
Weak Bisimulation Finiteness of Pushdown Systems With

Deterministic ε-Transitions Is 2-ExpTime-Complete

Stefan Göller* Pawe l Parys�

Abstract

We consider the problem of deciding whether a given pushdown system all of whose ε-transitions are
deterministic is weakly bisimulation finite, that is, whether it is weakly bisimulation equivalent to a finite
system. We prove that this problem is 2-ExpTime-complete. This consists of three elements: First, we prove
that the smallest finite system that is weakly bisimulation equivalent to a fixed pushdown system, if exists,
has size at most doubly exponential in the description size of the pushdown system. Second, we propose a fast
algorithm deciding whether a given pushdown system is weakly bisimulation equivalent to a finite system of a
given size. Third, we prove 2-ExpTime-hardness of the problem. The problem was known to be decidable, but
the previous algorithm had Ackermannian complexity (6-ExpSpace in the easier case of pushdown systems
without ε-transitions); concerning lower bounds, only ExpTime-hardness was known.

1 Introduction

An important decision problem in computer science is to decide whether a given infinite system is semantically
finite, that is, whether it is semantically equivalent to some finite system. If so, particular techniques and
properties of finite systems can be exploited in order to verify such systems. There are different important
notions of equivalences that have been studied by the computer science community.

In the area of verification bisimulation equivalence [20] can be seen as the central one. It can be seen as a two-
player game between Attacker and Defender: given a pair of configurations (c, d) of a system, Attacker chooses a
transition c →a c′ (resp. d →a d′) and Defender must find a reply d →a d′ (resp. c →a c′), hereby leading the game
to a new pair of configurations (c′, d′) — Attacker wins in case Defender cannot answer, whereas Defender wins
every infinite play and every play terminating in a pair of dead ends. It is worth pointing out that trace equivalence
coincides with bisimulation equivalence (bisimilarity for short) in case the underlying systems are deterministic.
Several central verification logics like modal logic, the modal µ-calculus, CTL∗, and Propositional Dynamic Logic
can all be characterized as the bisimulation-invariant fragment of well-established logics like first-order logic [1],
monadic second-order logic [11], monadic chain logic [15], and weak monadic chain logic [3], respectively. In
presence of possible ε-transitions weak bisimulation equivalence generalizes bisimulation equivalence [4] in that
Attacker can make moves of the form c →∗

ε ◦ →a ◦ →∗
ε c′ (or c →∗

ε c′) that can be answered by Defender by
moves of the form d →∗

ε ◦ →a ◦ →∗
ε d′ (resp. d →∗

ε d′). In the context of (weak) bisimulation equivalence, the
semantic finiteness question becomes the (weak) bisimulation finiteness problem: given an infinite system, does
there exist a finite system that is (weakly) bisimilar to it: it is important to emphasize that it is asked whether
there exists a finite system that is (weakly) bisimilar to the infinite system, so the finite system is not specified
in the input to the problem. Indeed, in case both the infinite system and the finite system are part of the input,
their equivalence can be reduced to the model checking problem of CTL’s fragment EF [14]. The (complexity of
the) model checking problem for most classes of infinite systems is well-understood.

To date, it is fair to say that decidability — and in particular the complexity — of this principal and easily-
stated problem of (weak) bisimulation finiteness is not well understood. We refer to Srba’s survey [19], where it
becomes clear that for many classes of infinite state systems decidability is unknown, and if it is known, oftentimes
huge complexity gaps exist. A central such class is the class of pushdown systems, that is, systems that can be
generated by pushdown automata. Model checking monadic second-order logic is decidable for them [16], whereas

*University of Kassel, School of Electrical Engineering and Computer Science. The author was supported by Agence nationale de

la recherche (grant no. ANR-17-CE40-0010).
�University of Warsaw, Institute of Informatics. The author was supported by the National Science Centre, Poland (grant no.

2021/41/B/ST6/00535).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

its bisimulation-invariant fragment can be model-checked in ExpTime [22]. Only a few years ago Jančar proved
that weak bisimulation finiteness of pushdown systems all of whose ε-transitions are deterministic, is decidable
with Ackermannian complexity [7] via a reduction to the Ackermann-complete (weak) bisimulation equivalence
problem [9, 23]. Recently, Göller and Parys [5] have shown that the Ackermannian bottleneck can avoided for
ε-free pushdown systems: bisimulation finiteness of (ε-free) pushdown systems is in 6-ExpSpace. The problem
is known to be ExpTime-hard [13, 18].

Our contribution. We prove that weak bisimulation finiteness of pushdown systems all of whose ε-
transitions are deterministic is 2-ExpTime-complete. The problem was known to be decidable [7] with
Ackermannian complexity and in 6-ExpSpace in the easier case of pushdown systems without ε-transitions.
Concerning lower bounds, only ExpTime-hardness was known. Our upper bound also generalizes Valiant’s 2-
ExpTime upper bound [21] for the regularity problem of deterministic pushdown automata from 1975: regularity
of deterministic pushdown automata is (modulo simple adaptations) the same problem as weak bisimulation
finiteness of pushdown systems all of whose transitions (not only ε-transitions) are deterministic. Our contribution
consists of three elements. First, we prove that the smallest finite system that is weakly bisimulation equivalent
to a fixed pushdown system, if exists, has size at most doubly exponential in the description size of the pushdown
system. Second, we propose a fast algorithm deciding whether a given pushdown system is weakly bisimulation
equivalent to a finite system of a given size. Third, we prove 2-ExpTime-hardness of the problem.

Related and future work. As mentioned above, (weak) bisimulation finiteness is a problem that is not
well understood [19]. Let us mention a few exceptions. Over Petri net’s subclass of basic parallel processes
bisimulation finiteness is PSpace-complete [17, 12]. Bisimulation finiteness of one-counter systems (which are
pushdown systems where there is, apart from the bottom symbol, only one stack symbol) is PTime-complete [2].
For weak bisimulation finiteness a relevant result is undecidability for Petri nets [8], whereas decidability seems
to be open for most other central infinite systems [19]. We hope that our results can pave the way to eventually
determining the decidability/complexity status of weak bisimulation finiteness of pushdown systems whose ε-
transitions are not restricted to be deterministic.

Organization of the paper. We introduce basic notation and state our main result in Section 2. Our
2-ExpTime upper bound is sketched in Section 3. Basics on pushdown systems are subject of Section 4. In
Section 5 we discuss decompositions of stacks. In Section 6 we analyze runs in pushdown systems that mainly
decrease the stack height. The core arguments of the upper bound proof are content of Section 7. In Section 8
our algorithm running in double exponential time is presented. A matching 2-ExpTime lower bound is given in
Section 9. We conclude in Section 10.

2 Preliminaries

If X is a set we denote by 2X power set of X, that is, the set of all subsets of X. By N = {0, 1, 2, . . . , } we denote
the set of non-negative integers. For all finite alphabets Σ we denote by Σ∗ the set of finite words over Σ and, for
all n ∈ N, we denote by Σ≤n = {w ∈ Σ∗ | |w| ≤ n} the set of finite words in Σ∗ of length at most n. The empty
word is denoted by ε. By Σε we denote the (disjoint) union Σ ∪ {ε}.

A labeled transition system with ε-transitions (ε-LTS) is a tuple L = (S,A, (→a)a∈Aε
), where S is a (possibly

infinite) set of configurations, A is a finite set of action symbols, (→a) ⊆ S × S is a binary relation for all a ∈ Aε.
We say L is finite if S is finite. We define its size as |L| = |S|, thus |L| ∈ N if L is finite and |L| = ω if not (we
only consider countable labeled transition systems in this paper). A pointed ε-LTS is a pair (L, c) such that c is a

configuration of L. We define the relation (
ε

=⇒) = (→∗
ε). The relation is extended to words in A+ as follows: for

a ∈ A and w ∈ A∗ we define (
aw
=⇒) = (→∗

ε)◦ (→a)◦ (
w

=⇒). Thus, note that (
a

=⇒) = (→∗
ε)◦ (→a)◦ (→∗

ε). We define

the binary relation (→) =
⋃

a∈Aε
(→a). For all c, d ∈ S we define Dist(c, d) = min{|w| | c w

=⇒ d} ∈ N ∪ {ω}, the
length of the shortest word of action symbols allowing to reach d from c in L.

For an ε-LTS L we say a binary relation R2 ⊆ S × S weakly covers a relation R1 ⊆ S × S if for all c, d, c′

such that (c, d) ∈ R1 and c
a

=⇒ c′ with a ∈ Aε there exists d′ such that d
a

=⇒ d′ and (c′, d′) ∈ R2. A weak
bisimulation is a relation R ⊆ S × S that is symmetric and covers itself. Observe that the union of two weak
bisimulations is again a weak bisimulation. We write c ≈ d if (c, d) ∈ R for some weak bisimulation relation R;
note that (≈) ⊆ S × S is the largest weak bisimulation on S. If c ≈ d, we say that c and d are weakly bisimilar.
For every configuration c ∈ S we denote by [c]≈ = {d ∈ S | c ≈ d} the weak bisimulation class of c. The weak
bisimulation quotient [L] is the ε-LTS [L] = ({[c]≈ | c ∈ S},Aε, (→′

a)a∈Aε
), where for a ∈ Aε we have C →′

a D

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

if c
a

=⇒ d for some c ∈ C, d ∈ D (note that then for every c ∈ C there exists some d ∈ D such that c
a

=⇒ d).
When talking about weak bisimulation equivalence of two configurations, we must not necessarily require that the
configurations are from the same ε-LTS: generally we can write (L1, c1) ≈ (L, c2) if c1 ≈ c2 holds in the disjoint
union of L1 and L2. We say that (L, c) (or just c when L is clear from the context) is weakly bisimulation finite
if (L, c) ≈ (L′, c′) for some finite pointed ε-LTS (L′, c′).

We also define relations (≈k) ⊆ S × S for k ∈ N, by induction: ≈0 is the full relation S × S, and ≈k+1 is the
largest symmetric relation that is covered by ≈k. For configurations c, c′ ∈ S we define [c]k = {d ∈ S | c ≈k d},
and EqLev(c, c′) = sup{k ∈ N | c ≈k c′} ∈ N ∪ {ω}.

If for every configuration c ∈ S and every a ∈ A there are finitely many configurations d ∈ S such that
c

a
=⇒ d, then (≈) =

⋂
k∈N(≈k), and EqLev(c, c′) = ω implies c ≈ c′ (below we restrict ourselves to ε-LTSs that

have this property).
A sequence c0 →a1

c1 →a2
· · · →an

cn is called a run from c0 to cn. For such a run ϱ we write |ϱ| for n, and
ϱ(i) for ci. A composition ϱ ◦ ϱ′ of two runs is defined in the expected way, assuming ϱ′(0) = ϱ(|ϱ|). We say that
runs ϱ = (c0 →a1

c1 →a2
· · · →am

cm) and ϱ′ = (d0 →b1 d1 →b2 · · · →bn dn) are parallel if we can find indices
0 = i0 < i1 < · · · < ik = m and 0 = i′0 < i′1 < · · · < i′k = n such that for all j ∈ [0, k] we have cij ≈ di′j and for all

j ∈ [1, k] the two words aij−1+1aij−1+2 . . . aij and bi′j−1+1bi′j−1+2 . . . bi′j (after dropping all ε’s) are equal and have
length at most 1.

A pushdown system with deterministic ε-transitions (ε-PDS for short) is a tuple P = (Q,Γ,A,∆), where Q is
a finite set of control states, Γ is a finite stack alphabet, A is finite set of action symbols, ∆ ⊆ Q×Γ×Aε ×Q×Γ∗

is a finite rewrite relation such that whenever (p1, X1) = (p2, X2) and a1 = ε for two tuples (p1, X1, a1, q1, β1), (p2,
X2, a2, q2, β2) ∈ ∆, then (p1, X1, a1, q1, β1) = (p2, X2, a2, q2, β2).

In case (p,X, a, q, β) ∈ ∆ we simply write qX
a

↪−→ q′β and refer to it as a rule: in case a ∈ A we call it a
reading rule in case a = ε we call it an ε-rule. We say a pair (p,X) ∈ Q×Γ is in ε-mode if for some (q, β) ∈ Q×Γ∗

we have (p,X, ε, q, β) ∈ ∆; we remark that there can be at most one such pair (q, β). If (p,X) is in ε-mode,
then there is no (a, q′, β′) ∈ A × Q × Γ∗ with (p,X, a, q′, β′) ∈ ∆. We say that an ε-PDS is ε-popping if for all
(p,X, ε, q, β) ∈ ∆ we have β = ε.

The size of P is defined as |P| = |Q|+ |Γ|+ |A|+ |∆|. A configuration of an ε-PDS is an element from QΓ∗.
An ε-PDS induces a (potentially infinite) ε-LTS L(P) = (S,Aε, (→a)a∈Aε

), where S = QΓ∗ and for all a ∈ Aε we
have (→a) = {(pXγ, qβγ) | γ ∈ Γ∗, (p,X, a, q, β) ∈ ∆}.

In this paper, we are interested in the following decision problem:

Weak Bisimulation Finiteness for ε-PDS

INPUT: A ε-PDS P = (Q,Γ,A,∆) and a configuration qinitXinit ∈ QΓ.
QUESTION: Is (L(P), qinitXinit) weakly bisimulation finite?

We remark that a seemingly more general problem when having an initial configuration from QΓ∗ as input
can always be reduced in polynomial time to our restriction, namely where it is from QΓ. It is folklore that,
given an ε-PDS P and a configuration qinitαinit ∈ QΓ∗, one can compute in polynomial time an ε-PDS P ′ that is
ε-popping and a configuration qinitXinit ∈ QΓ such that (L(P), qinitαinit) ≈ (L(P ′), qinitXinit). A formal proof of this
reduction can be found in [9, Proposition 11]. Additionally, and this is also folklore, one can restrict the resulting
P ′ in such a way that all rules (p,X, a, q, β) that appear in it satisfy |β| ≤ 2.

Let us state the main result of this paper:

Theorem 2.1. Weak Bisimulation Finiteness for ε-PDS is 2-ExpTime-complete.

3 Overview of the upper-bound proof

In this section we present overall ideas for proving that Weak Bisimulation Finiteness for ε-PDS is in 2-
ExpTime. As already mentioned in the introduction, the proof consists of two main parts. First, in Theorem 7.1,
we prove that if an ε-PDS P is weakly bisimulation finite, that is, is weakly bisimilar to some finite ε-LTS (of
an arbitrary, unknown size), then it is weakly bisimilar to some finite ε-LTS of at most doubly exponential size.
This already gives a 2-ExpSpace algorithm for deciding weak bisimulation finiteness by a result by Kučera and
Mayr [14], who proved that checking whether a given ε-PDS is weakly bisimilar to a given finite ε-LTS is PSpace-
complete: it is enough to enumerate all finite ε-LTSs of at most doubly exponential size, and for each of them
check whether it is weakly bisimilar to the given ε-PDS P. We improve this in Theorem 8.1, where we show

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

how to compute the weak bisimulation quotient of P (i.e., the smallest ε-LTS weakly bisimilar to P) in time
polynomial in its size (and exponential in |P|).

In this description we concentrate on the proof of Theorem 7.1, which is the essential part. The second part
(the algorithm) is much shorter, and is described in Section 8.

For simplicity, in this overview we concentrate on the case of an ε-free PDS P (i.e., an ε-PDS without any
ε-transition), which is already non-trivial. We then briefly explain how ideas from the ε-free case can be extended
to the general case, when deterministic ε-transitions are present. In particular, when there are no ε-transitions,
the notions of bisimulation and of weak bisimulation coincide, so we drop the word “weak” in this description.
Moreover, we formulate some statements here in a loose way, neglecting some details. Full details can be found
in the following sections.

Let us assume that our initial configuration qinitXinit of our ε-free PDS P = (Q,Γ,A,∆) is bisimulation finite.
Consider an arbitrary configuration qδ reachable from qinitXinit. Our first step is to locate some possibilities of
pumping in the stack content δ. Namely, we represent δ as αβγ, so that configurations qαβiγ, obtained by
repeating the β part (we require β ̸= ε), are “similar” to the original configuration qδ in the following sense:
first, all these configurations are also reachable (from qinitXinit) and, second, the set of control states reachable
after popping the topmost part αβj is the same for every j. A standard application of the pigeonhole principle
allows us to find such α and β of at most exponential size. This gives us at most a doubly exponential number
of different pairs α, β. It is thus enough to show that for each fixed pair α, β, configurations of the form qαβγ
constitute only a doubly exponential number of bisimulation classes.

Next, we shift the study of configurations of the form qαβγ to the study of configurations of the form rγ,
but where we still assume that rγ can be reached from reachable configurations of the form qαβiγ, for all i ≥ 1.
It is enough to prove that the number of classes of these configurations rγ is small, because the class of qαβγ is
determined by the classes of configurations rγ, obtainable by popping the fixed stack prefix αβ (cf. Lemma 4.5).

We now exploit our assumption that our initial configuration qinitXinit is bisimulation finite; it can reach F
classes, for some F ∈ N (at this point we do not have yet any bound on F , we only know that it is finite). An
interesting property of finite ε-LTSs is that the ≈F relation coincides with ≈. In other words, if two configurations
are not bisimilar, then this can be detected in the first F steps, that is, while reading at most F action symbols.
In the ε-free case, reading at most F action symbols is equivalent to performing at most F transitions. Bearing
in mind β ̸= ε, it follows that configurations of the form qαβiγ for i ≥ F are all bisimilar (here q, α, and β are
fixed, but the number i ≥ F and the stack content γ are arbitrary): during the first F transitions, P can pop
at most F topmost stack symbols, and they are identical in all these configurations. If we take an even larger
bound, say F + k, then not only qαβiγ ≈ qαβi′γ′ for all i, i′ ≥ F + k and γ, γ′ ∈ Γ∗, but also after executing
a run of length k from qαβiγ and an analogous (i.e., performing the same transitions) run from qαβi′γ′, the
resulting configurations remain bisimilar. We utilize this observation by introducing stack contents of the form
αβωγ. The ω exponent can be formalized in three ways. First, we may assume that ω denotes some “very large”
finite number (large enough for purposes of the proof). A second formalization is that the β part of the stack
is repeated infinitely many times. In our proofs we have chosen yet another formalization, where we understand
βω as a formal expression such that after popping β from βω we again have βω. Nevertheless, no matter which
formalization one chooses, it is only important that the finite (although possibly very long) prefix of the stack
that may be analyzed by the PDS consists of one α and repetitions of β.

Bounding the number of repetitions. Next, given some stack contents α, β, and γ we are interested in a
possibly small n ∈ N such that qαβnγ ≈ qαβωγ. We fix e ∈ N to be the smallest number such that qαβeγ becomes
equivalent to qαβωγ (strictly speaking, we require that rβeγ ≈ rβωγ for all control states r reachable after popping
α; this implies that qαβeγ ≈ qαβωγ, but it is a slightly stronger condition). We remark that Jančar [7] has shown
an Ackermannian bound for e. For us, an important step is to prove that e can be at most doubly exponential.
To this end, for every i ∈ [0, e], we consider the control state ri for which EqLev(riβ

iγ, riβ
ωγ) is minimal (i.e.,

the control state from which the stack contents βiγ and βωγ can be distinguished in the least possible number
of transitions), and for this control state we take Mi = EqLev(riβ

iγ, riβ
ωγ). It is rather easy to prove that

Mi < Mi+1 for all i < e: the similarity between βiγ and βωγ grows when we increase i, until it reaches level ω for
i = e. In particular (because EqLev(·, ·) depends only on the class of a configuration) this means that if ri = ri′

for i ̸= i′, then the classes [riβ
iγ]≈ and [riβ

i′γ]≈ are different.
Given some stack contents α, β, and γ and some i ∈ [0, e−1], we now want to provide a succinct description of

the class of riβ
iγ. To this end, we consider two runs. The first of them, π, is the shortest possible run from qαβeγ

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

to riβ
iγ. The second of them, π′, is created as a run parallel to π that starts in the “much larger” configuration

qαβωγ (it exists because qαβωγ ≈ qαβeγ). Recall that then π and π′ are required to visit bisimilar configurations,
but they are not required to execute the same transitions (in fact, they cannot execute the same transitions: if
π′, starting from qαβω, were to pop αβe−i in the same way as π did, then π′ would end in riβ

ωγ, a configuration
that is not bisimilar to riβ

iγ by assumption). Depending on the shape of π′, we have two cases.
First, it is possible that no suffix of π′ pushes D stack symbols, for an appropriately chosen exponential

constant D; so, roughly speaking, π′ concentrates on popping. We then observe that no matter how much we pop
from qαβωγ, we can only pop to a stack content of the form β′βωγ, where β′ is a suffix of either α or β. Even
taking into account the fact that exponentially many symbols may be pushed at the very end, on top of β′, in this
case we have only doubly exponentially many possibilities for the configuration π′(|π′|), hence also for its class,
which is simultaneously the class of riβ

iγ. Recalling that for different values of i (having the same state ri) the
classes of riβ

iγ are all different, this means that only doubly exponentially many values of i may be handled by
this case. We can thus concentrate on the opposite case, which we discuss next.

This opposite case, being significantly more complicated, is that π′ has a suffix π′
3 that pushes D stack symbols

(note that if more than D symbols are pushed, then we can consider a shorter suffix, pushing exactly D symbols).
The suffix π′

3 leads from t1Xθ to tµθ for some control states t1, t, stack contents µ, θ, and stack symbol X, where
|µ| = D + 1. We now use the simple observation that the class of tµθ is determined by the control state t, by
the small stack content µ, and by the classes of uθ for all control states u reachable from tµθ after popping µ (as
formalized in Lemma 4.5).

Next, we would somehow like to describe the classes of uθ. To this end, we observe that since uθ is reachable
from tµθ, it is also reachable from t1Xθ (due to the existence of the run π′

3 from t1Xθ to tµθ). Moreover, a simple
pumping argument (namely, Lemma 4.1) allows us to shorten the run from t1Xθ to uθ (observe that, in total,
only one stack symbol needs to be popped) into a very short run; namely, shorter than some constant B (being
exponential in |P|). Coming back to the analysis of π, note that the parallel counterpart of π′

3(0) = t1Xθ in π′ is,
say, the configuration q1χβ

jγ in π: it is visited while going from qαβeγ to riβ
iγ. The χ part is obtained from β

(or α) by popping its prefix as quickly as possible by definition of π. Thus, standard pumping arguments imply
that the length of χ is short. Possibly decreasing j and appending a few copies of β into χ, we may artificially
redefine |χ| to be larger than B, but not much larger. If the value of the constant D is appropriate so that π′

3 is
long enough, then also the subrun of π from q1χβ

jγ to riβ
iγ is long enough to ensure that j > i.

We have thus two bisimilar configurations, q1χβ
jγ and t1Xθ, and we have a run of length B from t1Xθ to

uθ. Then a run of the same length exists also from q1χβ
jγ to a configuration bisimilar to uθ; this configuration

is necessarily of the form vuξuβ
jγ (we cannot pop the whole χ with |χ| > B in only B steps), where the size of

ξu is again bounded exponentially. We can find such vu and ξu for all considered states u (note that j does not
depend on u).

The classes of vuξuβ
jγ in turn are determined by the control states vu, by the small stack contents ξu, and

by the classes rβjγ for all control states r reachable from vuξuβ
jγ after popping ξu (hence also reachable from

qαβeγ after popping αβe−j).
Summing up this part, we have shown that the class of riβ

iγ can be determined by the control state/stack
pairs tµ and vuξu (indexed by control states u from an appropriate set U) and by the classes of rβjγ for some j > i.
All the stack contents µ and ξu have at most exponential size. The number of possibilities for (tµ, (vuξu)u∈U) is
then doubly exponential.

