
  

Collapse Operation Increases Expressive Power
of Deterministic Higher Order Pushdown Automata

Paweł Parys

University of Warsaw



  

Motivation: from program verification to higher order pushdowns

Example

open(x, “foo”)
a := 0
while a<100 do

read(x)
a := a+1

close(x)

is the file “foo” 
accessed according 
to open,read*,close?



  

open(x, “foo”)
a := 0
while a<100 do

read(x)
a := a+1

close(x)

is the file “foo” 
accessed according 
to open,read*,close?

open(x, “foo”)

while * do
read(x)

close(x)

is the file “foo” 
accessed according 
to open,read*,close?

Step 1: information about infinite data domains is approximated.

Motivation: from program verification to higher order pushdowns

Example



  

open(x, “foo”)
while * do

read(x)
close(x)

is the file “foo” 
accessed according 
to open,read*,close?

Step 2: consider the tree of possible control flows.
open

while

close read
while

close read
while

close read

close

is each path
labelled by

open,read*,close?

Motivation: from program verification to higher order pushdowns

Example



  

open(x, “foo”)
while * do

read(x)
close(x)

Observation: for programs without recursion, each path 
 of the tree is a regular language.
(the program is a deterministic finite automaton)

open

while

close read
while

close read
while

close read
....

Rabin 1969: Regular trees have decidable MSO theory.

Motivation: from program verification to higher order pushdowns

Example



  

Example 2 - program with recursion

let f(x) = 
alloc(x)
if * then f(x)
free(x)

f(x)

alloc

   if

free alloc

....

   if

free alloc

free alloc

   if

free allocfree alloc

   if

free allocfree alloc

free

free

free
free

free

free

Motivation: from program verification to higher order pushdowns



  

Motivation: from program verification to higher order pushdowns

Example 2 - program with recursion

let f(x) = 
alloc(x)
if * then f(x)
free(x)

f(x)

alloc

   if

free alloc

....

   if

free alloc

free alloc

   if

free allocfree alloc

   if

free allocfree alloc

free

free

free
free

free

free

Now the tree is not regular!!

But each path is recognized by 
a deterministic pushdown automaton.

Muller, Schupp 1985 / Caucal 1986 / Stirling 2000: 
such trees have decidable MSO theory.



  

Motivation: from program verification to higher order pushdowns

What about higher order programs?

let f(x, g) = 
if * then g(x)
else f(x, fun h x -> h(x); h(x))

open(x)
f(x, read)
close(x)

open

   if

close    if

read

close

   if

read

read

close

   if

read

read

read

read

close

2k

....



  

Motivation: from program verification to higher order pushdowns

What about higher order programs?

let f(x, g) = 
if * then g(x)
else f(x, fun h x -> h(x); h(x))

open(x)
f(x, read)
close(x)

open

   if

close    if

read

close

   if

read

read

close

   if

read

read

read

read

close

2k

....

Better automata class is needed!!!



  

Higher order pushdown automata (HOPDA) [Maslov 74, 76]

A 1-stack is an ordinary stack. A 2-stack
(resp. n + 1-stack) is a stack of 1-stacks (resp. n-stack).

Operations on 2-stacks: s
i
 are 1-stacks. Top of stack is on right.

push
2
   :     [s

1
...s

i-1
s

i
]                 ->    [s

1
...s

i-1
s

i 
s

i
]

pop
2
     :     [s

1
...s

i-1
s

i
]                 ->    [s

1
...s

i-1
]

push
1
x  :     [s

1
...s

i-1
[a

1
...a

j-1
a

j
]]    ->    [s

1
...s

i-1
[a

1
...a

j-1
a

j 
x]]

pop
1
     :     [s

1
...s

i-1
[a

1
...a

j-1
a

j
]]    ->    [s

1
...s

i-1
[a

1
...a

j-1
]]

An order-n PDA has an order-n stack, and 
has push

i
 and pop

i
 for each 1 ≤ i ≤ n.



  

For each level we have introduced two classes of trees:

PushdownTree
n
Σ = trees generated by order-n deterministic HOPDA

RecSchTree
n
Σ = trees generated by order-n recursion scheme (program)

Are these classes equal?

For levels 0 and 1: yes
For levels >1: in some sense...

We skip the formal definition

Relation between HOPDA and programs



  

PushdownTree
n
Σ = trees generated by order-n deterministic HOPDA

SafeRecSchTree
n
Σ = trees generated by order-n safe recursion scheme

Knapik, Niwiński, Urzyczyn 2002:
For each n, PushdownTree

n
Σ = SafeRecSchTree

n
Σ

and these trees have decidable MSO theory.

what is safety?
It is some syntactic constraint on the recursion schemes.
(the result of passing order-k parameters to a function has to be of order lower than k)

Safety restriction disappears at level 1.

Another characterization of these trees - the Caucal hierarchy (Caucal 2002)
PushdownTree

n
Σ = SafeRecSchTree

n
Σ = CaucalTree

n
Σ

Relation between HOPDA and programs



  

Ong 2006:
Trees from RecSchTree

n
Σ have decidable MSO theory.

Relation between HOPDA and programs

● Is the safety restriction essential for MSO decidability?

