XPath Evaluation in Linear Time

Paweł Parys

Considered problem

Input:
XML document
XPath query

Output:
Nodes of the document satisfying the query

Example

```
<file>
    <papers>
        <paper>
            <author>Jan Kowalski</author>
            <title>Interesting article</title>
            <conference>MFCS 2011</conference>
        </paper>
        <paper>
            <author>Zbigniew Nowak</author>
            <title>XPath is super</title>
            <conference>PODS 2010</conference>
        </paper>
    </papers>
    <conferences>
        <conference>
            <name>MFCS 2011</name>
            <place>Warsaw</place>
        </conference>
    </conferences>
</file>
```


Example

Example

Query:

file/papers/paper/title

Example

Query:

file/papers/paper/../paper/../paper/../paper/../paper/
../paper/../paper/../paper/../paper/../paper/title

Example

Query:
file/papers/paper[author='Jan Kowalski']/title

Example

Query:

file/papers/paper[conference=
../../conferences/conference[place='Warsaw']/name]/title

Results summary

XML document
XPath query

Nodes of the document Satisfying the query

XPath not refering to data
$O(D \cdot Q)$ - Gottlob, Koch, Pichler 2002

XPath with data (but without counting)
$O\left(D^{2} \cdot Q\right)$ - Gottlob, Koch, Pichler 2002
$O\left(D \cdot Q^{3}\right)$ - our contribution

Where: D - document size
Q - query size

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
First, in time linear in n, we can prepare ourselves.
Then, in constant time we want to aswer queries:

$$
a_{i} \ldots a_{j} \in L ?
$$

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
Preprocessing: divide and conquer

For each subword remeber all possible automaton transitions: pairs of states p, q such that

$$
p \xrightarrow{a_{i} \ldots a_{j}} q
$$

time: $O(n)$

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
Given: i, j

Does $a_{i} \ldots a_{j} \in L$?
It is enough to compose remembered transitions!
time: $O(\log n)$

Subproblem:

A tool used: Simon's theorem

(I. Simon, Factorization forests of finite height, 1990)

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
In the „logarithmic" decomposition we always split into 2 parts

$b a b b b a b b a b a b b a b b$
To achieve a constant height of the decomposition tree we have to allow splits into arbitrarly many parts

- but then all parts have to be very similar

Simon's decomposition:

Every word u in the decomposition tree we split into

- 2 (arbitrary) parts $u=u_{1} u_{2}$, or
- arbitrarly many parts $u=u_{1} \ldots u_{k}$, where all $u_{i} \ldots u_{j}$ are equivalent.

Simon's Theorem:
For every word there exists such a decomposition tree of the same height.
u and v are equivalent, if for any words w_{1}, w_{2} it holds
$w_{1} u w_{2} \in L \Leftrightarrow w_{1} v w_{2} \in L$

Simon's decomposition:

Every word u in the decomposition tree we split into

- 2 (arbitrary) parts $u=u_{1} u_{2}$, or
- arbitrarly many parts $u=u_{1} \ldots u_{k}$, where all $u_{i} \ldots u_{j}$ are equivalent.

Example
$L=(a+b) * b$
a a a ab

Simon's decomposition:

Every word u in the decomposition tree we split into

- 2 (arbitrary) parts $u=u_{1} u_{2}$, or
- arbitrarly many parts $u=u_{1} \ldots u_{k}$, where all $u_{i} \ldots u_{j}$ are equivalent.

Example
$L=(a+b) * b$
a a a ab

Simon's decomposition:

Every word u in the decomposition tree we split into

- 2 (arbitrary) parts $u=u_{1} u_{2}$, or
- arbitrarly many parts $u=u_{1} \ldots u_{k}$, where all $u_{i} \ldots u_{j}$ are equivalent.

Example
$L=(a+b) * b$

$$
\mathrm{a} a \mathrm{a} \mathrm{a} b
$$

$b b a \operatorname{a} b a b a \operatorname{a}$

Simon's decomposition:

Every word u in the decomposition tree we split into

- 2 (arbitrary) parts $u=u_{1} u_{2}$, or
- arbitrarly many parts $u=u_{1} \ldots u_{k}$, where all $u_{i} \ldots u_{j}$ are equivalent.

Example
$L=(a+b) * b$

> a a a ab
bbaaababaaa

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
Preprocessing:

- calculate the Simon's decomposition
- for every subword in the decomposition compute the transitions of the automaton
time: $O(n)$

Does $a_{i} \ldots a_{j} \in L$?

- It is enough to compose remembered transitions time: $O(1)$

Subproblem:

Fix a regular language L. A word $u=a_{1} \ldots a_{n}$ is given.
Preprc
Dependance on language L

- calcu Height of the decomposition tree is proportional
- for el to the number of abstraction classes, which is comr exponential in the automaton size.
time: 1
However the tree has at most $2 \mathrm{n}-1$ nodes.
Does
Our contribution:
- It is how to deal with this decomposition in time time: polynomial in the automaton size.

Thank you

