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Abstract

We consider the problem of deciding whether a given pushdown system all of whose e-transitions are
deterministic is weakly bisimulation finite, that is, whether it is weakly bisimulation equivalent to a finite
system. We prove that this problem is 2-EXpPTIME-complete. This consists of three elements: First, we prove
that the smallest finite system that is weakly bisimulation equivalent to a fixed pushdown system, if exists,
has size at most doubly exponential in the description size of the pushdown system. Second, we propose a fast
algorithm deciding whether a given pushdown system is weakly bisimulation equivalent to a finite system of a
given size. Third, we prove 2-EXPTIME-hardness of the problem. The problem was known to be decidable, but
the previous algorithm had Ackermannian complexity (6-EXPSPACE in the easier case of pushdown systems
without e-transitions); concerning lower bounds, only EXpPTIME-hardness was known.

1 Introduction

An important decision problem in computer science is to decide whether a given infinite system is semantically
finite, that is, whether it is semantically equivalent to some finite system. If so, particular techniques and
properties of finite systems can be exploited in order to verify such systems. There are different important
notions of equivalences that have been studied by the computer science community.

In the area of verification bisimulation equivalence [20] can be seen as the central one. It can be seen as a two-
player game between Attacker and Defender: given a pair of configurations (¢, d) of a system, Attacker chooses a
transition ¢ —, ¢’ (resp. d —, d’') and Defender must find a reply d —,, d’ (resp. ¢ —, '), hereby leading the game
to a new pair of configurations (¢/,d’) — Attacker wins in case Defender cannot answer, whereas Defender wins
every infinite play and every play terminating in a pair of dead ends. It is worth pointing out that trace equivalence
coincides with bisimulation equivalence (bisimilarity for short) in case the underlying systems are deterministic.
Several central verification logics like modal logic, the modal y-calculus, CTL*, and Propositional Dynamic Logic
can all be characterized as the bisimulation-invariant fragment of well-established logics like first-order logic [1],
monadic second-order logic [11], monadic chain logic [15], and weak monadic chain logic [3], respectively. In
presence of possible e-transitions weak bisimulation equivalence generalizes bisimulation equivalence [4] in that
Attacker can make moves of the form ¢ —»* o =, o =% ¢/ (or ¢ =¥ ¢') that can be answered by Defender by
moves of the form d =% o =, o =* d' (resp. d —* d'). In the context of (weak) bisimulation equivalence, the
semantic finiteness question becomes the (weak) bisimulation finiteness problem: given an infinite system, does
there exist a finite system that is (weakly) bisimilar to it: it is important to emphasize that it is asked whether
there exists a finite system that is (weakly) bisimilar to the infinite system, so the finite system is not specified
in the input to the problem. Indeed, in case both the infinite system and the finite system are part of the input,
their equivalence can be reduced to the model checking problem of CTL’s fragment EF [14]. The (complexity of
the) model checking problem for most classes of infinite systems is well-understood.

To date, it is fair to say that decidability — and in particular the complexity — of this principal and easily-
stated problem of (weak) bisimulation finiteness is not well understood. We refer to Srba’s survey [19], where it
becomes clear that for many classes of infinite state systems decidability is unknown, and if it is known, oftentimes
huge complexity gaps exist. A central such class is the class of pushdown systems, that is, systems that can be
generated by pushdown automata. Model checking monadic second-order logic is decidable for them [16], whereas
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its bisimulation-invariant fragment can be model-checked in EXPTIME [22]. Ouly a few years ago Jancar proved
that weak bisimulation finiteness of pushdown systems all of whose e-transitions are deterministic, is decidable
with Ackermannian complexity [7] via a reduction to the ACKERMANN-complete (weak) bisimulation equivalence
problem [9, 23]. Recently, Géller and Parys [5] have shown that the Ackermannian bottleneck can avoided for
e-free pushdown systems: bisimulation finiteness of (e-free) pushdown systems is in 6-EXPSPACE. The problem
is known to be EXPTIME-hard [13, 18].

Our contribution. We prove that weak bisimulation finiteness of pushdown systems all of whose e-
transitions are deterministic is 2-EXPTIME-complete. The problem was known to be decidable [7] with
Ackermannian complexity and in 6-EXPSPACE in the easier case of pushdown systems without e-transitions.
Concerning lower bounds, only EXpPTIME-hardness was known. Our upper bound also generalizes Valiant’s 2-
EXPTIME upper bound [21] for the regularity problem of deterministic pushdown automata from 1975: regularity
of deterministic pushdown automata is (modulo simple adaptations) the same problem as weak bisimulation
finiteness of pushdown systems all of whose transitions (not only e-transitions) are deterministic. Our contribution
consists of three elements. First, we prove that the smallest finite system that is weakly bisimulation equivalent
to a fixed pushdown system, if exists, has size at most doubly exponential in the description size of the pushdown
system. Second, we propose a fast algorithm deciding whether a given pushdown system is weakly bisimulation
equivalent to a finite system of a given size. Third, we prove 2-ExPTIME-hardness of the problem.

Related and future work. As mentioned above, (weak) bisimulation finiteness is a problem that is not
well understood [19]. Let us mention a few exceptions. Over Petri net’s subclass of basic parallel processes
bisimulation finiteness is PSPACE-complete [17, 12]. Bisimulation finiteness of one-counter systems (which are
pushdown systems where there is, apart from the bottom symbol, only one stack symbol) is PTIME-complete [2].
For weak bisimulation finiteness a relevant result is undecidability for Petri nets [8], whereas decidability seems
to be open for most other central infinite systems [19]. We hope that our results can pave the way to eventually
determining the decidability /complexity status of weak bisimulation finiteness of pushdown systems whose e-
transitions are not restricted to be deterministic.

