Universal trees grow inside separating automata: Quasi-Polynomial lower bounds for parity games

W. Czerwiński, L. Daviaud, N. Fijalkow, M. Jurdziński, R. Lazić, P. Parys

Parity Games

. Each edge carries a priority.
. Player \square wins if the biggest priority seen infinitely often is even.

Long-standing open problem:
Decide in PTIME which player has a winning strategy.

Encoding of infinite plays: Letters:

- a vertex
- a priority read from this vertex
$\rightarrow(1,1)(2,2)(2,3)(3,1)(2,1) \cdots$

The Separation Approach

Construct a safety automaton which separates: . PosCyclEven: plays compatible with a positional strategy winning for \square

- from PosCyclOdd: the ones for \triangle.

A Simple Separating Safety Automaton: [Bernet, Janin, Walukiewicz] States: sequences $\left\langle c_{d-1}, c_{d-3}, \ldots, c_{1}\right\rangle$ of integers between 0 and the number of states and reject
Transitions:

$$
\begin{aligned}
\left\langle c_{d-1}, c_{d-3}, \ldots, c_{1}\right\rangle & \xrightarrow{(v, \text { even } p)}\left\langle c_{d-1}, c_{d-3}, \ldots, c_{p}, n, \ldots, n\right\rangle \\
& \xrightarrow{(v, \text { odd } p) \text { and } c_{p}>0}\left\langle c_{d-1}, c_{d-3}, \ldots, c_{p}-1, n, \ldots, n\right\rangle \\
& \xrightarrow{(v, \text { odd } p) \text { and } c_{p}=0} \text { reject }
\end{aligned}
$$

Results:

- Quasi-polynomial lower bound for the size of a separating automata.
- The following algorithms constructs (implicitely or explicitely) a separating automaton:
- play summaries [Calude, Jain, Khoussainov, Li, and Stephan]
- progress measures [Jurdziński, Lazić]
- register games [Lehtinen]

Universal trees
(n, h)-universal tree: ordered tree of height h, such that
every ordered tree of height at most h and with at most n leaves can be isomorphically embedded into it.

1. Universal trees are of quasi-polynomial size (upper and lower bounds).
2. Embedding of the leaves of universal trees in any safety automata separating PosCyclEven from LimsupOdd.