Is it possible that the same tuple (tµ, (vuξu)u∈U) is assigned to two distinct indices i, i′ < e, such that
moreover ri = ri′? We prove that this is not possible, which immediately implies a doubly exponential upper
bound for e, being the number of considered indices i ∈ [0, e − 1]. Suppose thus, to the contrary, we had two
such indices i, i′, where i < i′. Then the class of riβ

iγ is determined by the classes of rβjγ, for some j > i, in
the same way as the class of riβ

i′γ is determined by the classes of rβj′γ, for some j′ > i′ > i (due to equality of
the descriptions assigned to i and i′). Recalling the inequalities Mi + 1 ≤ Mj and Mi + 1 ≤ Mi′ < Mj′ , and the

definition of Mj and Mj′ , we have rβjγ ≈Mi+1 rβωγ ≈Mi+1 rβj′γ for all control states r under consideration. It

follows easily by the equality of their descriptions, that then also riβ
iγ ≈Mi+1 riβ

i′γ (we depend in the same way
on ≈Mi+1-equivalent configurations, so we remain ≈Mi+1-equivalent). Due to riβ

i′γ ≈Mi+1 riβ
ωγ this implies

riβ
iγ ≈Mi+1 riβ

ωγ, which contradicts with EqLev(riβ
iγ, riβ

ωγ) = Mi. This finishes the proof of the doubly
exponential bound on e.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Bounding the number of classes. We now come back to our initial goal, namely bounding the number
of classes of rγ, where rγ is reachable from the initial configuration via qαβkγ for all k ≥ 1, where α and β are
fixed and short. We employ here exactly the same characterization of the classes as in the previous part, where
we were bounding e. This time we only take i = 0 (i.e., we consider configurations rβ0γ = rγ), but we allow an
arbitrary control state r in place of ri, and do not assume that γ is fixed. As previously, we have two possibilities.

First, it may happen that rγ is bisimilar to a configuration of the form tβ′βωγ that is reachable from qαβωγ
by a run π′ that “focused on popping”, that is, belonging to the first case we have considered. As β′ is small (at
most exponential), and since the class of tβ′βωγ does not depend on γ (as already explained, (≈) = (≈F), while
γ is too deep in the stack to be seen in the first F transitions), we only have a doubly exponential number of
classes of rγ in this case.

The second case is that the class of rγ is determined by a small (exponential) information (tµ, (vu, ξu)u∈U)
and by the classes of r′βjγ for some j > i = 0. The latter classes, in turn, are determined by the stack content
βj (hence by j, because β is fixed) and by the classes of r′′γ. Thus, if we add j to the remembered information,
we can say that the class of rγ is determined by (tµ, (vu, ξu)u∈U , j) and by the classes of r′′γ. The previously
shown doubly exponential bound on e implies that the number of possibilities for (tµ, (vu, ξu)u∈U , j) is doubly
exponential. A minor detail is that the tuple (tµ, (vu, ξu)u∈U , j) describes the class of rγ for a single control
state r; we should rather, given a stack content γ, consider a tuple of such tuples, indexed by states r from an
appropriate set R (control states reachable from qαβeγ after popping αβe), hence describing the classes of rγ
simultaneously for all r ∈ R. We now have a cyclic situation: the classes of rγ are determined by the small a
small tuple (indexed by control states) of the above-mentioned information and by the classes of rγ themselves.
One can show that in such a situation, the small information is enough to determine the classes of rγ. We thus
have a doubly exponential bound on the number of these classes.

Adding ε-transitions. We now briefly discuss on adapting the above proof idea to the general case, where
ε-transitions may be present. Recall that every pushing transition reads some action symbol; ε-transitions are
allowed only for popping and need to be deterministic. It turns out that if, while popping β, at least one action
symbol is necessarily read, then the proof sketch presented above still works, up to adjusting some details. The
main difficulty comes with the fact that it may be possible to pop arbitrarily many copies of β without reading
any action symbols. In particular, starting from a configuration of the form qαβkγ, the γ part of the stack may
be possibly reached after reading very few action symbols, no matter how large k is.

In order to deal with this difficulty, we proceed as follows: instead of splitting the whole stack content into
a single pumping triple αβγ, we now rather try to find pumping triples αβγ with slightly stronger properties,
but being only infixes of the whole stack. If some infix of the stack content is represented as a pumping triple
αβγ, being located on top of a stack content η, then we still have the previous requirement saying, roughly, that
the β infix may be pumped. Beside that, we have a new requirement: if rβiγη is reached by an ε-run popping
β from some larger configuration r′βi+1γη, then further ε-transitions allow to pop the whole βiγ, and reach a
configuration of the form sη.

As already said, the previous proof works correctly when the considered runs from qαβeγη (and likewise from
qαβωγη) read at least one action symbol while popping every copy of β. There are also runs that at some moment
pop a copy of β using only ε-transitions. Then these runs (possibly after prolonging them) continue with popping
ε-transitions until the stack content η is uncovered. In the proof we need to add special cases for such runs. It
turns out, however, that these runs do not introduce many new possibilities. An intuitive reason for this is that
if a run, while being in some configuration rβiγη, starts performing ε-transitions until sη is reached, then the
number i and the stack content γ are “forgotten”; neither the target configuration nor the action symbols read
on the way (we do not read anything) depend on i or on γ.

In Section 5 we introduce decompositions of stacks. They give a way to decompose the whole stack content
into many pumping triples αβγ, located possibly in a nested way. In this decomposition, most of the stack content,
except for exponentially many symbols, is put into the γ parts of pumping triples. The proof presented above,
dealing with a single pumping triple, is made formal and complete in Lemma 7.2, which is our main technical
lemma. Then, an appropriate induction gives us the final upper-bound result, Theorem 7.1.

4 Some basics on pushdown systems

In this section we present some definitions and known facts about pushdown systems, useful in our proofs. For
purposes of the whole section let P = (Q,Γ,A,∆) be an ε-PDS.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Our first lemma says that if there is a run between two similar configurations, then there is a short run
between them. Essentially, this boils down to the standard pumping lemma for pushdown automata.

Lemma 4.1. ([5, Lemma 3.3]) There exists a constant1 B ∈ 2|P|O(1)

such that whenever pα →∗ qβ for two
configurations pα, qβ ∈ QΓ∗, then Dist(pα, qβ) ≤ (|α|+ |β|) · B.

For every stack content α ∈ Γ∗, we define two sets, describing possible ways of pushing α:

up(α) = {(pX, qY) ∈ (QΓ)2 | pX →∗ qY α} for α ∈ Γ∗, and

up0(α) = {(pX, q) ∈ (QΓ)×Q | pX →∗ qα} for α ∈ Γ∗ \ {ε}.

It is easy to see that for all α, β, γ ∈ Γ∗ with α ̸= ε,

up(βγ) = up(γ) ◦ up(β) and up0(αβ) = up(β) ◦ up0(α) ,

where “◦” denotes the composition of relations, understood in the usual way.
As explained in Section 3, it is convenient to extend the set of configurations into expressions containing ω,

which we do as follows. A generalized stack is defined by induction: it is a (possibly empty) sequence α1α2 . . . αk,
where every αi is either

� a stack symbol from Γ, or
� an expression of the form (β1β2 . . . βℓ)

ω, where β1β2 . . . βℓ is a nonempty (i.e., satisfying ℓ ≥ 1) generalized
stack.

The set of generalized stacks is denoted Γgs. A generalized configuration is an element of QΓgs. From now
on, whenever we talk about a configuration, we usually mean a generalized one. Configurations that are not
generalized, are called standard. Note that Lemma 4.1 and the definition of up(·) were only given for standard
configurations.

Let us emphasize that, formally, generalized stacks are expressions (terms); we do not assign any concrete
meaning to the (·)ω operation. However, the intuition staying behind is that (β1β2 . . . βℓ)

ω describes a stack in
which the sequence β1β2 . . . βℓ is repeated very many times.

We allow ourselves to write αe when e ∈ N ∪ {ω}, mixing two different semantics of the same notation: for
e ∈ N we mean the result of repeating e times the sequence α, while for e = ω we mean the expression αω.

For a ∈ Aε we define →a to be the unique relation on QΓgs that holds only in the following cases:
1. if (p,X, a, q, β) ∈ ∆, then pXγ →a qβγ for all γ ∈ Γgs,
2. if pα →a qβ and (pα, p) ̸∈ (→∗

ε), then pαωγ →a qβαωγ, and
3. if pα →∗

ε p, then pαωγ →ε pγ.
Note that in order to know whether pαωγ →a qβαωγ or pαωγ →ε pγ, one has to check whether pα →a qβ and
whether pα →∗

ε p. It is important here that the nesting depth of the (·)ω operation in α is strictly smaller than
in αωγ, so the whole definition is well-formed.

Based on that, we then define the
w

=⇒ relation over generalized configurations, as previously. Note that,
when restricted to standard configurations, the above definition coincides with the previous one. Moreover, only
standard configurations may be reached from qinitXinit.

Item 2 of the above definition treats pαωγ almost as pααωγ: we can go to qβαωγ when there is a transition
from pα to qβ. There is one exception, though: if pα →∗

ε p, then we rather pop the whole αω, going directly to
pγ (cf. Item 3). The intuition is that if α may be popped using ε-transitions, then also arbitrarily many copies
of α, embodied in the αω expression, may be popped using ε-transitions. Transitions from Item 2 are disallowed
in this case, so that ε-transitions remain deterministic. In Item 3 it is required that the state p before and after
popping α is the same; then it makes sense to say that after popping very many copies of α the state will be
again p. If we had pα →∗

ε q and qα →∗
ε p, then it would be unclear in which state (in p or in q) we should finish

popping αω. For this reason we do not add any special transition in such a case.
The following property is a direct consequence of determinism of ε-transitions:

if c →∗
ε d, then c ≈ d (and c ≈k d for all k ∈ N).

1Constants depending on P are denoted by capital letters in Sans Serif font; for constants singly exponential in the size of P we use
initial letters of the alphabet (B,C,D), while for doubly exponential constants we use letters near the end of the alphabet (T,U,V,Z).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Yet another useful property of generalized configurations is the following:

for all p ∈ Q and α, γ ∈ Γgs we have pαωγ ≈ pααωγ.

Indeed, if pα →∗
ε p (hence also pααωγ →∗

ε pαωγ), equivalence follows from the previous property; otherwise,
exactly the same transitions can be performed from pαωγ and from pααωγ, leading to exactly the same
configurations.

We say that a run ϱ′ is a shift of a run ϱ if ϱ′ is obtained by appending or removing the same suffix to every
configuration in ϱ.

For α ∈ Γgs and P ⊆ Q we define two functions, saying how states can change while popping α:

|α⟩(P) = {r ∈ Q | ∃q ∈ P. qα →∗ r} and |α⟩ε(P) = {r ∈ Q | ∃q ∈ P. qα →∗
ε r} .

For singleton sets we abbreviate |α⟩({q}) as |α⟩(q), and likewise we abbreviate |α⟩ε({q}) as |α⟩ε(q). Observe that

|β⟩(|α⟩(P)) = |αβ⟩(P), |β⟩ε(|α⟩ε(P)) = |αβ⟩ε(P), and |α⟩ε(P) ⊆ |α⟩(P)

for all α, β ∈ Γgs and P ⊆ Q. The following lemma is a direct consequence of the definition:

Lemma 4.2. Let p, q ∈ Q and α, β ∈ Γgs. If pα →∗ qβ, then |α⟩(p) ⊇ |β⟩(q).

The next property follows from determinism of ε-transitions:

Lemma 4.3. Let q ∈ Q and α ∈ Γgs. If |α⟩ε(q) ̸= ∅, then |α⟩(q) = |α⟩ε(q), and this set has size 1.

Proof. If qα →∗
ε r, then we cannot have qα →∗ s for any other state s ̸= r.

Recall that Dist counts the number of action symbols needed to reach some configuration. Because ε-
transitions are not counted, there may be arbitrarily many configurations in a given distance. We fix this by
defining Near: for pα ∈ QΓgs and k ∈ N let Near(pα, k) be the set of configurations that can be reached from
pα by a run reading at most k action symbols and not ending with an ε-transition.

Lemma 4.4. For all pα ∈ QΓgs and k ∈ N we have

|{C | Dist([pα]≈, C) ≤ k}| ≤ |Near(pα, k)| ≤ |P|k .

Proof. If Dist([pα]≈, C) ≤ k, then there is a run ϱ from pα to a configuration c ∈ C, reading at most k action
symbols. Let c′ be the first configuration reached by ϱ after reading all these action symbols; after c′ we have only ε-
transitions. Then c′ ∈ Near(pα, k), and c′ ≈ c, so c′ ∈ C. Thus in every class from the set {C | Dist([pα]≈, C) ≤ k}
there is an element of the set Near(pα, k), so the former set cannot be larger; we obtain the first inequality.

To obtain the second inequality, we observe that every configuration in Near(pα, k) is fully characterized by
the list of at most k transitions performed while reading action symbols by a run not ending with an ε-transition.
Indeed, from every configuration c we can go by ε-transitions to at most one configuration d such that action
symbols can be read from d. When we are in d, we perform a transition from our list. Then again we go by
ε-transitions to the unique configuration from which action symbols can be read, and so on. At the very end,
we have to stop immediately after performing the last transition from the list. The number of lists of at most k
transitions is ∑k

i=0
|∆|i ≤ (|∆|+ 1)k ≤ |P|k .

For a length-1 run ϱ let

StackGrowth(ϱ) =

 |β| − 1 if ϱ = (pXγ →a qβγ),
StackGrowth(pα →a qβ) if ϱ = (pαωγ →a qβαωγ), and
−ω if ϱ = (pαωγ →ε pγ),

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

and for a run ϱ = ϱ1 ◦ · · · ◦ ϱn of length n let

StackGrowth(ϱ) =

n∑
i=1

StackGrowth(ϱi) .

Here we assume that −ω + n = n− ω = −ω − ω = −ω for every n ∈ N. Note that if ϱ is a run between standard
configurations pα, qβ ∈ QΓ∗, then StackGrowth(ϱ) = |β| − |α|.

Finally, we state two simple but important lemmata, which are useful while proving that two configurations
are weakly bisimilar (similar lemmata appeared already in prior work [5, 6, 7]):

Lemma 4.5. For all q ∈ Q and α, η, η′ ∈ Γgs we have

EqLev(qαη, qαη′) ≥ min{EqLev(rη, rη′) | r ∈ |α⟩(q)} .

In other words, if rη ≈ rη′ for all r ∈ |α⟩(q) then qαη ≈ qαη′, and if rη ≈k rη′ for all r ∈ |α⟩(q) then qαη ≈k qαη′.

Proof. It should be clear that the second part is equivalent to the first part. To see the first part, we consider two
cases: If there is some r ∈ |α⟩ε(q) ⊆ |α⟩(q), then qαη →∗

ε rη and qαη′ →∗
ε rη′; we have qαη ≈ rη and qαη′ ≈ rη′,

so EqLev(qαη, qαη′) = EqLev(rη, rη′); the inequality follows. Otherwise, if |α⟩ε(q) = ∅, we just use Lemma 4.6,
stated below.

Lemma 4.6. Let q ∈ Q and α, η, η′ ∈ Γgs. If |α⟩ε(q) = ∅, then

EqLev(qαη, qαη′) ≥ 1 + min{EqLev(rη, rη′) | r ∈ |α⟩(q)} .

Proof. We prove for every k ∈ N that if |α⟩ε(q) = ∅ and rη ≈k rη′ for all r ∈ |α⟩(q), then qαη ≈k+1 qαη′; the thesis
of the lemma follows easily from this statement. The proof is by induction on k. Consider two configurations qαη
and qαη′ such that |α⟩ε(q) = ∅ and rη ≈k rη′ for all r ∈ |α⟩(q); we want to prove that qαη ≈k+1 qαη′. Before
starting observe that

if qα →∗ sβ then sβη ≈k sβη′. (⋆)

Indeed, if k = 0, this holds trivially (all configurations are in the ≈0 relation). If k ≥ 1 and there
is some r ∈ |β⟩ε(s) ⊆ |α⟩(q) (inclusion by Lemma 4.2), then sβη →∗

ε rη and sβη′ →∗
ε rη′ imply that

sβη ≈ rη ≈k rη′ ≈ sβη′. If k ≥ 1 and |β⟩ε(s) = ∅, we observe that rη ≈k−1 rη′ for all r ∈ |β⟩(s) (due to
(≈k) ⊆ (≈k−1) and |β⟩(s) ⊆ |α⟩(q)), so we have sβη ≈k sβη′ by the induction hypothesis. This finishes the proof
of Property (⋆).

In order to obtain qαη ≈k+1 qαη′, it is enough to show that the two-element symmetric relation
{(qαη, qαη′), (qαη′, qαη)} is covered by ≈k; the relation will be then contained in ≈k+1, the largest symmetric

relation covered by ≈k. Expanding the definition of being covered, we should thus prove that if qαη
a

=⇒ c with
a ∈ Aε, then there exists c′ such that c ≈k c′ and qαη′

a
=⇒ c′ (and that if qαη′

a
=⇒ c′, then there exists c such

that c′ ≈k c and qαη
a

=⇒ c; this part is symmetric, so we do not need a separate proof). Suppose thus that

qαη
a

=⇒ c. If a = ε, we can take c′ = qαη′; then c ≈ qαη ≈k qαη′ = c′ by Property (⋆) and obviously qαη′
ε

=⇒ c′.
If a ∈ A, then qαη →∗

ε c1 →a c2 →∗
ε c for some c1, c2. Because |α⟩ε(q) = ∅, no configuration on a run from qαη

to c1 may have stack η; we have c1 = s1βη for some s ∈ Q and β ∈ Γgs with β ̸= ε. Then also qαη′ →∗
ε s1βη

′.
A single transition cannot pop more than the whole β, so c2 = s2γη for some s2 ∈ Q and γ ∈ Γgs; then also
s1βη

′ →a s2γη
′. We take c′ = s2γη

′. We have qαη′
a

=⇒ c′, and we obtain c ≈ c2 = s2γη ≈k s2γη = c′ by
Property (⋆).

5 Decompositions of stacks

In this section we define decompositions of stacks, prove that they exist, and show their basic properties. In
essence, decompositions specify how to split a stack content in a way suitable for pumping. For the whole section
we fix an ε-PDS P = (Q,Γ,A,∆) together with an initial configuration qinitXinit.

A decomposition δ is defined by induction, and can be in one of three forms:
� a single symbol (base case): δ = X ∈ Γ,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

� a nonempty sequence of decompositions: δ = δ1 . . . δk, where δ1, . . . , δk are decompositions and k ≥ 1, or
� a pumping triple: δ = ⟨|α, β, γ|⟩, where α and β are decompositions and γ ∈ Γ∗ is a stack.

The height (resp. degree) of a decomposition δ is inductively defined as follows:
� the height and degree of δ = X ∈ Γ is 0,
� the height (resp. degree) of δ = δ1 . . . δk is 1 plus the maximum of heights of any of the δi (resp. the
maximum of k and the degree of any of the δi), and

� the height (resp. degree) of δ = ⟨|α, β, γ|⟩ is 1 plus the maximum of the height of α and the height of β (resp.
the maximum of 2, the degree of α, and the degree of β).

In other words, a decomposition can be seen as a tree for which, as expected, the height is the length of some
longest path from the root to some leaf and the degree is the maximal number of children of some node in the
tree.

For a decomposition δ and for e ∈ N ∪ {ω} we define a stack δ
[e] ∈ Γ∗, called the e-th realization of δ:

� X [e] = X;

� (δ1 . . . δk)
[e] = δ

[e]

1 . . . δ
[e]

k ;

� ⟨|α, β, γ|⟩[e] = α[e](β
[e]
)eγ (i.e., we repeat the middle part e times).

If δ = δ
[1]
, we say that δ is a decomposition of δ. Note that δ

[1]
is obtained by simply concatenating all stack

symbols that literally appear in δ, and that δ
[e]

for greater numbers e is obtained by repeating e times some

fragments of δ
[1]
, in a nested way. For e = ω the intuition is that we repeat infinitely many times appropriate

fragments of the stack, but formally we just write ω in the exponent, without repeating anything.
Having the above definition, we can say when a decomposition is well-formed : A decomposition consisting of

a single stack symbol is always well-formed, a decomposition δ1 . . . δk is a well-formed when all δi are well-formed,
and a decomposition δ = ⟨|α, β, γ|⟩ is well-formed when both α and β are well-formed and additionally

1. up(γ) = up(β
[1]
γ),

2. |α[ω]⟩ = |α[ω]β
[ω]⟩, and

3. |β[ω]⟩ε(r) = {r} and |γ⟩ε(r) ̸= ∅ for all r ∈ |β[ω]⟩ε(Q).
Below, whenever talking about a decomposition, we assume that it is well-formed.

Let us explain the above conditions. Item 1 implies that up(γ) = up((β
[1]
)eγ) for every e ∈ N, so it ensures

that when we pump a stack content of a reachable configuration according to a decomposition, then the obtained

configuration is again reachable. Item 2 implies that |α[ω]⟩ = |α[ω](β
[ω]

)e⟩ for every e ∈ N: no matter how many

copies of β
[ω]

we have, the set of states that can be reached by popping the stack is the same. Item 3 says that

there are only two ways of popping β
[ω]

: either we read at least one action symbol, or we end in a state from which

there is an ε-run popping arbitrarily many copies of β
[ω]

and then γ; in particular, the only way of accessing the

γ part of δ
[ω]

is by an ε-run popping the whole γ.
There are some similarities between our pumping triples ⟨|α, β, γ|⟩ and notions from Valiant’s paper [21].

Namely, the β part of such a triple, which can be pumped, corresponds to Valiant’s notion of a null-transparent
segment, and the γ part corresponds to Valiant’s notion of an invisible segment (it is “invisible” after repeating β
many times). There is one important difference, though: in Valiant’s proof it is enough to find just one invisible
segment and one null-transparent segment; here, we rather need to decompose the whole stack into such segments.

We now give two simple lemmata, being immediate consequences of well-formedness:

Lemma 5.1. For every well-formed pumping triple δ = ⟨|α, β, γ|⟩ and every set P ⊆ Q we have

1. |(β[ω]
)ω⟩ε(P) = |β[ω]⟩ε(P),

2. |δ[ω]⟩ε(P) = |α[ω]β
[ω]

γ⟩ε(P), and

3. |δ[ω]⟩(P) = |β[ω]
γ⟩ε(|α

[ω]⟩(P)) for all P ⊆ Q.

Proof. For the left-to-right inclusion in Item 1, suppose that r ∈ |(β[ω]
)ω⟩ε(r0) for some r0 ∈ P , which by definition

means that r0(β
[ω]

)ω →∗
ε r. We have to prove that r ∈ |β[ω]⟩ε(r0). The only way of popping (β

[ω]
)ω is to pop

β
[ω]

some number of times, and then to pop the whole (β
[ω]

)ω in a single step, without changing the state; we

thus have states r1, . . . , rk for some k ∈ N such that ri ∈ |β[ω]⟩ε(ri−1) for i ∈ [1, k], and rk = r ∈ |β[ω]⟩ε(rk).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

If k = 0, the latter gives us the thesis. If k ≥ 1, for i ∈ [1, k − 1] we have ri ∈ |β[ω]⟩ε(ri−1) ⊆ |β[ω]⟩ε(Q), so

well-formedness of δ implies that |β[ω]⟩ε(ri) = {ri}; because ri+1 ∈ |β[ω]⟩ε(ri), necessarily ri+1 = ri. We thus

have r1 = r2 = · · · = rk = r, hence r1 ∈ |β[ω]⟩ε(r0) gives us the thesis.

Conversely, if r ∈ |β[ω]⟩ε(r0) for some r0 ∈ P , then by well-formedness of δ we also have r ∈ |β[ω]⟩ε(r). We

thus have r0(β
[ω]

)ω →∗
ε r(β

[ω]
)ω →∗

ε r, that is, r ∈ |(β[ω]
)ω⟩ε(r0). This finishes the proof of Item 1.

We have |δ[ω]⟩ε(P) = |γ⟩ε(|(β
[ω]

)ω⟩ε(|α
[ω]⟩ε(P))) and |α[ω]β

[ω]
γ⟩ε(P) = |γ⟩ε(|β

[ω]⟩ε(|α
[ω]⟩ε(P))), so Item 2 is

an immediate consequence of Item 1.

In order to prove that |δ[ω]⟩(P) ⊆ |β[ω]
γ⟩ε(|α

[ω]⟩(P)) consider a run that pops δ
[ω]

. Such a run pops α[ω]

and k copies of β
[ω]

, for some k ∈ N, then it pops the whole (β
[ω]

)ω while staying in some state r, and then

pops γ going to some state s. Then r ∈ |β[ω]⟩ε(r) ⊆ |β[ω]⟩ε(Q) and s ∈ |γ⟩(r). By well-formedness of δ we then

have r ∈ |α[ω](β
[ω]

)k⟩(P) = |α[ω]⟩(P) and |γ⟩ε(r) ̸= ∅, which implies s ∈ |γ⟩ε(r) by Lemma 4.3. In consequence

s ∈ |β[ω]
γ⟩ε(|α

[ω]⟩(P)), as needed.

