Lower bound for evaluation of $\mu \nu$ fixpoint

Paweł Parys
University of Warsaw

Paper presented by Damian Niwiński

Find a polynomial time algorithm which:

- finds winning regions in parity games
- evaluates modal μ-calculus formulas in a Kripke structure
- checks non-emptiness of automata on infinite trees with the parity acceptance condition

These three problems are equivalent.

Find a polynomial time algorithm which:

- finds winning regions in parity games
- evaluates modal μ-calculus formulas in a Kripke structure
- checks non-emptiness of automata on infinite trees with the parity acceptance condition

These three problems are equivalent.

- Easy O($\left.\mathrm{n}^{\mathrm{d}}\right)$ algorithm.
- The complexity was slightly improved several times.
- No polynomial time algorithm known.
- The problem is in NPคco-NP, so there is no hope for lower bound.

Lower bound for μ-calculus: another approach

The problem is in NPคco-NP, so there is no hope for lower bound.
The only possibility is to reformulate the problem slightly, so that it becomes combinatorial.

We use a black-box model (an oracle model) defined in:
Browne, Clarke, Jha, Long, Marrero. An improved algorithm for the evaluation of fixpoint expressions. TCS, 1997.

The black-box model

Consider the following form of expressions:

$$
\mu x_{d} \cdot v x_{d-1} \ldots \mu x_{2} \cdot v x_{1} \cdot F\left(x_{1}, \ldots, x_{d}\right)
$$

over the lattice $\{0,1\}^{n}$ (with the order $a_{1} \ldots a_{n} \leq b_{1} \ldots b_{n}$ iff $a_{i} \leq b_{i}$ for each i)
(every expression may be converted to a polynomially bigger expression of this form)

The black-box model

Consider the following form of expressions:

$$
\mu x_{d} \cdot v x_{d-1} \ldots \mu x_{2} \cdot v x_{1} \cdot F\left(x_{1}, \ldots, x_{d}\right)
$$

over the lattice $\{0,1\}^{n}$ (with the order $a_{1} \ldots a_{n} \leq b_{1} \ldots b_{n}$ iff $a_{i} \leq b_{i}$ for each i)
(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given arguments (the algorithm does not analyse the expression defining F).

The black-box model

Consider the following form of expressions:

$$
\mu x_{d} \cdot v x_{d-1} \ldots \mu x_{2} \cdot v x_{1} \cdot F\left(x_{1}, \ldots, x_{d}\right)
$$

over the lattice $\{0,1\}^{n}$ (with the order $a_{1} \ldots a_{n} \leq b_{1} \ldots b_{n}$ iff $a_{i} \leq b_{i}$ for each i)
(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given arguments (the algorithm does not analyse the expression defining F).

Additionally F is an arbitrary monotone function (not necessarily given by a short formula).

The black-box model

Consider the following form of expressions:

$$
\mu \mathrm{x}_{\mathrm{d}} \cdot v \mathrm{x}_{\mathrm{d}-1} \ldots \mu \mathrm{x}_{2} \cdot v \mathrm{x}_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)
$$

over the lattice $\{0,1\}^{n}$ (with the order $a_{1} \ldots a_{n} \leq b_{1} \ldots b_{n}$ iff $a_{i} \leq b_{i}$ for each i)
(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given arguments (the algorithm does not analyse the expression defining F).

Additionally F is an arbitrary monotone function (not necessarily given by a short formula).

Moreover we are not interested in the exact complexity, we count only the number of queries to F.

The black-box model

In other words we consider decision trees:
Each internal node is labeled by an argument, for which the function F is checked

Edge corresponds to a possible value of F for that argument

For each path from the root to a leaf there is at most one possible value of the fixpoint expression for all monotone functions F consistent with the answers on that path.

We are interested in the (minimal) height of such decision tree.

The black-box model

Another view - a game:

- two players: an algorithm and an oracle
- the algorithm gives arguments for F
- the oracle gives an value of F for that arguments
- the algorithm wins when there is only one value of the fixpoint expression compatible with the answers of the oracle

How many steps needs the algorithm to win?