Organization of the paper. We introduce basic notation and state our main result in Section 2. Our
2-EXPTIME upper bound is sketched in Section 3. Basics on pushdown systems are subject of Section 4. In
Section 5 we discuss decompositions of stacks. In Section 6 we analyze runs in pushdown systems that mainly
decrease the stack height. The core arguments of the upper bound proof are content of Section 7. In Section 8
our algorithm running in double exponential time is presented. A matching 2-EXPTIME lower bound is given in
Section 9. We conclude in Section 10.

2 Preliminaries

If X is a set we denote by 2% power set of X, that is, the set of all subsets of X. By N = {0,1,2,...,} we denote
the set of non-negative integers. For all finite alphabets ¥ we denote by X* the set of finite words over X and, for
all n € N, we denote by ©=" = {w € ¥* | |w| < n} the set of finite words in ©* of length at most n. The empty
word is denoted by e. By X, we denote the (disjoint) union ¥ U {e}.

A labeled transition system with e-transitions (-LTS) is a tuple £ = (S, A, (—4)aca. ), where S is a (possibly
infinite) set of configurations, A is a finite set of action symbols, (—,) C S x S is a binary relation for all a € A..
We say L is finite if S is finite. We define its size as |£]| = |S|, thus |£] € N if £ is finite and |£| = w if not (we
only consider countable labeled transition systems in this paper). A pointed e-LTS is a pair (£, ¢) such that c is a
configuration of £. We define the relation (=) = (—*). The relation is extended to words in A as follows: for
a € A and w € A* we define (=) = (—*) o (—4) 0 (==). Thus, note that (==) = (=)o (—4) o (). We define
the binary relation (—) = U,ca_(—4). For all ¢,d € S we define DisT(c, d) = min{|w] | ¢ = d} € NU {w}, the
length of the shortest word of action symbols allowing to reach d from c in L.

For an e-LTS £ we say a binary relation Ry C S x S weakly covers a relation Ry C S x S if for all ¢,d, ¢
such that (c,d) € Ry and ¢ == ¢ with a € A, there exists d’ such that d == d’ and (¢,d') € Ry. A weak
bisimulation is a relation R C S x S that is symmetric and covers itself. Observe that the union of two weak
bisimulations is again a weak bisimulation. We write ¢ ~ d if (¢,d) € R for some weak bisimulation relation R;
note that (=) C S x S is the largest weak bisimulation on S. If ¢ & d, we say that ¢ and d are weakly bisimilar.
For every configuration ¢ € S we denote by [c]~ = {d € S | ¢ = d} the weak bisimulation class of c. The weak
bisimulation quotient [L] is the e-LTS [£] = ({[c]~ | ¢ € S}, Ac, (=7 )aca. ), where for a € A, we have C =/ D

Copyright (©) 2023 by SIAM
Unauthorized reproduction of this article is prohibited



if ¢ == d for some ¢ € C, d € D (note that then for every ¢ € C there exists some d € D such that ¢ == d).
When talking about weak bisimulation equivalence of two configurations, we must not necessarily require that the
configurations are from the same e-LTS: generally we can write (L£1,¢1) &~ (£, ¢2) if ¢1 = ¢2 holds in the disjoint
union of £4 and Lo. We say that (£, ¢) (or just ¢ when L is clear from the context) is weakly bisimulation finite
if (£,¢) = (L',c) for some finite pointed e-LTS (L', ¢).

We also define relations (=) C S x S for k € N, by induction: =~ is the full relation S x S, and %11 is the
largest symmetric relation that is covered by . For configurations ¢,¢’ € S we define [¢] = {d € S | ¢ =, d},
and EQLEV(c, ) =sup{k e N| cry '} e NU{w}.

If for every configuration ¢ € S and every a € A there are finitely many configurations d € S such that
¢ == d, then (=) = yen(=), and EQLEV(c, ¢') = w implies ¢ & ¢/ (below we restrict ourselves to e-LTSs that
have this property).

A sequence ¢y —rq, €1 —ray 1 —a, Cn is called a run from ¢g to ¢,. For such a run ¢ we write |g| for n, and
0(i) for ¢;. A composition g o ¢’ of two runs is defined in the expected way, assuming o' (0) = o(|g|). We say that
runs ¢ = (¢op —ay €1 —ay *°* —a,, C¢m) and o = (do —p, d1 —b, -+ =, dn) are parallel if we can find indices
0=rig <iy <---<ip=mand0 =iy <iy <---<ijy =nsuch that for all j € [0, k] we have ¢, zdi; and for all
J € [1, k] the two words a;;_,41ai,_,42...a;, and bi971+1bi;71+2 e bi; (after dropping all €’s) are equal and have
length at most 1.

A pushdown system with deterministic e-transitions (e-PDS for short) is a tuple P = (Q,T', A, A), where Q is
a finite set of control states, I" is a finite stack alphabet, A is finite set of action symbols, A CQ xT'x A, x Q@ x I'*
is a finite rewrite relation such that whenever (p1, X1) = (p2, X2) and a; = € for two tuples (p1, X1, a1, 491, 1), (p2,
X2, a2,q2,B2) € A, then (p1, X1,0a1,q1,81) = (p2, X2, a2, g2, B2)-

In case (p, X,a,q,B8) € A we simply write ¢X N q'B and refer to it as a rule: in case a € A we call it a
reading rule in case a = € we call it an e-rule. We say a pair (p, X) € Q x T is in e-mode if for some (¢, 8) € Q xT**
we have (p, X,e,q,6) € A; we remark that there can be at most one such pair (¢,5). If (p, X) is in e-mode,
then there is no (a,¢’, ') € A x Q x I'* with (p, X,a,¢’, ") € A. We say that an e-PDS is e-popping if for all
(p,X,e,q,8) € A we have 8 =e.

