Lower bound for evaluation of u v fixpoint

Pawet Parys
University of Warsaw

Paper presented by Damian NiwinsKi

Big open problem

Find a polynomial time algorithm which:

» finds winning regions in parity games
 evaluates modal p -calculus formulas in a Kripke structure
» checks non-emptiness of automata on infinite trees with the parity

acceptance condition

These three problems are equivalent.

Big open problem

Find a polynomial time algorithm which:

» finds winning regions in parity games

 evaluates modal p -calculus formulas in a Kripke structure

» checks non-emptiness of automata on infinite trees with the parity
acceptance condition

These three problems are equivalent.

« Easy O(n) algorithm.

* The complexity was slightly improved several times.

* No polynomial time algorithm known.

* The problem is in NPn co-NP, so there is no hope for lower bound.

Lower bound for p -calculus: another approach

The problem is in NPn co-NP, so there is no hope for lower

bound. o .
The only possibility is to reformulate the problem slightly,

so that it becomes combinatorial.

We use a black-box model (an oracle model) defined in:

Browne, Clarke, Jha, Long, Marrero. An improved algorithm for
the evaluation of fixpoint expressions. TCS, 1997.

The black-box model

Consider the following form of expressions:
XV X, B XV XCF(X LX)

over the lattice {0,1}" (with the order a....a <b_...b_iff a<b for each i)

(every expression may be converted to a polynomially bigger expression of this form)

The black-box model

Consider the following form of expressions:
XV X, B XV XCF(X LX)

over the lattice {0,1}" (with the order a....a <b_...b_iff a<b for each i)

(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given
arguments (the algorithm does not analyse the expression defining F).

The black-box model

Consider the following form of expressions:
XV X, B XV XCF(X LX)

over the lattice {0,1}" (with the order a....a <b_...b_iff a<b for each i)

(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given
arguments (the algorithm does not analyse the expression defining F).

Additionally F is an arbitrary monotone function
(not necessarily given by a short formula).

The black-box model

Consider the following form of expressions:
XV X, B XV XCF(X LX)

over the lattice {0,1}" (with the order a....a <b_...b_iff a<b for each i)

(every expression may be converted to a polynomially bigger expression of this form)

Assume the only way how F is accessed is evaluating its value for given
arguments (the algorithm does not analyse the expression defining F).

Additionally F is an arbitrary monotone function
(not necessarily given by a short formula).

Moreover we are not interested in the exact complexity,
we count only the number of queries to F.

The black-box model

In other words we consider decision trees:
Each internal node is labeled

by an argument, for which
/the function F is checked
f(10,01)="

11« —— —— Edge corresponds to
a possible value of F

/ /K /K /K for that argument

For each path from the root to a leaf there is at most one possible
value of the fixpoint expression for all monotone functions F
consistent with the answers on that path.

We are interested in the (minimal) height of such decision tree.

The black-box model

Another view - a game:

 two players: an algorithm and an oracle

* the algorithm gives arguments for F

* the oracle gives an value of F for that arguments

» the algorithm wins when there is only one value of the fixpoint
expression compatible with the answers of the oracle

How many steps needs the algorithm to win?

Comparison: classic approach vs black-box model

If the needed number of queries in the black-box model is high:
» There may still exist a fast algorithm, but it has to use

the expression defining F in some other, better way!!

* It is possible that the lower bound requires functions F defined by a very long
expressions, while distinguishing only the functions defined by short
(polynomial) formulas may be done faster (this is not the case for d=2;
we use only functions of polynomial size to obtain the lower bound).

If the needed number of queries in the black-box model is low:

* |t may give fast algorithm!! (but this is not automatic - the decision tree
with small number of queries may be very irregular and it may take a lot of time
to compute what the next query should be)

Comparison: classic approach vs black-box model

Known algorithms for p -calculus / parity games:
 n°d - the direct evaluation
* n*(d/2) - Browne, Clarke, Jha, Long, Marrero, 1997

» n*(d/3) - Schewe, 2007
e n™/n - Jurdzinski, Paterson, Zwick, 2008

The first two algorithms (immediately) translate to the black-box model.
The last two use parity games framework and do not translate to the

black-box model.

This paper

We solve only the case d=2.

We get the bound Q (n“*/log(n)) queries.

This paper

We solve only the case d=2.

We get the bound Q (n“*/log(n)) queries.

* Possibly it is a first step to giving a lower bound in a general case.

* |t shows that alternation of quantifiers © and v is more complex
that just one type of quantifiers (although it is highly believed that
alternation should be a source of algorithmic complexity, results
of that type are very rare).

Proof ideas

We take a more convenient lattice (Z k)m,

a

< '<
where 3 = O/%(az§<:1

<
ak

The problem may be converted to this lattice,
loosing only log(n) factor.

Proof ideas

First trick:

e fixpoint contains m unknown letters

e each evaluation of f gives only one letter
e SO M queries are needed to find all letters

f(000..00)=v00..00
f(v.00..00)=vv0..00
f(vv,0..00)=vvy..00

1 2

1.‘(vvv vO)vvv VoV
12 3 2 37" 'm -1 u yf(Y)
(for any other arguments the values of f are chosen so that

no information is given by asking for them)

Proof ideas

Second trick:
* fixpoint contains only 1 unknown letter, but on unknown position
 evaluation of g gives a letter on requested position
 the oracle may be malicious, so m queries are needed
to find the position of the unknown letter

First 1 is replaced by O
(and by v in the m-th step).

g111.11H)=011...11 /Ifthe algorithm asks in
g011..11)=001...11 different order, v will be

in a different place.
g001..11)=000...11

9g(000..01)=000..0v~
vV X.g(X)

(for any other arguments the values of g are chosen so that
no information is given by asking for them)

Proof ideas

The second trick is used m times - to find each one letter in the first
trick the algorithm needs to solve a copy of the second trick.

o
M y.v X.F(Xy)

'

f(y)

Summary

» A black-box model is presented - a combinatorial version of
1 -calculus in which some lower bounds may be proven.

 For d=2 we show that almost n* queries are needed.

* The case of general d is left for future work.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

