XPath evaluation in linear time

Pawet Parys
Warsaw University

Joint work with Mikotaj Bojanczyk



Which fragment?

- navigation
- comparing data
(query =B, satisfied in nodes x such that some (x,y )

is selected by « and some (x,y ) is selected by 8 and
data value iny andy is the same)

optional feature:

- counting
(query count(x), returning in each node the number

of nodes y, such that (x,y) satisfies «)



Contributions

Input: XPath query 0, XML document D
Output: document tree nodes, which satisfy the query

The problem can be solved in complexity:

O(1DI'4'?') — Bojaniczyk, P (PODS 2008)
\ works also with counting queries

O(IDI'log|DI'lQI)

O(IDI'lQI°) — P (PODS 2009)



Very important subproblem

Initial input: Word w, regular language L
(Multiple) queries: positions i, j in w
answer: does the subword w/i:j] belongto L ?

Complexity in Iwl:
Preprocessing: O(lwl)=klwl
Answering query: O(1)=k
where k is the size of: >ODS 2008
-monoid <
- deterministic automaton / PODS 2008
- nondeterministic automaton for special L
- nondeterministic automaton



Very important subproblem - relation to XPath
Preprocessing: O(lwl)
Initial input: Word w, regular language L
(Multiple) queries: positions i, j in w
answer: does the subword w/i:j] belongto L ?

Answering query: O(1)

Assume we have a word and each data value appears twice.

The above problem directly corresponds to
a query self=8 with g describing L.:

for each position i (and for j with the same data value)
we have to check if the subword w/i:jJjeL ?



Initial input: Word w, regular language L

Very important subproblem - first solution

(Multiple) queries: positions i, j in w

We use the Simon decomposition trees

answer: does the subword w/i:j] belongto L ?

(L Is represented as a finite monoid - exponential blowup)

precomputed (from each point to each end of its segent)
idempotent

m e e e n
abacdbaabaaaabaabcacc

b

- Size of monoid




Very important subproblem - first solution

Initial input: Word w, regular language L
(Multiple) queries: positions i, j in w
answer: does the subword w/i:j] belongto L ?

Another solution uses deterministic automata,
which also causes exponential blowup.



Very important subproblem - another solution

In real XPath there is no star in the path expressions,

only multistep axes.
So we get special languages: star is allowed only around X.

For example: aX*bcX*dX*

Initial input: Word w, language L of the above form

(Multiple) queries: positions i, j in w
answer: does the subword w/i:j] belongto L ?

dbcacdccbcdadbc
4 e oy <+ nextbc

e . 4 L . 4 7 < nextd

Better complexity: polynomial in L.



Very important subproblem - third solution

New work:
we want k=1QV’ for arbitrary nondeterministic automaton.

We use monoids implicitly, we work with the automaton.

Look at the Simon's decomposition tree:
however its height is 0(2'?), it has only Iwl nodes.

m € € n

£ £

- height 0(2'?)

abacdbaabaaaabaabcacc
4 ;
In the query step it is OK - we may get time logarithmic

In the height using something like fast multiplication
(we move by powers of 2)




Very important subproblem - third solution

New work:
we want k=1QV’ for arbitrary nondeterministic automaton.

We use monoids implicitly, we work with the automaton.

Look at the Simon's decomposition tree:
however its height is 0(2'?), it has only Iwl nodes.

We use some weaker version of the decomposition trees.
Then the decomposition tree can be constructed in O(lwl'1Q1°)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

