XPath Evaluation in Linear Time

Pawet Parys

Considered problem

Input: Output:

XML document Nodes of the document
XPath query satisfying the query

Example

<file>
<papers>
<paper>
<author>Jan Kowalski</author>
<title>Interesting article</title>
<conference>MFCS 2011</conference>
</paper>
<paper>
<author>Zbigniew Nowak</author>
<title>XPath 1s super</title>
<conference>P0ODS 2010</conference>
</paper>
</papers>
<conferences>
<conference>
<name>MFCS 2011</name>
<place>Warsaw</place>
</conference>
</conferences>
</file>

Example

f|Ie
conferences
papers .,
conference
paper
@ O
aper
bap Q name 0
p MFCS 2011 place
O @ Warsaw
author O author conference

Jan . conference Zbigniew . PODS 2010

Kowalski ijtle MFCS 2011 XPath is

Interesting super
article

Example

flle
conferences
papers .,
conference
@
paper
@ O
aper
bap ‘ name O
p MFCS 2011 place
O ® Warsaw
author O author conference
Jan conference Z‘K;g”'eIZV it PODS 2010
- owa
Kowalski jtle MFCS 2011 XPath is
Interesting super
article
Query:

file/papers/paper/title

Example

flle
conferences
papers .,
conference
@
paper
@ O
aper
bap ‘ name O
p MFCS 2011 place
O ® Warsaw
author O author conference
Jan conference Z‘K;g”'elZV it PODS 2010
- owa
Kowalski iit|e MFCS 2011 XPath is
Interesting super
article
Query:

file/papers/paper/../paper/../paper/../paper/../paper/
../paper/../paper/../[paper/../paper/../paper/title

Example

fiIe
conferences
papers .
conference
paper
@ O
aper
bap ‘ name O
p MFCS 2011 place
- - Warsaw
author O author conference
Jan conference Z‘K;g”'elZV te PODS 2010
- owa
Kowalski iit|e MFCS 2011 XPath is
Interesting super
article
Query:

file/papers/paper[author='jJan Kowalski']/title

Example

fiIe
conferences
papers .,
conference
paper
- ®
paper
@ name 0
é MFCS 2011 place
O O W.
author ® author conference arsaw
Jan conference leillgmelzv te PODS 2010
. owa
Kowalski ijtle MFCS 2011 xXPath is
Interesting super
article
Query:

file/papers/paper[conference=
../../Jconferences/conference[place='Warsaw']/name]/title

Results summary

XML document — Nodes of the document
Satisfying the query

XPath query

XPath not refering to data
O(D-Q) - Gottlob, Koch, Pichler 2002

XPath with data (but without counting)
O(D*-Q) - Gottlob, Koch, Pichler 2002

O(D-Q°) - our contribution

Where:D- document size
Q- query size

Subproblem:

Fix a regular language L. Aword u=a,...a,Is given.
First, In time linear in n, we can prepare ourselves.

Then, In constant time we want to aswer queries:
a;...a,€L?

Subproblem:

Fix a regular language L. Aword u=a,...a,Is given.

Preprocessing: divide and conquer

O O O
nabbbabbababbabb

For each subword remeber all possible automaton transitions:
pairs of states p, g such that

time: O(n)

Subproblem:

Fix a regular language L. Aword u=a,...a, IS given.

Given: i, J

]] —]
habbbabbababbabb
i J

Does a,...a,€L?

It Is enough to compose remembered transitions!

time: O(logn)

Subproblem:

A tool used: Simon's theorem
(I. Simon, Factorization forests of finite height, 1990)

Subproblem:

Fix a regular language L. Aword u=a,...a,Is given.

In the ,logarithmic” decomposition we always split into 2 parts

D O
pabbbabbababbabb
To achieve a constant height of the decomposition tree

we have to allow splits into arbitrarly many parts
- but then all parts have to be very similar

Simon's decomposition:

Every word uin the decomposition tree we split into
e 2 (arbitrary) parts u=u,u,, or
e arbitrarly many parts u=u,...u,,

where all u;...u; are equivalent.

Simon's Theorem:
For every word there exists such a decomposition tree
of the same height.

u and v are equivalent, if for any words w,, w, it holds
W1UW2€L = WIVWZEL

Simon's decomposition:

Every word uin the decomposition tree we split into
e 2 (arbitrary) parts u=u,u,, or
e arbitrarly many parts u=u,...u,,

where all u;...u; are equivalent.

Example

L=(a+b)*b aaaab

Simon's decomposition:

Every word uin the decomposition tree we split into
e 2 (arbitrary) parts u=u,u,, or
e arbitrarly many parts u=u,...u,,

where all u;...u; are equivalent.

Example
L=(a+b)*b

Simon's decomposition:

Every word uin the decomposition tree we split into
e 2 (arbitrary) parts u=u,u,, or
e arbitrarly many parts u=u,...u,,

where all u;...u; are equivalent.

Example
L=(a+b)*b

aaaanb

bbaaababaaa

Simon's decomposition:

Every word uin the decomposition tree we split into
e 2 (arbitrary) parts u=u,u,, or
e arbitrarly many parts u=u,...u,,

where all u;...u; are equivalent.

Example
L=(a+b)*b

Subproblem:

Fix a regular language L. Aword u=aqa,...a,lIs given.

Preprocessing:

» calculate the Simon's decomposition

e for every subword in the decomposition
compute the transitions of the automaton

time: O(n)

Does a,...a,€L?

* |t IS enough to compose remembered transitions
time: O(1)

Subproblem:

Fix a regular language L. Aword u=aqa,...a, Is given.

Dependance on language L
Preprc

e calcL Height of the decomposition tree is proportional

e for ey to the number of abstraction classes, which is
comg exponential in the automaton size.

time:

However the tree has at most 2n—1 nodes.

Does L
Our contribution:

e It is how to deal with this decomposition in time
polynomial in the automaton size.

time:

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