The size of P is defined as |P| = |Q| + |T'| + |A| + |A]. A configuration of an e-PDS is an element from QI'*.
An e-PDS induces a (potentially infinite) e-LTS L(P) = (5, Az, (—a)aca. ), where S = QT and for all a € A, we

have (—q) = {(pX7,q87) | v €T*, (p, X, a,q,8) € A}.
In this paper, we are interested in the following decision problem:

WEAK BISIMULATION FINITENESS FOR e-PDS
INPUT: A &PDS P =(Q,T,A, A) and a configuration @it Xinit € QT
QUESTION: Is (L(P), ginitXinit) weakly bisimulation finite?

We remark that a seemingly more general problem when having an initial configuration from QI'* as input
can always be reduced in polynomial time to our restriction, namely where it is from QI'. It is folklore that,
given an e-PDS P and a configuration giniicvinir € QI'*, one can compute in polynomial time an e-PDS P’ that is
e-popping and a configuration ginit Xinit € QT such that (L(P), Ginitinit) ~ (L(P’), Ginit Xinit). A formal proof of this
reduction can be found in [9, Proposition 11]. Additionally, and this is also folklore, one can restrict the resulting
P’ in such a way that all rules (p, X, a, g, 8) that appear in it satisfy |5] < 2.

Let us state the main result of this paper:

THEOREM 2.1. WEAK BISIMULATION FINITENESS FOR £-PDS is 2-ExXPTIME-complete.

3 Overview of the upper-bound proof

In this section we present overall ideas for proving that WEAK BISIMULATION FINITENESS FOR e-PDS is in 2-
ExpTIME. As already mentioned in the introduction, the proof consists of two main parts. First, in Theorem 7.1,
we prove that if an e-PDS P is weakly bisimulation finite, that is, is weakly bisimilar to some finite e-LTS (of
an arbitrary, unknown size), then it is weakly bisimilar to some finite e-LTS of at most doubly exponential size.
This already gives a 2-EXPSPACE algorithm for deciding weak bisimulation finiteness by a result by Kucera and
Mayr [14], who proved that checking whether a given e-PDS is weakly bisimilar to a given finite e-LT'S is PSPACE-
complete: it is enough to enumerate all finite e-LTSs of at most doubly exponential size, and for each of them
check whether it is weakly bisimilar to the given e-PDS P. We improve this in Theorem 8.1, where we show
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how to compute the weak bisimulation quotient of P (i.e., the smallest e-LTS weakly bisimilar to P) in time
polynomial in its size (and exponential in |P]).

In this description we concentrate on the proof of Theorem 7.1, which is the essential part. The second part
(the algorithm) is much shorter, and is described in Section 8.

For simplicity, in this overview we concentrate on the case of an e-free PDS P (i.e., an e-PDS without any
e-transition), which is already non-trivial. We then briefly explain how ideas from the e-free case can be extended
to the general case, when deterministic e-transitions are present. In particular, when there are no e-transitions,
the notions of bisimulation and of weak bisimulation coincide, so we drop the word “weak” in this description.
Moreover, we formulate some statements here in a loose way, neglecting some details. Full details can be found
in the following sections.

Let us assume that our initial configuration gipit Xinit of our e-free PDS P = (Q,T', A, A) is bisimulation finite.
Consider an arbitrary configuration ¢d reachable from gyt Xinir- Our first step is to locate some possibilities of
pumping in the stack content §. Namely, we represent § as a3y, so that configurations ga/3%y, obtained by
repeating the 8 part (we require S # ¢), are “similar” to the original configuration ¢é in the following sense:
first, all these configurations are also reachable (from gt Xinit) and, second, the set of control states reachable
after popping the topmost part o3’ is the same for every j. A standard application of the pigeonhole principle
allows us to find such « and (8 of at most exponential size. This gives us at most a doubly exponential number
of different pairs «, 5. It is thus enough to show that for each fixed pair «, 8, configurations of the form gafSy
constitute only a doubly exponential number of bisimulation classes.

Next, we shift the study of configurations of the form gafy to the study of configurations of the form r~,
but where we still assume that 7y can be reached from reachable configurations of the form ga By, for all i > 1.
It is enough to prove that the number of classes of these configurations ry is small, because the class of gaSy is
determined by the classes of configurations rv, obtainable by popping the fixed stack prefix a8 (cf. Lemma 4.5).

We now exploit our assumption that our initial configuration g Xint is bisimulation finite; it can reach F
classes, for some F' € N (at this point we do not have yet any bound on F'; we only know that it is finite). An
interesting property of finite e-LTSs is that the ~ relation coincides with . In other words, if two configurations
are not bisimilar, then this can be detected in the first F' steps, that is, while reading at most F action symbols.
In the e-free case, reading at most F' action symbols is equivalent to performing at most F' transitions. Bearing
in mind 3 # ¢, it follows that configurations of the form gaB%y for i > F are all bisimilar (here ¢, a, and 3 are
fixed, but the number ¢ > F' and the stack content ~ are arbitrary): during the first F' transitions, P can pop
at most F' topmost stack symbols, and they are identical in all these configurations. If we take an even larger
bound, say F + k, then not only gafiy &~ qa8"~' for all i,i’ > F + k and 7,7 € I'*, but also after executing
a run of length k from gaf’y and an analogous (i.e., performing the same transitions) run from qaﬁi/’y’, the
resulting configurations remain bisimilar. We utilize this observation by introducing stack contents of the form
af%~. The w exponent can be formalized in three ways. First, we may assume that w denotes some “very large”
finite number (large enough for purposes of the proof). A second formalization is that the 5 part of the stack
is repeated infinitely many times. In our proofs we have chosen yet another formalization, where we understand
8% as a formal expression such that after popping S from S“ we again have 8“. Nevertheless, no matter which
formalization one chooses, it is only important that the finite (although possibly very long) prefix of the stack
that may be analyzed by the PDS consists of one o and repetitions of 3.

