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The splitting language (proposed by P. Urzyczyn)

alphabet: [, ], ∗
PBE = prefixes of bracket expressions, e.g. [[][
BE = (balanced) bracket expressions, e.g. [[][]]
U={u∗n : u∈PBE, v is the longest suffix of u which is BE,

    n=|u|-|v|}

for example:
[ [ ] [ [ ] [ [ ] ] ∗∗∗∗ ∈U



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket
● on the first star make the collapse
● count the number of stacks
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Collapse = remove all stacks
on which the topmost symbol
is present



  

How to recognize U by an automaton with collapse?

U={u∗ n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}

● one stack symbol
● first order stack counts the number of currently open brackets
● a copy is done after each bracket
● on the first star make the collapse
● count the number of stacks

[   [  ]   [   [   ]   [   [  ]   ] ∗∗∗∗  

Collapse = remove all stacks
on which the topmost symbol
is present



  

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.



  

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.

It is important to observe how the number of stacks changes
(while A is reading a word).

number
of stacks

input word



  

Collapse is necessary - observation 1

number
of stacks

input wordv

q
1

q
2

w
1

w
2

If q
1
=q

2
, then vw

1
 and vw

2
 are equivalent (vw

1
u∈U⇔vw

2
u∈U)

For fixed v, the number of stacks decrease below the level after v
only for |Q| classes of vw.
But there are many classes of PBE → this situation is very rare.



  

Collapse is necessary - observation 1

number
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input word

brackets (PBE) stars

For “most” words A behaves like that:

width ≤k
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Collapse is necessary - observation 1

number
of stacks

input word

brackets (PBE) stars

For “most” words A behaves like that:

Each word can be “slightly modified” such that...

We insert short BE 
between letters

Assume that for all words A behaves like that:

width ≤k



  

Step 2: smoothing

number
of stacks

input word

brackets (PBE) stars

Construct a new automaton B (recognizing U) basing on A, 
such that the number of stacks never decreases while B is 
reading the brackets.
(the number of stacks of B = the minimal number of stacks of A
                                              during the last k letters)



  

Lemma 3
For any A there exists B such that:
● they do the same operations and accept the same words
   (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is vw∈L(A).

(proof: construct B basing on A)

There is B recognizing U such that:
● the number of stacks never decreases while B is 
   reading the brackets, and
● B knows if it has read a PBE or not.



  

Lemma 4.
If a (order 1) deterministic PDA recognizes PBE, after reading
u

n
 it has at most C symbols on the stack (where C is a constant

not depending on n).

Special words:
u

n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

number of open
brackets is |Q|+1

Automaton A (recognizing U) after reading u
n
 has 

at most C symbols on the last first level stack.

push
2
 is useless without pop

2



  

A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

2) Part after u
n 
using s or more stacks.

u
n,k

=u
n
]k∗∗∗∗∗
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|Q|+1 times
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n
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A final argument: problem with communication.

u
n
=[n+1]n [n+1]n [n+1]n [n+1]n [n+1]n [n+1]n

|Q|+1 times

Let s=the number of stacks after reading u
n

There are two parts of the computation:

1) Part reading u
n 
+ part after the number of stacks becomes s-1.

     This part knows n.

2) Part after u
n 
using s or more stacks.

    This part knows k.
Communication 1→2: the s-th stack is passed, which is 
of constant size, hence 2 does not know n.
Communication 2→1: only a state is passed, |Q| possibilities, 
hence 1 does not know k (which has |Q|+1 possible values).

u
n,k

=u
n
]k∗∗∗∗∗

The number of stars should be (2n+1).(|Q|+1-k), 
but it is the sum of stars accepted by 1 and by 2. → contradiction



  

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same 
words
   (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is 
vw∈L(A).

Proof of Lemma 3

Assume that A (and B) is a first order PDA.
For each configuration (stack content) define  f:Q→{acc,0}
To define f(q) start A in that configuration from a state q.
If it accepts (after reading some word), we take f(q)=acc,
otherwise f(q)=0.
We product the stack alphabet with such functions.

Lemma 2 (about 
smoothing) is 
proved similarly

a
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Proof of Lemma 3

Assume that A (and B) is a first order PDA.
For each configuration (stack content) define  f:Q→{acc,0}
To define f(q) start A in that configuration from a state q.
If it accepts (after reading some word), we take f(q)=acc,
otherwise f(q)=0.
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B can calculate these functions:
f
k
 depends only on a

k
 and f

k-1
a

3

a
2
 ?



  

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same 
words
   (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is 
vw∈L(A).

Proof of Lemma 3

Now let A (and B) be a second order PDA.

B can not compute functions f, because after copying a stack, 
they are no longer valid.

Lemma 2 (about 
smoothing) is 
proved similarly



  

Lemma 3: For any A there exists B such that:
● they do the same operations and accept the same 
words
   (but B may have more states and stack symbols), and
● after reading v, B “knows” if for some w there is 
vw∈L(A).

Proof of Lemma 3

Now let A (and B) be a second order PDA.

Now, for each configuration (stacks content) we define
f
1
:Q→{acc}∪P(Q), assigned to elements, and 

f
2
:Q→{acc,0}, assigned to first order stacks.

● To define f
1
(q) start A in that configuration from a state q.

   If it can accept without pop
2
 we take f

1
(q)=acc,

   otherwise f
1
(q)=the set of states after pop

2
.

●  To define f
2
(q) make pop

2 
and start A from a state q.

    If it accepts, we take f
2
(q)=acc, otherwise f

2
(q)=0.

Lemma 2 (about 
smoothing) is 
proved similarly

B can calculate both these functions.



  

Open problems:

deterministic higher-order pushdown automata

Summary

without collapse with collapse

Solved: level 2        ≠          level 2

level n        ≠          level n

level n        ≠          level n∪
n n

∪
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