

XPath Evaluation in Linear Time

Paweł Parys

Considered problem

Input: Output:

XML document

XPath query
Nodes of the document
satisfying the query

<file>
 <papers>
 <paper>
 <author>Jan Kowalski</author>
 <title>Interesting article</title>
 <conference>MFCS 2011</conference>
 </paper>
 <paper>
 <author>Zbigniew Nowak</author>
 <title>XPath is super</title>
 <conference>PODS 2010</conference>
 </paper>
 </papers>
 <conferences>
 <conference>
 <name>MFCS 2011</name>
 <place>Warsaw</place>
 </conference>
 </conferences>
</file>

Example

file

paper

author
Jan

Kowalski
conference
MFCS 2011title

Interesting
article

author
Zbigniew

Nowak

conference
PODS 2010title

XPath is
super

place
Warsaw

name
MFCS 2011

paper

papers

conferences

conference

Example

file/papers/paper/title
Query:

Example
file

paper

author
Jan

Kowalski
conference
MFCS 2011title

Interesting
article

author
Zbigniew

Nowak

conference
PODS 2010title

XPath is
super

place
Warsaw

name
MFCS 2011

paper

papers

conferences

conference

file/papers/paper/../paper/../paper/../paper/../paper/
../paper/../paper/../paper/../paper/../paper/title

Query:

Example
file

paper

author
Jan

Kowalski
conference
MFCS 2011title

Interesting
article

author
Zbigniew

Nowak

conference
PODS 2010title

XPath is
super

place
Warsaw

name
MFCS 2011

paper

papers

conferences

conference

file/papers/paper[author='Jan Kowalski']/title

Example

Query:

file

paper

author
Jan

Kowalski
conference
MFCS 2011title

Interesting
article

author
Zbigniew

Nowak

conference
PODS 2010

place
Warsaw

name
MFCS 2011

paper

papers

conferences

conference

title
XPath is

super

file/papers/paper[conference=
../../conferences/conference[place='Warsaw']/name]/title

Example

Query:

file

paper

author
Jan

Kowalski
conference
MFCS 2011title

Interesting
article

author
Zbigniew

Nowak

conference
PODS 2010

place
Warsaw

name
MFCS 2011

paper

papers

conferences

conference

title
XPath is

super

 ­ our contribution

XPath not refering to data

XPath with data (but without counting)
 ­ Gottlob, Koch, Pichler 2002

 ­ Gottlob, Koch, Pichler 2002

Results summary

O D2⋅Q

O D⋅Q3


O D⋅Q 

Q
DWhere: - document size

 - query size

XML document

XPath query

Nodes of the document
Satisfying the query

Fix a regular language . A word is given.

First, in time linear in , we can prepare ourselves.

Then, in constant time we want to aswer queries:
 ?

Subproblem:

L u=a1an

n

aia j∈L

b a b b b a b b a b a b b a b b

Fix a regular language . A word is given.

Preprocessing: divide and conquer

O n

aia j

For each subword remeber all possible automaton transitions:
pairs of states , such that

time:

qp

p q

Subproblem:

L u=a1an

b a b b b a b b a b a b b a b b

Fix a regular language . A word is given.

Given: ,

aia j∈L

i j

i j

Does ?

It is enough to compose remembered transitions!

time: O log n

Subproblem:

L u=a1an

A tool used: Simon's theorem
(I. Simon, Factorization forests of finite height, 1990)

Subproblem:

b a b b b a b b a b a b b a b b

Fix a regular language . A word is given.

In the „logarithmic” decomposition we always split into 2 parts

To achieve a constant height of the decomposition tree
we have to allow splits into arbitrarly many parts
- but then all parts have to be very similar

Subproblem:

L u=a1an

Every word in the decomposition tree we split into
● 2 (arbitrary) parts , or
● arbitrarly many parts ,
 where all are equivalent.

u

Simon's decomposition:

u=u1u2

u=u1uk
uiu j

 and are equivalent, if for any words

,

 it holds

 

vu w1 w2

w1uw2∈L w1v w2∈L

Simon's Theorem:
For every word there exists such a decomposition tree
of the same height.

a a a a b
 =(a+b)*b

Example

L

Simon's decomposition:

Every word in the decomposition tree we split into
● 2 (arbitrary) parts , or
● arbitrarly many parts ,
 where all are equivalent.

u
u=u1u2

u=u1uk
uiu j

a a a a b
 =(a+b)*bL

Every word in the decomposition tree we split into
● 2 (arbitrary) parts , or
● arbitrarly many parts ,
 where all are equivalent.

u
u=u1u2

u=u1uk
uiu j

Simon's decomposition:

Example

a a a a b
 =(a+b)*bL

b b a a a b a b a a a

Every word in the decomposition tree we split into
● 2 (arbitrary) parts , or
● arbitrarly many parts ,
 where all are equivalent.

u
u=u1u2

u=u1uk
uiu j

Simon's decomposition:

Example

a a a a b
 =(a+b)*bL

b b a a a b a b a a a

Every word in the decomposition tree we split into
● 2 (arbitrary) parts , or
● arbitrarly many parts ,
 where all are equivalent.

u
u=u1u2

u=u1uk
uiu j

Simon's decomposition:

Example

Fix a regular language . A word is given.

Preprocessing:
● calculate the Simon's decomposition
● for every subword in the decomposition
 compute the transitions of the automaton

aia j∈LDoes ?

● It is enough to compose remembered transitions

O 1time:

O ntime:

Subproblem:

L u=a1an

Fix a regular language . A word is given.

Preprocessing:
● calculate the Simon's decomposition
● for every subword in the decomposition
 compute the transitions of the automaton

aia j∈LDoes ?

● It is enough to compose remembered transitions

O 1time:

O ntime:

Subproblem:

L u=a1an

O 1

Dependance on language

Height of the decomposition tree is proportional
to the number of abstraction classes, which is
exponential in the automaton size.

However the tree has at most nodes.

Our contribution:
how to deal with this decomposition in time
polynomial in the automaton size.

2n−1

L

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