Bounding the number of repetitions. Next, given some stack contents «, 3, and v we are interested in a
possibly small n € N such that ga8"y ~ qa5¥~. We fix e € N to be the smallest number such that ga8¢y becomes
equivalent to gaf“~y (strictly speaking, we require that 3¢y ~ 3%+ for all control states r reachable after popping
«; this implies that gy &~ gaf*7, but it is a slightly stronger condition). We remark that Jancar [7] has shown
an Ackermannian bound for e. For us, an important step is to prove that e can be at most doubly exponential.
To this end, for every i € [0, ¢], we consider the control state r; for which EQLEV(r; 3%y, 7;4“v) is minimal (i.e.,
the control state from which the stack contents 'y and 3~ can be distinguished in the least possible number
of transitions), and for this control state we take M; = EQLEV(r;3%y,r;3%v). It is rather easy to prove that
M; < M, for all i < e: the similarity between 3%y and 3“7 grows when we increase i, until it reaches level w for
i = e. In particular (because EQLEV(-,-) depends only on the class of a configuration) this means that if r; = ry
for i # ', then the classes [r;3"y]~ and [r;3% 7]~ are different.

Given some stack contents «, 3, and v and some ¢ € [0, e— 1], we now want to provide a succinct description of
the class of 7;3*y. To this end, we consider two runs. The first of them, =, is the shortest possible run from gaB°y
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to r;8%y. The second of them, 7/, is created as a run parallel to 7 that starts in the “much larger” configuration
qa3¥ (it exists because qa 8y ~ qa3°y). Recall that then 7 and 7’ are required to visit bisimilar configurations,
but they are not required to execute the same transitions (in fact, they cannot execute the same transitions: if
7', starting from ga8“, were to pop a3°~* in the same way as 7 did, then 7’ would end in r; 5“7, a configuration
that is not bisimilar to 7;3%y by assumption). Depending on the shape of 7', we have two cases.

First, it is possible that no suffix of 7’ pushes D stack symbols, for an appropriately chosen exponential
constant D; so, roughly speaking, 7’ concentrates on popping. We then observe that no matter how much we pop
from gaf3¥~y, we can only pop to a stack content of the form 3’37, where 8’ is a suffix of either o or 3. Even
taking into account the fact that exponentially many symbols may be pushed at the very end, on top of 3, in this
case we have only doubly exponentially many possibilities for the configuration 7/(]7’|), hence also for its class,
which is simultaneously the class of r;3%y. Recalling that for different values of i (having the same state r;) the
classes of r; 3%y are all different, this means that only doubly exponentially many values of ¢ may be handled by
this case. We can thus concentrate on the opposite case, which we discuss next.

This opposite case, being significantly more complicated, is that 7’ has a suffix 75 that pushes D stack symbols
(note that if more than D symbols are pushed, then we can consider a shorter suffix, pushing exactly D symbols).
The suffix 74 leads from ¢, X6 to tu6 for some control states t1,t, stack contents pu, 6, and stack symbol X, where
|#| = D+ 1. We now use the simple observation that the class of tuf is determined by the control state t, by
the small stack content i, and by the classes of u# for all control states u reachable from ¢u6 after popping p (as
formalized in Lemma 4.5).

Next, we would somehow like to describe the classes of uf. To this end, we observe that since uf is reachable
from tpd, it is also reachable from t; X (due to the existence of the run 7§ from ¢, X6 to tuf). Moreover, a simple
pumping argument (namely, Lemma 4.1) allows us to shorten the run from ¢; X6 to uf (observe that, in total,
only one stack symbol needs to be popped) into a very short run; namely, shorter than some constant B (being
exponential in |P]). Coming back to the analysis of 7, note that the parallel counterpart of 75(0) = t1. X6 in 7’ is,
say, the configuration q;x/37v in m: it is visited while going from qa 3%y to r;3%y. The x part is obtained from 3
(or ) by popping its prefix as quickly as possible by definition of 7. Thus, standard pumping arguments imply
that the length of y is short. Possibly decreasing j and appending a few copies of § into y, we may artificially
redefine |x| to be larger than B, but not much larger. If the value of the constant D is appropriate so that 74 is
long enough, then also the subrun of 7 from g;x37~ to ;3% is long enough to ensure that j > i.

We have thus two bisimilar configurations, q;x/3’7y and t; X6, and we have a run of length B from ¢; X6 to
uf. Then a run of the same length exists also from ¢ x/377 to a configuration bisimilar to u#; this configuration
is necessarily of the form v,&,37y (we cannot pop the whole x with |y| > B in only B steps), where the size of
&, is again bounded exponentially. We can find such v, and &, for all considered states u (note that j does not
depend on u).

The classes of v,£, 37 in turn are determined by the control states v,,, by the small stack contents &,, and
by the classes r/37v for all control states r reachable from v,&, /3’ after popping &, (hence also reachable from
qa 3y after popping a3°~7).

Summing up this part, we have shown that the class of 7;8%y can be determined by the control state/stack
pairs tu and v,&, (indexed by control states u from an appropriate set U) and by the classes of 737+ for some j > i.
All the stack contents p and &, have at most exponential size. The number of possibilities for (¢tu, (V4 )ucr) is
then doubly exponential.

