

Collapse Operation Increases Expressive Power
of Deterministic Higher Order Pushdown Automata

Paweł Parys

University of Warsaw

Two hierarchies:

deterministic H-O
pushdown automata

safe det. H-O grammars

Caucal hierarchy

deterministic H-O
pushdown automata with
collapse (panic) operation

all det. H-O grammars

regular lang.

context-free lang.

0

1

2

3

4

Two hierarchies:

deterministic H-O
pushdown automata

safe det. H-O grammars

Caucal hierarchy

deterministic H-O
pushdown automata with
collapse (panic) operation

all det. H-O grammars

regular lang.

context-free lang.

language U

0

1

2

3

4

The splitting language (proposed by P. Urzyczyn)

alphabet: [,], ∗
PBE = prefixes of bracket expressions, e.g. [[][
BE = (balanced) bracket expressions, e.g. [[][]]
U={u∗n : u∈PBE, v is the longest suffix of u which is BE,

 n=|u|-|v|}

for example:
[[] [[] [[]] ∗∗∗∗ ∈U

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[[] [[] [[]] ∗∗∗∗

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[[] [[] [[]] ∗∗∗∗

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[[] [[] [[]] ∗∗∗∗

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[[] [[] [[]] ∗∗∗∗

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket
● on the first star make the collapse
● count the number of stacks

[[] [[] [[]] ∗∗∗∗

Collapse = remove all stacks
on which the topmost symbol
is present

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket
● on the first star make the collapse
● count the number of stacks

[[] [[] [[]] ∗∗∗∗

Collapse = remove all stacks
on which the topmost symbol
is present

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.

It is important to observe how the number of stacks changes
(while A is reading a word).

number
of stacks

input word

Collapse is necessary - observation 1

number
of stacks

input wordv

q
1

q
2

w
1

w
2

If q
1
=q

2
, then vw

1
 and vw

2
 are equivalent (vw

1
u∈U⇔vw

2
u∈U)

For fixed v, the number of stacks decrease below the level after v
only for |Q| classes of vw.
But there are many classes of PBE → this situation is very rare.

Collapse is necessary - observation 1

number
of stacks

input word

brackets (PBE) stars

For “most” words A behaves like that:

width ≤k

Collapse is necessary - observation 1

number
of stacks

input word

brackets (PBE) stars

For “most” words A behaves like that:

Each word can be “slightly modified” such that...

We insert short BE
between letters

width ≤k

Collapse is necessary - observation 1

number
of stacks

input word

brackets (PBE) stars

For “most” words A behaves like that:

Each word can be “slightly modified” such that...

We insert short BE
between letters

Assume that for all words A behaves like that:

width ≤k

Step 2: smoothing

number
of stacks

input word

brackets (PBE) stars

Construct a new automaton B (recognizing U) basing on A,
such that the number of stacks never decreases while B is
reading the brackets.
(the number of stacks of B = the minimal number of stacks of A
 during the last k letters)

Lemma 3
For any A there exists B such that:
● they do the same operations and accept the same words
 (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is vw∈L(A).

(proof: construct B basing on A)

There is B recognizing U such that:
● the number of stacks never decreases while B is
 reading the brackets, and
● B knows if it has read a PBE or not.

Lemma 4.
If a (order 1) deterministic PDA recognizes PBE, after reading
u

n
 it has at most C symbols on the stack (where C is a constant

not depending on n).

Special words:
u

n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

number of open
brackets is |Q|+1

Automaton A (recognizing U) after reading u
n
 has

at most C symbols on the last first level stack.

push
2
 is useless without pop

2

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n
+ part after the number of stacks becomes s-1.

2) Part after u
n
using s or more stacks.

u
n,k

=u
n
]k∗∗∗∗∗

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n
+ part after the number of stacks becomes s-1.

 This part knows n.

2) Part after u
n
using s or more stacks.

 This part knows k.

u
n,k

=u
n
]k∗∗∗∗∗

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n
+ part after the number of stacks becomes s-1.

 This part knows n.

2) Part after u
n
using s or more stacks.

 This part knows k.
Communication 1→2: the s-th stack is passed, which is
of constant size, hence 2 does not know n.
Communication 2→1: only a state is passed, |Q| possibilities,
hence 1 does not know k (which has |Q|+1 possible values).

u
n,k

=u
n
]k∗∗∗∗∗

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n
+ part after the number of stacks becomes s-1.

 This part knows n.

2) Part after u
n
using s or more stacks.

 This part knows k.
Communication 1→2: the s-th stack is passed, which is
of constant size, hence 2 does not know n.
Communication 2→1: only a state is passed, |Q| possibilities,
hence 1 does not know k (which has |Q|+1 possible values).

u
n,k

=u
n
]k∗∗∗∗∗

The number of stars should be (2n+1).(|Q|+1-k),
but it is the sum of stars accepted by 1 and by 2. → contradiction

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same
words
 (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is
vw∈L(A).

Proof of Lemma 3

Assume that A (and B) is a first order PDA.
For each configuration (stack content) define f:Q→{acc,0}
To define f(q) start A in that configuration from a state q.
If it accepts (after reading some word), we take f(q)=acc,
otherwise f(q)=0.
We product the stack alphabet with such functions.

Lemma 2 (about
smoothing) is
proved similarly

a
2
 f

2

a
1

f
1

a

2a
1

A B

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same
words
 (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is
vw∈L(A).

Proof of Lemma 3

Assume that A (and B) is a first order PDA.
For each configuration (stack content) define f:Q→{acc,0}
To define f(q) start A in that configuration from a state q.
If it accepts (after reading some word), we take f(q)=acc,
otherwise f(q)=0.
We product the stack alphabet with such functions.

Lemma 2 (about
smoothing) is
proved similarly

a
2
 f

2

a
1

f
1

a

2a
1

A B

B can calculate these functions:
f
k
 depends only on a

k
 and f

k-1
a

3

a
2
 ?

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same
words
 (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is
vw∈L(A).

Proof of Lemma 3

Now let A (and B) be a second order PDA.

B can not compute functions f, because after copying a stack,
they are no longer valid.

Lemma 2 (about
smoothing) is
proved similarly

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same
words
 (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is
vw∈L(A).

Proof of Lemma 3

Now let A (and B) be a second order PDA.

Now, for each configuration (stacks content) we define
f
1
:Q→{acc}∪P(Q), assigned to elements, and

f
2
:Q→{acc,0}, assigned to first order stacks.

● To define f
1
(q) start A in that configuration from a state q.

 If it can accept without pop
2
 we take f

1
(q)=acc,

 otherwise f
1
(q)=the set of states after pop

2
.

● To define f
2
(q) make pop

2
and start A from a state q.

 If it accepts, we take f
2
(q)=acc, otherwise f

2
(q)=0.

Lemma 2 (about
smoothing) is
proved similarly

B can calculate both these functions.

Open problems:

deterministic higher-order pushdown automata

Summary

without collapse with collapse

Solved: level 2 ≠ level 2

level n ≠ level n

level n ≠ level n∪
n n

∪

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

