Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata

Paweł Parys
University of Warsaw

Two hierarchies:

deterministic H-O pushdown automata

safe det. H-O grammars

Caucal hierarchy

deterministic H-O pushdown automata with collapse (panic) operation

all det. H-O grammars

Two hierarchies:

deterministic H-O pushdown automata

safe det. H-O grammars

Caucal hierarchy

deterministic H-O pushdown automata with collapse (panic) operation

all det. H-O grammars

The splitting language (proposed by P. Urzyczyn)

```
alphabet: [, ], *
PBE = prefixes of bracket expressions, e.g. [[][
BE = (balanced) bracket expressions, e.g. [[][]]
U={u*n : u∈PBE, v is the longest suffix of u which is BE, n=|u|-|v|}
for example:
[[][[][[]] **** ∈ U
```

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket
- on the first star make the collapse
- count the number of stacks

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket
- on the first star make the collapse
- count the number of stacks

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U.

We first normalize A, then we show a contradiction.

It is important to observe how the number of stacks changes (while A is reading a word).

If $q_1 = q_2$, then vw_1 and vw_2 are equivalent $(vw_1u \in U \Leftrightarrow vw_2u \in U)$ For fixed v, the number of stacks decrease below the level after v only for |Q| classes of vw.

But there are many classes of PBE → this situation is very rare.

For "most" words A behaves like that:

For "most" words A behaves like that: Each word can be "slightly modified" such that... We insert short BE between letters number of stacks width ≤k input word stars brackets (PBE)

For "most" words A behaves like that:

Assume that for all words A behaves like that:

Each word can be "slightly modified" such that...

Construct a new automaton B (recognizing U) basing on A, such that the number of stacks never decreases while B is reading the brackets.

(the number of stacks of B = the minimal number of stacks of A during the last k letters)

Lemma 3

For any A there exists B such that:

- they do the same operations and accept the same words (but B may have more states and stack symbols), and
- after reading v, B "knows" if for some w there is vw∈L(A).

(proof: construct B basing on A)

There is B recognizing U such that:

- the number of stacks never decreases while B is reading the brackets, and
- B knows if it has read a PBE or not.

Special words:

$$u_n = \begin{bmatrix} n+1 \end{bmatrix}^n \begin{bmatrix} n+1 \end{bmatrix}^n$$
brackets is $|Q|+1$
 $|Q|+1$ times

Lemma 4.

If a (order 1) deterministic PDA recognizes PBE, after reading u_n it has at most C symbols on the stack (where C is a constant not depending on n).

push₂ is useless without pop₂

Automaton A (recognizing U) after reading u_n has at most C symbols on the last first level stack.

Let s=the number of stacks after reading u_n. There are two parts of the computation:

- 1) Part reading u_n + part after the number of stacks becomes s-1.
- 2) Part after u_n using s or more stacks.

Let s=the number of stacks after reading u_n. There are two parts of the computation:

- 1) Part reading u_n + part after the number of stacks becomes s-1. This part knows n.
- 2) Part after u_n using s or more stacks. This part knows k.

$$u_n = [n+1]^n [n+1]^n [n+1]^n [n+1]^n [n+1]^n [n+1]^n$$
 $u_{n,k} = u_n]^k * * * * *$

$$|Q| + 1 \text{ times}$$

Let s=the number of stacks after reading u_n. There are two parts of the computation:

- 1) Part reading u_n + part after the number of stacks becomes s-1. This part knows n.
- 2) Part after u using s or more stacks.

This part knows k.

Communication 1→2: the s-th stack is passed, which is of constant size, hence 2 does not know n.

Communication 2→1: only a state is passed, |Q| possibilities, hence 1 does not know k (which has |Q|+1 possible values).

Let s=the number of stacks after reading u_n. There are two parts of the computation:

- 1) Part reading u_n + part after the number of stacks becomes s-1. This part knows n.
- 2) Part after u_n using s or more stacks.

This part knows k.

Communication 1→2: the s-th stack is passed, which is of constant size, hence 2 does not know n. Communication 2→1: only a state is passed, |Q| possibilities, hence 1 does not know k (which has |Q|+1 possible values).

The number of stars should be $(2n+1)^{-}(|Q|+1-k)$, but it is the sum of stars accepted by 1 and by 2. \rightarrow contradiction

Lemma 2 (about smoothing) is proved similarly

Lemma 3: For any A there exists B such that:

 they do the same operations and accept the same words

(but B may have more states and stack symbols), and

• after reading v, B "knows" if for some w there is Assume that A (and B) is a first order PDA.

For each configuration (stack content) define f: O→

For each configuration (stack content) define $f:Q \rightarrow \{acc,0\}$ To define f(q) start A in that configuration from a state q. If it accepts (after reading some word), we take f(q)=acc, otherwise f(q)=0.

We product the stack alphabet with such functions.

Lemma 2 (about smoothing) is proved similarly

Lemma 3: For any A there exists B such that:

 they do the same operations and accept the same words

(but B may have more states and stack symbols), and

• after reading v, B "knows" if for some w there is Assume that A (and B) is a first order PDA.

For each configuration (stack content) define f:Q→{acc,0}

To define f(q) start A in that configuration from a state q.

If it accepts (after reading some word), we take f(q)=acc,

otherwise f(q)=0.

We product the stack alphabet with such functions.

B can calculate these functions: f_k depends only on a_k and f_{k-1}

Lemma 2 (about smoothing) is proved similarly

Lemma 3: For any A there exists B such that:

 they do the same operations and accept the same words

(but B may have more states and stack symbols), and

• after reading v. B "knows" if for some w there is Now leth (and B) be a second order PDA.

B can not compute functions f, because after copying a stack, they are no longer valid.

Lemma 2 (about smoothing) is proved similarly

Lemma 3: For any A there exists B such that:

- they do the same operations and accept the same words
 - (but B may have more states and stack symbols), and
- after reading v. B "knows" if for some w there is Now leton (and B) be a second order PDA.
- Now, for each configuration (stacks content) we define $f_1:Q\to \{acc\} \cup P(Q)$, assigned to elements, and $f_2:Q\to \{acc,0\}$, assigned to first order stacks.
- To define f₁(q) start A in that configuration from a state q.
 If it can accept without pop₂ we take f₁(q)=acc,
 otherwise f₁(q)=the set of states after pop₂.
- To define f₂(q) make pop₂ and start A from a state q.
 If it accepts, we take f₂(q)=acc, otherwise f₂(q)=0.

B can calculate both these functions.

Summary

deterministic higher-order pushdown automata without collapse with collapse

Solved: level 2 ≠ level 2

Open problems:

level n ≠ level n

Ulevel n ≠ Ulevel n