Conversely, consider some s ∈ |β[ω]
γ⟩ε(|α

[ω]⟩(P)). Then there is a state r ∈ |β[ω]⟩ε(|α
[ω]⟩(P)) ⊆ |β[ω]⟩ε(Q)

for which s ∈ |γ⟩ε(r). By well-formedness of δ also r ∈ |β[ω]⟩ε(r). We can thus pop α[ω] and one copy of β
[ω]

while going to state r, then pop the whole (β
[ω]

)ω remaining in state r, and then pop γ going to state s; we have

s ∈ |δ[ω]⟩(P), as needed.

Lemma 5.2. For every well-formed decomposition δ, every set P ⊆ Q, and every e ∈ N we have

1. |δ[ω]⟩ε(P) = |δ[1]⟩ε(P),

2. |δ[ω]⟩(P) ⊆ |δ[e]⟩(P), and

3. up(δ
[e]
) = up(δ

[1]
) and up0(δ

[e]
) = up0(δ

[1]
).

Proof. Induction on the structure of δ. The base case of δ = X ∈ Γ is trivial, because δ
[ω]

= δ
[e]

= δ
[1]

= X.
In the case of δ = δ1 . . . βk the thesis follows directly from the induction hypothesis, because we can write

|δ[ω]⟩(P) = |δ[ω]

k ⟩(|δ[ω]

k−1⟩(. . . (|δ
[ω]

1 ⟩(P)) . . .)), and likewise for the other functions and relations. For δ = ⟨|α, β, γ|⟩
we have, using Lemma 5.1, the induction hypothesis, and well-formedness of δ:

|δ[ω]⟩ε(P) = |γ⟩ε(|β
[ω]⟩ε(|α

[ω]⟩ε(P))) = |γ⟩ε(|β
[1]⟩ε(|α

[1]⟩ε(P))) = |δ[1]⟩ε(P) ,

|δ[ω]⟩(P) = |γ⟩ε(|β
[ω]⟩ε(|α

[ω]⟩(P))) ⊆ |γ⟩(|β[ω]⟩(|α[ω]⟩(P)))

= |γ⟩(|β[ω]⟩(. . . (|β[ω]⟩︸ ︷︷ ︸
e

(|α[ω]⟩(P))) . . .))

⊆ |γ⟩(|β[e]⟩(. . . (|β[e]⟩︸ ︷︷ ︸
e

(|α[e]⟩(P))) . . .)) = |δ[e]⟩(P) ,

up(δ
[e]
) = up(γ) ◦ up(β[e]

) ◦ · · · ◦ up(β[e]
)︸ ︷︷ ︸

e

◦ up(α[e])

= up(γ) ◦ up(β[1]
) ◦ · · · ◦ up(β[1]

)︸ ︷︷ ︸
e

◦ up(α[1]) = up(γ) ◦ up(β[1]
) ◦ up(α[1]) = up(δ

[1]
) ,

and likewise for up0(·).

The next lemma is very important. It allows us to find a decomposition of bounded degree and height for an
arbitrarily large stack content δ. This means that arbitrarily large segments of δ have to fit into the γ parts of
pumping triples in the decomposition.

Lemma 5.3. Every nonempty stack content δ ∈ Γ∗ has a well-formed decomposition δ of height at most 2|Q|+ 2

and degree at most C, for some C ∈ 2|P|O(1)

.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Take C = 2|Q|2(|Γ|2+1)+1 + 1, and denote h(α) = |Q \ |α⟩ε(Q)| for α ∈ Γ∗. We strengthen the thesis of the
lemma, showing that the height of the resulting decomposition is at most 2h(δ) + 2 (which is not greater than
2|Q|+ 2). The proof is by induction on h(δ).

We represent the stack content δ as δ = δ1X1δ2X2 . . . δnXnδn+1 (where δi ∈ Γ∗ and Xi ∈ Γ) in such a way
that either h(δi) < h(δ) or δi = ε for all i ∈ [1, n + 1], and h(δiXi) ≥ h(δ) for all i ∈ [1, n]. To obtain such a
representation, as δ1 we take the longest prefix of δ satisfying h(δ1) < h(δ), or just δ1 = ε if there is no such
prefix; as X1 we take the next letter for which by maximality of δ1 we have h(δ1X1) ≥ h(δ); then as δ2 we take
the longest prefix of the remaining part of δ satisfying..., and so on.

By the induction hypothesis, for every nonempty fragment δi we have a well-formed decomposition δi of
height at most 2h(δi) + 2 ≤ 2h(δ) and degree at most C. Note that when h(δ) = 0, then all δi are empty (we
cannot have h(δi) < 0), hence the induction hypothesis is not needed in this base case.

If n ≤ 2|Q|2(|Γ|2+1), as δ we just take the sequence consisting of the decompositions δi for nonempty δi, and
of single-node decompositions for symbols Xi; this sequence has length at most 2n + 1 ≤ C. Well-formedness of
δ follows immediately from well-formedness of the decompositions δi.

Suppose that n > 2|Q|2(|Γ|2+1). For k ≤ ℓ ≤ n let δk,ℓ be the well-formed decomposition of δkXk . . . δℓXℓ,
obtained as the sequence consisting of the decompositions δi for nonempty δi, and of single-node decompositions
for symbols Xi, where i ∈ [k, ℓ]. To every i ∈ [1, n] we assign the tuple

Si =
(
(|δ[ω]

1,i⟩(q))q∈Q, up(δi+1Xi+1 . . . δnXnδn+1)
)
.

The first |Q| components are subsets of Q, and the last component is a subset of (Q× Γ)2, so there are at most

2|Q|2 · 2|Q|2·|Γ|2 possible tuples Si. Thus, there are some k, ℓ with k < ℓ ≤ 2|Q|2(|Γ|2+1) + 1 ≤ n for which Sk = Sℓ.
Let

α = δ1X1 . . . δkXk , β = δk+1Xk+1 . . . δℓXℓ , and γ = δℓ+1Xℓ+1 . . . δnXnδn+1 .

Then α = δ1,k and β = δk+1,ℓ are well-formed decompositions for α and β, respectively. These decompositions
are sequences of length at most 2k and 2(ℓ− k), respectively, which is smaller than C. Moreover, they both have
height at most 2h(δ) + 1. Then δ = ⟨|α, β, γ|⟩ is a decomposition of δ, has degree at most C, and height a most
2h(δ) + 2, so it remains to see that δ is well-formed.

Observe that

Sk =
(
(|α[ω]⟩(q))q∈Q, up(β

[1]
γ)
)

and Sℓ =
(
(|α[ω]β

[ω]⟩(q))q∈Q, up(γ)
)
.

Equality of the last components of Sk and Sℓ gives us the first condition of well-formedness, namely

up(γ) = up(β
[1]
γ). Equalities |α[ω]⟩(q) = |α[ω]β

[ω]⟩(q) for all q ∈ Q give us |α[ω]⟩(P) =
⋃

q∈P |α[ω]⟩(q) =⋃
q∈P |α[ω]β

[ω]⟩(q) = |α[ω]β
[ω]⟩(P) for every set P ⊆ Q, which is the second condition of well-formedness.

Recall that h(δℓXℓ) ≥ h(δ); equivalently ||δℓXℓ⟩ε(Q)| = |Q| − h(δℓXℓ) ≤ |Q| − h(δ) = ||δ⟩ε(Q)|. Because
|αβ⟩ε(Q) = |β⟩ε(|α⟩ε(Q)) ⊆ |β⟩ε(Q) = |δℓXℓ⟩ε(|δkXk . . . δℓ−1Xℓ−1⟩ε(Q)) ⊆ |δℓXℓ⟩ε(Q), this implies ||αβ⟩ε(Q)| ≤
||β⟩ε(Q)| ≤ ||δ⟩ε(Q)|. Consider now the relation R = {(r, s) ∈ |αβ⟩ε(Q) × |δ⟩ε(Q) | s ∈ |γ⟩ε(r)}. By Lemma 4.3
this is a partial function (for every r the set |γ⟩ε(r) contains at most one s). On the other hand, for every state
s ∈ |δ⟩ε(Q) = |γ⟩ε(|αβ⟩ε(Q)) there exists r ∈ |αβ⟩ε(Q) such that s ∈ |γ⟩ε(r). Together with the cardinality
argument ||αβ⟩ε(Q)| ≤ ||δ⟩ε(Q)| this implies that R is a bijection. Thus, the three sets, |αβ⟩ε(Q), |β⟩ε(Q),
and |δ⟩ε(Q), are of the same size. Recalling that |αβ⟩ε(Q) is a subset of |β⟩ε(Q), this implies that actually
|αβ⟩ε(Q) = |β⟩ε(Q). Taking into account Lemma 5.2 (which can be used because α and β are both well-formed),

we moreover have |α[ω]β
[ω]⟩ε(Q) = |αβ⟩ε(Q) = |β⟩ε(Q) = |β[ω]⟩ε(Q).

In order to show the last condition of well-formedness, consider now a state r ∈ |β[ω]⟩ε(Q). We need to

show that |β[ω]⟩ε(r) = {r} and |γ⟩ε(r) ̸= ∅. The latter follows immediately from the fact that R is a bijection:
r ∈ |αβ⟩ε(Q), so r has a corresponding element in |γ⟩ε(r). In order to show the former, note that, due to

r ∈ |α[ω]β
[ω]⟩ε(Q), there have to exist states q ∈ Q and r′ ∈ |α[ω]⟩ε(q) such that r ∈ |β[ω]⟩ε(r′). By Lemma 4.3

we then have |α[ω]⟩(q) = |α[ω]⟩ε(q) = {r′}, and we have already shown that |α[ω]⟩(q) = |α[ω]β
[ω]⟩(q) (cf. the

second condition of well-formedness). Thus r ∈ |α[ω]β
[ω]⟩ε(q) ⊆ |α[ω]β

[ω]⟩(q) = {r′} implies r = r′, so we have

r ∈ |β[ω]⟩ε(r), as required (by Lemma 4.3 the set |β[ω]⟩ε(r) is a singleton).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

An interesting property of decompositions is described by Lemma 5.4; it says that if we increase the number

of copies of β
[ω]

in a configuration, then the configuration becomes more similar to a configuration with ω copies

of β
[ω]

. We assume here that 1 + ω = ω.

Lemma 5.4. Let q ∈ Q, let ⟨|α, β, γ|⟩ be a well-formed pumping triple, let η ∈ Γgs, and let Mi =

min{EqLev(r(β[ω]
)iγη, r(β

[ω]
)ωγη) | r ∈ |α[ω]⟩(q)} for all i ∈ N. Then Mi+1 ≥ 1 +Mi for all i ∈ N.

Proof. Fix some i ∈ N. Let rmin ∈ |α[ω]⟩(q) be a state for which Mi+1 = EqLev(rmin(β
[ω]

)i+1γη, rmin(β
[ω]

)ωγη).
We distinguish two cases.

Suppose first that |β[ω]⟩ε(rmin) = ∅. As observed on Page 8, we have rminβ
[ω]

(β
[ω]

)ωγη ≈ rmin(β
[ω]

)ωγη.
Thus by Lemma 4.6 we have

Mi+1 = EqLev(rminβ
[ω]

(β
[ω]

)iγη, rminβ
[ω]

(β
[ω]

)ωγη)

≥ 1 + min{EqLev(r(β[ω]
)iγη, r(β

[ω]
)ωγη) | r ∈ |β[ω]⟩(rmin)} .

By well-formedness of the pumping triple we have |β[ω]⟩(rmin) ⊆ |β[ω]⟩(|α[ω]⟩(q)) = |α[ω]β
[ω]⟩(q) = |α[ω]⟩(q), so

for all r ∈ |β[ω]⟩(rmin) we have EqLev(r(β
[ω]

)iγη, r(β
[ω]

)ωγη) ≥ Mi, which implies Mi+1 ≥ 1 +Mi.

Conversely, suppose that there is some r ∈ |β[ω]⟩ε(rmin) ⊆ |β[ω]⟩ε(Q). By well-formedness of the pumping

triple we have |β[ω]⟩ε(r) = {r} and s ∈ |γ⟩ε(r) for some s. This implies that rmin(β
[ω]

)i+1γη →∗
ε r(β

[ω]
)iγη →∗

ε sη

and rmin(β
[ω]

)ωγη →∗
ε r(β

[ω]
)ωγη →∗

ε sη, that is, Mi+1 = ω ≥ 1 +Mi.

The next lemma says that if we can pop a stack content of the form δ
[ω]

, then we can pop it quickly:

Lemma 5.5. If s ∈ |δ[ω]⟩(q) for a well-formed decomposition δ of degree at most C and height ℓ, then

Dist(qδ
[ω]

, s) ≤ BCℓ.

Proof. Induction on the structure of δ. Suppose that s ∈ |δ[ω]⟩(q). If δ = X = δ
[ω]

, then s ∈ |X⟩(q) (i.e.,

qX →∗ s) implies Dist(qδ
[ω]

, s) ≤ B by Lemma 4.1.

Suppose that δ = δ1 . . . δk. Then δ
[ω]

= δ
[ω]

1 . . . δ
[ω]

k , so there have to exist states r0, r1, . . . , rk such that

r0 = q, rk = r, and ri ∈ |δ[ω]

i ⟩(ri−1) for all i ∈ [1, k]. By the induction hypothesis Dist(ri−1δ
[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k ,

riδ
[ω]

i+1 . . . δ
[ω]

k) ≤ Dist(ri−1δ
[ω]

i , ri) ≤ BCℓ−1. Because k ≤ C, we obtain Dist(r0δ
[ω]

, rk) ≤ C · BCℓ−1.

Finally, suppose that δ = ⟨|α, β, γ|⟩. By Lemma 5.1, s ∈ |δ[ω]⟩(q) implies that there is a state r ∈ |α[ω]⟩(q)
for which s ∈ |β[ω]

γ⟩ε(r) = |(β[ω]
)ωγ⟩ε(r). The latter means that Dist(r(β

[ω]
)ωγ, s) = 0. We conclude using the

induction hypothesis:

Dist(qδ
[ω]

, s) ≤ Dist(qδ
[ω]

, r(β
[ω]

)ωγ) +Dist(r(β
[ω]

)ωγ, s) ≤ Dist(qα[ω], r) + 0 ≤ BCℓ−1 ≤ BCℓ .

We now define by induction when two decompositions δ, δ̂ have the same type, written δ
tp
= δ̂:

� if δ = δ̂ then δ
tp
= δ̂,

� if δ = δ1 . . . δk, and δ̂ = δ̂1 . . . δ̂k, and δi
tp
= δ̂i for all i ∈ {1, . . . , k}, then δ

tp
= δ̂, and

� if δ = ⟨|α, β, γ|⟩, and δ̂ = ⟨|α̂, β̂, γ′|⟩, and α
tp
= α̂, and β

tp
= β̂, and |γ⟩ε = |γ′⟩ε, and up(γ) = up(γ′), then δ

tp
= δ̂.

The next two lemmata say that, on the one hand, the number of different types is small, and, on the other hand,

that while considering stacks of the form δ
[ω]

, only the type of δ is relevant:

Lemma 5.6. The number of different types (i.e., equivalence classes of the
tp
= relation) for decompositions of height

at most ℓ and degree at most C is at most 2|P|4·(C+1)ℓ+1

.

Proof. Induction on ℓ. For ℓ = 0 we have only |Γ| decompositions, consisting of single stack symbols, and

|Γ| ≤ 2|P|4·(C+1). For ℓ ≥ 1 we have

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

� |Γ| decompositions consisting of single stack symbols;
� decompositions being sequences of at most C decompositions of height at most ℓ − 1; for each of them we

have to know its type, where by the induction hypothesis we have at most 2|P|4·(C+1)ℓ possibilities;

� pumping triples ⟨|α, β, γ|⟩, where we have to know the types of α and β (at most 2|P|4·(C+1)ℓ possibilities for
each, by the induction hypothesis), and the objects |γ⟩ε and up(γ).

In the last case, we notice that |γ⟩ε(P) =
⋃

p∈P |γ⟩ε(p) for every P ⊆ Q, meaning that the function |γ⟩ε is

determined by the set {(p, q) | q ∈ |γ⟩ε(p)} ⊆ Q2. Likewise, up(γ) is a subset of (QΓ)2. We thus have at most

2|Q|2+|Q|2|Γ|2 ≤ 2|P|4 possibilities for combinations of |γ⟩ε and up(γ). Using inequalities C ≥ 3 and C + 3 ≤ 2C

≤ 2|P|4·(C+1)ℓ , we obtain that the number of possible types is at most

|Γ|+
∑C

i=0
2|P|4·(C+1)ℓ·i + 2|P|4·(C+1)ℓ·2+|P| ≤ (C+ 3) · 2|P|4·(C+1)ℓ·C ≤ 2|P|4·(C+1)ℓ+1

.

Lemma 5.7. Let δ, δ̂ be decompositions. If δ is well-formed and δ
tp
= δ̂, then

1. |δ[ω]⟩ = |δ̂[ω]⟩ and |δ[ω]⟩ε = |δ̂[ω]⟩ε,
2. up(δ

[1]
) = up(δ̂[1]) and up0(δ

[1]
) = up0(δ̂

[1]),

3. δ̂ is well-formed as well, and

4. qδ
[ω]

η ≈ qδ̂[ω]η for all q ∈ Q and η ∈ Γgs.

Proof. We proceed by induction on the structure of δ. If δ = X, then also δ̂ = X, so the thesis is trivial.

Suppose that δ = δ1 . . . δk. Then δ̂ = δ̂1 . . . δ̂k with δi
tp
= δ̂i for all i ∈ [1, k]. Item 3 follows

directly from the induction hypothesis. Items 1 and 2 as well: |δ[ω]⟩(P) = |δ[ω]

k ⟩(|δ[ω]

k−1⟩(. . . (|δ
[ω]

1 ⟩(P)) . . .)) =

|δ̂[ω]
k ⟩(|δ̂[ω]

k−1⟩(. . . (|δ̂
[ω]
1 ⟩(P)) . . .)) = |δ̂[ω]⟩(P) for every P ⊆ Q, and likewise for the other equalities. By the

induction hypothesis we also have rδ
[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k η ≈ rδ̂
[ω]
i δ

[ω]

i+1 . . . δ
[ω]

k η for all r ∈ Q and i ∈ [1, k], which implies

qδ̂
[ω]
1 . . . δ̂

[ω]
i−1δ

[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k η ≈ qδ̂
[ω]
1 . . . δ̂

[ω]
i−1δ̂

[ω]
i δ

[ω]

i+1 . . . δ
[ω]

k η by Lemma 4.5. Having this for all i ∈ [1, k] we obtain

qδ
[ω]

η ≈ qδ̂[ω]η, as needed for Item 4.

Finally, suppose that δ = ⟨|α, β, γ|⟩. Then δ̂ = ⟨|α̂, β̂, γ′|⟩ with α
tp
= α̂, β

tp
= β̂, |γ⟩ε = |γ′⟩ε, and up(γ) = up(γ′).

We obtain Item 1 using Lemma 5.1 and the induction hypothesis:

|δ[ω]⟩(P) = |γ⟩ε(|β
[ω]⟩ε(|α

[ω]⟩(P))) = |γ′⟩ε(|β̂
[ω]⟩ε(|α̂

[ω]⟩(P))) = |δ̂[ω]⟩(P) , and

|δ[ω]⟩ε(P) = |γ⟩ε(|β
[ω]⟩ε(|α

[ω]⟩ε(P))) = |γ′⟩ε(|β̂
[ω]⟩ε(|α̂

[ω]⟩ε(P))) = |δ̂[ω]⟩ε(P) for all P ⊆ Q.

Item 2 follows directly from the induction hypothesis and the equality up(γ) = up(γ′). We observe that the

definition of well-formedness for δ uses only the objects up(γ), up(β
[1]
), |α[ω]⟩, |β[ω]⟩, |β[ω]⟩ε, and |γ⟩ε, and for

each of them we already have equality with analogous object for the other decomposition; Item 3 follows.
In order to obtain Item 4, we prove that

r(β
[ω]

)ωγη ≈k r(β̂[ω])ωγ′η for all r ∈ Q and k ∈ N.

We proceed by induction on k. For k = 0 this is trivial, as all configurations are related by ≈0. Suppose
now that the thesis holds for some k, and we want to prove it for k + 1. As observed on Page 8, we have

r(β
[ω]

)ωγη ≈ rβ
[ω]

(β
[ω]

)ωγη and r(β̂[ω])ωγ′η ≈ rβ̂[ω](β̂[ω])ωγ′η, and by the induction hypothesis of the external

induction we have rβ̂[ω](β̂[ω])ωγ′η ≈ rβ
[ω]

(β̂[ω])ωγ′η. We thus have to prove that

rβ
[ω]

(β
[ω]

)ωγη ≈k+1 rβ
[ω]

(β̂[ω])ωγ′η .

If |β[ω]⟩ε(r) = ∅, this follows by Lemma 4.6 from the induction hypothesis saying that r′(β
[ω]

)ωγη ≈k r′(β̂[ω])ωγ′η

for all r′ ∈ |β[ω]⟩(r) ⊆ Q. Suppose thus that |β[ω]⟩ε(r) ̸= ∅, and take some state r′ ∈ |β[ω]⟩ε(r) ⊆ |β[ω]⟩ε(Q). By

well-formedness of δ we have r′ ∈ |β[ω]⟩ε(r′) = |β̂[ω]⟩ε(r′) and s ∈ |γ⟩ε(r′) = |γ′⟩ε(r′) for some s. In consequence

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

rβ
[ω]

(β
[ω]

)ωγη →∗
ε r′(β

[ω]
)ωγη →∗

ε r′γη →∗
ε sη and rβ

[ω]
(β̂[ω])ωγ′η →∗

ε r′(β̂[ω])ωγ′η →∗
ε r′γ′η →∗

ε sη, so we even

have rβ
[ω]

(β
[ω]

)ωγη ≈ sη ≈ β
[ω]

(β̂[ω])ωγ′η.

Because
⋂

k∈N(≈k) = (≈), from the above it follows that r(β
[ω]

)ωγη ≈ r(β̂[ω])ωγ′η for all r ∈ Q, so

qα̂[ω](β
[ω]

)ωγη ≈ qα̂[ω](β̂[ω])ωγ′η by Lemma 4.5. We conclude using the induction hypothesis, saying that

qδ
[ω]

η = qα[ω](β
[ω]

)ωγη ≈ qα̂[ω](β
[ω]

)ωγη.

6 Runs going down

In this section we concentrate on runs “going down”, that is, runs oriented on popping the stack. Such runs are
called D-almost-popping runs, and classes reachable by them are collected in Below(·) sets. We also prove basic
properties of these notions. As in previous sections, we assume some fixed ε-PDS P = (Q,Γ,A,∆).

Let D = (B+3) ·BC2|Q|+1+2 (it turns out that this value of D is suitable for our proofs presented in the next

section). Note that D ∈ 2|P|O(1)

. We say that a run π is D-almost-popping if there is no run π′
D that is parallel to

a suffix of π and satisfies StackGrowth(π′
D) ≥ D. For a set Ω of classes, we define Below(Ω) to be the set of

classes C for which there is a D-almost-popping run π from a configuration in a class in Ω to a configuration in C.
When Ω is a set of configurations (instead of classes), we abbreviate Below({[c]≈ | c ∈ Ω}) into Below(Ω), and
for a single configuration c we abbreviate Below({c}) into Below(c).

Observe that if π is D-almost-popping, then every run parallel to π is D-almost-popping as well. It follows that
if from a configuration c there exists a D-almost-popping run to a configuration in a class C, then such a run exists
from every configuration c′ ∈ [c]≈. Observe also that every suffix of a D-almost-popping run is D-almost-popping
as well. The next four lemmata bound the size of the Below(·) sets in specific situations:

Lemma 6.1. Let δ be a well-formed decomposition of degree at most C and height ℓ, and let η ∈ Γgs. Then there

are at most Cℓ · |P|D+1 classes C for which there is a D-almost-popping run π that starts in pδ
[ω]

η for some p ∈ Q,

leads to a configuration in C, and can be shifted to a run from pδ
[ω]

. In particular, for every P ⊆ Q,

|Below({pδ[ω]
η | p ∈ P})| ≤ |Below({rη | r ∈ |δ[ω]⟩(P)})|+ Cℓ · |P|D+1 .

