XPath evaluation in linear time
with polynomial combined complexity

Pawet Parys

(Common work with Mikotaj Bojanczyk)

XPath is a query language:
XPath queries select nodes in a XML document tree.
We consider fragments called FOXPath and AggXPath

Input: XPath query O, XML document D
Output: document tree nodes,
which satisfy the query

Contribution: We solve the above problem
1) in time O(IDI'1QV’) for O from FOXPath casy
2) in time O(IDI'¢'?') for Q from AggXPath /Co o

Example document:

<html>
<title>Nice document</title>
<hl>Section</hl>
University
Search
<table><tr><td>

A link in a table
</td></tr></table>
</html>

Example document:

<html>
<title>Nice document</title>
<hl>Section</hl>
University
Search
<table><tr><td>

A link in a table
</td></tr></table>
</html>

Example query — navigation only (CoreXPath):

self::"a” and not (ancestor::”"table”)

Example document:

<html>
<title>Nice document</title>
<hl>Section</hl>
University
Search
<table><tr><td>

A link in a table
</td></tr></table>
</html>

Example query — comparing data (FOXPath):

self::”7a” and ((self/Q@href=following::”a”/@href)
or (self/@href=preceding::”a”/Q@href))

Example document:

<html>
<title>Nice document</title>
<hl>Section</hl>
University
Search
<table><tr><td>

A link in a table
</td></tr></table>
</html>

Example query — counting (AggXPath):

count (preceding) +1=count (root/descendant: :”a”)

Example document:

<html>
<title>Nice document</title>
<hl>Section</hl>
University
Search
<table><tr><td>

A link in a table
</td></tr></table>
</html>

Example query — positional arithmetic (full XPath 1.0):

descendant [position()=4 and self::"a”]

Results summary

CoreXPath (no data)
O(IDI'lQl) - Gottlob, Koch, Pichler 2002

O(

FOXPat
o

DI'?) - real world XPath engines
N (comparing data)

DI*1Q|) - previous works (GKP)

O(IDI'c'?'), O(I1DI'log|DI'IQF’) - Bojaficzyk, P. 2008
O(IDI'IQF) - P. 2009

AggXPath (counting)
O(IDI*1Ql) - previous works (GKP)
O(IDI'c'?) - P. 2009

Full XPath (node positions)
O(1DI*101°) - Gottlob, Koch, Pichler 2003

Definition of XPath

Two types of expressions:
 path expression - returns a set of node pairs:

- dXeS. child, parent, next-sibling, previous-sibling,
descendant, ancestor, following-sibling, preceding—-sibling

- [¢] - selects a pair (u,u) if u Is selected by the node test ¢

- composition, union

* node test - returns a set of nodes:
- name test
- p - selects a node u if (u,v) Is selected by p for some node v
- p=p' selects a node u if there are (u,v) and (u,v’), selected by p
and p' respectively, such that v and v' have the same data value
- similarly p#p', p<p’, p=constant, efc. \

- Of, and, not most important,
most difficult

Definition of XPath

345 345

- p=p' selects a node u if there are (u,v) and (u,v’), selected by p
and p' respectively, such that v and v' have the same data value

- similarly p#p', p<p’, p=constant, efc. \

most important,
most difficult

Algorithm structure

For each node test expression we calculate its value (set of nodes).
We do it by induction on the size of the expression:

- name test

- or, and, not } easy

- p=p' etc. (selects node u if for some v,v' with the same data
value, pair (u,v) is selected by p and pair (u,v’) is selected by p’):
- evaluate all subexpressions g ...q (node tests)

« store the results: in the name of every node remember
which g are satisfied in that node

e We may assume, that the only atomic path expressions
In p and p' are axes and name tests (+ composition, union)

Algorithm idea

Goal: find all nodes satisfying p=p' when the only atomic path
expressions in p and p' are axes and name tests.

A path expression p may be compiled to a nondeterministic
automaton A, which reads a description of a path:
a word over alphabet (node names)U(one-step axes)

p selects a pair (u,v) iff a description of some path
between u and v (not necesarly the shortest path) is accepted by A

Naive approach - quadratic algorithm

For each node u (independently)
calculate all possible values reachable by p:

4159
P and by p":

Q
789

and check if these two sets have nonempty intersection.

