On the Significance of the Collapse Operation

Paweł Parys

University of Warsaw

Higher order pushdown automata (H-O PDA) [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack (resp. $\mathrm{n}+1$-stack) is a stack of 1 -stacks (resp. n -stack).

Operations on 2-stacks: s_{i} are 1 -stacks. Top of stack is on right.

$$
\begin{array}{llll}
\operatorname{push}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{j}\right]} & -> & {\left[s_{1} \ldots s_{i_{i-1}} s_{i} s_{i}\right]} \\
\operatorname{pop}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & -> & {\left[s_{1} \ldots s_{i-1}\right]} \\
\operatorname{push}_{1} x: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{i-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j} x\right]\right]} \\
\operatorname{pop}_{1}: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1}\right]\right]}
\end{array}
$$

An order-n PDA has an order-n stack, and has push ${ }_{i}$ and pop for each $1 \leq i \leq n$.

Two hierarchies (of trees):

trees generated by H-O pushdown systems
trees generated by H-O recursion schemes

Are these two hierarchies equal?

- levels 0 and 1 - yes

Two hierarchies (of trees):

Are these two hierarchies equal?

- Knapik, Niwiński, Urzyczyn 2002
trees generated by
H-O pushdown systems
$\stackrel{?}{=}$ trees generated by $\mathrm{H}-\mathrm{O}$ schemes
trees generated by safe H-O schemes

Two hierarchies (of trees):

Are these two hierarchies equal?

- Knapik, Niwiński, Urzyczyn 2002
- Caucal 2002
trees generated by
H-O pushdown systems
$\stackrel{?}{=}$ trees generated by $\mathrm{H}-\mathrm{O}$ schemes
trees generated by safe $\mathrm{H}-\mathrm{O}$ schemes
//
Caucal hierarchy

Two hierarchies (of trees):

Are these two hierarchies equal?

- Hague, Murawski, Ong, Serre 2008
trees generated by collapsible
H-O pushdown systems
trees generated by
? H-O schemes
H-O pushdown systems
trees generated by safe H-O schemes

Caucal hierarchy

Two hierarchies (of trees):

H-O pushdown systems
safe H-O schemes
Caucal hierarchy

collapsible H-O pushdown systems
all H-O schemes

Equivalently: two hierarchies of word languages

deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata

Previous result (STACS 2011):

- level 2 is different
deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata
deterministic collapsible $\mathrm{H}-\mathrm{O}$ pushdown automata

This result:

- the union of the hierarchies is different
deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata

Collapsible Pushdown Automata

Collapsible PDA are an extension of H-O PDA

Each 0-stack (stack symbol) is created with a fresh identifier.

For $2 \leq i \leq n$ we have a new operation collapse ${ }_{i}$
It removes all (i-1)-stacks which contain the topmost symbol.

Notice: collapse ${ }_{1}=\operatorname{pop}_{1}$

Example: Urzyczyn's language U

alphabet: [,], *
U contains words of the form:

- segment A is a prefix of a well-bracketed word that ends in [which is not matched in the entire word
- segment B is a well-bracketed word
- segments A and C have the same length
for example:
$[[][[][[]] * * * * \in U$

How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

```
T
[ [ ] [ [ ] [ [ ] ]****
```


How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

```
@T
    [ [ ] [ [ ] [ [ ] ] *****
```


How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

$$
\begin{aligned}
& \square^{\frac{2}{1}} \square \\
& \text { [[] [[] [[]] **** }
\end{aligned}
$$

How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

> Collapse = remove all stacks on which this stack symbol is present

How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

Related open problem

The same question for nondeterministic (collapsible) H-O PDA:
Is there a language

- not recognized by any nondeterministic H-O PDA
- recognized by a nondeterministic Collapsible H-O PDA
(here the second levels are equal, possibly there is a difference on level 3)