Is it possible that the same tuple (tu, (vy&yw)ucr) is assigned to two distinct indices 4,4’ < e, such that
moreover r; = ry? We prove that this is not possible, which immediately implies a doubly exponential upper
bound for e, being the number of considered indices i € [0,e — 1]. Suppose thus, to the contrary, we had two
such indices 4,4’, where i < i’. Then the class of r;3%y is determined by the classes of 37+, for some j > 4, in
the same way as the class of riﬁi'fy is determined by the classes of rﬂj'fy, for some j' > i’ > i (due to equality of
the descriptions assigned to ¢ and 4"). Recalling the inequalities M; +1 < M; and M; +1 < My < Mj,, and the
definition of M; and M;/, we have rBiy mar 1 TBYY R rﬁj,'y for all control states r under consideration. It
follows easily by the equality of their descriptions, that then also r; 3%y ~ps, 11 7 ,Bilv (we depend in the same way
on a2y, +1-equivalent configurations, so we remain /), 11-equivalent). Due to rlﬂi"y R, +1 T8y this implies
7By ~ar41 1i3%7, which contradicts with EQLEV(r; 8%y, r;3“y) = M;. This finishes the proof of the doubly
exponential bound on e.
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Bounding the number of classes. We now come back to our initial goal, namely bounding the number
of classes of 7y, where 1 is reachable from the initial configuration via ga3*y for all k > 1, where « and 3 are
fixed and short. We employ here exactly the same characterization of the classes as in the previous part, where
we were bounding e. This time we only take i = 0 (i.e., we consider configurations 3%y = rv), but we allow an
arbitrary control state r in place of r;, and do not assume that -~y is fixed. As previously, we have two possibilities.

First, it may happen that 7 is bisimilar to a configuration of the form ¢3’3“~ that is reachable from qaS%~y
by a run 7’ that “focused on popping”, that is, belonging to the first case we have considered. As 8’ is small (at
most exponential), and since the class of ¢5’8“~v does not depend on 7 (as already explained, (=) = (=), while
v is too deep in the stack to be seen in the first F' transitions), we only have a doubly exponential number of
classes of 7 in this case.

The second case is that the class of vy is determined by a small (exponential) information (tu, (Vu,&u)uev)
and by the classes of /37~ for some j > i = 0. The latter classes, in turn, are determined by the stack content
(7 (hence by 7, because 3 is fixed) and by the classes of 7”’+. Thus, if we add j to the remembered information,
we can say that the class of vy is determined by (tu, (vy,&u)uer,J) and by the classes of . The previously
shown doubly exponential bound on e implies that the number of possibilities for (¢u, (vy,&u)ucr, ) is doubly
exponential. A minor detail is that the tuple (¢u, (vy,&u)uev,j) describes the class of ry for a single control
state r; we should rather, given a stack content -y, consider a tuple of such tuples, indexed by states r from an
appropriate set R (control states reachable from ga/3°y after popping «/3¢), hence describing the classes of rvy
simultaneously for all » € R. We now have a cyclic situation: the classes of rvy are determined by the small a
small tuple (indexed by control states) of the above-mentioned information and by the classes of v themselves.
One can show that in such a situation, the small information is enough to determine the classes of ry. We thus
have a doubly exponential bound on the number of these classes.

Adding e-transitions. We now briefly discuss on adapting the above proof idea to the general case, where
e-transitions may be present. Recall that every pushing transition reads some action symbol; e-transitions are
allowed only for popping and need to be deterministic. It turns out that if, while popping 3, at least one action
symbol is necessarily read, then the proof sketch presented above still works, up to adjusting some details. The
main difficulty comes with the fact that it may be possible to pop arbitrarily many copies of 8 without reading
any action symbols. In particular, starting from a configuration of the form ga ¥y, the v part of the stack may
be possibly reached after reading very few action symbols, no matter how large k is.

In order to deal with this difficulty, we proceed as follows: instead of splitting the whole stack content into
a single pumping triple a3y, we now rather try to find pumping triples a8y with slightly stronger properties,
but being only infixes of the whole stack. If some infix of the stack content is represented as a pumping triple
a B, being located on top of a stack content 7, then we still have the previous requirement saying, roughly, that
the 3 infix may be pumped. Beside that, we have a new requirement: if r3%yn is reached by an e-run popping
B from some larger configuration 7’3" 1vn, then further e-transitions allow to pop the whole 5%y, and reach a
configuration of the form sn.

As already said, the previous proof works correctly when the considered runs from ga5¢yn (and likewise from
gaB¥yn) read at least one action symbol while popping every copy of 3. There are also runs that at some moment
pop a copy of 8 using only e-transitions. Then these runs (possibly after prolonging them) continue with popping
e-transitions until the stack content 7 is uncovered. In the proof we need to add special cases for such runs. It
turns out, however, that these runs do not introduce many new possibilities. An intuitive reason for this is that
if a run, while being in some configuration r3%yn, starts performing e-transitions until s7 is reached, then the
number ¢ and the stack content v are “forgotten”; neither the target configuration nor the action symbols read
on the way (we do not read anything) depend on i or on +.

In Section 5 we introduce decompositions of stacks. They give a way to decompose the whole stack content
into many pumping triples a7, located possibly in a nested way. In this decomposition, most of the stack content,
except for exponentially many symbols, is put into the 7 parts of pumping triples. The proof presented above,
dealing with a single pumping triple, is made formal and complete in Lemma 7.2, which is our main technical
lemma. Then, an appropriate induction gives us the final upper-bound result, Theorem 7.1.

4 Some basics on pushdown systems

In this section we present some definitions and known facts about pushdown systems, useful in our proofs. For
purposes of the whole section let P = (Q,T, A, A) be an e-PDS.