Proof. The second part of the lemma easily follows from the first part. Indeed, consider a class C ∈ Below({pδ[ω]
η |

p ∈ P}). By definition, there exists a D-almost-popping run from pδ
[ω]

η for some p ∈ P ⊆ Q to a configuration

in C. If π can be shifted to a run from pδ
[ω]

, then C is among the at most Cℓ · |P|D+1 classes counted by the
first part of the lemma. If not, then π reaches a configuration with stack η, at some moment. For the first such

configuration rη we have r ∈ |δ[ω]⟩(P), so the second part of π, from rη to a configuration in C, witnesses that

C ∈ Below({rη | r ∈ |δ[ω]⟩(P)}).
We prove the first part by induction on the structure of δ. Suppose first that δ = X ∈ Γ, and consider a

D-almost-popping run π that starts in pXη for some p ∈ Q, and can be shifted to a run from pX. Necessarily
StackGrowth(π) < D (because π itself is also parallel to a suffix of π). Thus π leads to a configuration qµη
with |µ| = |X| + StackGrowth(π) ≤ D. The number of such configurations qµη, hence also the number of

classes of these configurations, is at most |Q| ·
∑D

i=0 |Γ|i ≤ |Q| · (|Γ|+ 1)D ≤ |P|D+1 (recall that η is fixed).

Next, suppose that δ = δ1 . . . δk. For every D-almost-popping run that starts in pδ
[ω]

η and can be shifted

to a run from pδ
[ω]

we can find the smallest i ∈ [1, k] such that π can be shifted to a run from pδ
[ω]

1 . . . δ
[ω]

i . By

minimality of i, the run π crosses a configuration of the form p′δ
[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k η; then the suffix π′ of π starting

there is a D-almost-popping run that starts in p′δ
[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k η and can be shifted to a run from p′δ
[ω]

i . By the
induction hypothesis, the number of classes reached by such runs π′, for every fixed i, is at most Cℓ−1 · |P|D+1.
There are C possible values for i, so in total we have at most Cℓ · |P|D+1 classes.

Finally, suppose that δ = ⟨|α, β, γ|⟩. For every D-almost-popping run π that starts in pδ
[ω]

η and can be shifted

to a run from pδ
[ω]

we have one of the following possibilities:
� Maybe π can be shifted to a run from pα[ω]. By the induction hypothesis, the number of classes reached by
such runs π is at most Cℓ−1 · |P|D+1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

� Maybe π cannot be shifted to a run from pα[ω] (hence π visits a configuration with stack (β
[ω]

)ωγη), but

π never pops (β
[ω]

)ω going to a configuration with stack γη. Consider the last moment when π visits a

configuration of the form r(β
[ω]

)ωγη; let π′ be the suffix of π starting at this moment. Let also π′′ be the

run starting in rβ
[ω]

(β
[ω]

)ωγη and performing exactly the same transitions as π′; after performing the first

transition the two runs coincide. We have rβ
[ω]

(β
[ω]

)ωγη ≈ r(β
[ω]

)ωγη, so π′ ans π′′ are parallel; in particular

π′′ is D-almost-popping. Moreover, π′′ can be shifted to a run from rβ
[ω]

, because otherwise π′′ and π′ would

visit a configuration with stack (β
[ω]

)ωγη again, contradicting the maximality of the starting point. Thus,
by the induction hypothesis, the number of classes reached by such runs π′′ is at most Cℓ−1 · |P|D+1.

� Finally, maybe at some moment π reaches r(β
[ω]

)ωγη, then goes to rγη, and then continues somehow.

Because (β
[ω]

)ω could be popped, we have r ∈ |β[ω]⟩ε(r), hence by well-formedness of δ there exists some

s ∈ |γ⟩ε(r); in other words, rγ →∗
ε s for some state s. Recall that π can be shifted to a run from pδ

[ω]
,

hence its suffix after visiting rγη can be shifted to a run ϱ from rγ. Thus, by determinism of ε-transitions,

ϱ consists entirely of ε-transitions. In consequence, the prefix π′ of π ending in r(β
[ω]

)ωγη leads to the same
class as π; moreover, π′ is parallel to π, so it is D-almost-popping as well. But π′ satisfies assumptions of
the previous case; no new classes can be reached.

Thus, the total number of classes under consideration is at most 2Cℓ−1 · |P|D+1 ≤ Cℓ · |P|D+1.

Lemma 6.2. Let δ1, . . . , δk be well-formed decompositions of degree at most C and height ℓ, and let η ∈ Γgs. Then

there are at most k ·Cℓ · |P|D+1 classes C for which there is a D-almost-popping run π that starts in pδ
[ω]

1 . . . δ
[ω]

k η

for some p ∈ Q, leads to a configuration in C, and can be shifted to a run from pδ
[ω]

1 . . . δ
[ω]

k .

Proof. As in the proof of Lemma 6.1 (the case of δ = δ1 . . . δk) we observe that for every class C under consideration

there is a D-almost-popping run that starts in p′δ
[ω]

i δ
[ω]

i+1 . . . δ
[ω]

k η, ends in a configuration in C, and can be shifted

to a run from p′δ
[ω]

i , for some i ∈ [1, k]. By Lemma 6.1, the number of such classes for every fixed i is at most
Cℓ · |P|D+1. There are k possible values for i, so in total we have at most k · Cℓ · |P|D+1 classes.

Lemma 6.3. Let π be a D-almost-popping run. Then there are at most |P|2BD− 1 classes C for which there exists
a D-almost-popping run π′ from π(|π|) to a configuration in C, but the composition π ◦π′ is not D-almost-popping.

Proof. We prove that every class C under consideration satisfies Dist([π(|π|)]≈, C) ≤ B · (2D− 1); by Lemma 4.4
this bounds the number of possible classes C by |P|B·(2D−1) ≤ |P|2BD − 1.

Consider thus a D-almost-popping run π′ that starts in π(|π|), ends in a class C, and is such that π ◦ π′ is
not D-almost-popping. By definition we then have a run ϱD that is parallel to a suffix of π ◦ π′ and satisfies
StackGrowth(ϱD) ≥ D. Because π′ is D-almost-popping, ϱD cannot be parallel to a suffix of π′. We can thus
represent ϱD as ϱ1 ◦ ϱ′D, where ϱ1 is parallel to a suffix of π, and ϱ′D is parallel to π′. Let also ϱ3 be a suffix of
ϱ′D for which StackGrowth(ϱ3) is maximal; let us write ϱ′D = ϱ2 ◦ ϱ3. Denote ki = StackGrowth(ϱi) for
i ∈ {1, 2, 3}. Because π and π′ are D-almost-popping, necessarily k1 ≤ D − 1 and k3 ≤ D − 1 (because ϱ1 and
ϱ3 are parallel to suffixes of π and π′, respectively). Recall also that StackGrowth(ϱD) = k1 + k2 + k3 ≥ D,
so k1 + k2 ≥ 1, implying that on the top of the stack of ϱ3(0) we have a real stack symbol, pushed there by
ϱ1 ◦ ϱ2 (i.e., not an expression of the form γω). Maximality of StackGrowth(ϱ3) means that we can then write
ϱ2(0) = pαη, ϱ3(0) = qXη, and ϱ3(|ϱ3|) = rβη (for α, β ∈ Γ∗), where |X|−|α| = k2 and |β|−|X| = k3, and ϱ2 ◦ϱ3
can be shifted to a run from pα to rβ (intuitively: the “stack height” during ϱ2 ◦ ϱ3 is minimal at ϱ3(0)). Due to
k3 ≤ D− 1 we have |β| = k3 + 1 ≤ D, and due to k1 ≤ D− 1 and k1 + k2 ≥ 1 we have |α| = 1− k2 ≤ k1 ≤ D− 1.
Thus

Dist([π(|π|)]≈, C) ≤ Dist(ϱ2(0), ϱ3(|ϱ3|)) ≤ Dist(pα, rβ) ≤ (|α|+ |β|) · B ≤ B · (2D− 1) ,

as we wanted; the third inequality is by Lemma 4.1.

Lemma 6.4. For every set Ω of classes,

|Below(Below(Ω))| ≤ |Below(Ω)| · |P|2BD .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. For every class C ∈ Below(Ω) we fix some D-almost-popping run πC from a configuration in a class in Ω to
a configuration in C. For every class D ∈ Below(Below(Ω)) \Below(Ω) we fix a class C(D) ∈ Below(Ω) such that
D ∈ Below(C(D)), and we fix a D-almost-popping run π′

D from πC(D)(|πC(D)|) to a configuration in D (recall that a
D-almost-popping run to a configuration in D exists not only from some configuration in C(D), but actually from
every configuration in C(D), in particular from πC(D)(|πC(D)|)). Because D ̸∈ Below(Ω), the composition πC(D)◦π′

D
is not D-almost-popping. Thus, for every class C0, the number of classes D ∈ Below(Below(Ω)) \ Below(Ω) with
C(D) = C0 is at most |P|2BD − 1, by Lemma 6.3. We then have at most |Below(Ω)| choices for the class
C0. Additionally, Below(Below(Ω)) may contain at most |Below(Ω)| classes from Below(Ω). We thus have
|Below(Below(Ω))| ≤ |Below(Ω)| · (|P|2BD − 1) + |Below(Ω)|, as required.

7 The core of the upper bound proof

Let us fix an ε-PDS P = (Q,Γ,A,∆) together with an initial configuration qinitXinit ∈ QΓ. Assuming that
(L(P), qinitXinit) is weakly bisimulation finite, we want to bound the number of its classes reachable from

[qinitXinit]≈, showing that it is in 22
|P|O(1)

.
Our first lemma says that if the ε-PDS is weakly bisimulation finite, then generalized configurations with

ω repetitions of some stack fragment are equivalent to configurations with a large enough number e ∈ N of
repetitions:

Lemma 7.1. Let q ∈ Q, let ⟨|α, β, γ|⟩ be a well-formed pumping triple, and let η ∈ Γ∗. If qinitXinit →∗ qα[1]β
[1]
γη,

and if (L(P), qinitXinit) is weakly bisimulation finite, then for some e ∈ N we have r(β
[ω]

)eγη ≈ r(β
[ω]

)ωγη for all
r ∈ |α[ω]⟩(q).

Proof. We assume that (L(P), qinitXinit) is weakly bisimulation finite, and we denote the number of its classes
by F . We prove the lemma for e = F |Q|. Let us formulate a version of the lemma suitable for induction: for

every q ∈ Q, every well-formed decomposition δ, and every η ∈ Γ∗, if qinitXinit →∗ qδ
[e]
η, then qδ

[e]
η ≈ qδ

[ω]
η.

We prove this statement by induction on the structure of δ, and in the case of δ = ⟨|α, β, γ|⟩ we also prove

that r(β
[ω]

)eγη ≈ r(β
[ω]

)ωγη for all r ∈ |α[ω]⟩(q). This gives us the actual statement of the lemma; note

that the assumption of the lemma, qinitXinit →∗ qδ
[1]
η (which can be reformulated as (qinitXinit, q) ∈ up0(δ

[1]
)),

is equivalent to the assumption of our inductive statement, qinitXinit →∗ qδ
[e]
η (which can be reformulated as

(qinitXinit, q) ∈ up0(δ
[e]
)), by Lemma 5.2.

If δ = X ∈ Γ, the thesis is trivial because δ
[ω]

= δ
[e]

= X.

Suppose that δ = δ1 . . . δk, and consider some i ∈ [1, k]. For every r ∈ |δ[ω]

1 . . . δ
[ω]

i−1⟩(q) we have

r ∈ |δ[e]1 . . . δ
[e]

i−1⟩(q) by Lemma 5.2, so qinitXinit →∗ qδ
[e]
η →∗ rδ

[e]

i δ
[e]

i+1 . . . δ
[e]

k η; by the induction hypothesis

we thus have rδ
[e]

i δ
[e]

i+1 . . . δ
[e]

k η ≈ rδ
[ω]

i δ
[e]

i+1 . . . δ
[e]

k η. By Lemma 4.5 this implies qδ
[ω]

1 . . . δ
[ω]

i−1δ
[e]

i δ
[e]

i+1 . . . δ
[e]

k η ≈
qδ

[ω]

1 . . . δ
[ω]

i−1δ
[ω]

i δ
[e]

i+1 . . . δ
[e]

k η. Having this for all i ∈ [1, k], we obtain qδ
[e]
η ≈ qδ

[ω]
η, as needed.

Finally, suppose that δ = ⟨|α, β, γ|⟩. Let R = |α[ω]⟩(q). By well-formedness of δ we have R = |α[ω](β
[ω]

)i⟩(q)
for all i ≥ 0. By applying the previous case to the decomposition δ̂ = αβ . . . β︸ ︷︷ ︸

e

we obtain that

qδ
[e]
η = qα[e](β

[e]
)eγη ≈ qα[ω](β

[ω]
)eγη .

The former configuration is reachable from qinitXinit, so the class of qα[ω](β
[ω]

)eγη is reachable from [qinitXinit]≈.

Moreover, qα[ω](β
[ω]

)eγη →∗ r(β
[ω]

)iγη for all i ∈ [0, e] and r ∈ R, so the classes of r(β
[ω]

)iγη are reachable as
well; they are among the F classes of our pointed ε-LTS. For every i ∈ [0, e] let

σi = ([r(β
[ω]

)iγη]≈)r∈R and Mi = min{EqLev(r(β[ω]
)iγη, r(β

[ω]
)ωγη) | r ∈ R} .

There exist at most F |Q| = e distinct tuples of |R| classes, so necessarily σi = σj for some i, j with 0 ≤ i < j ≤ e,
and thus also Mi = Mj . On the other hand Mj ≥ (j− i)+Mi by Lemma 5.4 applied to indices i, i+1, . . . , j− 1.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Thus necessarily Mi = ω, meaning that r(β
[ω]

)iγη ≈ r(β
[ω]

)ωγη for all r ∈ R. By Lemma 4.5 we also have

r(β
[ω]

)eγη ≈ r(β
[ω]

)e−i(β
[ω]

)ωγη ≈ r(β
[ω]

)ωγη for all r ∈ R, and qα[ω](β
[ω]

)eγη ≈ qα[ω](β
[ω]

)ωγη. Altogether we
obtain

qδ
[e]
η ≈ qα[ω](β

[ω]
)eγη ≈ qα[ω](β

[ω]
)ωγη = qδ

[ω]
η,

as needed.

We now have Lemma 7.2, our main technical lemma. It says that the number of possible classes of rγη is
small, assuming that the classes Cs of sη are fixed, and that γ belongs to a pumping triple ⟨|·, ·, γ|⟩ of a fixed type.
This is very powerful, because infinitely many stack contents γ may be handled this way (intuitively, γ is almost
arbitrary). The assumption that γ belongs to a pumping triple of a fixed type is very mild; we easily deal with
it later (using the fact that every stack content has a decomposition whose type comes from a small set).

Lemma 7.2. Let q ∈ Q, let δ0 = ⟨|α, β, γ0|⟩ be a well-formed decomposition of degree at most C and height at most

2|Q|+ 2, let (Cs)s∈|δ[ω]
0 ⟩(q) be a tuple of classes, and let K = |Below({Cs | s ∈ |δ[ω]

0 ⟩(q)})|. Let also Ω be the set of

pairs (γ, η) ∈ Γ∗ × Γ∗ for which

� ⟨|α, β, γ|⟩ tp
= δ0,

� qinitXinit →∗ qα[1]β
[1]
γη, and

� sη ∈ Cs for all s ∈ |δ[ω]

0 ⟩(q).
If (L(P), qinitXinit) is weakly bisimulation finite, then the set of tuples of classes

Θ = {([rγη]≈)r∈|α[ω]⟩(q) | (γ, η) ∈ Ω}

has at most (K + T)3|Q| elements, for some T ∈ 22
|P|O(1)

. Moreover, for every tuple (C′
r)r∈|α[ω]⟩(q) ∈ Θ we have

|Below({C′
r | r ∈ |α[ω]⟩(q)})| ≤ (K + 1) · U for some U ∈ 22

|P|O(1)

.

Proof. If Ω is empty, the thesis holds trivially. Assuming that Ω is nonempty, let us fix, for the duration of
the whole proof, a stack content η0 ∈ Γ∗ that occurs on the second coordinate of some pair from Ω. Then

sη0 ∈ Cs for all s ∈ |δ[ω]

0 ⟩(q), and thus the condition sη ∈ Cs can be reformulated as sη ≈ sη0. We can also write

K = |Below({sη0 | s ∈ |δ[ω]

0 ⟩(q)})|.
Denote α̃ = α[ω] and β̃ = β

[ω]
. Note that β̃ is obtained from β by adding ω exponents in all pumping triples

inside β, but the whole β remains repeated only once (in particular, if β is just a sequence of symbols, then

β̃ = β). Let also R = |α̃⟩(q). By well-formedness of δ0 we have R = |α̃β̃i⟩(q) for all i ≥ 0, as well as |β̃⟩(R) = R.

For (γ, η) ∈ Ω let eγ,η be the smallest number such that ([rβ̃eγ,ηγη]≈)r∈R = ([rβ̃ωγη]≈)r∈R. By Lemma 7.1
we have eγ,η ∈ N. We define also the constant D′ = (B+2) ·BC2|Q|+1 +1 and remark that D′ < D, recalling that
D = (B+ 3) · BC2|Q|+1 + 2.

Next, for all r ∈ R, all (γ, η) ∈ Ω, and all i ∈ [0, eγ,η − 1] we fix some jr,γ,η,i ∈ [i+ 1, eγ,η], θr,γ,η,i ∈ Γgs, and

some finite information τ r,γ,η,i (whose goal is to describe the class of rβ̃iγη) in such a way that either

(A) τ r,γ,η,i = [rβ̃iγη]≈ ∈ Below(qδ
[ω]

0 η0), or

(B) τ r,γ,η,i = (r′, t, µ, (τu)u∈|µ⟩(t)) with r′ ∈ R, t ∈ Q, µ ∈ ΓD′+1, where rβ̃iγη ≈ tµθr,γ,η,i, and for all u ∈ |µ⟩(t)
we have either (where the goal of τu is to describe the class of uθr,γ,η,i)

(B1) τu = (vu, ξu) ∈ Q× Γgs, where uθr,γ,η,i ≈ vuξuβ̃
jr,γ,η,iγη and vuξu ∈ Near(r′β̃B+2,BC2|Q|+1 + B), or

(B2) τu = [uθr,γ,η,i]≈ and Dist(Csu , [uθr,γ,η,i]≈) ≤ B for some su ∈ |δ[ω]

0 ⟩(q).
If there are multiple choices for some r, γ, η, i, we just take any of them. In the following claim we prove that
there is always at least one choice.

Claim 7.1. For all r ∈ R, all (γ, η) ∈ Ω, and all i ∈ [0, eγ,η − 1] there exist jr,γ,η,i, θr,γ,η,i, and τ r,γ,η,i satisfying
the above conditions.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Let r ∈ R, (γ, η) ∈ Ω, and i ∈ [0, eγ,η − 1]. To simplify the notation, let us write e for eγ,η, for the chosen
γ, η.

If [rβ̃iγη]≈ ∈ Below(qδ
[ω]

0 η0), we can take τ r,γ,η,i = [rβ̃iγη]≈, obtaining Item (A). Suppose thus that

[rβ̃iγη]≈ ̸∈ Below(qδ
[ω]

0 η0), in which case we prove Item (B). Note that qδ
[ω]

0 η0 ≈ qδ
[ω]

0 η ≈ qα̃β̃ωγη ≈ qα̃β̃eγη,

where the first equivalence holds by Lemma 4.5 because sη ≈ sη0 for all s ∈ |δ[ω]

0 ⟩(q), the second equivalence holds

by Lemma 5.7 because ⟨|α, β, γ|⟩ tp
= δ0, and the third equivalence holds by Lemma 4.5 because r′β̃ωγη ≈ r′β̃eγη

for all r′ ∈ |α̃⟩(q) (cf. the definition of e). We can thus write [rβ̃iγη]≈ ̸∈ Below(qα̃β̃eγη).

Recall that r ∈ R = |α̃β̃e−i⟩(q), which implies that there exists a sequence of states re, re−1, . . . , ri ∈ R such

that re ∈ |α̃⟩(q), and rj ∈ |β̃⟩(rj+1) for all j ∈ [i, e−1], and ri = r. It follows that there is a run from qα̃ to re and

runs from rj+1β̃ to rj for all j ∈ [i, e−1], each of them reading at most BC2|Q|+1 action symbols (cf. Lemma 5.5).

We compose these runs shifted appropriately, so that we obtain a run π from qα̃β̃eγη to rβ̃iγη (going through

reβ̃
eγη, re−1β̃

e−1γη, . . . , ri+1β̃
i+1γη).

Because [π(|π|)]≈ ̸∈ Below(π(0)), the run π is not D-almost-popping, which by definition means that there
exists a run π′

D that is parallel to a suffix of π and satisfies StackGrowth(π′
D) ≥ D. Let π′

3 be the shortest suffix
of π′

D satisfying StackGrowth(π′
3) = D′; note that the stack growth of π′

D changes by at most one in each step,

and D′ < D, so such a suffix exists. For some t1, t ∈ Q, X ∈ Γ, µ ∈ ΓD′+1, and θr,γ,η,i ∈ Γgs we can write

t1Xθr,γ,η,i
π′
3−→ tµθr,γ,η,i

(in particular, on the top of the stack of π′
3(0) there is a standard symbol, pushed earlier by π′

D). Note that π′
3

can be shifted to a run from t1X to tµ, and that π′
3 is parallel to a suffix π3 of π.

Because every non-popping transition reads an action symbol, π′
D reads at least D−D′ = BC2|Q|+1+1 action

symbols before π′
3 starts. Simultaneously reβ̃

eγη is reached by π before BC2|Q|+1 + 1 action symbols are read,

so before π3 starts. Let h be the smallest number in [i+ 1, e] such that rhβ̃
hγη is reached by π before π3 starts.

We take jr,γ,η,i = h− B− 2 and r′ = rh. Let us prove that jr,γ,η,i > i. Clearly jr,γ,η,i + B+ 2 > i, by definition.
The configuration π3(0) can be written as q1χβ

jr,γ,η,i+B+1γη for some q1 ∈ Q and χ ∈ Γgs. Let π1 and π2 be the

fragments of π before rhβ̃
hγη, and between rhβ̃

hγη and π3(0), respectively; we have

qα̃β̃eγη
π1−→ r′β̃jr,γ,η,i+B+2γη

π2−→ q1χβ̃
jr,γ,η,i+B+1γη

π3−→ rβ̃iγη .

Recalling how π was constructed, we see that π3 reads at most (jr,γ,η,i +B + 2− i) · BC2|Q|+1 action symbols (it

is a suffix of a run popping jr,γ,η,i + B + 2 − i copies of β̃); likewise π2 reads at most BC2|Q|+1 action symbols.
On the other hand, every non-popping transition reads some action symbol, so π′

3 (and π3 as well) reads at least
|µ| − 1 = D′ > (B+ 2) · BC2|Q|+1 of them. This implies that (jr,γ,η,i + B+ 2− i) · BC2|Q|+1 > (B+ 2) · BC2|Q|+1,

that is, jr,γ,η,i > i. By construction we also have r′ ∈ R, jr,γ,η,i ≤ e, and rβ̃iγη ≈ tµθr,γ,η,i.
It remains to define τu for u ∈ |µ⟩(t), satisfying Items (B1) or (B2). Take some u ∈ |µ⟩(t). Because

t1X →∗ tµ, we also have t1X →∗ u, so Dist(t1X,u) ≤ B by Lemma 4.1. On the other hand Dist(t1X,u) > 0,
because ε-transitions are deterministic and cannot push, while there is a run from t1X to u going through tµ (a

configuration with a larger stack). Since q1χβ̃
jr,γ,η,i+B+1γη ≈ t1Xθr,γ,η,i, there is a run ϱ from q1χβ̃

jr,γ,η,i+B+1γη
to a configuration c in [uθr,γ,η,i]≈, reading at most B action symbols. Let us choose c so that no ε-transitions are
performed at the end of this run (this is possible because ε-transitions do not change the class). Because ϱ reads
some action symbols, also the composition π2 ◦ ϱ does not end with an ε-transition. We have two cases:

� Suppose first that π2 ◦ ϱ may be shifted to a run from r′β̃B+2. This means that its final configuration
c may be written as vuξuβ̃

jr,γ,η,iγη, and the considered shift of the run π2 ◦ ϱ witnesses that vuξu ∈
Near(r′β̃B+2,BC2|Q|+1 + B); taking τu = (vu, ξu) we obtain Item (B1).

