created from the input path.

2) ● A shrinking lemma.
● A lemma applicable to infinitely-branching graphs.
● A lemma applicable to word languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

