
  

Lower bound for evaluation of µ ν  fixpoint

Paweł Parys

Paper presented by Damian Niwiński

University of Warsaw



  

Big open problem

Find a polynomial time algorithm which:

● finds winning regions in parity games
● evaluates modal µ -calculus formulas in a Kripke structure
● checks non-emptiness of automata on infinite trees with the parity 
  acceptance condition

These three problems are equivalent.



  

Big open problem

These three problems are equivalent.

Find a polynomial time algorithm which:

● finds winning regions in parity games
● evaluates modal µ -calculus formulas in a Kripke structure
● checks non-emptiness of automata on infinite trees with the parity 
  acceptance condition

● Easy O(nd) algorithm.
● The complexity was slightly improved several times.
● No polynomial time algorithm known.
● The problem is in NP∩co-NP, so there is no hope for lower bound.



  

Lower bound for µ -calculus: another approach

The problem is in NP∩co-NP, so there is no hope for lower 
bound.

The only possibility is to reformulate the problem slightly, 
so that it becomes combinatorial.

We use a black-box model (an oracle model) defined in:

Browne, Clarke, Jha, Long, Marrero. An improved algorithm for 
the evaluation of fixpoint expressions. TCS, 1997.



  

The black-box model

Consider the following form of expressions:
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(every expression may be converted to a polynomially bigger expression of this form)
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Assume the only way how F is accessed is evaluating its value for given
arguments (the algorithm does not analyse the expression defining F).
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Additionally F is an arbitrary monotone function 
(not necessarily given by a short formula).



  

The black-box model

Consider the following form of expressions:

µ x
d
.ν x

d -1
...µ x

2
.ν x

1
.F(x

1
,...,x

d
)

over the lattice {0,1}n (with the order a
1
...a

n
≤ b

1
...b

n
 iff a

i
≤ b

i 
for each i)

(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given
arguments (the algorithm does not analyse the expression defining F).

Moreover we are not interested in the exact complexity,
we count only the number of queries to F.

Additionally F is an arbitrary monotone function 
(not necessarily given by a short formula).



  

The black-box model

In other words we consider decision trees:

f(10,01)=?

01
10

00 11

Each internal node is labeled
by an argument, for which
the function F is checked

Edge corresponds to 
a possible value of F
for that argument

For each path from the root to a leaf there is at most one possible 
value of the fixpoint expression for all monotone functions F 
consistent with the answers on that path.

We are interested in the (minimal) height of such decision tree.



  

The black-box model

Another view - a game:
● two players: an algorithm and an oracle
● the algorithm gives arguments for F
● the oracle gives an value of F for that arguments
● the algorithm wins when there is only one value of the fixpoint 
 expression compatible with the answers of the oracle

How many steps needs the algorithm to win?



  

Comparison: classic approach vs black-box model

If the needed number of queries in the black-box model is high:
● There may still exist a fast algorithm, but it has to use 
   the expression defining F in some other, better way!!
● It is possible that the lower bound requires functions F defined by a very long 
  expressions, while distinguishing only the functions defined by short 
  (polynomial) formulas may be done faster (this is not the case for d=2; 
 we use only functions of polynomial size to obtain the lower bound).

If the needed number of queries in the black-box model is low:
● It may give fast algorithm!! (but this is not automatic - the decision tree
   with small number of queries may be very irregular and it may take a lot of time
  to compute what the next query should be)



  

Comparison: classic approach vs black-box model

Known algorithms for µ -calculus / parity games:
● n^d - the direct evaluation
● n^(d/2) - Browne, Clarke, Jha, Long, Marrero, 1997
● n^(d/3) - Schewe, 2007
● n^√n - Jurdzinski, Paterson, Zwick, 2008

The first two algorithms (immediately) translate to the black-box model.
The last two use parity games framework and do not translate to the
black-box model.



  

This paper

We solve only the case d=2.

We get the bound Ω (n2/log(n)) queries.



  

This paper

We solve only the case d=2.

We get the bound Ω (n2/log(n)) queries.

● Possibly it is a first step to giving a lower bound in a general case.
● It shows that alternation of quantifiers µ  and ν  is more complex
 that just one type of quantifiers (although it is highly believed that
 alternation should be a source of algorithmic complexity, results
 of that type are very rare).



  

Proof ideas
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The problem may be converted to this lattice, 
loosing only log(n) factor.



  

Proof ideas
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First trick: 
● fixpoint contains m unknown letters
● each evaluation of f gives only one letter
● so m queries are needed to find all letters

(for any other arguments the values of f are chosen so that
 no information is given by asking for them)

m  -1 m  -1



  

Proof ideas

=  
ν x.g(x)

g(1 1 1...1 1) = 0 1 1...1 1
g(0 1 1...1 1) = 0 0 1...1 1
g(0 0 1...1 1) = 0 0 0...1 1
...
g(0 0 0...0 1) = 0 0 0...0 v

Second trick: 
● fixpoint contains only 1 unknown letter,  but on unknown position
● evaluation of g gives a letter on requested position
● the oracle may be malicious, so m queries are needed 
  to find the position of the unknown letter

(for any other arguments the values of g are chosen so that
 no information is given by asking for them)

First 1 is replaced by 0
(and by v in the m-th step).
If the algorithm asks in
different order, v will be 
in a different place.



  

The second trick is used m times - to find each one letter in the first 
trick the algorithm needs to solve a copy of the second trick.

Proof ideas

µ y.ν x.F(x,y)

f(y)

g
y
(x)



  

Summary

● A black-box model is presented - a combinatorial version of 
 µ -calculus in which some lower bounds may be proven.

● For d=2 we show that almost n2 queries are needed.

● The case of general d is left for future work.
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