� Suppose conversely: π2 ◦ ϱ cannot be shifted to a run from r′β̃B+2. In other words, π2 ◦ ϱ (before its

end) reaches a configuration with stack β̃jr,γ,η,iγη. Recall that the stack in the π2 part always contains

β̃jr,γ,η,i+B+1γη as a suffix. Thus, ϱ pops the B+1 copies of β̃ while reading at most B action symbols; some
copy of β̃ is popped using only ε-transitions. After popping this copy, we reach a configuration of the form
r′′β̃jr,γ,η,i+kγη, where k ≥ 0 and r′′ ∈ |β̃⟩ε(Q). By well-formedness of δ0 this implies that |β̃⟩ε(r′′) = {r′′}

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

and |γ⟩ε(r′′) = |γ0⟩ε(r′′) ̸= ∅. Recall that ε-transitions are deterministic and that ϱ does not end with an ε-

transition. It follows that ϱ, after visiting r′′β̃jr,γ,η,i+kγη, necessarily pops all the remaining copies of β̃, then
pops γ, and then continues from suη, for some su ∈ Q. Because ϱ reads at most B action symbols (and ends

in c ∈ [uθr,γ,η,i]≈), we obtain Dist([suη]≈, [uθr,γ,η,i]≈) ≤ B. A prefix of π1 ◦π2 ◦ ϱ leading to r′′β̃jr,γ,η,i+kγη

can be shifted to a run from qα̃β̃e−jr,γ,η,i−k to r′′, witnessing that r′′ ∈ |α̃β̃e−jr,γ,η,i−k⟩(q) = |α̃⟩(q). Together
with r′′ ∈ |β̃⟩ε(r′′) and su ∈ |γ⟩ε(r′′) = |γ0⟩ε(r′′) this gives us su ∈ |δ[ω]

0 ⟩(q) (cf. Lemma 5.1). Thus, by
assumptions of the lemma, we have suη ∈ Csu , which gives us Dist(Csu , [uθr,γ,η,i]≈) ≤ B, as needed for Item
(B2), where we take τu = [uθr,γ,η,i]≈.

Observe that there is a number T ∈ 22
|P|O(1)

such that

|{τ r,γ,η,i | r ∈ R, (γ, η) ∈ Ω, i ∈ [0, eγ,η − 1]}| ≤ K + T .

Indeed, we have |Below(qδ
[ω]

0 η0)| possible values of τ r,γ,η,i conforming with Item (A) of the definition, which is

at most K +C2|Q|+2 · |P|D+1 by Lemma 6.1. For Item (B) we have |Q|2 · |Γ|D′+1 possibilities for r′, t, µ, and then
for every of at most |Q| states u we have

� at most |Near(r′β̃B+2,BC2|Q|+1 +B)| possibilities for vuξu in Item (B1), which is at most |P|BC2|Q|+1+B by
Lemma 4.4, and

� at most |Q| possibilities for a state su, and then at most |{C | Dist(Csu , C) ≤ B}| possibilities for [uθr,γ,η,i]≈
in Item (B2), which is at most |P|B by Lemma 4.4.

Claim 7.2. If r ∈ R, (γ, η), (γ′, η′) ∈ Ω, i ∈ [0, eγ,η − 1], i′ ∈ [0, eγ′,η′ − 1] are such that τ r,γ,η,i = τ r,γ′,η′,i′ , then

EqLev(rβ̃iγη, rβ̃i′γ′η′) ≥ min{EqLev(r′′β̃jr,γ,η,iγη, r′′β̃jr,γ′,η′,i′γ′η′) | r′′ ∈ R} .

Proof. If τ r,γ,η,i (which equals τ r,γ′,η′,i′) is defined according to Item (A), we have [rβ̃iγη]≈ = τ r,γ,η,i =

[rβ̃i′γ′η′]≈, that is, EqLev(rβ̃iγη, rβ̃i′γ′η′) = ω. Suppose that τ r,γ,η,i is defined according to Item (B): we

have τ r,γ,η,i = (r′, t, µ, (τu)u∈|µ⟩(t)), where rβ̃iγη ≈ tµθr,γ,η,i and rβ̃i′γ′η′ ≈ tµθr,γ′,η′,i′ . By Lemma 4.5 we thus
have

EqLev(rβ̃iγη, rβ̃i′γ′η′) ≥ min{EqLev(uθr,γ,η,i, uθr,γ′,η′,i′) | u ∈ |µ⟩(t)} .

For each u ∈ |µ⟩(t) we then consider the component τu:
� If it is defined according to Item (B2), we simply have [uθr,γ,η,i]≈ = τu = [uθr,γ′,η′,i′]≈, that is,
EqLev(uθr,γ,η,i, uθr,γ′,η′,i′) = ω.

� Suppose that τu is defined according to Item (B1): we have τu = (vu, ξu), where uθr,γ,η,i ≈ vuξuβ̃
jr,γ,η,iγη

and uθr,γ′,η′,i′ ≈ vuξuβ̃
jr,γ′,η′,i′γ′η′; moreover vuξu ∈ Near(r′β̃B+2,BC2|Q|+1+B), meaning that r′β̃B+2 →∗

vuξu, which implies that |ξu⟩(vu) ⊆ |β̃B+2⟩(r′) ⊆ |β̃B+2⟩(R) = R. By Lemma 4.5 we have

EqLev(uθr,γ,η,i, uθr,γ′,η′,i′) = EqLev(vuξuβ̃
jr,γ,η,iγη, vuξuβ̃

jr,γ′,η′,i′γ′η′)

≥ min{EqLev(r′′β̃jr,γ,η,iγη, r′′β̃jr,γ′,η′,i′γ′η′) | r′′ ∈ |ξu⟩(vu)}

≥ min{EqLev(r′′β̃jr,γ,η,iγη, r′′β̃jr,γ′,η′,i′γ′η′) | r′′ ∈ R} .

By combining the inequalities obtained above we get the thesis of the claim.

Claim 7.3. For all (γ, η) ∈ Ω we have eγ,η ≤ |Q| · (K + T).

Proof. Fix some (γ, η) ∈ Ω. For every i ∈ N let Mi = min{EqLev(rβ̃iγη, rβ̃ωγη) | r ∈ R}, and let ri ∈ R be

a state such that EqLev(riβ̃
iγη, riβ̃

ωγη) = Mi. To shorten the notation denote e = eγ,η, τ i = τ ri,γ,η,i, and
ji = jri,γ,η,i for i ∈ [0, e− 1].

By Lemma 5.4 we haveMi+1 ≥ 1+Mi for all i ∈ N. Note thatMi = ω implies ([rβ̃iγη]≈)r∈R = ([rβ̃ωγη]≈)r∈R,
which is impossible for i < e. Thus for all i < e we have Mi+1 > Mi with Mi ∈ N.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

It remains to prove that (ri, τ i) ̸= (ri′ , τ i′) whenever 0 ≤ i < i′ < e: because there are at most |Q| possibilities
for ri and at most K + T possibilities for τ i, this implies that e ≤ |Q| · (K + T). Suppose to the contrary that
(ri, τ i) = (ri′ , τ i′) for some i, i′ with 0 ≤ i < i′ < e. Recall that M0 < M1 < · · · < Me, that is, Mi < Mi′ .

Because EqLev(riβ̃
iγη, riβ̃

ωγη) = Mi and because EqLev(riβ̃
ωγη, ri′ β̃

i′γη) = Mi′ > Mi (recall that ri = ri′),

we have EqLev(riβ̃
iγη, ri′ β̃

i′γη) = Mi. Using Claim 7.2 we obtain

Mi = EqLev(riβ̃
iγη, ri′ β̃

i′γη) ≥ min{EqLev(r′′β̃jiγη, r′′β̃ji′γη) | r′′ ∈ R} .

For all r′′ ∈ R, because EqLev(r′′β̃jiγη, r′′β̃ωγη) ≥ Mji > Mi and EqLev(r′′β̃ωγη, r′′β̃ji′γη) ≥ Mji′ > Mi′ >

Mi, we also have EqLev(r′′β̃jiγη, r′′β̃ji′γη) > Mi. We thus obtain Mi > Mi, a contradiction.

To every (γ, η) ∈ Ω we now assign the tuple ((τ r,γ,η,0, jr,γ,η,0))r∈R. The number of possibilities for τ r,γ,η,0

is at most K + T, and the number of possibilities for jr,γ,η,0 ∈ [1, eγ,η] is at most |Q| · (K + T). We can safely
assume that |Q| ≤ T ≤ K + T, so the number of possible tuples is at most (K + T)3|Q|.

To prove the first part of the lemma, it remains to see that if the same tuple is assigned to two pairs
(γ, η), (γ′, η′) ∈ Ω then rγη ≈ rγ′η′ for all r ∈ R. Consider thus two such pairs (γ, η), (γ′, η′) ∈ Ω. Let
M = min{EqLev(rγη, rγ′η′) | r ∈ R}, and let rmin ∈ R be a state such that EqLev(rminγη, rminγ

′η′) = M . By
Claim 7.2 (used with i = i′ = 0) we have

M = EqLev(rminγη, rminγ
′η′) ≥ min{EqLev(r′′β̃jγη, r′′β̃jγ′η′) | r′′ ∈ R} ,

where j = jr,γ,η,0 = jr,γ′,η′,0. Next, for every r′′ ∈ R we prove that EqLev(r′′β̃jγη, r′′β̃jγ′η′) ≥ 1+M , considering
two cases:

� Suppose first that |β̃j⟩ε(r′′) = ∅. Then, by Lemma 4.6 we have

EqLev(r′′β̃jγη, r′′β̃jγ′η′) ≥ 1 + min{EqLev(rγη, rγ′η′) | r ∈ |β̃j⟩(r′′)} .

We can conclude recalling that |β̃j⟩(r′′) ⊆ |β̃j⟩(R) = R and that EqLev(rγη, rγ′η′) ≥ M for all r ∈ R.

� Conversely, suppose that there is some r ∈ |β̃j⟩ε(r′′) = |β̃⟩ε(|β̃j−1⟩ε(r′′)) ⊆ |β̃⟩ε(Q) (recall that j ≥ 1). By

well-formedness of δ0 we have r ∈ |β̃⟩ε(r) and s ∈ |γ0⟩ε(r) = |γ⟩ε(r) = |γ′⟩ε(r) for some s. This implies

that r′′β̃jγη →∗
ε rγη →∗

ε sη and r′′β̃jγ′η′ →∗
ε rγ′η′ →∗

ε sη′. Recalling that r ∈ R = |α̃⟩(q) we also have

s ∈ |β̃γ⟩ε(|α̃⟩(q)) = |δ[ω]

0 ⟩(q) (cf. Lemma 5.1). By assumptions of the lemma we then have sη ≈ sη′, implying

that EqLev(r′′β̃jγη, r′′β̃jγ′η′) = ω ≥ 1 +M .
It follows that M ≥ 1+M , which is only possible for M = ω; thus indeed rγη ≈ rγ′η′ for all r ∈ R. This finishes
the proof of the first part of the thesis.

Recall that every tuple in Θ is of the form ([rγη]≈)r∈R for some (γ, η) ∈ Ω. Thus, in order to obtain the
second part of the thesis, we should bound the size of the set Below({rγη | r ∈ R}) for every pair (γ, η) ∈ Ω. Fix
some (γ, η) ∈ Ω. We classify classes C ∈ Below({rγη | r ∈ R}) as follows:

1. Suppose that C ∈ Below(rγη) for a state r ∈ R such that [rγη]≈ ∈ Below(qδ
[ω]

0 η0). Then C ∈
Below(Below(qδ

[ω]

0 η0)), and the size of this set is at most (K + C2|Q|+2 · |P|D+1) · |P|2BD by Lemmata 6.1
and 6.4.

2. Suppose that C ∈ Below(rγη) for a state r ∈ R∩ |β̃⟩ε(Q). By well-formedness of δ0 we have r ∈ |β̃⟩ε(r) and
s ∈ |γ0⟩ε(r) = |γ⟩ε(r) for some s, which implies rγη →∗

ε sη and s ∈ |δ[ω]

0 ⟩(q). Then rγη ≈ sη ≈ sη0, so C
belongs to Below({sη0 | s ∈ |δ[ω]

0 ⟩(q)}), being a set of size K.

3. Suppose that C ∈ Below(C′) for a class C′ such that Dist(Cs, C′) ≤ B for some s ∈ |δ[ω]

0 ⟩(q). We then
have a run from sη0 ∈ Cs to a configuration in C′, reading at most B action symbols. While reading only
B action symbols one cannot push D > B stack symbols (only transitions reading a symbol can push),

so this run is necessarily D-almost-popping; we have C′ ∈ Below({Cs | s ∈ |δ[ω]

0 ⟩(q)}). This means that

C ∈ Below(Below({Cs | s ∈ |δ[ω]

0 ⟩(q)})); by Lemma 6.4 there are at most K · |P|2BD such classes C.
4. Let us assume that none of the three above cases occurs. Among D-almost-popping runs that start from a

configuration in {rγη | r ∈ R} and lead to a configuration in C, we choose a run πC reading the minimal

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

number of action symbols. Let us fix the state r for which πC(0) = rγη; we have at most |Q| possibilities for
that. Let us abbreviate j = jr,γ,η,0 and θ = θr,γ,η,0. Because the first case above does not apply, necessarily
τ r,γ,η,0 is of the form (r′, t, µ, (τu)u∈|µ⟩(t)). We have rγη ≈ tµθ, so there is also a D-almost-popping run π′

C

that starts in tµθ, leads a configuration in C, and reads the same number of action symbols as πC . The stack
µ ∈ ΓD′+1 can be seen as a sequence of D′ + 1 well-formed decompositions of height 0 (consisting of single
stack symbols). Thus, by Lemma 6.2, there are at most (D′+1) · |P|D+1 classes for which the run π′

C can be
shifted to a run from tµ. For the remaining classes C the run π′

C crosses a configuration with stack θ, that
is, a configuration uθ for some u ∈ |µ⟩(t). Let us now also fix this state u; we have at most |Q| possibilities
for that.
Of course every suffix of a D-almost-popping run is again D-almost-popping; in particular this is the case
for the suffix of π′

C starting in uθ, so C ∈ Below(uθ). Because the previous case does not apply, we

cannot have Dist(Cs, [uθ]≈) ≤ B for any s ∈ |δ[ω]

0 ⟩(q). Thus τu is necessarily of the form (vu, ξu), where

uθ ≈ vuξuβ̃
jγη. Let π′′

C be a D-almost-popping run from vuξuβ̃
jγη to a configuration in C, parallel to π′

C .

Because vuξu ∈ Near(r′β̃B+2,BC2|Q|+1+B), there is a run ϱ from r′β̃j+B+2γη to vuξuβ̃
jγη reading at most

BC2|Q|+1 + B < D action symbols. A run reading so few action symbols cannot push D stack symbols, so ϱ
is D-almost-popping. By Lemma 6.3 there are at most |P|2BD− 1 classes C for which the composition ϱ ◦π′′

C
is not D-almost-popping. For remaining classes C the run ϱ ◦ π′′

C is D-almost-popping.
Note that j + B + 2 ≤ eγ,η + B + 2 ≤ |Q| · (K + T) + B + 2. By Lemma 6.2 (applied to the sequence of
j +B+2 copies of β) there are at most (|Q| · (K +T) +B+2) ·C2|Q|+1 · |P|D+1 classes C for which the run

ϱ ◦ π′′
C can be shifted to a run from r′β̃j+B+2. For remaining classes C the run π′′

C crosses a configuration

with stack γη, that is, a configuration r′′γη for some r′′ ∈ |β̃j+B+2⟩(r′) ⊆ R. The suffix of π′′
C starting in

r′′γη is again D-almost-popping, that is, C ∈ Below(r′′γη). Because the second case above does not apply,

we have r′′ ̸∈ |β̃⟩ε(Q), so the part of π′′
C that pops the last copy of β̃ necessarily reads some action symbol;

the suffix of π′′
C starting in r′′γη reads less action symbols than πC . However this contradicts the minimality

of πC , so there are no such classes C.
By summing up the numbers obtained above we get a number U ∈ 22

|P|O(1)

such that we have |Below({rγη |
r ∈ R})| ≤ (K + 1) · U.

Let us reformulate Lemma 7.2 so that it uses a set of states P in place of a single state q:

Lemma 7.3. Let P ⊆ Q, let δ0 = ⟨|α, β, γ0|⟩ be a well-formed decomposition of degree at most C and height at

most 2|Q|+2, let (Cs)s∈|δ[ω]
0 ⟩(P)

be a tuple of classes, and let K = |Below({Cs | s ∈ |δ[ω]

0 ⟩(P)})|. Let also Ω be the

set of pairs (γ, η) ∈ Γ∗ × Γ∗ for which

� ⟨|α, β, γ|⟩ tp
= δ0,

� qinitXinit →∗ qα[1]β
[1]
γη for all q ∈ P , and

� sη ∈ Cs for all s ∈ |δ[ω]

0 ⟩(P).
If (L(P), qinitXinit) is weakly bisimulation finite, then the set of tuples of classes

Θ = {([rγη]≈)r∈|α[ω]⟩(P) | (γ, η) ∈ Ω}

has at most (K + T)3|Q|2 elements. Moreover, for every tuple (C′
r)r∈|α[ω]⟩(P) ∈ Θ we have |Below({C′

r | r ∈
|α[ω]⟩(P)})| ≤ (K + 1) · |Q| · U.

Proof. For every q ∈ P let Ωq be the set of pairs (γ, η) ∈ Γ∗×Γ∗ for which ⟨|α, β, γ|⟩ tp
= δ0, qinitXinit →∗ qα[1]β

[1]
γη,

and sη ∈ Cs for all s ∈ |δ[ω]

0 ⟩(q); let also Θq = {([rγη]≈)r∈|α[ω]⟩(q) | (γ, η) ∈ Ωq}. Lemma 7.2 implies that

|Θq| ≤ (K + T)3|Q| and that |Below({C′
r | r ∈ |α[ω]⟩(q)})| ≤ (K + 1) · U for every tuple (C′

r)r∈|α[ω]⟩(q) ∈ Θq.
Observe that Ω =

⋂
q∈P Ωq. In consequence, for every tuple (C′

r)r∈|α[ω]⟩(P) ∈ Θ and for every q ∈ P , the

sub-tuple (C′
r)r∈|α[ω]⟩(q) belongs to Θq. Because |α[ω]⟩(P) =

⋃
q∈P |α[ω]⟩(q) (i.e., every full tuple is completely

determined by the sub-tuples for all q ∈ P), we thus have |Θ| ≤ Πq∈P |Θq| ≤
(
(K + T)3|Q|)|Q|. Moreover, for

every tuple (C′
r)r∈|α[ω]⟩(P) ∈ Θ we have Below({C′

r | r ∈ |α[ω]⟩(P)}) =
⋃

q∈P Below({C′
r | r ∈ |α[ω]⟩(q)}), which

implies |Below({C′
r | r ∈ |α[ω]⟩(P)})| ≤ |Q| · (K + 1) · U, as required.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

While in Lemma 7.3 we describe the situation after appending γ to a stack η (where γ is the last component of

some pumping triple), in Lemma 7.4 we describe the situation after appending the whole δ
[1]

for a decomposition
δ. The decomposition δ may contain multiple pumping triples (also in a nested way); Lemma 7.4 uses Lemma 7.3
for each of these triples.

Lemma 7.4. Let P ⊆ Q, let δ0 be a well-formed decomposition of degree at most C and height ℓ ≤ 2|Q| + 2, let

(Cs)s∈|δ[ω]
0 ⟩(P)

be a tuple of classes, and let K = |Below({Cs | s ∈ |δ[ω]

0 ⟩(P)})|. Let also Ω be the set of pairs (δ, η)

(of a decomposition and a standard stack content) for which

� δ
tp
= δ0,

� qinitXinit →∗ qδ
[1]
η for all q ∈ P , and

� sη ∈ Cs for all s ∈ |δ[ω]

0 ⟩(P).
If (L(P), qinitXinit) is weakly bisimulation finite, then the set of tuples of classes

Θ = {([qδ[1]η]≈)q∈P | (δ, η) ∈ Ω}

has at most ((K + 1) · (|Q| · U + 1)C
ℓ

+ T)3|Q|2·Cℓ

elements. Moreover, for every tuple (C′
q)q∈P ∈ Θ we have

|Below({C′
q | q ∈ P})| ≤ (K + 1) · (|Q| · U+ 1)C

ℓ − 1.

Proof. We proceed by induction on the structure of δ0. Suppose first that δ0 = X ∈ Γ (i.e., ℓ = 0). For all

(δ, η), (δ̂, η′) ∈ Ω we have δ
[1]

= X = δ̂[1], and qXη ≈ qXη′ for all q ∈ P by Lemma 4.5 (because sη ≈ sη′

for all s ∈ |X⟩(q) ⊆ |X⟩(P) by assumption). It follows that |Θ| ≤ 1. Moreover the only tuple in Θ (if exists)
is of the form ([qXη]≈)q∈P for (X, η) ∈ Ω. By Lemma 6.1 we have |Below({qXη | q ∈ P})| ≤ K + |P|D+1.
Checking the definition of U in the proof of Lemma 7.2 we see that |P|D+1 ≤ U (already the component of U
needed to handle Case 1 is greater than |P|D+1), which gives us the desired inequality |Below({qXη | q ∈ P})| ≤
(K + 1) · (|Q| · U+ 1)− 1.

Next, suppose that δ0 = δ0,1 . . . δ0,k. Let P0 = P and Pi = |δ[ω]

0,i⟩(Pi−1) for i ∈ [1, k]. Note that Pk = |δ[ω]

0 ⟩(P).
For each i ∈ [0, k] and each tuple of classes σ = (Ds)s∈Pi

let Ki,σ = |Below({Ds | s ∈ Pi})|; when i ∈ [1, k] let

Ωi,σ be the set of pairs (δi, ηi) for which δi
tp
= δ0,i, qinitXinit →∗ qδ

[1]

i ηi for all q ∈ Pi−1, and sηi ∈ Ds for all s ∈ Pi;

let also Θi,σ = {([qδ[1]i ηi]≈)q∈Pi−1
| (δi, ηi) ∈ Ωi,σ}. The induction hypothesis (where as P we take Pi−1, as δ0 we

take δ0,i, and as (Cs)s∈Pi
we take σ) says that

|Θi,σ| ≤ ((Ki,σ + 1) · (|Q| · U+ 1)C
ℓ−1

+ T)3|Q|2·Cℓ−1

and(7.1)

Ki−1,σ′ ≤ (Ki,σ + 1) · (|Q| · U+ 1)C
ℓ−1

− 1 for all σ′ ∈ Θi,σ.(7.2)

Consider now some tuple (C′
q)q∈P ∈ Θ. It is of the form ([qδ

[1]
η]≈)q∈P for some (δ, η) ∈ Ω. Because

δ
tp
= δ0, we have δ = δ1 . . . δk, where δi

tp
= δ0,i for all i ∈ [1, k]. For i ∈ [0, k] let ηi = δ

[1]

i+1 . . . δ
[1]

k η, and

σi = ([sηi]≈)s∈Pi
. By definition of Ω we have qinitXinit →∗ qδ

[1]
η for all q ∈ P . By Lemmata 5.2 and 5.7 we

have Pi−1 = |δ[ω]

0,1 . . . δ
[ω]

0,i−1⟩(P) = |δ[ω]

1 . . . δ
[ω]

i−1⟩(P) ⊆ |δ[1]1 . . . δ
[1]

i−1⟩(P), which implies qinitXinit →∗ qδ
[1]

i ηi for all

q ∈ Pi−1 and i ∈ [1, k] (we can first push the whole stack content qδ
[1]
η, and then pop its topmost part). It follows

that (δi, ηi) ∈ Ωi,σi
, hence also σi−1 = ([qδ

[1]

i ηi]≈)q∈Pi−1
∈ Θi,σi

for all i ∈ [1, k]. Inequality (7.2) used for the
tuple σi−1 ∈ Θi,σi

gives us

Ki−1,σi−1 ≤ (Ki,σi + 1) · (|Q| · U+ 1)C
ℓ−1

− 1 for all i ∈ [1, k].

Notice that σk = ([sη]≈)s∈Pk
= (Cs)s∈Pk

and σ0 = ([qδ
[1]
η]≈)q∈P = (C′

q)q∈P ; in particular Kk,σk
= K and

Below({C′
q | q ∈ P}) = K0,σ0 . Thus, the above inequalities imply that

Ki,σi ≤ (K + 1) · (|Q| · U+ 1)(k−i)·Cℓ−1

− 1 for all i ∈ [0, k].

