

Variants of Collapsible Pushdown Systems

Paweł Parys

University of Warsaw

Higher order pushdown systems/automata [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack
(resp. (n + 1)-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s
i
 are 1-stacks. Top of stack is on right.

push
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
s

i
s

i
]

pop
2
 : [s

1
...s

i-1
s

i
] -> [s

1
...s

i-1
]

push
1
x : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
a

j
x]]

pop
1
 : [s

1
...s

i-1
[a

1
...a

j-1
a

j
]] -> [s

1
...s

i-1
[a

1
...a

j-1
]]

An order-n PDA has an order-n stack, and
has push

i
 and pop

i
 for each 1 ≤ i ≤ n.

Collapsible pushdown systems/automata
[Hague, Murawski, Ong, Serre 08]

push
1
(x) pushes not only the x symbol, but also a fresh marker

new operation: collapse
k
 – removes all those (k-1)-stacks from

 the topmost k-stack, which contain the marker
 present in the topmost symbol

Collapsible PDS are an extension of a higher-order PDS

Collapsible pushdown systems/automata
[Hague, Murawski, Ong, Serre 08]

push
1
(x) pushes not only the x symbol, but also a fresh marker

new operation: collapse
k
 – removes all those (k-1)-stacks from

 the topmost k-stack, which contain the marker
 present in the topmost symbol

Collapsible PDS are an extension of a higher-order PDS

Collapsible PDS are equiexpressive
with higher-order recursion schemes!

Trees generated by collapsible PDS have decidable MSO theory!

First contribution:

We compare three possible ways (definitions)
how a collapsible pushdown system can generate a tree
- we show that these three ways are equivalent.

How collapsible pushdown systems generate trees?

Classical definition:
● every transition reads a label, or (nothing)
● we consider only deterministic systems

(we consider potentially infinite trees with labels on edges)

From every configuration we have:
➔ one -transition, or
➔ only non--transitions, every labeled by a different letter

b a a
a

c a

OK OK forbidden forbidden

How collapsible pushdown systems generate trees?

Classical definition:
● we consider only deterministic systems
● we unfold the configuration graph into a tree
● we contract -edges

(we consider potentially infinite trees with labels on edges)

a

a

b

(typically the configuration
graph is infinite)

How collapsible pushdown systems generate trees?

Classical definition:
● we consider only deterministic systems
● we unfold the configuration graph into a tree
● we contract -edges

(we consider potentially infinite trees with labels on edges)

a
a

b

a
a

b

a

a

b

...

...

...

...

...

a

a
a

a

How collapsible pushdown systems generate trees?

Classical definition:
● we consider only deterministic systems
● we unfold the configuration graph into a tree
● we contract -edges

(we consider potentially infinite trees with labels on edges)

a
a

b

a
a

b

a

a

b

a

a
a

a

a a

a a
a

a

a

a

a

a b

ab

b

...

...

...

...

...

How collapsible pushdown systems generate trees?

Classical definition - equivalently:
● we consider only deterministic systems
● we first make the -closure of the configuration graph
● after that we unfold the graph into a tree

a

a

ba a

a
a

b

How collapsible pushdown systems generate trees?

Classical definition - equivalently:
● we consider only deterministic systems
● we first make the -closure of the configuration graph
● after that we unfold the graph into a tree

a

a

a
a

b

a

aa
b

a

a
a

b

...

...
...

...

How CPS generate trees? – second definition

But we can also use nondeterministic systems:
● we consider any system, possibly nondeterministic
● we make the -closure of the configuration graph
● after that we unfold the graph into a tree

How CPS generate trees? – second definition

But we can also use nondeterministic systems:
● we consider any system, possibly nondeterministic
● we make the -closure of the configuration graph
● after that we unfold the graph into a tree

a
a

a a
a

a
a

...

...

...

...

Now we can obtain some new trees:

This tree is “nondeterministic”.
What if we restrict ourselves to “deterministic” trees?

such that from every node
there is at most one edge
labeled by each letter

How CPS generate trees? – second definition

A nondeterministic system can produce a “deterministic” tree.

What if we restrict ourselves to “deterministic” trees?

a

a

ba a

a
a

b

We can have “big” parts having only -transitions.

Determinization

Question: we have a “deterministic” tree
generated by a nondeterministic CPS of some level n.
Can it be be generated by some deterministic CPS of level n?

Determinization

Question: we have a “deterministic” tree
generated by a nondeterministic CPS of some level n.
Can it be be generated by some deterministic CPS of level n?

YES – we have determinization

Theorem 1. Every “deterministic” tree generated by a CPS of
level n is also generated by a deterministic CPS of level n.

Determinization

Question: we have a “deterministic” tree
generated by a nondeterministic CPS of some level n.
Can it be be generated by some deterministic CPS of level n?

YES – we have determinization

Theorem 1. Every “deterministic” tree generated by a CPS of
level n is also generated by a deterministic CPS of level n.
Moreover: its configuration graph does not have (finite or infinite)
branches which does not read any letter.

OK forbidden

a

a

b
c a

a

b
c

Determinization

Question: we have a “deterministic” tree
generated by a nondeterministic CPS of some level n.
Can it be be generated by some deterministic CPS of level n?

YES – we have determinization

Theorem 1. Every “deterministic” tree generated by a CPS of
level n is also generated by a deterministic CPS of level n.
Moreover: its configuration graph does not have (finite or infinite)
branches which does not read any letter.
Moreover: this deterministic CPS can be effectively constructed
(its size grows (n-1)-times exponentially).