Copyright (©) 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Our first lemma says that if there is a run between two similar configurations, then there is a short run
between them. Essentially, this boils down to the standard pumping lemma for pushdown automata.

LEMMA 4.1. ([5, LEMMA 3.3]) There exists a constant' B € 2IPI?Y such that whenever pa —* qf for two
configurations pa, ¢ € QT'*, then DIST(pa, ¢B) < (Jo| + |B]) - B. O

For every stack content o € I'*, we define two sets, describing possible ways of pushing a:

up(a) = {(pX,qY) € (QT)? | pX —* ¢V} for a € T*, and
upg(ar) = {(pX,q) € (QT) x Q | pX =" qa} for v € I\ {e}.
It is easy to see that for all o, 8,7 € T'* with a # ¢,
up(Bv) = up(y) o up(B) and upg(a8) = up(B) o upy(a),

[P

where “o” denotes the composition of relations, understood in the usual way.

As explained in Section 3, it is convenient to extend the set of configurations into expressions containing w,
which we do as follows. A generalized stack is defined by induction: it is a (possibly empty) sequence aj s . .. o,
where every «; is either

e a stack symbol from I', or

e an expression of the form (5182 ...08¢)%, where 5102 ... 8¢ is a nonempty (i.e., satisfying ¢ > 1) generalized

stack.
The set of generalized stacks is denoted I'®°. A generalized configuration is an element of QI'®*. From now
on, whenever we talk about a configuration, we usually mean a generalized one. Configurations that are not
generalized, are called standard. Note that Lemma 4.1 and the definition of up(-) were only given for standard
configurations.

Let us emphasize that, formally, generalized stacks are expressions (terms); we do not assign any concrete
meaning to the (-)¥ operation. However, the intuition staying behind is that (5182 ...8¢)* describes a stack in
which the sequence (1035 ... [ is repeated very many times.

We allow ourselves to write a® when e € N U {w}, mixing two different semantics of the same notation: for
e € N we mean the result of repeating e times the sequence «a, while for e = w we mean the expression o*.

For a € A. we define —, to be the unique relation on QI'®® that holds only in the following cases:

1. if (p, X, a,q,8) € A, then pX~y —, gBy for all y € T'®°,

2. if pa —4 ¢B and (pa, p) & (—7), then pa“~y —, ¢Ba*~y, and

3. if pae =7 p, then pa®y —, py.
Note that in order to know whether pa“y —, ¢Ba“~y or pa®~y —. pv, one has to check whether pao —, ¢f8 and
whether pa —* p. It is important here that the nesting depth of the (-)* operation in « is strictly smaller than
in a®~y, so the whole definition is well-formed.

Based on that, we then define the = relation over generalized configurations, as previously. Note that,
when restricted to standard configurations, the above definition coincides with the previous one. Moreover, only
standard configurations may be reached from ginit Xinit-

Item 2 of the above definition treats pa“~ almost as paa®~y: we can go to gB8a~~y when there is a transition
from pa to ¢B. There is one exception, though: if paw =% p, then we rather pop the whole o, going directly to
py (cf. Ttem 3). The intuition is that if & may be popped using e-transitions, then also arbitrarily many copies
of o, embodied in the o expression, may be popped using e-transitions. Transitions from Item 2 are disallowed
in this case, so that e-transitions remain deterministic. In Item 3 it is required that the state p before and after
popping « is the same; then it makes sense to say that after popping very many copies of o the state will be
again p. If we had pa =¥ g and g —7 p, then it would be unclear in which state (in p or in ¢) we should finish
popping . For this reason we do not add any special transition in such a case.

The following property is a direct consequence of determinism of e-transitions:

if ¢ =% d, then c~ d (and ¢ =y, d for all k € N).

TConstants depending on P are denoted by capital letters in Sans Serif font; for constants singly exponential in the size of P we use

initial letters of the alphabet (B, C, D), while for doubly exponential constants we use letters near the end of the alphabet (T,U,V, Z).
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Yet another useful property of generalized configurations is the following:
for all p € @ and «,y € I'®® we have pa“vy = paa®~.

Indeed, if pa —* p (hence also paa®y —¥ pa“+y), equivalence follows from the previous property; otherwise,
exactly the same transitions can be performed from pa“y and from paa®~, leading to exactly the same
configurations.

We say that a run ¢ is a shift of a run g if ¢ is obtained by appending or removing the same suffix to every
configuration in p.
For o € I'®® and P C @ we define two functions, saying how states can change while popping «:

lay(P)={re@|3q € P.qu =" r} and la).(P)={reQ]|3qe€P.ga—=7r}.

For singleton sets we abbreviate |a)({q}) as |@)(q), and likewise we abbreviate |a)_({¢q}) as |a)_(¢q). Observe that
18)(1a)(P)) = [aB)(P), 18).(Ia).(P)) = [aB).(P), and a).(P) C |a)(P)

for all o, 5 € I'®* and P C Q. The following lemma is a direct consequence of the definition:

LEMMA 4.2. Let p,q € Q and o, 8 € T8, If pa —* ¢B, then |a)(p) 2 |8)(q). d

The next property follows from determinism of e-transitions:
LEMMA 4.3. Let g € Q and a € T®. If |oa)_(q) # 0, then |a)(q) = |a).(q), and this set has size 1.
Proof. If gqow =7 r, then we cannot have qa —* s for any other state s # r. 0

Recall that DIST counts the number of action symbols needed to reach some configuration. Because e-
transitions are not counted, there may be arbitrarily many configurations in a given distance. We fix this by
defining NEAR: for pa € QT'® and k € N let NEAR(pa, k) be the set of configurations that can be reached from
pa by a run reading at most k action symbols and not ending with an e-transition.