For each u it can be done In linear time.
Thus the whole algorithm is quadratic.

Second naive approach - quadratic algorithm

For each data value (independently)
mark the nodes u which can reach this data value by p and p'

345

©
A5 345

For each data class it can be done in linear time.
Thus the whole algorithm is quadratic.

We will improve this approach!

Algorithm idea

Goal: find all nodes satisfying p=p' when the only atomic path
expressions in p and p' are axes and name tests.

A path expression p may be compiled to a nondeterministic
automaton A, which reads a description of a path:
a word over alphabet (node names)U(one-step axes)

p selects a pair (u,v) iff a description of some path
between u and v (not necesarly the shortest path) is accepted by A

But p Is not an arbitrary regular expression,
there is no Kleene star in XPath!!!!

So the automaton has only trival cycles (reading axes):

Algorithm idea - special case

« assume we have only a word with data (instead of a tree)
« automaton A for p goes only to the left and A’ for p' only to the right
 every data value appears in exactly two places

(denoted by a pair of brackets)

’

q, q . pair with equal

abaaaabbaabaabaabbbabd data values

v A u Ay " node names

We have to mark all such wu.

We will replace this set of bracket pairs by another one
from which it is easier to calculate the selected u.

Algorithm idea - special case, continued

' original pair (with
?F ?F a equal data values)
abaaaabbaabaabaabbbaba
- | p >

The automaton A in some of last QI positions has to visit
a state g with a loop reading 1eft.

We may replace this pair of brackets by at most I1QI° new pairs:
. from state g in w we may reach qun V,

e distance between w and v is at most 10|
e state ¢ has a loop reading 1eft.

[q C]]I;A/new pair
abaaaabbaabaabaabbbaba
T@ w A u A’ b

(possibly we should also mark nodes u close to v,
if starting from u we may reach ¢ _invand g.in w)

Algorithm idea - special case, step 2

a state with a loop reading 1eft
q q
[]
abaaaabbaabaabaabbbaba
oA, A Y
Starting from the end of the word we move brackets to the left:
« we move right bracket at v' one node to the left (changing the state)
« Moreover, if q'=q,and starting at v', A reaches g at position v,

then v’ should be marked as u

a state with a loop reading 1eft

q qH
]
abaaéabbaabaabaabbbaba

- | >,

This creates |0l new pairs, which have to be processed
again and again, but...

Observation

the same state with a loop reading 1eft

J ,

q q

P]
abaaaabbaabaabaabbbab

- = A) A' T}'

The closer pair may be removed,
it generates the same nodes u.

So for every node v’ there may be at most 1Q1° pairs of brackets,
one for every pair of states.

Final lemma
What is missing to solve the special case:
For given u,v,q ,q (Where g has a loop reading 1eft)

check if A may reach q in v starting from g _in u.

Equivalent question:
For given u,q ,q (where g has a loop reading 1eft) where is

the rightmost v such that A (going left) may reach g in v
starting from g in u. We call that first(u,q ,q).

This information may be calculated in one left-to-right pass:
It is possible that first(u,q,,q)=u

e Otherwise it is the rightmost of first(u',q',q)
for ¢" which may be reached in u’from g in u

(where u' is the node one step to the left)

Algorithm idea - more general case

« assume we have only a word with data (instead of a tree)
« automaton A for p goes only to the left and A’ for p' only to the right
- a data value can appear in any number of places (v_,v,,v,)

q., QZ'][Qz q ’F
abaaaabbaabaabaabbbabd
v1 V2 V3

Create a bracket pair for consecutive nodes with the same data.
0, ={q.}tU{q:fromginv, Acanreachq inv }

0, =.. \
Continue like previously. After precomputation it can

The total number of brackets is linear. ~ be readin constant time
(previous slide)

Algorithm idea - more general case

« assume we have only a word with data (instead of a tree)
« automata A and A’ can make loops

%L\j

%

Precalculate the loops:
loops(v) = {(p,q) : from pin v, A can reach g in v}
= (loops, . (y) U loops,; (¥)*
Add the loops(v) set to the label of v.
Construct a new automaton, which goes only left
and instead of making a loop in v, it reads loops(v).

Algorithm idea - the general case (trees)

Class of a data value = nodes with these data value,
and their least common ancestors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

