Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata

Paweł Parys
University of Warsaw

Higher order pushdown automata (HOPDA) [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack (resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s, are 1-stacks. Top of stack is on right.

An **order-n PDA** has an order-n stack, and has push, and pop, for each 1 ≤ i ≤ n.

Example: language {aⁿbⁿcⁿ}

push a symbol with every "a" on input

aaaa

Example: language {aⁿbⁿcⁿ}

- push a symbol with every "a" on input
- make push₂

aaaab

Example: language {aⁿbⁿcⁿ}

- push a symbol with every "a" on input
- make push₂
- pop a symbol with each "b" on input

aaaabbbb

Example: language {aⁿbⁿcⁿ}

- push a symbol with every "a" on input
- make push₂
- pop a symbol with each "b" on input
- pop a symbol with each "c" on input

aaaabbbbcccc

Collapsible HOPDA

Collapsible HOPDA is an extension of a HOPDA

Elements of 1-stack are tuples $(a,n_1,...,n_k)$, where $a \in \Sigma$, $n_i \in \mathbb{N}$.

push₁a - push (a,n₁,...,n_k) on the top of the topmost level-1 stack, where n_i is the size of the topmost level-i stack

collapse, - if the topmost stack symbol is (a,n,,...,n, leave only first n,-1 elements of the topmost level-i stack (from the topmost level-i stack remove all level i-1 stacks on which this symbol is present)

Notice: collapse₁= pop₁

Example: Urzyczyn's language U

alphabet: [,], *
U contains words of the form:

- segment A is a prefix of a well-bracketed word that ends in [which is not matched in the entire word
- segment B is a well-bracketed word
- segments A and C have the same length

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

```
[ [ ] [ [ ] ] ****
```

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy (push₂) is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

Main theorem

Theorem

No level-2 deterministic PDA can recognize the language U.

Corollary

There is a language recognized by a level-2 deterministic collapsible PDA which is not recognized by any level-2 deterministic PDA without collapse.

Corollary

There is a tree generated by a level-2 recursion scheme which is not generated by any safe level-2 recursion scheme.

Motivation: from program verification to higher order pushdowns Example

```
open(x, "foo")
a := 0
while a<100 do
    read(x)
    a := a+1
close(x)</pre>
```

is the file "foo" accessed according to open,read*,close?

Motivation: from program verification to higher order pushdowns Example

Step 1: information about infinite data domains is approximated.

is the file "foo" accessed according to open,read*,close?

is the file "foo" accessed according to open,read*,close?

Motivation: from program verification to higher order pushdowns Example

Step 2: consider the tree of possible control flows.

Motivation: from program verification to higher order pushdowns

Observation: for programs without recursion, each path of the tree is a regular language. (the program is a deterministic finite automaton)

Rabin 1969: Regular trees have decidable MSO theory.

Motivation: from program verification to higher order pushdowns Example 2 - program with recursion

Motivation: from program verification to higher order pushdowns Example 2 - program with recursion

Now the tree is not regular!!

But each path is recognized by a **deterministic** pushdown automaton.

Muller, Schupp 1985 / Caucal 1986 / Stirling 2000: such trees have decidable MSO theory.

Motivation: from program verification to higher order pushdowns What about higher order programs?

Relation between HOPDA and programs

We skip the formal definition

For each level we have introduced two classes of trees:

ColPdaTree_n Σ = trees generated by order-n deterministic collapsible PDA RecSchTree_n Σ = trees generated by order-n recursion scheme (program)

Are these classes equal?

Hague, Murawski, Ong, Serre 2008:

yes: $\mathbf{RecSchTree}_{n} \Sigma = \mathbf{ColPdaTree}_{n} \Sigma$

so it is natural to consider collapsible automata

What about MSO decidability?

Ong 2006:

Trees from RecSchTree \(\sum \) have decidable MSO theory.

Relation between HOPDA and programs – earlier results

PdaTree_n Σ = trees generated by order-n deterministic HOPDA SafeRecSchTree_n Σ = trees generated by order-n safe recursion scheme

Knapik, Niwiński, Urzyczyn 2002: For each n, PdaTree_n Σ = SafeRecSchTree_n Σ and these trees have decidable MSO theory.

what is safety?

It is some syntactic constraint on the recursion schemes. (the result of passing order-k parameters to a function has to be of order lower than k) Safety restriction disappears at level 1.

Another characterization of these trees - the Caucal hierarchy (Caucal 2002) $PdaTree_n \Sigma = SafeRecSchTree_n \Sigma = CaucalTree_n \Sigma$

Two hierarchies (of trees / of word languages):

deterministic H-O pushdown automata

safe H-O schemas

Caucal hierarchy

deterministic collapsible H-O pushdown automata

H-O schemas

These are different hierarchies!!!

Open problems

1) Show that U (or some other language) is not accepted by a deterministic HOPDA (without collapse) of an arbitrary level, i.e. that the union of the whole hierarchies are different.

Open problems

- 1) Show that U (or some other language) is not accepted by a deterministic HOPDA (without collapse) of an arbitrary level, i.e. that the union of the whole hierarchies are different.
- 2) Does collapse increase recognizing power of **nondeterministic** HOPDA?

Aehlig, Miranda, Ong 2005: for level 2 – NO (collapse can be simulated by nondeterminism)

- but: nondeterministic automata does not have a natural connection with verification
 - most problems are undecidable, even universality for level-1 PDA (but emptiness is decidable)