A Pumping Lemma for Pushdown Graphs of Any Level

Paweł Parys

University of Warsaw

Higher order pushdown systems/automata [Maslov 74, 76]
A 1-stack is an ordinary stack. A 2-stack (resp. $(\mathrm{n}+1)$-stack) is a stack of 1 -stacks (resp. n -stack).

Operations on 2-stacks: s_{i} are 1 -stacks. Top of stack is on right.

$$
\begin{array}{llll}
\operatorname{push}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & -> & {\left[s_{1} \ldots s_{i-1} s_{i} s_{i}\right]} \\
\operatorname{pop}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & -> & {\left[s_{1} \ldots s_{i-1}\right]} \\
\operatorname{push}_{1} x: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j} x\right]\right]} \\
\operatorname{pop}_{1}: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1}\right]\right]}
\end{array}
$$

An order-n PDA has an order-n stack, and has push ${ }_{i}$ and pop for each $1 \leq \mathrm{i} \leq \mathrm{n}$.

Higher order pushdown systems

Higher order pushdown systems can be used as:

- word language recognizers
- tree generators
- graph generators

Higher order pushdown systems

Higher order pushdown systems can be used as:

- word language recognizers
- tree generators
graph generators

We concentrate here on graph generators.

- The same results can be used for tree generators and deterministic word language recognizers,
- but NOT for (nondeterministic) word language recognizers.

Higher order pushdown graphs

How higher order pushdown systems generate graphs?
We consider ε-contractions of configuration graphs.

- drop unreachable configurations
- nodes = configurations after letter-edges
- edges = any number of epsilons, one letter

Higher order pushdown graphs

How higher order pushdown systems generate graphs?
We consider ε-contractions of configuration graphs.

- drop unreachable configurations
- nodes = configurations after letter-edges
- edges = any number of epsilons, one letter

Higher order pushdown graphs

How higher order pushdown systems generate graphs?
We consider ε-contractions of configuration graphs.

- drop unreachable configurations
- nodes = configurations after letter-edges
- edges = any number of epsilons, one letter

Higher order pushdown graphs
Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

Higher order pushdown graphs
Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$

x
x
x
\perp

Input: a a a

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

\#	
x	x
x	x
x	x
\perp	\perp

$\left(?, \mathrm{q}_{1}, \mathrm{a}_{\text {, push }}^{1}(\mathrm{x}), \mathrm{q}_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
(\#, $\mathrm{q}_{3}, \varepsilon$, pop $_{1}, \mathrm{q}_{4}$)

Input: a a a

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

Input: a a a

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
(\#, $\mathrm{q}_{3}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{4}$)
$\left(\mathrm{x}_{\mathrm{a}}, \mathrm{q}_{4}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{5}\right)$
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: $\perp, \mathrm{x}, \#$

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
$\left(\#, q_{3}, \varepsilon\right.$, pop $\left._{1}, q_{4}\right)$
$\left(\mathrm{x}_{\mathrm{a}}, \mathrm{q}_{4}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{5}\right)$
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
$\left(\#, q_{3}, \varepsilon\right.$, pop $\left._{1}, q_{4}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{5}\right)$
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: $\perp, \mathrm{x}, \#$

Input: a a a b

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
$\left(\#, q_{3}, \varepsilon\right.$, pop $\left._{1}, q_{4}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}, \varepsilon\right.$, pop $\left._{1}, \mathrm{q}_{5}\right)$
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$
$\left(\perp, \mathrm{q}_{4}, \mathrm{~b}, \mathrm{pop}_{2}, \mathrm{q}_{4}\right)$

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

Input: a a a b b

$\left(?, q_{1}\right.$, a, push $\left._{1}(x), q_{1}\right)$
$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$)
$\left(\#, q_{3}, \varepsilon\right.$, pop $\left._{1}, q_{4}\right)$
$\left(\mathrm{x}, \mathrm{q}_{4}, \varepsilon\right.$, pop $\left._{1}, \mathrm{q}_{5}\right)$
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$
$\left(\perp, \mathrm{q}_{4}, \mathrm{~b}, \mathrm{pop}_{2}, \mathrm{q}_{4}\right)$

Higher order pushdown graphs

Example: $\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$

- level 2
- 3 stack symbols: \perp, x, \#

$\left(?, \mathrm{q}_{1}, \mathrm{a}_{\text {, push }}^{1}(\mathrm{x}), \mathrm{q}_{1}\right)$

$\#$
x
x
x
\perp

$\left(?, \mathrm{q}_{1}, \varepsilon\right.$, push $\left._{1}(\#), \mathrm{q}_{2}\right)$
(\#, $\mathrm{q}_{2}, \varepsilon$, push $_{2}, \mathrm{q}_{3}$) (\#, $\mathrm{q}_{3}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{4}$)
$\left(\mathrm{x}, \mathrm{q}_{4}, \varepsilon, \mathrm{pop}_{1}, \mathrm{q}_{5}\right)$
Input: a a a b b b b b b b b
$\left(?, \mathrm{q}_{5}, \varepsilon\right.$, push $\left._{2}, \mathrm{q}_{4}\right)$
stack with k letters $x \Rightarrow 2^{k}$ letters b
$\left(\perp, \mathrm{q}_{4}, \mathrm{~b}, \mathrm{pop}_{2}, \mathrm{q}_{4}\right)$
proof: stack with 0 letters $x \Rightarrow 2^{0}$ letters b
stack with k letters $\mathrm{x} \Rightarrow 2$ stacks with k - 1 letters x

Higher order pushdown graphs

Example:

$\left\{a^{k} b^{m}: m \leq 2^{k}\right\}$ - system of level 2
Similarly:
$\left\{a^{k} b^{m}: m \leq 2^{2^{k}}\right\}$ - system of level 3
$\left\{a^{k} b^{m}: m \leq 2^{2^{k^{k}}}\right\}$ - system of level 4

Higher order pushdown systems

Other characterizations:

- trees generated by safe recursion schemes of level n (Knapik, Niwiński, Urzyczyn 2002)

Higher order pushdown systems

Other characterizations:

- trees generated by safe recursion schemes of level n
- Caucal hierarchy:

graphs
 trees

finite graphs (lev ${ }_{\text {MSO-interpretation }}^{\text {unfolding }}$ level 0

....

