# Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata 

Paweł Parys

University of Warsaw

Motivation: from program verification to higher order pushdowns
Example

| open( $x$, "foo") |
| :--- |
| $\mathrm{a}:=0$ |
| while $\mathrm{a}<100$ do |
| $\quad$ read $(x)$ |
| $a:=a+1$ |
| close $(x)$ |

is the file "foo" accessed according to open,read*,close?

Motivation: from program verification to higher order pushdowns

## Example

Step 1: information about infinite data domains is approximated.

| open(x, "foo") |
| :--- |
| $\mathrm{a}:=0$ |
| while $\mathrm{a}<100$ do |
| read( x$)$ |
| $\mathrm{a}:=\mathrm{a}+1$ |
| close $(\mathrm{x})$ |

$$
\begin{array}{|l}
\hline \text { open(x, "foo") } \\
\text { while * do } \\
\text { read( } x \text { ) } \\
\text { close }(x) \\
\hline
\end{array}
$$

is the file "foo" accessed according
 to open,read ${ }^{*}$,close?
is the file "foo" accessed according to open,read ${ }^{*}$,close?

Motivation: from program verification to higher order pushdowns

## Example

Step 2: consider the tree of possible control flows.

| open(x, "foo") |
| :--- |
| while * do |
| read(x) |
| $\operatorname{close}(x)$ |


is the file "foo"
accessed according to open,read*,close?
is each path labelled by open,read*,close?

## Motivation: from program verification to higher order pushdowns

## Example

```
open(x, "foo")
while * do
    read(x)
close(x)
```



Observation: for programs without recursion, each path of the tree is a regular language.
(the program is a deterministic finite automaton)
Rabin 1969: Regular trees have decidable MSO theory.

Motivation: from program verification to higher order pushdowns
Example 2 - program with recursion


Motivation: from program verification to higher order pushdowns
Example 2 - program with recursion
let $f(x)=$
$\quad$ alloc $(x)$
if * then $f(x)$
free( $x$ )
$f(x)$

Now the tree is not regular!!
But each path is recognized by a deterministic pushdown automaton.

Muller, Schupp 1985 / Caucal 1986 / Stirling 2000: such trees have decidable MSO theory.


Motivation: from program verification to higher order pushdowns What about higher order programs?

| let $f(x, g)=$ |
| :--- |
| $\quad$ if * then $g(x)$ |
| $\quad$ else $f(x$, fun $h x->h(x) ; h(x))$ |
| open $(x)$ |
| $f(x$, read $)$ |
| close $(x)$ |



Motivation: from program verification to higher order pushdowns What about higher order programs?

| let $f(x, g)=$ |
| :--- |
| $\quad$ if ${ }^{*}$ then $g(x)$ |
| $\quad$ else $f(x$, fun $h x->h(x) ; h(x))$ |
| open $(x)$ |
| $f(x$, read $)$ |
| close $(x)$ |



Higher order pushdown automata (HOPDA) [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack (resp. $\mathrm{n}+1$-stack) is a stack of 1 -stacks (resp. n -stack).

Operations on 2-stacks: $\mathrm{s}_{\mathrm{i}}$ are 1 -stacks. Top of stack is on right.

$$
\begin{array}{llll}
\operatorname{push}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & -> & {\left[s_{1} \ldots s_{i-1} s_{i} s_{i}\right]} \\
\operatorname{pop}_{2}: & {\left[s_{1} \ldots s_{i-1} s_{i}\right]} & -> & {\left[s_{1} \ldots s_{i-1}\right]} \\
\operatorname{push}_{1} x: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{i-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j} x\right]\right]} \\
\operatorname{pop}_{1}: & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1} a_{j}\right]\right]} & -> & {\left[s_{1} \ldots s_{i-1}\left[a_{1} \ldots a_{j-1}\right]\right]}
\end{array}
$$

An order-n PDA has an order-n stack, and has push ${ }_{i}$ and pop for each $1 \leq \mathrm{i} \leq \mathrm{n}$.

## Relation between HOPDA and programs

We skip the formal definition
For each level we have introduced two classes of trees:
PushdownTree $_{\mathrm{n}} \Sigma=$ trees generated by order-n deterministic HOPDA
$\operatorname{RecSch}^{\operatorname{Tree}}{ }_{\mathrm{n}} \Sigma=$ trees generated by order-n recursion scheme (program)

Are these classes equal?
For levels 0 and 1: yes
For levels $>1$ : in some sense...

## Relation between HOPDA and programs

PushdownTree ${ }_{\mathrm{n}} \Sigma=$ trees generated by order-n deterministic HOPDA SafeRecSchTree ${ }_{\mathrm{n}} \Sigma=$ trees generated by order-n safe recursion scheme

Knapik, Niwiński, Urzyczyn 2002: For each $n$, PushdownTree ${ }_{n} \Sigma=$ SafeRecSchTree $_{n} \Sigma$ and these trees have decidable MSO theory.
what is safety?
It is some syntactic constraint on the recursion schemes. (the result of passing order-k parameters to a function has to be of order lower than k ) Safety restriction disappears at level 1 .

Another characterization of these trees - the Caucal hierarchy (Caucal 2002) PushdownTree $_{\mathrm{n}} \Sigma=$ SafeRecSchTree $_{\mathrm{n}} \Sigma=$ CaucalTree $_{\mathrm{n}} \Sigma$

## Relation between HOPDA and programs

- Is the safety restriction essential for MSO decidability?