LEMMA 4.4. For all pa € QI'®* and k € N we have
|{C | DisT([pa)~,C) < k}| < |NEAR(pa, k)| < |P|*.

Proof. Tf D1sT([pa]x,C) < k, then there is a run ¢ from pa to a configuration ¢ € C, reading at most k action
symbols. Let ¢’ be the first configuration reached by g after reading all these action symbols; after ¢’ we have only e-
transitions. Then ¢’ € NEAR(pa, k), and ¢’ = ¢, so ¢’ € C. Thus in every class from the set {C | D1sT([pa]~,C) < k}
there is an element of the set NEAR(pa, k), so the former set cannot be larger; we obtain the first inequality.

To obtain the second inequality, we observe that every configuration in NEAR(pa, k) is fully characterized by
the list of at most k transitions performed while reading action symbols by a run not ending with an e-transition.
Indeed, from every configuration ¢ we can go by e-transitions to at most one configuration d such that action
symbols can be read from d. When we are in d, we perform a transition from our list. Then again we go by
e-transitions to the unique configuration from which action symbols can be read, and so on. At the very end,
we have to stop immediately after performing the last transition from the list. The number of lists of at most &
transitions is

k 3 k k
Do A< (al+nF <P D

For a length-1 run p let

Bl -1 if 0 = (pPXv —a 4B7),
STACKGROWTH(p) = { STACKGROWTH(pa —, qf) if o = (pa?y —4 ¢Ba¥7y), and
—w if o = (pa®y —c p7),
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and for a run o = p; o --- o g, of length n let

STACKGROWTH(p) = Z STACKGROWTH(p;) .
i=1

Here we assume that —w+n =n—w = —w —w = —w for every n € N. Note that if g is a run between standard
configurations pa, ¢ € QT'™*, then STACKGROWTH(p) = |5| — |-

Finally, we state two simple but important lemmata, which are useful while proving that two configurations
are weakly bisimilar (similar lemmata appeared already in prior work [5, 6, 7]):

LEMMA 4.5. For all g € Q and a,n,n’ € T'® we have
EQLEV(gan, gan’) > min{EQLEV (rn, ") | r € |a)(q)} -
In other words, if rn =~ rn’ for allr € |a)(q) then gan = qan’, and if rn = o’ for allr € |a)(q) then gan =y qan’.

Proof. It should be clear that the second part is equivalent to the first part. To see the first part, we consider two
cases: If there is some r € |a)_(q) C |a)(q), then gan —% rn and gan’ =% r1/; we have gan ~ rn and qon’ = r1f,
so EQLEV(qan, qan’) = EQLEV(rn, r1’); the inequality follows. Otherwise, if |a)_(¢) = 0, we just use Lemma 4.6,
stated below. O

LEMMA 4.6. Let g € Q and a,n,n’ € 8. If |a) _(q) =0, then
EQLEV(qam, qan’) > 1+ min{EQLEV(rn,m0’) | r € |a)(q)} -

Proof. We prove for every k € N that if o) _(q) = 0 and rn) =, )’ for all € |o)(q), then gon ~j41 gan’; the thesis
of the lemma follows easily from this statement. The proof is by induction on k. Consider two configurations gan
and gan’ such that |a)_(¢) = 0 and rn ~y riy for all r € |a)(q); we want to prove that gan ~j41 gon’. Before
starting observe that

if g —* 58 then sfn =, sBn'. (%)

Indeed, if & = 0, this holds trivially (all configurations are in the = relation). If & > 1 and there
is some 7 € |B).(s) C |a)(¢) (inclusion by Lemma 4.2), then sgn —* rn and spn’ —% rn’ imply that
spn = rn =, rn’ = spy’. If k> 1 and |B)_(s) = 0, we observe that rnp ~,_1 ri’ for all r € |B)(s) (due to
(k) C (=g_1) and |B)(s) C |a)(q)), so we have sfn =2 sfn’ by the induction hypothesis. This finishes the proof
of Property ().

In order to obtain gan =pi1 qan’, it is enough to show that the two-element symmetric relation
{(gam, gan’), (qan’, qan)} is covered by =y; the relation will be then contained in =1, the largest symmetric
relation covered by ~;. Expanding the definition of being covered, we should thus prove that if gan == ¢ with
a € A, then there exists ¢ such that ¢ ~;, ¢ and gan’ == ¢ (and that if gan’ == ¢/, then there exists ¢ such
that ¢ ~ ¢ and gan == ¢; this part is symmetric, so we do not need a separate proof). Suppose thus that
qan == c. If a = ¢, we can take ¢/ = gan’; then ¢ ~ qan = qan’ = ¢’ by Property (%) and obviously qan’ = ¢
If a € A, then gan =% ¢; =4 ca =% ¢ for some ¢y, ¢co. Because |a)_(¢) = 0, no configuration on a run from gan
to ¢; may have stack n; we have ¢; = s16n for some s € Q and 8 € I'® with 5 # ¢. Then also qan’ —* s187.
A single transition cannot pop more than the whole 3, so ¢ca = soyn for some so € @ and v € I'#%; then also
51610 —q s2yn. We take ¢/ = soyn’. We have gan’ == ¢/, and we obtain ¢ ~ ¢y = soyn ~p s39m = ¢ by
Property (x). o

5 Decompositions of stacks

In this section we define decompositions of stacks, prove that they exist, and show their basic properties. In
essence, decompositions specify how to split a stack content in a way suitable for pumping. For the whole section
we fix an e-PDS P sz, T, A, A) together with an initial configuration ginit Xinit-