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

In particular, because k ≤ C, we have

Below({C′
q | q ∈ P}) = K0,σ0

≤ (K + 1) · (|Q| · U+ 1)C·C
ℓ−1

− 1 and(7.3)

Ki,σi
≤ (K + 1) · (|Q| · U+ 1)(C−1)·Cℓ−1

− 1 for all i ∈ [1, k].(7.4)

Inequality (7.3) already gives us the second part of the thesis of the lemma. Inequality (7.4) can be substituted
in Inequality (7.1), giving us

|Θi,σi
| ≤ ((K + 1) · (|Q| · U+ 1)C·C

ℓ−1

+ T)3|Q|2·Cℓ−1

.(7.5)

From the above it follows that for every tuple σ0 ∈ Θ we have found a sequence of tuples σ1, . . . ,σk such that
σi−1 ∈ Θi,σi

for all i ∈ [1, k], where σk = (Cs)s∈Pk
is fixed (does not depend on σ0). Notice that there are at

most |Θk,σk
| choices for σk−1, then at most |Θk−1,σk−1

| choices for σk−2, and so on. Thus, by Inequality (7.5),
we obtain the desired inequality

|Θ| ≤
(
((K + 1) · (|Q| · U+ 1)C

ℓ

+ T)3|Q|2·Cℓ−1)k ≤ ((K + 1) · (|Q| · U+ 1)C
ℓ

+ T)3|Q|2·Cℓ

.

Finally, suppose that δ0 = ⟨|α0, β0, γ0|⟩. Let R = |α[ω]
0 ⟩(P) and S = |δ[ω]

0 ⟩(P). Notice that |β[ω]

0 ⟩(R) = R,

by well-formedness of δ0. Let Ω3 be the set of pairs (γ, η) for which ⟨|α0, β0, γ|⟩
tp
= δ0, qinitXinit →∗ qα

[1]
0 β

[1]

0 γη
for all q ∈ P , and sη ∈ Cs for all s ∈ S; let also Θ3 = {([rγη]≈)r∈R | (γ, η) ∈ Ω3}. Going further, for every

tuple σ = (Dr)r∈R let Kσ = |Below({Dr | r ∈ R})|, let Ω2,σ be the set of pairs (β, η′) for which β
tp
= β0,

qinitXinit →∗ rβ
[1]
η′ for all r ∈ R, and rη′ ∈ Dr for all r ∈ R; let also Θ2,σ = {([rβ[1]

η′]≈)r∈R | (β, η′) ∈ Ω2,σ}.
Likewise, again for every tuple σ = (Dr)r∈R, let Ω1,σ be the set of pairs (α, η′′) for which α

tp
= α0,

qinitXinit →∗ qα[1]η′′ for all q ∈ P , and rη′′ ∈ Dr for all r ∈ R; let also Θ1,σ = {([qα[1]η′′]≈)q∈Q | (β, η′′) ∈ Ω1,σ}.
Finally, for every tuple σ = (C′

q)q∈P let K ′
σ = |Below({C′

q | q ∈ P})|. Lemma 7.3 gives us inequalities

|Θ3| ≤ (K + T)3|Q|2 ≤ ((K + 1) · (|Q| · U+ 1)C
ℓ

+ T)3|Q|2·Cℓ−1

and(7.6)

Kσ ≤ (K + 1) · |Q| · U ≤ (K + 1) · (|Q| · U+ 1)C
ℓ−1

− 1 for all σ ∈ Θ3.(7.7)

For every tuple σ (indexed by elements of R), by the induction hypothesis for β0 we obtain

|Θ2,σ| ≤ ((Kσ + 1) · (|Q| · U+ 1)C
ℓ−1

+ T)3|Q|2·Cℓ−1

and(7.8)

Kσ′ ≤ (Kσ + 1) · (|Q| · U+ 1)C
ℓ−1

− 1 for all σ′ ∈ Θ2,σ,(7.9)

and by the induction hypothesis for α0 we obtain

|Θ1,σ| ≤ ((Kσ + 1) · (|Q| · U+ 1)C
ℓ−1

+ T)3|Q|2·Cℓ−1

and(7.10)

K ′
σ′ ≤ (Kσ + 1) · (|Q| · U+ 1)C

ℓ−1

− 1 for all σ′ ∈ Θ1,σ.(7.11)

Consider now some tuple σ0 = (C′
q)q∈P ∈ Θ. It is of the form ([qδ

[1]
η]≈)q∈P for some (δ, η) ∈ Ω.

Because δ
tp
= δ0, we have δ = ⟨|α, β, γ|⟩, where α

tp
= α0, β

tp
= β0, |γ⟩ε = |γ0⟩ε, and up(γ) = up(γ0). Let

η′ = γη and η′′ = β
[1]
γη. Let also σ1 = ([rη′′]≈)r∈R and σ2 = ([rη′]≈)r∈R. By definition of Ω we have

qinitXinit →∗ qδ
[1]
η = qα[1]η′′ for all q ∈ P , so (α, η′′) ∈ Ω1,σ1 . We also have ⟨|α0, β0, γ|⟩

tp
= δ0, so (γ, η) ∈ Ω3. By

Lemmata 5.2 and 5.7 we have R = |α[ω]
0 ⟩(P) = |α[ω]⟩(P) ⊆ |α[1]⟩(P), which implies qinitXinit →∗ rβ

[1]
η′ for all

r ∈ R (we can first push the whole stack content qδ
[1]
η, and then pop its topmost part), and thus (β, η′) ∈ Ω2,σ2

.

In consequence σ0 = ([qα[1]η′′]≈)q∈P ∈ Θ1,σ1
, σ1 = ([rβ

[1]
η′]≈)r∈R ∈ Θ2,σ2

, and σ2 = ([rγη]≈)r∈R ∈ Θ3.
Inequalities (7.7), (7.9) and (7.11) give us

K ′
σ0

≤ (K + 1) · (|Q| · U+ 1)3C
ℓ−1

− 1 ≤ (K + 1) · (|Q| · U+ 1)C
ℓ

− 1 ,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

which is the second part of the thesis of the lemma. For i ∈ {1, 2} we rather need

Kσi ≤ (K + 1) · (|Q| · U+ 1)2C
ℓ−1

− 1 ≤ (K + 1) · (|Q| · U+ 1)(C−1)Cℓ−1

− 1 ,

Substituting this to Inequalities (7.8) and (7.10) we obtain that

max(|Θ1,σi
|, |Θ2,σ2

|) ≤ ((K + 1) · (|Q| · U+ 1)C·C
ℓ−1

+ T)3|Q|2·Cℓ−1

.(7.12)

From the above it follows that for every tuple σ0 ∈ Θ we have found tuples σ1,σ2 such that σ0 ∈ Θ1,σ1
,

σ1 ∈ Θ2,σ2
, and σ2 ∈ Θ3. There are at most |Θ3| choices for σ2, then at most |Θ2,σ2

| choices for σ1, and then
at most |Θ1,σ1

| choices for σ0. Thus, by Inequalities (7.6) and (7.12), we obtain the desired inequality

|Θ| ≤
(
((K + 1) · (|Q| · U+ 1)C

ℓ

+ T)3|Q|2·Cℓ−1)3 ≤ ((K + 1) · (|Q| · U+ 1)C
ℓ

+ T)3|Q|2·Cℓ

.

Theorem 7.1. If (L(P), qinitXinit) is weakly bisimulation finite, then it has at most Z classes for some Z ∈
22

|P|O(1)

.

Proof. Let C⊥ = [s]≈ for all s ∈ Q, which is the class containing configurations with no successors. Clearly

Below(C⊥) = 1. For every type of a well-formed decomposition (i.e., equivalence class of the
tp
= relation) fix

some decomposition δ0 having this type. For such a decomposition δ0 and for a state q ∈ Q let Ωq,δ0
be

the set of pairs (δ, η) for which δ
tp
= δ0, qinitXinit →∗ qδ

[1]
η, and sη ∈ C⊥ for all s ∈ |δ[ω]

0 ⟩(q). Let also

Θq,δ0
= {[qδ[1]η]≈ | (δ, η) ∈ Ωq,δ0

}. Assuming that δ0 has degree at most C and height at most 2|Q| + 2, by
Lemma 7.4 we have

|Θq,δ0
| ≤ V = ((1 + 1) · (|Q| · U+ 1)C

2|Q|+2

+ T)3|Q|2·C2|Q|+2

.

Consider now an arbitrary configuration qδ reachable from qinitXinit. Configurations with empty stack belong
to C⊥. If δ is nonempty, by Lemma 5.3 we obtain a well-formed decomposition δ of height at most 2|Q|+ 2 and
degree at most C. Let δ0 be the fixed representative of the type of δ. We see that (δ, ε) ∈ Ωq,δ0

, so [qδ]≈ ∈ Θq,δ0
.

By Lemma 5.6 there are at most 2|P|4·(C+1)2|Q|+3

choices for the type of δ, hence for the decomposition δ0.
Once q and δ0 is fixed, we have only V choices for the class [qδ]≈ ∈ Θq,δ0

. Thus, in total we have at most

Z = 1 + |Q| · 2|P|4·(C+1)2|Q|+3 · V ∈ 22
|P|O(1)

possible classes.

8 The Algorithm

In this section we prove the following theorem:

Theorem 8.1. Given an ε-PDS P = (Q,Γ,A,∆), its initial configuration qinitXinit ∈ QΓ, and a number Z ∈ N,
one can decide in time O(Z |P|O(1)

) whether the number of classes of P reachable from [qinitXinit]≈ is at most Z.

Having in mind results from the previous section (in particular, Theorem 7.1), it follows that the weak
bisimulation finiteness problem for ε-PDS can be solved in 2-ExpTime.

We remark that the algorithm provided by Theorem 8.1 not only answers Yes or No, but in the case of a
positive answer, it actually computes a description of the weak bisimulation quotient of P, which is an ε-LTS that
is weakly bisimilar to P and has at most Z configurations.

Let us fix the input to our problem: an ε-PDS P, an initial configuration qinitXinit, and a bound Z ∈ N. The
algorithm will compute relations ≈k over the set of reachable configurations, for consecutive k = 0, 1, 2, By
definition we have (≈) ⊆ (≈k+1) ⊆ (≈k) for all k ∈ N, and it is easy to see that if (≈k+1) = (≈k) for some k, then
necessarily (≈) = (≈k). It follows that either every ≈k+1 has more classes than ≈k until the number of classes
starts exceeding Z, or at some moment, necessarily for k < Z, the number of classes stops growing at quantity at
most Z with (≈) = (≈k+1) = (≈k). It is thus enough to examine the first Z relations ≈k, checking whether any
of them has more than Z classes.

In order to avoid special treatment of configurations with empty stack, we assume that such configurations
can never be reached. This is without loss of generality: we can add a new initial configuration q′initX

′
init together

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

with a transition q′initX
′
init

init
↪−−→ qinitXinitX

′
init (for a fresh action symbol init). After performing this transition, the

system behaves as previously, but has additionally the X ′
init symbol on the bottom on the stack; such a change

adds exactly one new weak bisimulation class, containing the new initial configuration.
Let us now see how we can represent the relations ≈k in a finite, succinct way. First, note that ≈0 always

has exactly one class, so we need no representation for it. Consider now some k ≥ 1. Note that a class of ≈k is
uniquely described by a tuple of classes of ≈k−1 reachable after reading a single action symbol. More formally,
for a configuration c we define

Desck(c) = {(a, [d]k−1) | c
a

=⇒ d, a ∈ A} ;

then we have Desck(c) = Desck(c
′) ⇔ c ≈k c′. We can thus take Desck(c) as a finite representation of the class

[c]k. By Lemma 4.4 Desck(c), as a set, has size at most |P|, and while storing it in memory, we can remember
every class [d]k−1 as a number of this class on the list of all classes of ≈k−1. The memory size needed for storing
Desck(c) is thus negligible compared to the desired complexity of our algorithm.

In our algorithm, beside of a list of classes, we also compute a partial function Consk saying how a class
changes when a stack grows. It is a function that assigns a class of ≈k to some tuples (q,X, (Cr)r∈|X⟩(q)) with
q ∈ Q, X ∈ Γ, and Cr being classes of ≈k, defined by taking Consk(q,X, ([rα]k)r∈|X⟩(q)) = [qXα]k for all
reachable configurations qXα. Note that ([rα]k)r∈|X⟩(q) = ([rα′]k)r∈|X⟩(q) implies qXα ≈k qXα′ by Lemma 4.5,
meaning that [qXα]k depends only on the classes [rα]k (without necessarily knowing the stack content α). While
storing Consk, we represent both the result and the classes Cr as their numbers on the list of all reachable classes.

Moreover, for every reachable class C of ≈k let Upk(C) be the class of ≈k−1 containing C (recall that c ≈k c′

implies c ≈k−1 c′).
We have already said that our algorithm computes the relations ≈k for consecutive k = 0, 1, 2, Now we

can be more precise: for every k, it computes a list of reachable classes of ≈k, together with the functions Consk
and Upk (except for Up0, which makes no sense). This can be done easily for k = 0, because ≈0 is a trivial
relation consisting of a single class.

When we start the computation for some k ≥ 1, we assume that the objects mentioned above are already
computed for k − 1. Note first that whenever we have some new reachable class C of ≈k, which means that we
know Desck(c) for c ∈ C, then we can easily compute Upk(C). Indeed, if k = 1, then Upk(C) is always the only
class of ≈0, and if k ≥ 2, recall that Upk(C) is a class described by Desck−1(c) for configurations c ∈ C, and we
have

Desck−1(c) = {(a,Upk−1(D)) | (a,D) ∈ Desck(c)} .

The function Consk is computed by considering configurations with stack height n, for consecutive n =
1, 2, 3, Formally, we define Consk,n to be Consk with domain restricted to tuples (q,X, ([rα]k)r∈|X⟩(q)) for
reachable configurations qXα satisfying |Xα| ≤ n. Note that the domain of Consk,n only becomes larger when
n increases. For n = 0 the domain of this function is empty (we cannot have |Xα| ≤ 0). For n ≥ 1 we assume
that Consk,n−1 is already computed. We first compute the domain of Consk,n using the following lemma:

Lemma 8.1. The domain of Consk,n is the set of
� tuples (q,X, ()r∈∅) with qinitXinit →∗ qX, and
� tuples (q,X, (Consk,n−1(r, Y, (Cs)s∈|Y ⟩(r)))r∈|X⟩(q)) such that in the domain of Consk,n−1 there is a tuple

(p′, Y ′, (Cs)s∈|Y ′⟩(p′)), and there is a transition p′Y ′ a
↪−→ pX ′Y , and pX ′ →∗ qX.

Proof. By definition, the domain of Consk,n contains tuples (q,X, ([rα]k)r∈|X⟩(q)) for reachable configurations
qXα with |Xα| ≤ n. Consider such a configuration. If |Xα| = 1 (i.e., α = ε), we have qinitXinit →∗ qX; the
tuple is added by the first item of the lemma. Note that we have |X⟩(q) = ∅ thanks to our assumption that no
configurations with empty stack are reachable.

Conversely, suppose that 2 ≤ |Xα| ≤ n, consider a run from qinitXinit to qXα, and consider the last
configuration with stack of height |α| on this run. It is of the form p′Y ′α′, and α = Y α′ for some Y . Then

we have a transition p′Y ′ a
↪−→ pX ′Y leading to pX ′α. The remaining part of the run may be shifted to a run

from pX ′, so we have pX ′ →∗ qX. The configuration p′Y ′α′ is reachable, and |Y ′α′| ≤ n − 1, so the tuple
(p′, Y ′, (Cs)s∈|Y ′⟩(p′)) is in the domain of Consk,n−1. Thus our original tuple fulfils the conditions of the second
item of the lemma.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

The proof of the opposite inclusion (i.e., that every tuple specified in the lemma belongs to the domain of
Consk,n) is very similar, and thus it is left to the reader.

Using standard means we can compute in time polynomial in |P|:
� the set of pairs pX, qY of configurations with stack of height 1 such that pX →∗ qY , and
� the set |X⟩(p) for every configuration pX with stack of height 1.

Thus, Lemma 8.1 allows us to easily find the domain of Consk,n based on the previously computed function
Consk,n−1.

Next, we compute values of this function. Take some tuple (q,X, (Cr)r∈|X⟩(q)) in its domain. Imagine also a
reachable configuration qXα such that Cr = [rα]k for r ∈ |X⟩(q) and |Xα| ≤ n (the algorithm described below
does not depend on α, only its correctness proof does). Notice that the height of the stack content α is at most
n− 1, so Upk(Cr) is already known. We have two cases:

� If (q,X) is in ε-mode, then for some r we have a popping transition qX
ε

↪−→ r (and |X⟩(q) = {r}); we have
qXα ≈k rα, so we should take Cr as the value of Consk,n.

� Otherwise (q,X) is not in ε-mode. We compute the description Desck(qXα) of the class [qXα]k from
definition, by listing all possible classes of ≈k−1 that can be reached from qXα after reading a single letter.
To this end, we consider all transitions starting in (q,X):

– for transitions of the form qX
a

↪−→ r we have qXα
a

=⇒ rα and [rα]k−1 = Upk(Cr);
– for transitions of the form qX

a
↪−→ sY we have qXα

a
=⇒ sY α and

[sY α]k−1 = Consk−1(s, Y, (Upk(Cr))r∈|Y ⟩(s))

(where |Y ⟩(s) ⊆ |X⟩(q));
– for transitions of the form qX

a
↪−→ tZY we have qXα

a
=⇒ tZY α and

[tZY α]k−1 = Consk−1(t, Z, (Consk−1(s, Y, (Upk(Cr))r∈|Y ⟩(s)))s∈|Z⟩(t))

(where |Y ⟩(s) ⊆ |X⟩(q) for s ∈ |Z⟩(t)).
This finishes the description of how to compute Consk,n knowing Consk,n−1 and Consk−1. Of course the

values of Consk,n do not depend on n, only the domain of this function grows. We can also see (cf. Lemma 8.1)
that if Consk,n has the same domain as Consk,n−1, then the domain will not grow any more. For such n we
have Consk = Consk,n; we can stop the computation. Recall that we also stop the computation whenever we
see more than Z classes of ≈k. Thus, in the domain of Consk,n we may have at most |Q| · |Γ| · Z |Q| tuples, and
this is simultaneously a bound for n. As already said, the considered values of k are bounded by Z. It follows

that the running time is in O(Z |P|O(1)

), as declared.

9 Lower bound

Our lower bound is shown via a reduction from the acceptance problem of exponentially space-bounded alternating
Turing machines. These are being introduced in Section 9.1. Section 9.2 recalls Defender’s Forcing gadgets and
introduces a gadget for checking if a certain prefix of the stack is in a given regular language. Encodings of
numbers and configurations are subject of Section 9.3 and Section 9.4, respectively. A gadget for verifying if a
certain prefix of the stack consists of two consecutive configurations of an exponentially space-bounded alternating
Turing machine is introduced in Section 9.5, whereas Section 9.6 provides a gadget for pushing a successor
configuration on top of a configuration that can be found as the prefix of the stack. The actual simulation of an
exponentially space-bounded alternating Turing machine is given in Section 9.7. Building upon these gadgets,
Section 9.8 provides the final reduction from the acceptance problem of exponentially space-bounded alternating
Turing machines to the weak bisimulation finiteness problem for ε-PDS.

9.1 Alternating Turing machines. An alternating Turing machine is a tuple M = (Q,Υ,Σ, T, q0,□), where
� Q = Q∀ ⊎Q∃ is a finite set of states that is partitioned into universal states Q∀ and existential states Q∃,
� Υ is a finite tape alphabet,
� Σ ⊆ Υ is an input alphabet,
� T ⊆ Q×Υ×Q×Υ× {−1, 1} is a set of transitions,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

� q0 ∈ Q is an initial state, and
� □ ∈ Υ \ Σ is a blank symbol.

A configuration of M is a word of the form u(p, U)v, where u, v ∈ Υ∗ and (p, U) ∈ Q × Υ. It is universal if
p ∈ Q∀ and existential if p ∈ Q∃. For all (p, U) ∈ Q × Υ we define T(p,U) = {(p, U, q, Y, d) ∈ T | q ∈ QM, Y ∈
Υ, d ∈ {−1, 1}}. By ConfM we denote the set of configurations of M. For each pair µ = (t, Z) ∈ T × Υ, where
t = (p, U, q, Y, d) we define the relation ⊢µ⊆ ConfM × ConfM, where w,w′ ∈ ConfM:

w ⊢µ w′ ⇐⇒ ∃u, v ∈ Υ∗.

{
w = uZ(p, U)v and w′ = u(q, Z)Y v if d = −1,

w = u(p, U)Zv and w′ = uY (q, Z)v if d = 1.

Note that if w ⊢µ w and w ⊢µ w′′, then w′ = w′′. We say that w′ a successor configuration of w if w ⊢µ w′

for some µ ∈ T ×Υ. Since we use them for showing 2-ExpTime-hardness, we assume without loss of generality
that our alternating Turing machines do not contain any cyclic computations, that is, computations of the form
w(0) ⊢ w(1) · · · ⊢ w(n), where n ≥ 1 and w(0) = w(n). This implies that we can do induction on the length of
the longest computation starting in a given configuration. We define the set of accepting configurations as the
smallest set C ⊆ ConfM that satisfies the following properties:

� For every existential configuration w ∈ Υ∗(p, U)Υ∗ for which there exists some t ∈ T(p,U), some Z ∈ Υ and
some configuration w′ ∈ C with w ⊢(t,Z) w

′, we have w ∈ C.
� For every universal configuration w ∈ Υ∗(p, U)Υ∗ such that for all t ∈ T(p,U) there exists some Z ∈ Υ and
some configuration w′ ∈ C with w ⊢(t,Z) w

′, we have w ∈ C.
We note that a configuration w ∈ Υ∗(p, U)Υ∗ with T(p,U) = ∅ is accepting if, and only if, it is universal.

Given a function f : N → N with f(n) ≥ n for all n ∈ N, the language of an f -space-bounded alternating
Turing machine M is given by

L(M) = {x0 . . . xn−1 ∈ Σn | n ≥ 1, (q0, x0)x1 . . . xn−1□
f(n)−n is accepting}.

Theorem 9.1. Weak Bisimulation Finiteness for ε-PDS is 2-ExpTime-hard under polynomial time
reductions.

Fix any language L in 2-ExpTime. Fix a 2ℓ(n)-space-bounded alternating Turing machine M =
(QM,Υ,ΣM, T, q0,□) such that L = L(M), where ℓ is a polynomial (it is folklore that such a machine ex-
ists for every language in 2-ExpTime). Moreover fix some input x = x0 . . . xn−1 ∈ Σn

M. We construct in time
polynomial in n an ε-PDS P = (Q,Γ,A,∆) and a configuration q↕# ∈ QΓ of P such that x ∈ L(M) if, and only
if, (L(P), q↕#) is not weakly bisimulation finite. This is sufficient since 2-ExpTime is closed under complement.

In the following let us identify ℓ with ℓ(n) and let N = 2ℓ. We assume without loss of generality that ℓ ≥ 2
and hence N − 1 > n. We set Γ = {#, 0, 1} ∪Υ ∪ (QM ×Υ) ∪ {#i | i ∈ [0, ℓ− 1]}.

Note that configurations of M needed for accepting inputs of length n are words from the language⋃N−1
k=0 Υk(QM×Υ)ΥN−1−k. For every such configuration w = w0 . . . wN−1 we write Pos(w) to denote the unique

k ∈ [0, N − 1] such that wk ∈ QM ×Υ, hereby denoting the position of the read/write head of the configuration
w.

The following lemma is an immediate consequence of the definition of ⊢µ:

Lemma 9.1. For all µ = (t, Z) ∈ T ×Υ with t = (p, U, q, Y, d) and all configurations w and w′ of M we have w ⊢µ

w′ if, and only if, Pos(w′) = Pos(w)+d and hµ(w) = h′
µ(w

′), where hµ, h
′
µ : (Υ∪(QM×Υ))∗ → (Υ∪(QM×Υ))∗

are the letter-to-letter morphisms such that for all X ∈ Υ ∪ (QM ×Υ) we have

hµ(X) =

{
Y if X = (p, U),

X otherwise,
and h′

µ(X) =

{
Z if X = (q, Z),

X otherwise.

