XPath evaluation in linear time
with polynomial combined complexity

Pawet Parys



We consider a problem of evaluating XPath query
in an XML document:

Input: XPath unary query Q, XML document D
Output: document tree nodes,
which satisty the query

Contribution: The above problem may be solved in time
O(IDI'lQF) for Q from a fragment of XPath called FOXPath



Which fragment?

- nhavigation
- comparing data
(query =B, satisfied in nodes x such that some (x,y )

is selected by « and some (x,y ) is selected by 8 and

data value iny and y is the same)
- we do not allow counting and positional arithmetic



Results summary

CoreXPath (no data)
O(IDI'lQl) - Gottlob, Koch, Pichler 2002

O(

FOXPat
o

DI'?) - real world XPath engines
N (comparing data)

DI*1Q|) - previous works (GKP)

O(IDI'c'?'), O(I1DI'log|DI'IQF’) - Bojaficzyk, P. 2008
O(IDI'IQF) - this result

Full XPath (counting, node positions)
O(IDI*1Q1?) - Gottlob, Koch, Pichler 2003



Contribution
Why is this algorithm better than the previous one?

e better complexity in query size

e deals with <, <=, >, >=, not only with = and !=

« complexity linear in
(number of bytes of input + size of alphabet)
iInstead of (number of bits of input)

 deals with text nodes, not only attribute values
(not trivial, XPath says: text value of an element node is
a concatanation of all its text descendants - so the total
length of text values may be quadratic in input size)

* easier to understand



Algorithm structure

For each node test expression we calculate its value (set of nodes).
We do it by induction on the size of the expression:

- name test

- or, and, not } easy

- p=p' etc. (selects node u if for some v,v' with the same data
value, pair (u,v) is selected by p and pair (u,v’) is selected by p’):
- evaluate all subexpressions g ...q (node tests)

« store the results: in the name of every node remember
which g are satisfied in that node

e We may assume, that the only atomic path expressions
In p and p' are axes and name tests (+ composition, union)



Algorithm idea

Goal: find all nodes satisfying p=p' when the only atomic path
expressions in p and p' are axes and name tests.

A path expression p may be compiled to a nondeterministic
automaton A, which reads a description of a path:
a word over alphabet (node names)U(one-step axes)

p selects a pair (u,v) iff a description of some path
between u and v (not necesarly the shortest path) is accepted by A



Algorithm idea

Goal: find all nodes satisfying p=p' when the only atomic path
expressions in p and p' are axes and name tests.

A path expression p may be compiled to a nondeterministic
automaton A, which reads a description of a path:
a word over alphabet (node names)U(one-step axes)

p selects a pair (u,v) iff a description of some path
between u and v (not necesarly the shortest path) is accepted by A

But p Is not an arbitrary regular expression,
there is no Kleene star in XPath!!!!

So the automaton has only trival cycles (reading axes):




Algorithm idea - special case

« assume we have only a word with data (instead of a tree)
« automaton A for p goes only to the left and A’ for p' only to the right
 every data value appears in exactly two places

(denoted by a pair of brackets)

’

q, q . pair with equal

abaaaabbaabaabaabbbabd data values

v A u Ay " node names

We have to mark all such wu.

We will replace this set of bracket pairs by another one
from which it is easier to calculate the selected u.



Algorithm idea - special case, continued

' original pair (with
?F ?F a equal data values)
abaaaabbaabaabaabbbaba
- | p >

The automaton A in some of last QI positions has to visit
a state g with a loop reading 1eft.

We may replace this pair of brackets by at most I1QI° new pairs:
. from state g in w we may reach qun V,

e distance between w and v is at most 10|
e state ¢ has a loop reading 1eft.

[q C]]I;A/new pair
abaaaabbaabaabaabbbaba
T@ w A u A’ b

(possibly we should also mark nodes u close to v,
if starting from u we may reach ¢ _invand g.in w)



Algorithm idea - special case, step 2

a state with a loop reading 1eft

/

q q
abaagabbaabaabaabbbgba
oA, A Y

Starting from the end of the word we move brackets to the left:
« we move right bracket at v' one node to the left (chaning the state)
- OF ¢'=¢g/ and starting at v, A reaches g at position v (then we mark v’)

a state with a loop reading 1eft

r

q q
[

abaaaabbaabaabaabbbaba

v A, AW

This creates |0l new pairs, which have to be processed
again and again, but...




Observation

the same state with a loop reading 1eft

J ,

q q

P ]
abaaaabbaabaabaabbbab

- = A ) A' T}'

The closer pair may be removed,
it generates the same nodes u.

So for every node v’ there may be at most 1Q1° pairs of brackets,
one for every pair of states.



Final lemma
What is missing to solve the special case:
For given u,v,q ,q (Where g has a loop reading 1eft)

check if A may reach q in v starting from g _in u.

Equivalent question:
For given u,q ,q (where g has a loop reading 1eft) where is

the righmost v such that A may reach g in v starting from g in u.
We call that first(u,q ,q).

This information may be calculated in one left-right pass:
It is possible that first(u,q,,q)=u

e Otherwise it is the rightmost of first(u',q',q)
for ¢" which may be reached in u’from g in u

(where u' is the node one step to the left)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