On the stack we have to remember some information about the stack below.
Example: the automaton can preform 5 times a pop from a configuration,
and if it sees “x” on the stack, it reads “b”.
We have to remember if there is an “x” 5 positions below the top of the stack

Determinization

Consequences of determinization:

“Deterministic automata are simpler.”

➔ simulation – one can just run the system to see what
 letter can be read next (impossible for nondeterministic CPS)

➔ easier for proofs – it's easier to prove that a tree
 is not generated by a deterministic CPS,
 than that it is not generated by any CPS
 (e.g. our proof that the CPS graph hierarchy is strict [MFCS'12]
 simplifies significantly by using this result)

How CPS generate trees? – third definition

Consider a deterministic, word-accepting CPS
(i.e. we have a set of accepting states)

Take a tree consisting of all prefixes of accepted words.

Example
automaton accepts: ba, bba, a, aa, aaa, aaaa,

...
a

a a a a

a

ab
b

How CPS generate trees? – third definition

Consider a deterministic, word-accepting CPS
(i.e. we have a set of accepting states)

Take a tree consisting of all prefixes of accepted words.

Theorem 2.
Every such tree is also generated by a CPS in a classical sense
(and vice versa, which is obvious).

Difficulty: when we are in a configuration from which we will never
accept, we have to stop immediately (without reading more letters).

How CPS generate trees? – third definition

Consider a deterministic, word-accepting CPS
(i.e. we have a set of accepting states)

Take a tree consisting of all prefixes of accepted words.

Theorem 2.
Every such tree is also generated by a CPS in a classical sense
(and vice versa, which is obvious).

Equivalently:
every word-language recognized by a deterministic CPS of level n
is also recognized by a deterministic CPS of level n such that
from every reachable configuration there is an accepting run.

How CPS generate trees? – third definition

Consider a deterministic, word-accepting CPS
(i.e. we have a set of accepting states)

Take a tree consisting of all prefixes of accepted words.

Equivalently:
every word-language recognized by a deterministic CPS of level n
is also recognized by a deterministic CPS of level n such that
from every reachable configuration there is an accepting run.
Moreover: this CPS can be effectively constructed
(its size grows (n-1)-times exponentially).

Note that:
● Theorem 2 is slightly easier than Theorem1 (about determinization),
● Theorems 1 and 2 hold also for (non-collapsible) higher-order pushdown systems
● word-accepting CPS cannot be determinized.

Theorem 2.
Every such tree is also generated by a CPS in a classical sense
(and vice versa, which is obvious).

Notice:
Proofs of Theorems 1 and 2 can be quite easily deduced from
a recent paper:
A. Carayol, O. Serre. “Collapsible Pushdown Automata and Labeled Recursion
Schemes. Equivalence, Safety and Effective Selection” (LICS 2012)

Our proofs are completely different
(and were obtained independently).

The word hierarchy of CPS is infinite

The separating language is:

{ ak b2 : k∈ℕ }
2

...2
k2n

ℒn – languages recognized by (nondeterministic) CPS of level n

Theorem 3.

ℒ2n+1 is strictly greater than ℒn.
So the word-languages hierarchy of CPS is infinite.

The word hierarchy of CPS is infinite

ℒn – languages recognized by (nondeterministic) CPS of level n

Theorem 3.

ℒ2n+1 is strictly greater than ℒn.
So the word-languages hierarchy of CPS is infinite.

Lemma 4.
Let S be a (nondeterministic) CPS of level n.
Then there exists an accepting run of S of length at most

2
...2

8|Q||Q|||

22

2n-1

Theorem 3 is a consequence of Lemma 4:

The word hierarchy of CPS is infinite

ℒn – languages recognized by (nondeterministic) CPS of level n

Theorem 3.

ℒ2n+1 is strictly greater than ℒn.
So the word-languages hierarchy of CPS is infinite.

Note:

● We don't know whether ℒn+1 is strictly greater than ℒn.
● We can deduce that the tree and graph hierarchies are infinite
 (but it is already known even that each their level is different [MFCS 2012]).

Another contribution – reachability algorithm

Input: (nondeterministic) CPS of level n, a set of states F
Question: is there reachable a configuration with a state in F?
(equivalently: emptiness of the recognized language)

We show a new (rather simple) algorithm solving this problem
in (n-1)-EXPTIME.

Another contribution – reachability algorithm

Input: (nondeterministic) CPS of level n, a set of states F
Question: is there reachable a configuration with a state in F?
(equivalently: emptiness of the recognized language)

We show a new (rather simple) algorithm solving this problem
in (n-1)-EXPTIME.

Note:
● the same complexity can be achieved by previously known algorithms
 (for deciding mu-calculus)
● the algorithm is very similar to the one described (independently) in:
 C. Broadbent, A. Carayol, M. Hague, O. Serre. “A Saturation Method
 for Collapsible Pushdown Systems” (ICALP 2012)

Summary

1) The three presented methods of generating deterministic
 trees by CPS are equivalent.

2) The word-languages hierarchy of CPS is infinite.

3) Algorithm for reachability in CPS.

Related open problems

1) Is the word-languages hierarchy of CPS strict (are every two
 levels different)?

2) Are all these languages context-sensitive?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