Throughout Section 9 we constantly add fresh rules; they implicitly come with fresh control states and action
symbols. Whenever we introduce such rules, we prove that certain configurations, whose control states appear
in those rules, have certain properties. These properties however are not influenced by rules that are introduced
later. In particular, if we describe rules starting in some pair (q, x) ∈ Q×Γ, then the reader may assume that no
other rules starting in this pair are introduced later in the text. Before we introduce these rules we will introduce
some gadgets in the next section.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

9.2 Gadgets for the lower bound construction. Inspired by the “Defender’s forcing” technique of Jančar
and Srba [10], given a finite set of control states {Source,Source′} ∪ {Targeti,Target

′
i | i ∈ I} and a stack

symbol X, we introduce a notation

⟨Source,Source′⟩X Def
↪−−−→ {⟨Targeti,Target

′
i⟩X | i ∈ I}

to denote the following set of rules, where all action symbols and control states that are not in {Source,Source′}
∪ {Targeti,Target

′
i | i ∈ I} are newly introduced and where i, j ∈ I:

SourceX
a

↪−→ WaitX , Source′X
a

↪−→ Choose′iX ,

SourceX
a

↪−→ Choose′iX ,

WaitX
ai

↪−−→ TargetiX , Choose′iX
ai

↪−−→ Target′
iX ,

Choose′iX
aj

↪−−→ TargetjX if i ̸= j.

The wit of the gadget, justified in details in Jančar and Srba [10, Section 4], is that for all stack contents γ ∈ Γ∗

we have
SourceXγ ≈ Source′Xγ ⇐⇒ ∃i ∈ I.TargetiXγ ≈ Target′

iXγ .

Analogously (by adding appropriate push rules at the end), given a set of control states {Source,Source′}∪
{Target,Target′}, a set of stack symbols {X} ∪ {Yi ∈ Γ | i ∈ I}, one can construct a gadget

⟨Source,Source′⟩X Def
↪−−−→ ⟨Target,Target′⟩ {YiX | i ∈ I}

such that for all stack contents γ ∈ Γ∗ we have SourceXγ ≈ Source′Xγ if, and only if, TargetYiXγ ≈
Target′YiXγ for some i ∈ I. In any case, both gadgets have size O(|I|).

Going further, given a finite language L ⊆ Γ∗ of the form L = Σ1 . . .Σm, where Σj ⊆ Γ for all j ∈ [1,m], by
suitably cascading the above gadget m times, one can construct a gadget

⟨Source,Source′⟩X Def
↪−−−→ ⟨Target,Target′⟩ L

such that for all stack contents γ ∈ Γ∗ we have SourceXγ ≈ Source′Xγ if, and only if, there exists some w ∈ L
such that Targetwγ ≈ Target′wγ.

A deterministic finite automaton (DFA) is a tuple A = (S,Σ, δA, s0, F), where S is a finite set of states,
Σ is a finite alphabet, δA : S × Σ → S is the transition function, s0 ∈ S is the initial state, and F ⊆ S
is a set of final states. The function δA is naturally extended to a function from S × Σ∗ inductively via
δA(s, ε) = s and δA(s, aw) = δA(δA(s, a), w) for all a ∈ Σ and all w ∈ Σ∗. A language L ⊆ Σ∗ is regular if
L = L(A) = {w ∈ Σ∗ | δA(s0, w) ∈ F} for some DFA A = (S,Σ, δA, s0, F). Finally, given a regular language
L ⊆ Σ∗, where Σ ⊆ Γ \ {#}, and two control states p and p′ we introduce a gadget

⟨p, p′⟩#
Prefix-Check#L#

↪−−−−−−−−−−−−→

such that for all stack contents of the form γ = #θ#β, where θ ∈ Σ∗ and β ∈ Γ∗, we have pγ ≈ p′γ if, and only
if, θ ∈ L. Assuming some DFA A = (S,Σ, δA, s0, F) such that L(A) = L, we construct the gadget as follows,
where all symbols and control states (except for p and p′) are freshly introduced, where s ∈ S, where s′ is a copy
of every such s ∈ S, and where a ∈ Σ:

p#
1

↪−→ s0 , p′#
1

↪−→ s′0 ,

sa
ε

↪−→ δA(s, a) , s′a
ε

↪−→ δA(s, a)
′ ,

s#
2

↪−→ t if s ∈ F , s′#
2

↪−→ t′ if s ∈ F ,

s#
3

↪−→ t if s ̸∈ F .

Since the above rules only allow to execute runs reading at most two action symbols, note that, by construction,
both {[pγ]≈ | γ ∈ Γ∗} and {[p′γ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are weakly bisimulation finite.
For all of the prefix checking rules that we will introduce below where, say, L is an involved regular language, it
holds implicitly that one can compute in polynomial time in n = |x| a DFA A with L(A) = L.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

9.3 Encoding numbers. The binary presentation of a number k ∈ [0, N − 1] is defined as

αk = αk,ℓ−1 . . . αk,0, where αk,i ∈ {0, 1} are such that k =

ℓ−1∑
i=0

2i · αk,i .

In particular, note that α0 = 0ℓ and αN−1 = α2ℓ−1 = 1ℓ. Conversely, for each u ∈ {0, 1}ℓ let u ∈ N
be the unique k ∈ [0, N − 1] such that α(k) = u. For any two k, k′ ∈ [0, N − 1] with k ̸= k′, we define
MSB(k, k′) = max{i ∈ [0, ℓ− 1] | αk,i ̸= αk′,i} to be the most significant bit in which the binary presentations of
k and k′ differ.

In this subsection we present rules allowing us to verify whether one number is a successor of another number.
We start by adding the following set of rules, where i, j ∈ [0, ℓ− 1] and b ∈ {0, 1}:

Incib
s

↪−→ Inci,ℓ−1b , Ĩncb
s

↪−→ Ĩncℓ−1b ,

Inci,jb
b

↪−→ Inci,j−1 if j > i,

Inci,j0
1

↪−→ Inci,j−1 if j = i, Ĩncjb
b

↪−→ Ĩncj−1 .

Inci,j1
0

↪−→ Inci,j−1 if j < i,

Observe that there is no rule involving Inci,−1 nor Ĩnc−1 on its left-hand side. We have the following
characterization:

Lemma 9.2. For all i ∈ [0, ℓ − 1], all k, k′ ∈ [0, N − 1], and all stack contents γ, γ′ ∈ Γ∗ we have Inciαkγ ≈
Ĩncαk′γ′ if, and only if, k′ = k+1 and i = MSB(k, k′). Moreover, both {[Inciγ]≈ | γ ∈ Γ∗} and {[Ĩncγ]≈ | γ ∈ Γ∗}
are finite sets of classes all of which are weakly bisimulation finite.

Proof. The first statement of the lemma follows immediately from inspection of the above rules and the equivalence
of the following two statements:

� k′ = k + 1 and i = MSB(k, k + 1);
� the following three conditions hold for all j ∈ [0, ℓ− 1]:

– αk,j = αk′,j if j > i,
– (αk′,j = 1 and αk,j = 0) if j = i, and
– (αk,j = 1 and αk′,j = 0) if j < i.

The second statement follows from inspection of the above rules, which imply that the weak bisimulation class
both of Incγ and of Ĩncγ′ is determined by the first ℓ letters of γ.

We now add a few more rules. Assuming that the top of the stack is of the form αk#iXαk′ for some
X ∈ Υ∪ (QM ×Υ), these rules allow us to verify, starting from two control states Inc and Inc′, whether it holds
that k′ = k + 1 and i is the most significant bit position in which k and k′ differ. In the following rules we have
X ∈ Υ ∪ (QM ×Υ), i ∈ [0, ℓ− 1], and b ∈ {0, 1}:

Incb
a

↪−→ Ĩncb , Inc′b
a

↪−→ Temp ,

Tempb
ε

↪−→ Temp ,

Temp#i
ε

↪−→ Tempi ,

TempiX
ε

↪−→ Inci .

Lemma 9.3. For all k, k′ ∈ [0, N − 1], all i ∈ [0, ℓ − 1], all X ∈ Υ ∪ (QM × Υ), and all γ ∈ Γ∗ we
have Incαk#iXαk′γ ≈ Inc′αk#iXαk′γ if, and only if, k′ = k + 1 and MSB(k, k′) = i. Moreover, both
{[Incγ]≈ | γ ∈ Γ∗} and {[Inc′γ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are weakly bisimulation
finite.

Proof. Looking at the first rules what will be applied (yielding an a-labeled transition, possibly followed by

a sequence of ε-transitions) we see that Incαk#iXαk′γ ≈ Inc′αk#iXαk′γ if, and only if, Ĩncαk#iXαk′γ ≈
Inciαk′γ, which by Lemma 9.2 holds if, and only if, k′ = k+1 and i = MSB(k, k′). That the sets {[Incγ]≈ | γ ∈ Γ∗}
and {[Inc′γ]≈ | γ ∈ Γ∗} are both finite sets of classes all of which are weakly bisimulation finite follows immediately
from inspection of the above rules and Lemma 9.2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

9.4 Encoding configurations. The encoding of a configuration w = w0 . . . wN−1 of M is defined to be the
following word βw ∈ Γ∗:

βw = w0α0

(
N−1∏
i=1

#MSB(i−1,i)wiαi

)
.

Example. For ℓ = 3 (hence for N = 2ℓ = 8) and w = ab(q, c)abcbb we have

βw = a000#0b001#1(q, c)010#0a011#2b100#0c101#1b110#0b111 .

We remark that βw contains precisely 2ℓ−1−i occurrences of #i, for every i ∈ [0, ℓ− 1].

Definition 9.1. For all configurations w = w0 . . . wN−1 of M and for all u ∈ {0, 1}≤ℓ let us define, by induction

on |u|, the infix β
(u)
w of βw:

� β
(ε)
w = βw, and

� if u ∈ {0, 1}i for some i ∈ [0, ℓ − 1], then β
(u0)
w and β(u1) are the unique infixes of β(u) satisfying

β
(u)
w = β

(u0)
w #ℓ−1−iβ

(u1)
w .

Recalling that u denotes the unique number that the binary string u ∈ {0, 1}ℓ encodes, for all u ∈ {0, 1}ℓ

we have β
(u)
w = wuαu. A simple induction yields that for all i ∈ [0, ℓ] and all u ∈ {0, 1}i, the infix β

(u)
w appears

exactly once in βw and, for all j ∈ [0, ℓ− 1] we have that β
(u)
w contains precisely ⌊2ℓ−1−i−j⌋ occurrences of #j .

9.5 Gadget for checking the successor relation among configurations. In this subsection we show how
to check whether the successor relation holds between two configurations written on the top of the stack. First,
we construct a gadget verifying whether head positions agree; more precisely, given d ∈ {−1, 1}, and assuming
that the stack starts with #βw′#βw, the gadget allows us to test whether Pos(w′) = Pos(w) + d. To this end,
for all d ∈ {−1, 1}, all i ∈ [0, ℓ− 1], and all X ∈ Γ we add the following rules:

⟨Posd,Pos′d⟩#
Def

↪−−−→ {⟨Posd,j ,Pos′d,j⟩# | j ∈ [0, ℓ− 1]} ,(9.13)

Posd,iX
ε

↪−→ Posd,i if X ̸∈ QM ×Υ, Pos′d,iX
ε

↪−→ Pos′d,i if X ̸∈ QM ×Υ,(9.14)

Pos′d,iX
ε

↪−→ Pos′′d,i if X ∈ QM ×Υ,(9.15)

Pos′′d,iX
ε

↪−→ Pos′′d,i if X ̸∈ QM ×Υ,(9.16)

Posd,iX
ε

↪−→ Inci if X ∈ QM ×Υ, d =−1, Pos′′d,iX
ε

↪−→ Ĩnc if X ∈ QM ×Υ, d =−1,(9.17)

Posd,iX
ε

↪−→ Ĩnc if X ∈ QM ×Υ, d = 1, Pos′′d,iX
ε

↪−→ Inci if X ∈ QM ×Υ, d = 1.(9.18)

Lemma 9.4. For all d ∈ {−1, 1}, all length-N configurations w,w′ of M, and all γ ∈ Γ∗ we have

Posd#βw′#βwγ ≈ Pos′d#βw′#βwγ ⇐⇒ Pos(w′) = Pos(w) + d .

Moreover, both {[Posdγ]≈ | γ ∈ Γ∗} and {[Pos′dγ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are weakly
bisimulation finite.

Proof. Let d ∈ {−1, 1}, let w′ = w′
0 . . . w

′
N−1, w = w0 . . . wN−1, k

′ = Pos(w′), and k = Pos(w). We then have
w′

k′ , wk ∈ QM ×Υ. By the definition on an encoding we have

βw′ = w′
0α0

(
N−1∏
i=1

#MSB(i−1,i)w
′
iαi

)
and βw = w0α0

(
N−1∏
i=1

#MSB(i−1,i)wiαi

)
.

Let γ ∈ Γ∗ and let us define δ = #βw′#βwγ. We provide a proof only in the case of d = −1; the case of d = 1 is
completely analogous. By inspecting rules in Lines (9.14)–(9.18), for all i ∈ [0, ℓ−1] we have Posd,iδγ ≈ Pos′d,iδγ
if, and only if,

Inciαk′#MSB(k′,k′+1) . . . w
′
N−1αN−1#βwγ ≈ Ĩncαk#MSB(k,k+1) . . . wN−1αN−1γ .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

By Lemma 9.2 the latter equivalence holds if, and only if, k′ = k + 1 and i = MSB(k, k′). By properties of
the Defender’s forcing gadget used in Line (9.13) we have Posdδγ ≈ Pos′dδγ if, and only if, there exists some
i ∈ [0, ℓ−1] such that Posd,iδγ ≈ Pos′d,iδγ. Thus, Posdδγ ≈ Pos′dδγ if, and only if, there exists some i ∈ [0, ℓ−1]
such that k′ = k + 1 and i = MSB(k, k′), that is, if, and only if, Pos(w′) = Pos(w) + d, as required.

Let us finally prove that {[Posdγ]≈ | γ ∈ Γ∗} is a finite set of classes all of which are weakly bisimulation
finite; the same can analogously be proven for {[Pos′dγ]≈ | γ ∈ Γ∗}. By inspecting the above rules, there is a
constant c ∈ N (essentially depending on the Defender’s forcing gadget) such that for all stack contents γ ∈ Γ∗,
when applying the rules from a configuration of the form Posdγ one can only execute a run reading at most c
action symbols and for some γ′ ∈ Γ∗ either get stuck in a dead end of the form Posd,iγ

′, or reach a configuration

of the form Inciγ
′ or Ĩncγ′. In the former case, finiteness is clear, in the latter two cases finiteness immediately

follows from the fact that {[Inciγ]≈ | γ ∈ Γ∗} is a finite set of classes all of which are weakly bisimulation finite

for all i ∈ [0, ℓ− 1] and the same holds for the set {[Ĩncγ]≈ | γ ∈ Γ∗} according to Lemma 9.2.

Once head positions are verified, the remaining part of the successor relation may be checked with a help
of letter-to-letter morphisms, as explained in Lemma 9.1. This is realized by our next gadget, which for each
µ ∈ T ×Υ allows to verify, assuming that the top of the stack is #βw′#βw, whether w ⊢µ w′ holds. In order to
construct this gadget, for all µ = (t, Z) ∈ T × Γ with t = (p, U, q, Y, d), all X ∈ Γ, and all i ∈ [0, ℓ− 1] we add the
following rules, where rules involving the control states Posd and Pos′d have already been introduced above and
where the morphisms hµ and h′

µ are defined in Lemma 9.1:

Succµ#
0

↪−→ Posd# , Succ′
µ#

0
↪−→ Pos′d# ,(9.19)

Succµ#
1

↪−→ Descµ,ℓ , Succ′
µ#

1
↪−→ Desc′

µ,ℓ−1 ,(9.20)

Descµ,ℓX
ε

↪−→ Descµ,ℓ if X ̸= #,(9.21)

Descµ,ℓ#
ε

↪−→ Descµ,ℓ−1 ,(9.22)

Descµ,iX
0

↪−→ Descµ,i−1X , Desc′
µ,iX

0
↪−→ Desc′

µ,i−1X ,(9.23)

Descµ,iX
1

↪−→ Popµ,iX , Desc′
µ,iX

1
↪−→ Pop′µ,iX ,(9.24)

Popµ,iX
ε

↪−→ Popµ,i if X ̸= #i, Pop′µ,iX
ε

↪−→ Pop′µ,i if X ̸= #i,(9.25)

Popµ,i#i
ε

↪−→ Descµ,i−1 , Pop′µ,i#i
ε

↪−→ Desc′
µ,i−1 ,(9.26)

Descµ,−1X
hµ(X)

↪−−−−→ FinalµX , Desc′
µ,−1X

h′
µ(X)

↪−−−−→ Final′µX .(9.27)

Lemma 9.5. For all length-N configurations w,w′ of M, all µ ∈ T ×Υ, and all γ ∈ Γ∗ we have

Succµ#βw′#βwγ ≈ Succ′
µ#βw′#βwγ ⇐⇒ w ⊢µ w′ .

Moreover, both {[Succµγ]≈ | γ ∈ Γ∗} and {[Succ′
µγ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are weakly

bisimulation finite.

Proof. Let us first prove the second statement of the lemma. Consider the following (smallest) partial order ≻
relating the above control states as follows:

Succµ≻
Posµ

≻
Descµ,ℓ≻

Descµ,ℓ−1 ≻ Popµ,ℓ−1 ≻ Descµ,ℓ−2 ≻ Popµ,ℓ−2 ≻ · · · ≻ Descµ,−1 ≻ Finalµ ,

Succ′
µ≻

Pos′µ

≻ Desc′
µ,ℓ−1 ≻ Pop′µ,ℓ−1 ≻ Desc′

µ,ℓ−2 ≻ Pop′µ,ℓ−2 ≻ · · · ≻ Desc′
µ,−1 ≻ Final′µ .

For all rules that appear in Lines (9.19)–(9.27) in which, say, p1 is the control state on the left-hand side of the
rule and p2 is the control state on the right-hand side, observe that either p1 = p2 or p1 ≻ p2. Furthermore, if the

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

rule is a reading rule (i.e., is not an ε-rule) we have ℓ ≻ r. Since moreover any configuration having control state
Finalµ or Final′µ is a dead end, and recalling that both {[Posµγ]≈ | γ ∈ Γ∗} and {[Pos′µγ]≈ | γ ∈ Γ∗} are finite
sets of classes all of which are weakly bisimulation finite by Lemma 9.4, it follows that both {[Succµγ]≈ | γ ∈ Γ∗}
and {[Succ′

µγ]≈ | γ ∈ Γ∗} are indeed finite sets of classes all of which are weakly bisimulation finite.
Let us now prove the first statement of the lemma. Let µ = (t, Z) with t = (p, U, q, Y, d) and let us introduce

the abbreviation δ = #βw′#βw. By inspecting Lines (9.19) and (9.20) we have Succµδγ ≈ Succ′
µδγ if, and only

if, Posdδγ ≈ Pos′dδγ and Descµ,ℓβw′#βwγ ≈ Desc′
µ,ℓ−1βw′#βwγ. Since, on the one hand, Posdδγ ≈ Pos′dδγ

if, and only if Pos(w′) = Pos(w) + d by Lemma 9.4 and, on the other hand, w ⊢µ w′ if, and only if,
Pos(w′) = Pos(w) + d and hµ(w) = h′

µ(w
′) by Lemma 9.1, for proving the first statement of the lemma it

is enough to prove that Descµ,ℓβw′#βwγ ≈ Desc′
µ,ℓ−1βw′#βwγ if, and only if, hµ(w) = h′

µ(w
′). Hence, by

inspection of Lines (9.21) and (9.22), it is sufficient to prove that

Descµ,ℓ−1βwγ ≈ Desc′
µ,ℓ−1βw′#βwγ ⇐⇒ hµ(w) = h′

µ(w
′) .(9.28)

Let w = w0 . . . wN−1 and w′ = w′
0 . . . w

′
N−1. For all u ∈ {0, 1}≤ℓ we have defined an infix β

(u)
w of βw

and an infix β
(u)
w′ of βw′ (cf. Definition 9.1); recall that β

(u)
w (and β

(u)
w′) appears precisely once in βw (in βw′ ,

respectively). Let δ
(u)
w be the unique suffix of βw starting just after β

(u)
w (then β

(u)
w δ

(u)
w is a suffix of βw),

and analogously, let δ
(u)
w′ be the unique suffix of βw′ starting just after β

(u)
w′ , (then β

(u)
w′ δ

(u)
w′ is a suffix of βw′).

For all i ∈ [0, ℓ − 1] and all u ∈ {0, 1}i we have that both β
(u)
w and β

(u)
w′ contain precisely one occurrence

of #ℓ−1−i; we have β
(u)
w = β

(u0)
w #ℓ−1−iβ

(u1)
w , and analogously β

(u)
w′ = β

(u0)
w′ #ℓ−i−1β

(u1)
w′ by Definition 9.1. As

a consequence, by inspection of the rules from Lines (9.23)–(9.26), for all i ∈ [0, ℓ − 1], all u ∈ {0, 1}i, and

all b ∈ {0, 1} we have Descµ,ℓ−1−iβ
(u)
w δ

(u)
w γ

b
=⇒ Descµ,ℓ−2−iβ

(ub)
w δ

(ub)
w γ and Desc′

µ,ℓ−1−iβ
(u)
w′ δ

(u)
w′ #βwγ

b
=⇒

Desc′
µ,ℓ−2−iβ

(ub)
w′ δ

(ub)
w′ #βwγ. We also have βw = β

(ε)
w δ

(ε)
w and βw′ = β

(ε)
w′ δ

(ε)
w′ . By a direct induction on i ∈ [0, ℓ]

this implies that for all u ∈ {0, 1}i we have Descµ,ℓ−1βwγ
u

=⇒ Descµ,ℓ−1−iβ
(u)
w δ

(u)
w γ and Desc′

µ,ℓ−1βw′#βwγ
u

=⇒
Desc′

µ,ℓ−1−iβ
(u)
w′ δ

(u)
w′ #βwγ.

For all u ∈ {0, 1}ℓ we have β
(u)
w = wuαu and β

(u)
w′ = w′

uαu by Definition 9.1. As a consequence, by inspection
of the rules in Line (9.27), for all u ∈ {0, 1}ℓ we have

Descµ,ℓ−1βwγ
u

=⇒ Descµ,−1β
(u)
w δ(u)w γ

hµ(wu)
=====⇒ Finalµβ

(u)
w δ(u)w γ

and analogously

Desc′
µ,ℓ−1βw′#βwγ

u
=⇒ Desc′

µ,−1β
(u)
w′ δ

(u)
w′ #βwγ

h′
µ(w

′
u)

=====⇒ Final′µβ
(u)
w′ δ

(u)
w′ #βwγ .

Inspecting the rules once again, we see that they are all deterministic, and that only symbols from {0, 1} can
be read, until the state becomes Descµ,−1 or Desc′

µ,−1. After reaching such a state, it is only possible to read

the symbol hµ(X) or h′
µ(X) (depending on whether the state is Descµ,−1 or Desc′

µ,−1), where X is the topmost
stack symbol. No further transitions are possible after reading this symbol (and reaching the state Finalµ or
Final′µ). It follows that all runs that one can execute from the configuration Descµ,ℓ−1βwγ are deterministic and

the maximal such runs are precisely the runs reading a word from the set {uhµ(wu) | u ∈ {0, 1}ℓ}. Analogously,
all runs that one can execute from the configuration Desc′

µ,ℓ−1βw′#βwγ are deterministic and the maximal such

runs are precisely the runs reading a word from the set {uh′
µ(w

′
u) | u ∈ {0, 1}ℓ}. Thus, Equivalence (9.28) and

hence the lemma hold by the following equivalences:

Descµ,ℓ−1βwγ ≈ Desc′
µ,ℓ−1βw′#βwγ

⇐⇒ {uhµ(wu) | u ∈ {0, 1}ℓ} = {uh′
µ(w

′
u) | u ∈ {0, 1}ℓ}

⇐⇒ ∀u ∈ {0, 1}ℓ. hµ(wu) = h′
µ(w

′
u)

⇐⇒ hµ(w) = h′
µ(w

′) .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

9.6 A gadget for pushing successor configurations. Before listing quite involved rules, the following
lemma states that one can design a gadget that allows to push a successor configuration of a configuration whose
encoding is assumed to be on the top of the stack:

Lemma 9.6. For all t = (p, U, q, Y, d) ∈ T , when adding the rules Lines (9.29)–(9.40) below, for all length-N
configurations w of M and all γ ∈ Γ∗ we have

Pusht#βwγ ≈ Push′
t#βwγ ⇐⇒ ∃Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢(t,Z) w

′ and
Play(q,Z)#βw′#βwγ ≈ Play′

(q,Z)#βw′#βwγ,

For all t = (p, U, q, Y, d) ∈ T and all X ∈ Γ we add the rule

⟨Pusht,Push
′
t⟩X

Def
↪−−−→ {⟨Push(t,Z),Push(t,Z)⟩X | Z ∈ Υ} ,(9.29)

and for all µ = (t, Z) ∈ {t} × Υ we add the following rules, where Θ = Υ ∪ (QM × Υ) and where
Ω = {#j | j ∈ [0, ℓ− 1]}:

⟨Pushµ,Push
′
µ⟩X

Def
↪−−−→ ⟨Checkµ,Check′

µ⟩ Θ{0, 1}ℓ#0Θ1ℓX ,(9.30)

⟨Ctdµ,Ctd′
µ⟩X

Def
↪−−−→ {⟨Nextµ,Next′

µ⟩X, ⟨Doneµ,Done′µ⟩X} ,(9.31)

⟨Nextµ,Next′
µ⟩X

Def
↪−−−→ ⟨Checkµ,Check′

µ⟩ Θ{0, 1}ℓΩX ,(9.32)

CheckµX
1

↪−→ Inc , Check′
µX

1
↪−→ Inc′ ,(9.33)

CheckµX
2

↪−→ CtdµX , Check′
µX

2
↪−→ Ctd′

µX ,(9.34)

DoneµX
1

↪−→ HeadChkµ#X , Done′µX
1

↪−→ HeadChk′
µ#X ,(9.35)

⟨HeadChkµ,HeadChk′
µ⟩#

Prefix-Check#L∗(QM×Υ)L∗#
↪−−−−−−−−−−−−−−−−−−−−−→ , where L = Υ ∪ Ω ∪ {0, 1},(9.36)

DoneµX
2

↪−→ FinChkµ#X , Done′µX
2

↪−→ FinChk′
µ#X ,(9.37)

⟨FinChkµ,FinChk′
µ⟩#

Prefix-Check#Θ0ℓ(Γ\{#})∗#
↪−−−−−−−−−−−−−−−−−−−−→ ,(9.38)

DoneµX
3

↪−→ Succµ#X , Done′µX
3

↪−→ Succ′
µ#X ,(9.39)

DoneµX
4

↪−→ Play(q,Z)#X , Done′µX
4

↪−→ Play′
(q,Z)#X .(9.40)

We remark that the final control states of the form Play(q,Z) and Play′
(q,Z) will be connected to a gadget further

below.

