On the Significance of the Collapse Operation

Paweł Parys
University of Warsaw

Higher order pushdown automata (H-O PDA) [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s, are 1-stacks. Top of stack is on right.

An **order-n PDA** has an order-n stack, and has push, and pop, for each 1 ≤ i ≤ n.

trees generated by H-O pushdown systems

trees generated by H-O recursion schemes

Are these two hierarchies equal?

levels 0 and 1 – yes

Are these two hierarchies equal?

Knapik, Niwiński, Urzyczyn 2002

trees generated by H-O pushdown systems

? trees generated by H-O schemes

trees generated by safe H-O schemes

Are these two hierarchies equal?

- Knapik, Niwiński, Urzyczyn 2002
- Caucal 2002

```
trees generated by
H-O pushdown systems

The est generated by
H-O schemes

trees generated by
safe H-O schemes

Caucal hierarchy
```

Are these two hierarchies equal?

Hague, Murawski, Ong, Serre 2008

```
trees generated by collapsible
H-O pushdown systems

trees generated by
H-O schemes
H-O pushdown systems

trees generated by
H-O schemes

safe H-O schemes

Caucal hierarchy
```

H-O pushdown systems

safe H-O schemes

Caucal hierarchy

collapsible H-O pushdown systems

all H-O schemes

Equivalently: two hierarchies of word languages

deterministic H-O pushdown automata

deterministic collapsible H-O pushdown automata

Previous result (STACS 2011):

level 2 is different

deterministic H-O pushdown automata

deterministic collapsible H-O pushdown automata

This result:

the union of the hierarchies is different

Collapsible Pushdown Automata

Collapsible PDA are an extension of H-O PDA

Each 0-stack (stack symbol) is created with a fresh identifier.

For 2≤i≤n we have a new operation collapse, It removes all (i-1)-stacks which contain the topmost symbol.

Notice: collapse₁= pop₁

Example: Urzyczyn's language U

alphabet: [,], *
U contains words of the form:

- segment A is a prefix of a well-bracketed word that ends in [which is not matched in the entire word
- segment B is a well-bracketed word
- segments A and C have the same length

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

```
[ [ ] [ [ ] ] ****
```

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

Related open problem

The same question for nondeterministic (collapsible) H-O PDA:

Is there a language

- not recognized by any nondeterministic H-O PDA
- recognized by a nondeterministic Collapsible H-O PDA

(here the second levels are equal, possibly there is a difference on level 3)