Collapse Operation Increases Expressive Power of Deterministic Higher Order Pushdown Automata

Paweł Parys

University of Warsaw

Two hierarchies:

deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata safe det. H-O grammars

Caucal hierarchy
deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata with collapse (panic) operation
all det. H-O grammars

Two hierarchies:

deterministic $\mathrm{H}-\mathrm{O}$ pushdown automata safe det. H-O grammars

Caucal hierarchy

The splitting language (proposed by P. Urzyczyn)

alphabet: [,], *
PBE = prefixes of bracket expressions, e.g. []][
$\mathrm{BE}=$ (balanced) bracket expressions, e.g. [[][]]
$\mathrm{U}=\left\{\mathrm{u} *^{n}: u \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $B E$,

$$
\mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\}
$$

for example:
[[][]][[]]**** $\in U$

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

$$
\begin{aligned}
& \square \\
& {[\quad[][[]][[]] * * * *}
\end{aligned}
$$

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket
- on the first star make the collapse
- count the number of stacks

Collapse = remove all stacks

How to recognize U by an automaton with collapse?

$\mathrm{U}=\left\{\mathrm{u} *^{\mathrm{n}}: \mathrm{u} \in \mathrm{PBE}, \mathrm{v}\right.$ is the longest suffix of u which is $\left.\mathrm{BE}, \mathrm{n}=|\mathrm{u}|-|\mathrm{v}|\right\}$

- one stack symbol
- first order stack counts the number of currently open brackets
- a copy is done after each bracket
- on the first star make the collapse
- count the number of stacks

Collapse $=$ remove all stacks

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U .
We first normalize A, then we show a contradiction.

Ideas of the proof that collapse is necessary

Assume that A (automaton without collapse) recognizes U .
We first normalize A , then we show a contradiction.
It is important to observe how the number of stacks changes (while A is reading a word).
number ${ }^{\wedge}$ of stacks

Collapse is necessary - observation 1
number of stacks

input word

If $q_{1}=q_{2}$, then $v w_{1}$ and $v w_{2}$ are equivalent $\left(v w_{1} u \in U \Leftrightarrow v w_{2} u \in U\right)$
For fixed v, the number of stacks decrease below the level after v only for |Q| classes of vw.
But there are many classes of PBE \rightarrow this situation is very rare.

Collapse is necessary - observation 1

For "most" words A behaves like that:

Collapse is necessary - observation 1

For "most" words A behaves like that:

Each word can be "slightly modified" such that...

Collapse is necessary - observation 1

For "most" words A behaves like that:

Assume that for all words A behaves like that:

Each word can be "slightly modified" such that...

Step 2: smoothing

number of stacks

Construct a new automaton B (recognizing U) basing on A, such that the number of stacks never decreases while B is reading the brackets.
(the number of stacks of $B=$ the minimal number of stacks of A during the last k letters)

Lemma 3
For any A there exists B such that:

- they do the same operations and accept the same words (but B may have more states and stack symbols), and
- after reading v, B "knows" if for some w there is $v w \in L(A)$.

(proof: construct B basing on A)

There is B recognizing U such that:

- the number of stacks never decreases while B is reading the brackets, and
- B knows if it has read a PBE or not.

Special words:
$u_{n}=\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.$, brackets is $|Q|+1$
$|Q|+1$ times
Lemma 4.
If a (order 1) deterministic PDA recognizes PBE, after reading u_{n} it has at most C symbols on the stack (where C is a constant not depending on n).
push $_{2}$ is useless without pop ${ }_{2}$

Automaton A (recognizing U) after reading u_{n} has at most C symbols on the last first level stack.

A final argument: problem with communication.

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading u_{n}
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.
2) Part after $u_{n} u s i n g s$ or more stacks.

A final argument: problem with communication.

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading u_{n}
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows n.
2) Part after $u_{n} u s i n g$ s or more stacks.

This part knows k.

A final argument: problem with communication.

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[[^ { n + 1 }] ^ { n } \left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading u_{n}
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows n.
2) Part after u_{n} using s or more stacks.