Comparison: classic approach vs black-box model

If the needed number of queries in the black-box model is high:

- There may still exist a fast algorithm, but it has to use the expression defining F in some other, better way!!
- It is possible that the lower bound requires functions F defined by a very long expressions, while distinguishing only the functions defined by short (polynomial) formulas may be done faster (this is not the case for $\mathrm{d}=2$; we use only functions of polynomial size to obtain the lower bound).

If the needed number of queries in the black-box model is low:

- It may give fast algorithm!! (but this is not automatic - the decision tree with small number of queries may be very irregular and it may take a lot of time to compute what the next query should be)

Comparison: classic approach vs black-box model

Known algorithms for μ-calculus / parity games:

- $\mathrm{n}^{\wedge} \mathrm{d}$ - the direct evaluation
- $\mathrm{n}^{\wedge}(\mathrm{d} / 2)$ - Browne, Clarke, Jha, Long, Marrero, 1997
- $\mathrm{n}^{\wedge}(\mathrm{d} / 3)$ - Schewe, 2007
- $\mathrm{n}^{\wedge} \sqrt{\mathrm{n}}$ - Jurdzinski, Paterson, Zwick, 2008

The first two algorithms (immediately) translate to the black-box model. The last two use parity games framework and do not translate to the black-box model.

This paper

We solve only the case $\mathrm{d}=2$.
We get the bound $\Omega\left(\mathrm{n}^{2} / \log (\mathrm{n})\right)$ queries.

This paper

We solve only the case $\mathrm{d}=2$.
We get the bound $\Omega\left(n^{2} / \log (n)\right)$ queries.

- Possibly it is a first step to giving a lower bound in a general case.
- It shows that alternation of quantifiers μ and v is more complex that just one type of quantifiers (although it is highly believed that alternation should be a source of algorithmic complexity, results of that type are very rare).

Proof ideas

We take a more convenient lattice $\left(\Sigma_{k}\right)^{m}$,
where $\Sigma_{k}=0 \ll_{2}<a_{1}<a_{k}$

The problem may be converted to this lattice, loosing only log(n) factor.

Proof ideas

First trick:

- fixpoint contains m unknown letters
- each evaluation of f gives only one letter
- so m queries are needed to find all letters

$$
\begin{aligned}
& f(000 \ldots 00)=v_{1} 00 \ldots 00 \\
& f\left(v_{1} 00 \ldots 00\right)=v_{1} v_{2} 0 \ldots 00 \\
& f\left(v_{1} v_{2} 0 \ldots 00\right)=v_{1} v_{2} v_{3} \ldots 00 \\
& \mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{m}} \mathrm{O}_{-1}\right)=\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \ldots \mathrm{v}_{\mathrm{m}} \mathrm{v}_{-\mathrm{m}}=
\end{aligned}
$$

(for any other arguments the values of f are chosen so that no information is given by asking for them)

Proof ideas

Second trick:

- fixpoint contains only 1 unknown letter, but on unknown position
- evaluation of g gives a letter on requested position
- the oracle may be malicious, so m queries are needed to find the position of the unknown letter

$$
\begin{aligned}
& g(111 \ldots 11)=011 \ldots 11 \\
& g(011 \ldots 11)=001 \ldots 11^{\wedge} \\
& g(001 \ldots 11)=000 \ldots 11
\end{aligned}
$$

First 1 is replaced by 0 (and by v in the m-th step). If the algorithm asks in different order, v will be in a different place.

$$
g(000 \ldots 01)=000 \ldots 0 v \underset{v}{=} x . g(x)
$$

(for any other arguments the values of g are chosen so that no information is given by asking for them)

Proof ideas

The second trick is used m times - to find each one letter in the first trick the algorithm needs to solve a copy of the second trick.

$$
\mu \underbrace{y . v \overbrace{x \cdot F(x, y)}^{g_{y}(x)}}_{f(y)}
$$

Summary

- A black-box model is presented - a combinatorial version of μ-calculus in which some lower bounds may be proven.
- For $\mathrm{d}=2$ we show that almost n^{2} queries are needed.
- The case of general d is left for future work.