Proof of Lemma 9.6. Let t = (p, U, q, Y, d) ∈ T , let w ∈ Υ∗(QM ×Υ)Υ∗ be some configuration of length N , and
let γ ∈ Γ∗ be some stack content. For any stack content δ ∈ Γ∗ and control states r and r′ we introduce the
notation ⟨r ≈ r′⟩δ and ⟨r ̸≈ r′⟩δ as an abbreviation for rδ ≈ r′δ and rδ ̸≈ r′δ, respectively. For all i ∈ [0, N − 1]
and all Yi, . . . , YN−1 ∈ Θ, let us also introduce the notation

δ(Yi, . . . , YN−1) = Yiαi#MSB(i,i+1)Yi+1αi+1 . . .#MSB(N−2,N−1)YN−1αN−1#βwγ .

We have the following claim:

Claim 9.1. For all µ ∈ {t} ×Υ, all i ∈ [1, N − 2], and all Yi, . . . , YN−1 ∈ Θ we have

⟨Ctdµ ≈ Ctd′
µ⟩δ(Yi, . . . , YN−1) ⇐⇒ ∃Yi−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′

µ⟩δ(Yi−1, Yi . . . , YN−1) .

Proof of Claim 9.1. First we claim that ⟨Doneµ ̸≈ Done′µ⟩δ(Yi, . . . , YN−1): indeed, the prefix

#Yiαi#MSB(i,i+1)Yi+1αi+1 . . .#MSB(N−2,N−1)YN−1αN−1#

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

of #δ(Yi, . . . , YN−1) is not in the regular language #Θ0ℓ(Γ \ {#})∗#, simply because αi ̸= 0ℓ due to i ̸= 0; thus
by the rules in Lines (9.37) and (9.38) it follows that ⟨Doneµ ̸≈ Done′µ⟩δ(Yi, . . . , YN−1).

Let us fix any i ∈ [1, N − 2]. The claim follows from the following equivalences, where the second one
follows from the just proven ⟨Doneµ ̸≈ Done′µ⟩δ(Yi, . . . , YN−1) and the penultimate equivalence follows from the

equivalence ⟨Inc ≈ Inc′⟩y#jδ(Yi, . . . , YN−1) ⇐⇒ y = αi−1 and j = MSB(i− 1, i), which holds for y ∈ {0, 1}ℓ by
Lemma 9.3:

⟨Ctdµ ≈ Ctd′
µ⟩δ(Yi, . . . , YN−1)

(9.31),(9.32)⇐⇒
(
∃Yi−1 ∈ Θ, y ∈ {0, 1}ℓ,#j ∈ Ω. ⟨Checkµ ≈ Check′

µ⟩Yi−1y#jδ(Yi, . . . , YN−1)
)
or

⟨Doneµ ≈ Done′µ⟩δ(Yi, . . . , YN−1)

⇐⇒ ∃Yi−1 ∈ Θ, y ∈ {0, 1}ℓ,#j ∈ Ω. ⟨Checkµ ≈ Check′
µ⟩Yi−1y#jδ(Yi, . . . , YN−1)

(9.33),(9.34)⇐⇒ ∃Yi−1 ∈ Θ, y ∈ {0, 1}ℓ,#j ∈ Ω.

⟨Inc ≈ Inc′⟩y#jδ(Yi, . . . , YN−1) and ⟨Ctdµ ≈ Ctd′
µ⟩Yi−1y#jδ(Yi, . . . , YN−1)

⇐⇒ ∃Yi−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′
µ⟩Yi−1αi−1#MSB(i−1,i)δ(Yi, . . . , YN−1)

⇐⇒ ∃Yi−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′
µ⟩δ(Yi−1, Y . . . , YN−1) .

This completes the proof of Claim 9.1.

Next we have the following claim, where we recall that t = (p, U, q, Y, d) and µ = (t, Z):

Claim 9.2. For all µ = (t, Z) ∈ {t}×Υ and all w′ = Y0 . . . YN−1 ∈ ΘN we have ⟨Ctdµ ≈ Ctd′
µ⟩δ(Y0, . . . , YN−1)

if, and only if, w ⊢µ w′ and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ.

Proof of Claim 9.2. Let µ = (t, Z) ∈ {t} × Υ and let w′ = Y0 . . . YN−1 ∈ ΘN . Recall that δ(Y0, . . . , YN−1) =
βw′#βwγ. Firstly, we claim that for all Y ∈ Θ, all y ∈ {0, 1}ℓ, and all #j ∈ Ω we have

⟨Checkµ ̸≈ Check′
µ⟩Y y#jβw′#βwγ .(9.41)

Indeed, ⟨Inc ̸≈ Inc′⟩y#jβw′#βwγ follows directly from Lemma 9.3, hence by the rules in Line (9.33) we obtain
Property (9.41) as a consequence.

Secondly, we remark that the presence of the prefix checking rule from Line (9.38) (reachable due to the
rules in Line (9.37)) does not impact the equivalence ⟨Doneµ ≈ Doneµ⟩βw′#βwγ, simply as the unique prefix
of #βw′#βwγ lying in #(Γ \ {#})∗#, namely #βw′#, clearly lies in the regular language #Θ0ℓ(Γ \ {#})∗#
appearing in the rule. Hence, it follows that the relevant equivalence ⟨Doneµ ≈ Doneµ⟩βw′#βwγ only depends
on the application of the rules appearing in Lines (9.35), (9.36), (9.39) and (9.40). The claim now follows from
the following equivalences:

⟨Ctdµ,Ctd′
µ⟩δ(Y0, . . . , YN−1)

⇐⇒ ⟨Ctdµ,Ctd′
µ⟩βw′#βwγ

(9.31),(9.32)⇐⇒ ∃Y ∈ Θ, y ∈ {0, 1}ℓ,#j ∈ Ω : ⟨Checkµ ≈ Check′
µ⟩Y y#jβw′#βwγ

or ⟨Doneµ ≈ Done′µ⟩βw′#βwγ

(9.41)⇐⇒ ⟨Doneµ ≈ Done′µ⟩βw′#βwγ

(9.35),(9.36),(9.39),(9.40)⇐⇒ w′ ∈ Υ∗(QM ×Υ)Υ∗, ⟨Succµ ≈ Succ′
µ⟩#βw′#βwγ,

and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ

⇐⇒ w′ is a configuration, ⟨Succµ ≈ Succ′
µ⟩#βw′#βwγ,

and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ)

Lemma 9.5⇐⇒ w′ is a configuration, w ⊢µ w′, and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ

⇐⇒ w ⊢µ w′ and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

The lemma now follows from the following equivalences:

⟨Pusht,Push
′
t⟩#βwγ

(9.29)⇐⇒ ∃µ ∈ {t} ×Υ : ⟨Pushµ ≈ Push′
µ⟩#βwγ

(9.30)⇐⇒ ∃µ ∈ {t} ×Υ, YN−2, YN−1 ∈ Θ, y ∈ {0, 1}ℓ.
⟨Checkµ ≈ Check′

µ⟩YN−2y#0YN−11
ℓ#βwγ

(9.33),(9.34)⇐⇒ ∃µ ∈ {t} ×Υ, YN−2, YN−1 ∈ Θ, y ∈ {0, 1}ℓ.(
⟨Inc ≈ Inc′⟩y#0YN−11

ℓ#βwγ and ⟨Ctdµ ≈ Ctd′
µ⟩YN−2y#0YN−11

ℓ#βwγ
)

Lemma 9.3⇐⇒ ∃µ ∈ {t} ×Υ, YN−2, YN−1 ∈ Θ, ⟨Ctdµ ≈ Ctd′
µ⟩YN−2αN−2#0YN−1αN−1#βwγ

⇐⇒ ∃µ ∈ {t} ×Υ, YN−2, YN−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′
µ⟩δ(YN−2, YN−1)

Claim 9.1⇐⇒ ∃µ ∈ {t} ×Υ, YN−3, YN−2, YN−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′
µ⟩δ(YN−3, YN−2, YN−1)

· · ·
Claim 9.1⇐⇒ ∃µ ∈ {t} ×Υ, Y0, . . . , YN−1 ∈ Θ. ⟨Ctdµ ≈ Ctd′

µ⟩δ(Y0, . . . , YN−1)

Claim 9.2⇐⇒ ∃µ = (t, Z) ∈ {t} ×Υ, w′ ∈ ΘN . w ⊢µ w′ and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ

⇐⇒ ∃Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢µ w′ and ⟨Play(q,Z) ≈ Play′
(q,Z)⟩#βw′#βwγ .

9.7 Simulating M. The next gadget allows us to decide, assuming that the topmost stack content is of the
form #αw, whether the configuration w is indeed accepting. For all (p, U) ∈ QM ×Υ and all t ∈ T(p,U) we add
the following rules:

Play(p,U)#
t

↪−→ Pusht# if p ∈ Q∃, Play′
(p,U)#

t
↪−→ Push′

t# if p ∈ Q∃,(9.42)

⟨Play(p,U),Play
′
(p,U)⟩#

Def
↪−−−→ {⟨Pusht′ ,Push

′
t′⟩# | t′ ∈ T(p,U)} if p ∈ Q∀.(9.43)

We have the following accompanying lemma:

Lemma 9.7. For all (p, U) ∈ QM×Υ, all length-N configurations w ∈ Υ∗(p, U)Υ∗ of M, and all γ ∈ Γ∗ we have

Play(p,U)#βwγ ̸≈ Play′
(p,U)#βwγ ⇐⇒ w is accepting .

Moreover, both {[Play(p,U)γ]≈ | γ ∈ Γ∗} and {[Play′
(p,U)γ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are

weakly bisimulation finite.

Proof. Let us first prove the second statement of the lemma. Since the rules in Lines (9.42) and (9.43) mutually
depend on the rules Lines (9.29)–(9.40) we analyze them together. First of all, observe that, immediately by the
definition of the gadget, neither of the prefix checking rules in Lines (9.36) and (9.38) can contribute to an infinity
of classes. An important consequence of Lemma 4.5 is that the class of every configuration qXη is determined by
the tuple (q,X, ([rη]≈)r∈|X⟩(q)).

By inspection of the rules in Lines (9.29)–(9.40), (9.42), and (9.43) one realizes that the only rule that
decreases the stack height are the rules in Line (9.33), leading to the control states Inc and Inc′, respectively.
Hence the only such classes of the above form [rη]≈ are the classes of the form [Incγ]≈ or [Inc′γ]≈. But the sets
{[Incγ]≈ | γ ∈ Γ∗} and {[Inc′γ]≈ | γ ∈ Γ∗} are finite sets of classes all of which are weakly bisimulation finite by
Lemma 9.3. Thus, it follows that {[Play(p,U)γ]≈ | γ ∈ Γ∗} and {[Play′

(p,U)γ]≈ | γ ∈ Γ∗} are finite sets of classes
all of which are weakly bisimulation finite.

Let us now prove the first statement of the lemma. Let (p, U) ∈ QM × Υ, let w = Υ∗(p, U)Υ∗ be a
configuration of M and let γ ∈ Γ∗ be any stack content. We prove the statement by induction on the length of
the longest computation starting in w. We make a case distinction whether w is universal or existential.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

If w is existential we have the following equivalences:

w is accepting

⇐⇒ ∃t = (p, U, q, Y, d) ∈ T(p,U), Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢(t,Z) w
′ and w′ is accepting

IH⇐⇒ ∃t = (p, U, q, Y, d) ∈ T(p,U), Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢(t,Z) w
′ and

Play(q,Z)#βw′#βwγ ̸≈ Play′
(q,Z)#βw′#βwγ

Lemma 9.6⇐⇒ ∃t = (p, U, q, Y, d) ∈ T(p,U).Pusht#βwγ ̸≈ Pusht#βwγ

p∈Q∃,(9.42)⇐⇒ Play(p,U)#βwγ ̸≈ Play′
(p,U)#βwγ .

If w is universal we have the following equivalences:

w is accepting

⇐⇒ ∀t = (p, U, q, Y, d) ∈ T(p,U).∃Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢(t,Z) w
′ and w′ is accepting

IH⇐⇒ ∀t = (p, U, q, Y, d) ∈ T(p,U).∃Z ∈ Υ, w′ ∈ Υ∗(q, Z)Υ∗. w ⊢(t,Z) w
′ and

Play(q,Z)#βw′#βwγ ̸≈ Play′
(q,Z)#βw′#βwγ

Lemma 9.6⇐⇒ ∀t = (p, U, q, Y, d) ∈ T(p,U).Pusht#βwγ ̸≈ Pusht#βwγ

p∈Q∀,(9.43)⇐⇒ Play(p,U)#βwγ ̸≈ Play′
(p,U)#βwγ .

9.8 Setting up the initial configuration. Recall that αk denotes the binary encoding for every k ∈ [0, 2ℓ−1],
that x = x0 . . . xn−1 is the input to M and that q0 ∈ Q is the initial state of M. We add the following rules,
where Θ0 = Υ ∪ {(q0, x0)} and Ω = {#j | j ∈ [0, ℓ− 1]}:

⟨Init#, Init′⟩# Def
↪−−−→ ⟨Check,Check′⟩ □αN−2#0□αN−1# ,(9.44)

⟨Ctd,Ctd′⟩X Def
↪−−−→ {⟨Next,Next′⟩X, ⟨Done,Done′⟩X} ,(9.45)

⟨Next,Next′⟩X Def
↪−−−→ ⟨Check,Check′⟩ Θ0{0, 1}ℓΩX ,(9.46)

CheckX
1

↪−→ Inc , Check′X
1

↪−→ Inc′ ,(9.47)

CheckX
2

↪−→ CtdX , Check′X
2

↪−→ Ctd′X ,(9.48)

DoneX
1

↪−→ IniChk#X , Done′X
1

↪−→ IniChk′#X .(9.49)

⟨IniChk, IniChk′⟩#
Prefix-Check#(q0,x0)α0#0x1α1...#MSB(n−2,n−1)xn−1αn−1(Ω□{0,1}ℓ)∗#

↪−−→ ,(9.50)

DoneX
1

↪−→ Play(q0,x0)#X , Done′X
1

↪−→ Play′
(q0,x0)#X .(9.51)

Lemma 9.8. For all γ ∈ Γ∗ we have Init#γ ̸≈ Init′#γ if, and only if, x ∈ L(M). Moreover, {[Initγ]≈ | γ ∈ Γ∗}
and {[Init′γ]≈ | γ ∈ Γ∗} are both finite sets of classes all of which are weakly bisimulation finite.

Proof. Let us first prove the first statement of the lemma. Since the proof is very closely related to the proof of
Lemma 9.6, so we only sketch it here.

Let wx = (q0, x0)x1 . . . xn−1□N−n. We have the following equivalences, where the first equivalence can be
proven analogously as Lemma 9.6:

Init#γ ̸≈ Init′#γ ⇐⇒ Play(q0,x0)#βwx#γ ̸≈ Play′
(q0,x0)#βwx#γ

Lemma 9.7⇐⇒ wx is accepting

⇐⇒ x ∈ L(M) .

The second statement of the lemma can be shown in the same way as the analogous statement of Lemma 9.7.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

We conclude our construction by adding the following initial rules:

q↕#
a

↪−→ q↕A# ,(9.52)

q↕A
a

↪−→ q↕AA ,(9.53)

q↕A
a

↪−→ q↕ ,(9.54)

q↕A
$

↪−→ qε ,(9.55)

qεA
ε

↪−→ qε ,(9.56)

qε#
ε

↪−→ Init# ,(9.57)

q↕#
$

↪−→ Init′# .(9.58)

The following lemma provides the final desired reduction.

Lemma 9.9. We have x ∈ L(M) if, and only if, (L(P), q↕#) is not weakly bisimulation finite.

Proof. Let us first assume x ∈ L(M). By Lemma 9.8 we have Init# ̸≈ Init′#. For n ≥ 1 we have

q↕A
n#

$
=⇒ Init#, while reading $ from q↕# necessarily leads to Init′# ̸≈ Init′#. It follows that q↕A

n# ̸≈ q↕#
for all n ≥ 1. In consequence q↕# is the only reachable configuration in its class (once we enter the configuration

Init# or Init′#, we cannot read $ any more). Observe now that if q↕A
n#

w
=⇒ q↕# for some n ∈ N, then |w| ≥ n;

on the other hand q↕A
n#

an

=⇒ q↕#. Then Dist([q↕A
n#]≈, [q↕#]≈) = n, which implies q↕A

n# ̸≈ q↕A
m# for all

n,m ∈ N with n ̸= m. Moreover, we have q↕# →∗ q↕A
n# for all n ∈ N. Hence, q↕# is not weakly bisimulation

finite since infinitely many configurations, that are pairwise not weakly bisimilar, are reachable from it.
Conversely, assume x ̸∈ L(M). Then Init# ≈ Init′# by Lemma 9.8. Moreover, Init# is weakly bisimulation

finite by Lemma 9.8. From this and by inspection of the rules in Lines (9.52)–(9.58) one easily sees that
q↕A

n# ≈ q↕A
m# for all n,m ∈ N. In fact, q↕# is weakly bisimilar to a finite pointed ε-LTS (L, c), where

L has the following shape: the configuration c has an a-loop plus a $-labeled transition to the weakly bisimulation
finite [Init#]≈ = [Init′#]≈.

10 Conclusion

In this paper we have shown that weak bisimulation finiteness is 2-ExpTime-complete for pushdown systems
with deterministic ε-transitions. This improves a previously known Ackermann upper bound of the problem
and improves the previously best known 6-ExpSpace upper bound when ε-transitions are not present. It also
generalizes the 2-ExpTime upper bound for regularity of deterministic pushdown automata and tightens a
previously known ExpTime lower bound for the problem. The more general case with unrestricted ε-transitions
is indeed challenging, since our upper bound proof heavily relied on the fact that the underlying transition system
is finitely branching.

References

[1] J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.
[2] S. Böhm, S. Göller, and P. Jančar. Bisimulation equivalence and regularity for real-time one-counter automata. J.

Comput. Syst. Sci., 80(4):720–743, 2014.
[3] F. Carreiro. PDL is the bisimulation-invariant fragment of weak chain logic. In 30th Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 341–352. IEEE Computer Society,
2015.

[4] R. J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In J. C. M. Baeten and J. W.
Klop, editors, CONCUR ’90, Theories of Concurrency: Unification and Extension, Amsterdam, The Netherlands,
August 27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

[5] S. Göller and P. Parys. Bisimulation finiteness of pushdown systems is elementary. In H. Hermanns, L. Zhang,
N. Kobayashi, and D. Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8-11, 2020, pages 521–534. ACM, 2020.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[6] P. Jančar. Finiteness up to bisimilarity is decidable for pushdown processes. CoRR, abs/1305.0516v1, 2013.
[7] P. Jančar. Deciding semantic finiteness of pushdown processes and first-order grammars w.r.t. bisimulation

equivalence. J. Comput. Syst. Sci., 109:22–44, 2020.
[8] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. In F. M. auf der Heide and B. Monien,

editors, Automata, Languages and Programming, 23rd International Colloquium, ICALP96, Paderborn, Germany,
8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in Computer Science, pages 478–489. Springer, 1996.

[9] P. Jančar and S. Schmitz. Bisimulation equivalence of first-order grammars is ACKERMANN-complete. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27,
2019, pages 1–12. IEEE, 2019.

[10] P. Jančar and J. Srba. Undecidability of bisimilarity by Defender’s forcing. J. ACM, 55(1):5:1–5:26, 2008.
[11] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional mu-calculus with respect to monadic

second order logic. In U. Montanari and V. Sassone, editors, CONCUR ’96, Concurrency Theory, 7th International
Conference, Pisa, Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Computer Science, pages
263–277. Springer, 1996.

[12] M. Kot. Regularity of BPP is PSPACE-complete. In Proceedings of the 3rd Ph.D. Workshop of Faculty of Electrical
En gineering and Computer Science, WOFEX, pages 393–398. VŠB-TUO FEECS, 2005.

[13] A. Kučera and R. Mayr. On the complexity of semantic equivalences for pushdown automata and BPA. In K. Diks
and W. Rytter, editors, Mathematical Foundations of Computer Science 2002, 27th International Symposium, MFCS
2002, Warsaw, Poland, August 26-30, 2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages
433–445. Springer, 2002.

[14] A. Kučera and R. Mayr. On the complexity of checking semantic equivalences between pushdown processes and
finite-state processes. Inf. Comput., 208(7):772–796, 2010.

[15] F. Moller and A. M. Rabinovich. Counting on CTL∗: On the expressive power of monadic path logic. Inf. Comput.,
184(1):147–159, 2003.

[16] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order logic. Theor. Comput.
Sci., 37:51–75, 1985.

[17] J. Srba. Strong bisimilarity and regularity of basic parallel processes is pspace-hard. In H. Alt and A. Ferreira,
editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science, Antibes - Juan les Pins,
France, March 14-16, 2002, Proceedings, volume 2285 of Lecture Notes in Computer Science, pages 535–546. Springer,
2002.

[18] J. Srba. Strong bisimilarity and regularity of basic process algebra is PSPACE-hard. In P. Widmayer, F. T. Ruiz,
R. M. Bueno, M. Hennessy, S. J. Eidenbenz, and R. Conejo, editors, Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes
in Computer Science, pages 716–727. Springer, 2002.

[19] J. Srba. Roadmap of infinite results. Current Trends In Theoretical Computer Science, The Challenge of the New
Century, Vol 2: Formal Models and Semantics:337–350, 2004.

[20] C. Stirling. The joys of bisimulation. In L. Brim, J. Gruska, and J. Zlatuška, editors, Mathematical Foundations
of Computer Science 1998, 23rd International Symposium, MFCS’98, Brno, Czech Republic, August 24-28, 1998,
Proceedings, volume 1450 of Lecture Notes in Computer Science, pages 142–151. Springer, 1998.

[21] L. G. Valiant. Regularity and related problems for deterministic pushdown automata. J. ACM, 22(1):1–10, 1975.
[22] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234–263, 2001.
[23] W. Zhang, Q. Yin, H. Long, and X. Xu. Bisimulation equivalence of pushdown automata is Ackermann-complete.

In A. Czumaj, A. Dawar, and E. Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 141:1–141:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	Overview of the upper-bound proof
	Some basics on pushdown systems
	Decompositions of stacks
	Runs going down
	The core of the upper bound proof
	The Algorithm
	Lower bound
	Alternating Turing machines.
	Gadgets for the lower bound construction.
	Encoding numbers.
	Encoding configurations.
	Gadget for checking the successor relation among configurations.
	A gadget for pushing successor configurations.
	Simulating M.
	Setting up the initial configuration.

	Conclusion

