Document classes with decidable XPath satisfiability

Paweł Parys Warsaw University

Mikołaj Bojańczyk, Diego Figueira, Vince Barany

Satisfiability problem:

Input: XPath query Q (referring to data values)

Question: does there exists a document,

in which Q is satisfied?

This problem is undecidable!

Previous results:

decidable, when query is of special form (Diego Figueira)

Our approach: restrict allowed documents

• general satisfiability undecidable

we consider MSO which can quantify over sets of edges

- general satisfiability undecidable
- decidable, when restricted to graphs of tree width $\leq k$

we consider MSO which can quantify over sets of edges

we consider MSO which can quantify over sets of edges

- general satisfiability undecidable
- decidable, when restricted to graphs of tree width $\leq k$
- undecidable for classes of graphs with unbounded tree width

we consider MSO which can quantify over sets of edges

- general satisfiability undecidable
- decidable, when restricted to graphs of tree width $\leq k$
- undecidable for classes of graphs with unbounded tree width

There is at most one such measure !!!!

Restrictions:

- we consider data words
- every data value appears exactly twice

Data words with the same arrangement of data have the same measure (labels are ignored)

Restrictions:

- we consider data words
- every data value appears exactly twice

Data words with the same arrangement of data have the same measure (labels are ignored)

We generate data words using some operations.

Intermediate object - split data word:

- a data word divided into parts (unordered)
- some positions are matched, some are not matched
- it has associated a number, called level

Intermediate object - split data word:

- a data word divided into parts (unordered)
- some positions are matched, some are not matched
- it has associated a number, called level

Operations:

• constant

level = 0

• join

level = n

Intermediate object - split data word:

- a data word divided into parts (unordered)
- some positions are matched, some are not matched
- it has associated a number, called level

Operations:

- constant
- join
- sum

Intermediate object - split data word:

- a data word divided into parts (unordered)
- some positions are matched, some are not matched
- it has associated a number, called level

Operations:

• constant, join, sum

Choose some unmatched positions in two different parts, and match them; increase the level

Intermediate object - split data word:

- a data word divided into parts (unordered)
- some positions are matched, some are not matched
- it has associated a number, called level

Operations:

• constant, join, sum

Choose some unmatched positions in two different parts, and match them; increase the level; the level becomes 0 if all positions are matched

Definition

If a document can be generated using levels $\leq k$, and $\leq k$ parts of a split data words then it has complexity measure $\leq k$.

Example: generate arbitrary data word

Definition

measure ≤4

Example: generate arbitrary data word (approach 2)

If a document can be generated using levels $\leq k$, and $\leq k$ parts of a split data words then it has complexity measure $\leq k$.

lev = 4

Definition

If a document can be generated using levels $\leq k$, and $\leq k$ parts of a split data words then it has complexity measure $\leq k$.

Example: words with small measure

well parenthesized words

segregated words

Decidability

<u>Theorem</u>

The following problem is decidable:

Input: XPath query Q (referring to data values), number k

Question: does there exists a data word of measure $\leq k$, in which Q is satisfied?

The same works also for Regular XPath, or class automata

Used techniques:

- class automata
- semilinear sets
- Parikh theorem

Undecidability

Example

If X contains arbitrarily large such words, it is undecidable whether there is a word in X satisfying a given query

Notice: it is not enough to use this grid – the query has to say that the word is of such form

Undecidability

(for undecidability we define another measure; unfortunately we don't know whether these two measures coincide)

Path measure (analogy: grid as a minor)

measure ≥n ⇔ word can be divided into n segments, so that we can find n disjoint paths

Definition of a path:

- uses data edges and successor edges
- visits every segment
- after visiting segment k does not visit segment k-2

<u>Theorem.</u> If X contains arbitrarily large such words, it is undecidable whether there is a word in X satisfying a given query

Conclusions

The satisfiability problem is

- decidable in the class of data words with bounded measure
- undecidable in any class containing words with unbounded path measure

Questions:

- are the two measures equivalent?
- words with more than two appearances of a data value

one idea: replace a big class by many classes of size 2:

measure of the original word = measure of the word after translation