Ong 2006:
Trees from RecSchTree ${ }_{n} \Sigma$ have decidable MSO theory.
-What is the corresponding automata class?
Hague, Murawski, Ong, Serre 2008:
RecSchTree ${ }_{\mathrm{n}} \sum$ contains exactly trees generated by collapsible deterministic HOPDA.

- Is safety really a restriction?
this paper:
RecSchTree $_{2} \Sigma \neq$ SafeRecSchTree $_{2} \Sigma$


## Collapsible HOPDA

Collapsible HOPDA is an extension of a HOPDA

Elements of 1-stack are tuples $\left(a, n_{1}, \ldots, n_{k}\right)$, where $a \in \Sigma, n_{i} \in \mathbb{N}$.
push ${ }_{1} a$ - push $\left(a, n_{1}, \ldots, n_{k}\right)$ on the top of the topmost order 1 stack, where $n_{i}$ is the size of the topmost order i stack
collapse $_{i}$ - if the topmost stack symbol is ( $\mathrm{a}, \mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ ) leave only first $n_{i}-1$ elements of the topmost order $i$ stack

Notice: collapse ${ }_{1}=\operatorname{pop}_{1}$

## Example: Urzyczyn's language U

alphabet: [, ], *
$U$ contains words of the form:


- segment $A$ is a prefix of a well-bracketed word that ends in [ which not matched in the entire word
- segment B is a well-bracketed word
- segments $A$ and $C$ have the same length
for example:
[[][[][[]]**** $\in U$


## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

```
1
[ [ ] [ [ ] [ [ ] ]****
```


## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

```
@T
    [ [ ] [ [ ] [ [ ] ] *****
```


## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket

```
4-\frac{2}{1}\square
    [ [ ] [ [ ] [ [ ] ]****
```


## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket


## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket
- on the first star we make the collapse
- we count the number of stacks

> Collapse = remove all stack on which this stack symbol is present

## How to recognize U by an automaton with collapse?

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy $\left(\right.$ push $\left._{2}\right)$ is done after each bracket
- on the first star we make the collapse
- we count the number of stacks



## Two hierarchies (of trees / of word languages):

deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata
deterministic collapsible H-O pushdown automata

Caucal hierarchy


1) Show that $U$ (or some other language) is not accepted by a deterministic HOPDA (without collapse) of an arbitrary order, i.e. that the union of the whole hierarchies are different.

## Open problems

1) Show that $U$ (or some other language) is not accepted by a deterministic HOPDA (without collapse) of an arbitrary order, i.e. that the union of the whole hierarchies are different.
2) Does collapse increase recognizing power of nondeterministic HOPDA?

Aehlig, Miranda, Ong 2005: for level 2 - NO (collapse can be simulated by nondeterminism)
but: • nondeterministic automata does not have a natural connection with verification

- most problems are undecidable, even universality for level-1 PDA (but emptiness is decidable)

Assume there is an order-2 HOPDA A recognizing U .

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * * *
$$

Lemma 1. We may assume that A does not use pop ${ }_{2}$ before first star.

Lemma 2. Automaton $A$ after reading $u_{n}$ has at most $C$ symbols on the last 1-stack.

Why U cannot be recognized without collapse?

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[[ ^ { n + 1 } ] ^ { n } \left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading $\mathrm{u}_{\mathrm{n}}$
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.
2) Part after $u_{n} u s i n g s$ or more stacks.

Lemma 1. We may assume that $A$ does not use pop ${ }_{2}$ before first star.

Lemma 2. Automaton $A$ after reading $u_{n}$ has at most $C$ symbols on the last 1-stack.

Why U cannot be recognized without collapse?

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[[ ^ { n + 1 } ] ^ { n } \left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading $\mathrm{u}_{\mathrm{n}}$
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows $n$.
2) Part after $u_{n} u s i n g$ s or more stacks.

This part knows k .

Lemma 1. We may assume that $A$ does not use pop ${ }_{2}$ before first star.

Lemma 2. Automaton $A$ after reading $u_{n}$ has at most $C$ symbols on the last 1-stack.

A final argument: problem with communication.

$$
u_{n}=\underbrace{\left[c^{n+1}\right]^{n}\left[[ ^ { n + 1 } ] ^ { n } \left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * *
$$

Let $s=$ the number of stacks after reading $u_{n}$
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows $n$.
2) Part after $u_{n}$ using s or more stacks.

This part knows $k$.
Communication $1 \rightarrow 2$ : the s-th stack is passed, which is of constant size, hence 2 does not know $n$.
Communication $2 \rightarrow 1$ : only a state is passed, $|Q|$ possibilities, hence 1 does not know $k$ (which has $|\mathrm{Q}|+1$ possible values).

Lemma 2. Automaton $A$ after reading $u_{n}$ has at most $C$ symbols on the last 1 -stack.

## A final argument: problem with communication.

$$
\left.u_{n}=\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n} \quad u_{n, k}=u_{n}\right]^{k} * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading $\mathrm{u}_{\mathrm{n}}$
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows $n$.
2) Part after $u_{n}$ using s or more stacks.

This part knows $k$.
Communication $1 \rightarrow 2$ : the s-th stack is passed, which is of constant size, hence 2 does not know $n$.
Communication $2 \rightarrow 1$ : only a state is passed, $|\mathrm{Q}|$ possibilities, hence 1 does not know $k$ (which has $|\mathrm{Q}|+1$ possible values).

The number of stars should be $(2 n+1) \cdot(|Q|+1-k)$, but it is the sum of stars accepted by 1 and by $2 . \rightarrow$ contradiction