This part knows k.
Communication $1 \rightarrow 2$: the s-th stack is passed, which is of constant size, hence 2 does not know n.
Communication $2 \rightarrow 1$: only a state is passed, $|Q|$ possibilities, hence 1 does not know k (which has $|\mathrm{Q}|+1$ possible values).

A final argument: problem with communication.

$$
u_{n}=\underbrace{\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[\left[^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\left[{ }^{n+1}\right]^{n}\right.}_{|Q|+1 \text { times }} \quad u_{n, k}=u_{n}]^{k} * * * * * *
$$

Let $\mathrm{s}=$ the number of stacks after reading u_{n}
There are two parts of the computation:

1) Part reading $u_{n}+$ part after the number of stacks becomes s-1.

This part knows n.
2) Part after $u_{n} u s i n g$ s or more stacks.

This part knows k.
Communication $1 \rightarrow 2$: the s-th stack is passed, which is of constant size, hence 2 does not know n.
Communication $2 \rightarrow 1$: only a state is passed, $|Q|$ possibilities, hence 1 does not know k (which has $|\mathrm{Q}|+1$ possible values).

The number of stars should be $(2 n+1) \cdot(|Q|+1-k)$, but it is the sum of stars accepted by 1 and by $2 . \rightarrow$ contradiction

Proof of Lemma 3

Lemma 3: For any A there exists B such that:

- they do the same operations and accept the same words
(but B may have more states and stack symbols), and - after reading v, B "knows" ff for some w there is Assulv For each configuration (stack content) define $f: Q \rightarrow\{a c c, 0\}$ To define $f(q)$ start A in that configuration from a state q. If it accepts (after reading some word), we take $\mathrm{f}(\mathrm{q})=\mathrm{acc}$, otherwise $\mathrm{f}(\mathrm{q})=0$.
We product the stack alphabet with such functions.

Proof of Lemma 3

Lemma 3: For any A there exists B such that:

- they do the same operations and accept the same words
(but B may have more states and stack symbols), and - after reading v, B "knows" ff for some w there is Assulv For each configuration (stack content) define $f: Q \rightarrow\{a c c, 0\}$ To define $f(q)$ start A in that configuration from a state q. If it accepts (after reading some word), we take $\mathrm{f}(\mathrm{q})=\mathrm{acc}$, otherwise $\mathrm{f}(\mathrm{q})=0$.
We product the stack alphabet with such functions.

A

B can calculate these functions:
f_{k} depends only on a_{k} and f_{k-1}

Proof of Lemma 3

Lemma 3: For any A there exists B such that: smoothing) is proved similarly

- they do the same operations and accept the same words
(but B may have more states and stack symbols), and - after reading v, B "knows" if for some w there is NQ世 LetA) (and B) be a second order PDA.
B can not compute functions f, because after copying a stack, they are no longer valid.

Proof of Lemma 3

Lemma 3: For any A there exists B such that:

- they do the same operations and accept the same words
(but B may have more states and stack symbols), and - after reading v, B "knows" if for some w there is Now \& leta ! (and B) be a second order PDA.
Now, for each configuration (stacks content) we define $\mathrm{f}_{1}: \mathrm{Q} \rightarrow\{\mathrm{acc}\} \cup \mathrm{P}(\mathrm{Q})$, assigned to elements, and
$\mathrm{f}_{2}: \mathrm{Q} \rightarrow\{\mathrm{acc}, 0\}$, assigned to first order stacks.
- To define $\mathrm{f}_{1}(\mathrm{q})$ start A in that configuration from a state q . If it can accept without pop we take $\mathrm{f}_{1}(\mathrm{q})=$ acc, otherwise $f_{1}(q)=$ the set of states after pop $_{2}$.
- To define $\mathrm{f}_{2}(\mathrm{q})$ make pop_{2} and start A from a state q . If it accepts, we take $\mathrm{f}_{2}(\mathrm{q})=$ acc, otherwise $\mathrm{f}_{2}(\mathrm{q})=0$.

B can calculate both these functions.

Summary

deterministic higher-order pushdown automata without collapse with collapse

Solved:
 Open problems:

 level $2 \quad=\quad$ level 2level $n \quad \neq \quad$ level n
\bigcup_{n} level $n \quad \neq \bigcup_{n}^{\text {level } n}$