Hague, Murawski, Ong, Serre 2008:
RecSchTree

n
Σ contains exactly trees generated by collapsible 

                     deterministic HOPDA.

● What is the corresponding automata class?

● Is safety really a restriction?
this paper:
RecSchTree

2
Σ  SafeRecSchTree

2
Σ 



  

Collapsible HOPDA

Elements of 1-stack are tuples (a,n
1
,...,n

k
), where a∈Σ, n

i
∈ℕ.

push
1
a - push (a,n

1
,...,n

k
) on the top of the topmost order 1 stack, 

              where n
i
 is the size of the topmost order i stack

collapse
i
 - if the topmost stack symbol is (a,n

1
,...,n

k
)

  leave only first n
i
-1 elements of the topmost order i stack

Collapsible HOPDA is an extension of a HOPDA

Notice: collapse
1
= pop

1



  

Example: Urzyczyn's language U

alphabet: [, ], ∗
U contains words of the form:

[...[...[ [...]...[...] ∗ ...∗

● segment A is a prefix of a well-bracketed word that ends
 in [ which not matched in the entire word

● segment B is a well-bracketed word
● segments A and C have the same length

for example:
[ [ ] [ [ ] [ [ ] ] ∗∗∗∗  ∈U

A B C



  

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗

1



  

How to recognize U by an automaton with collapse?

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗

1 1

2



  

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗

How to recognize U by an automaton with collapse?

1 1

2

1



  

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗

How to recognize U by an automaton with collapse?

1 1

2

1 11 1 11 1 1

4 4 4 4 4 4 4
5 7 7 7

8



  

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

● on the first star we make the collapse
● we count the number of stacks

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗  

Collapse = remove all
stack on which this 
stack symbol is present

How to recognize U by an automaton with collapse?

11

2

11 11 11 1 1

4 4 4 4 4 4 4
5 7 7 7

8



  

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy (push

2
) is done after each bracket

● on the first star we make the collapse
● we count the number of stacks

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗  

How to recognize U by an automaton with collapse?

11

2

1

Collapse = remove all
stack on which this 
stack symbol is present



  

Two hierarchies (of trees / of word languages):

deterministic H-O 
pushdown automata

safe H-O schemas

Caucal hierarchy

deterministic collapsible H-O
pushdown automata

H-O schemas

regular

det. context-free

language U
     

0

1

2

3

4

this part is
more difficult



  

Open problems

1) Show that U (or some other language) is not accepted by
    a deterministic HOPDA (without collapse) of an arbitrary order,
    i.e. that the union of the whole hierarchies are different.



  

Open problems

1) Show that U (or some other language) is not accepted by
    a deterministic HOPDA (without collapse) of an arbitrary order,
    i.e. that the union of the whole hierarchies are different.

2) Does collapse increase recognizing power of 
    nondeterministic HOPDA?

Aehlig, Miranda, Ong 2005: for level 2 – NO 
(collapse can be simulated by nondeterminism)

● nondeterministic automata does not have a natural 
 connection with verification

● most problems are undecidable, even universality for 
 level-1 PDA (but emptiness is decidable)

but:



  

Why U cannot be recognized without collapse?

Assume there is an order-2 HOPDA  A recognizing U.

Lemma 1. We may assume that A does not use pop
2
 

    before first star.

Lemma 2. Automaton A after reading u
n
 has at most C symbols 

   on the last 1-stack.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

u
n,k

=u
n
]k∗∗∗∗∗



  

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

   

2) Part after u
n 
using s or more stacks.

    

u
n,k

=u
n
]k∗∗∗∗∗

Why U cannot be recognized without collapse?

Lemma 1. We may assume that A does not use pop
2
 

    before first star.

Lemma 2. Automaton A after reading u
n
 has at most C symbols 

   on the last 1-stack.



  

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

     This part knows n.

2) Part after u
n 
using s or more stacks.

    This part knows k.

u
n,k

=u
n
]k∗∗∗∗∗

Why U cannot be recognized without collapse?

Lemma 1. We may assume that A does not use pop
2
 

    before first star.

Lemma 2. Automaton A after reading u
n
 has at most C symbols 

   on the last 1-stack.



  

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

     This part knows n.

2) Part after u
n 
using s or more stacks.

    This part knows k.
Communication 1→2: the s-th stack is passed, which is 
        of constant size, hence 2 does not know n.
Communication 2→1: only a state is passed, |Q| possibilities, 
        hence 1 does not know k (which has |Q|+1 possible values).

u
n,k

=u
n
]k∗∗∗∗∗

Lemma 2. Automaton A after reading u
n
 has at most C symbols 

   on the last 1-stack.



  

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

     This part knows n.

2) Part after u
n 
using s or more stacks.

    This part knows k.
Communication 1→2: the s-th stack is passed, which is 
        of constant size, hence 2 does not know n.
Communication 2→1: only a state is passed, |Q| possibilities, 
        hence 1 does not know k (which has |Q|+1 possible values).

u
n,k

=u
n
]k∗∗∗∗∗

The number of stars should be (2n+1).(|Q|+1-k), 
but it is the sum of stars accepted by 1 and by 2. → contradiction


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