Higher order pushdown systems

Other characterizations:

- trees generated by safe recursion schemes of level n
- Caucal hierarchy:

graphs
 trees

finite graphs (lev ${ }_{\text {MSO-interpretation }}^{\text {unfolding }}$ level 0

| level $1 ヶ$ | unfolding |
| :--- | :---: | :---: |
| level $2 \wedge$ | MSO-interpretation |
| unfolding | | level 1

....

- they have decidable MSO theory (both trees and graphs)

Higher order pushdown graphs
But is a given graph generated by a level-n pushdown system?

YES
give example system

NO
a pumping lemma would be useful

Higher order pushdown graphs

But is a given graph generated by a level-n pushdown system?

YES
give example system

NO

a pumping lemma would be useful

Known pumping lemmas for level 2 :

- Hayashi (1973) - pumping lemma for word languages
- Gilman (1996) - shrinking lemma for word languages
- Kartzow (2011) - pumping lemma for (collapsible) graphs

For arbitrary level:

- Blumensath (2008) - pumping lemma for graphs

Higher order pushdown graphs

Our pumping lemma:
G - finitely-branching pushdown graph of level n
Then there exists a constant C_{G} such that:
if c - configuration reachable by k edges from the initial one such that a path of length $\exp _{n-1}\left(\mathrm{k}_{\mathrm{G}}\right)$ starts in c
then there exist arbitrary long paths starting in c

Higher order pushdown graphs

Our pumping lemma:
G - finitely-branching pushdown graph of level n
Then there exists a constant C_{G} such that:
if c - configuration reachable by k edges from the initial one such that a path of length $\exp _{n-1}\left(\mathrm{k} \cdot \mathrm{C}_{\mathrm{GL}}\right)$ starts in c
then there exist arbitrary long paths starting in c , ending in the same state

Higher order pushdown graphs

Our pumping lemma:
G - finitely-branching pushdown graph of level n
L - regular language
Then there exists a constant C_{GL} such that:
if c - configuration reachable by k edges from the initial one such that a path from L of length $\exp _{n-1}\left(k C_{G L}\right)$ starts in c
then there exist arbitrary long paths from L starting in c , ending in the same state

Higher order pushdown graphs

Example:

$\left\{a^{k} b^{m}: m \leq \exp _{n-1}(k)\right\}$ - is a graph of level n
$\left\{a^{k} b^{m}: m \leq \exp _{n-1}(f(k) \cdot k)\right\}$ - is NOT a graph of level n if $f(k)$ unbounded

Higher order pushdown graphs
Example:
$\left\{a^{k} b^{m}: m \leq \exp _{n-1}(k)\right\}$ - is a graph of level n
$\left\{a^{k} b^{m}: m \leq \exp _{n-1}(f(k) \cdot k)\right\}$ - is NOT a graph of level n if $f(k)$ unbounded

Proof: Choose k such that

$$
\exp _{n-1}(f(k) \cdot k)-1 \geq \exp _{n-1}\left((k+1) C_{G}\right)
$$

Higher order pushdown graphs

Our pumping lemma - more insight:
G - finitely-branching pushdown graph of level n
part 1
c - configuration reachable by m edges from the initial one.
Then the size of every k-stack of c is at most $\exp _{k-1}\left(m C_{G L}\right)$
part 2
c - configuration such that the size of every k -stack of c is at most $\exp _{k-1}\left(\mathrm{~m}_{\mathrm{GL}}\right)$, and a path of length $\exp _{\mathrm{n}-1}\left(\mathrm{k}_{\mathrm{C}} \mathrm{C}_{\mathrm{G}}\right)$ starts in c

Then there exist arbitrary long paths starting in c.

We define a homomorphism from stacks to a finite algebra having:

- $\mathrm{n}+1$ sorts (for levels $0,1, \ldots, \mathrm{n}$)
- operations: empty ${ }_{k}$: level-k

$$
\begin{gathered}
\text { compose }_{k}: \text { level-k } \times \text { level-(k-1) } \rightarrow \text { level- } k \\
\text { putting level-(k-1) stack } \\
\text { on top of level-k stack }
\end{gathered}
$$

(for level- 1 systems this homomorphism is a finite automaton)
type(c) says (for example):

- can we reach from c to a configuration with state q ?
- is there a run from c reading letter 'a' ?
- in which state can we remove the topmost k-stack ?
- can we reach a "bigger" configuration having the same type ?

The same results hold for collapsible pushdown graphs.
This implies that the hierarchy of collapsible pushdown graphs is strict (a new result).

Collapsible PDS are an extension of a higher-order PDS
push $_{1}(x)$ pushes not only the x symbol, but also a fresh marker new operation: collapse ${ }_{k}$ - removes all those (k - 1)-stack from the topmost k-stack, which contain the marker present in the topmost symbol

Open problems

1) Describe more precisely how the arbitrarily long paths are created from the input path.
2) - A shrinking lemma.

- A lemma applicable to infinitely-branching graphs.
- A lemma applicable to word languages.