A decomposition § is defined by induction, and can be in one of three forms:
e a single symbol (base case): § = X €T,
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e a nonempty sequence of decompositions: & = 8, ...dy, where d1,...,0; are decompositions and k > 1, or
e a pumping triple: 0 = (@, 3,7)), where @ and 3 are decompositions and v € I'* is a stack.
The height (resp. degree) of a decomposition ¢ is inductively defined as follows:
e the height and degree of 6 = X € I' is 0,
e the height (resp. degree) of § = &;...0; is 1 plus the maximum of heights of any of the d; (resp. the
maximum of k£ and the degree of any of the §;), and
e the height (resp. degree) of § = (@, 3, ) is 1 plus the maximum of the height of @ and the height of 3 (resp.
the maximum of 2, the degree of @, and the degree of j3).
In other words, a decomposition can be seen as a tree for which, as expected, the height is the length of some
longest path from the root to some leaf and the degree is the maximal number of children of some node in the
tree.
For [a] decomposition & and for e € NU {w} we define a stack &
o X!° =X;

o (3,...5.) =3 5l
o (@ B,y =ald (B[e])e*y (i.e., we repeat the middle part e times).

e € I'*, called the e-th realization of ¢:

Ifo = S[l], we say that & is a decomposition of 6. Note that 5[1] is obtained by simply concatenating all stack
ol fha - <Ll A R
symbols that literally appear in §, and that § ~ for greater numbers e is obtained by repeating e times some

¢ <] . ) . P o . .
ragments of 4 *, in a nested way. For e = w the intuition is that we repeat infinitely many times appropriate
fragments of the stack, but formally we just write w in the exponent, without repeating anything.

Having the above definition, we can say when a decomposition is well-formed: A decomposition consisting of
a single stack symbol is always well-formed, a decomposition 6 . .. d}, is a well-formed when all §; are well-formed,
and a decomposition J = (@, 3, ) is well-formed when both @ and 3 are well-formed and additionally

>l1]
1 up(y) =up(B ),
2. [@) = [@3")y, and
Slw] alw]
3167 ).(r) = {r} and |7).(r) # 0 for all r € [577)_(Q).
Below, whenever talking about a decomposition, we assume that it is well-formed.

—[1
Let us explain the above conditions. Item 1 implies that up(y) = up((ﬁ[ })efy) for every e € N, so it ensures
that when we pump a stack content of a reachable configuration according to a decomposition, then the obtained

configuration is again reachable. Ttem 2 implies that [a“]) = [@] (BM)@> for every e € N: no matter how many

copies of EM we have, the set of states that can be reached by popping the stack is the same. Item 3 says that
there are only two ways of popping EM: either we read at least one action symbol, or we end in a state from which

there is an e-run popping arbitrarily many copies of BM and then +; in particular, the only way of accessing the
~ part of g[w] is by an e-run popping the whole .

There are some similarities between our pumping triples (@, 3,7) and notions from Valiant’s paper [21].
Namely, the 3 part of such a triple, which can be pumped, corresponds to Valiant’s notion of a null-transparent
segment, and the ~ part corresponds to Valiant’s notion of an invisible segment (it is “invisible” after repeating 3
many times). There is one important difference, though: in Valiant’s proof it is enough to find just one invisible
segment and one null-transparent segment; here, we rather need to decompose the whole stack into such segments.

We now give two simple lemmata, being immediate consequences of well-formedness:

LEMMA 5.1. For every well-formed pumping triple § = (@, B,7) and every set P C Q we have
Slwl\ 2lw]
1B ))(P)=16).(P),
2. [3“Y_(P) = [@15“)y)_(P), and
5. [8)(P) = [3).([@) (P)) for all P € Q.

Proof. For the left-to-right inclusion in Item 1, suppose that r € |(BM )“) (o) for some ro € P, which by definition

)“ —* r. We have to prove that r € \B[w]>5(r0). The only way of popping (B[w]

means that r (BM ) is to pop
BM some number of times, and then to pop the whole (BM)“’ in a single step, without changing the state; we

thus have states r1,...,r; for some k € N such that r; € |B[w]>6(ri,1) for i € [1,k], and rp, = r € |B[W]>€(Tk).
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If & = 0, the latter gives us the thesis. If &k > 1, for ¢ € [1,k — 1] we have r; € |B[w]>€(ri,1) C |BM>E(Q)7 S0
well-formedness of § implies that \B[w]>e(ri) = {r;}; because 141 € |BM>E(TZ-), necessarily 7,41 = ;. We thus
have ry =r9 = -+ =1 =r, hence r, € |BM>6(7’0) gives us the thesis.

Conversely, if r € |B[w]>€(ro) for some ry € P, then by well-formedness of § we also have r € |BM>E(T). We
thus have TO(BM)‘” —* T(BM)‘” —*r, that is, r € \(B[W])“>E(TO). This finishes the proof of Ttem 1.

We have [5)),(P) = ). (|(3))*). ([a).(P))) and [@t5)),(P) = ). ([B*)). (@), (P)). so Ttem 2 is
an immediate consequence of Item 1.

In order to prove that \5M>(P) - |B[“’]7>€(|a[“]>(P)) consider a run that pops ol Such a run pops @l
and k copies of BM, for some k € N, then it pops the whole (BM)“ while staying in some state r, and then
pops 7 going to some state s. Then r € |BM>E(7’) C \B[w]>E(Q) and s € |y)(r). By well-formedness of § we then
have r € |a*] (B[W])kﬂP) = [@“)(P) and |)_(r) # 0, which implies s € |y)_(r) by Lemma 4.3. In consequence
s € |B[°J]v>€(|a[“’]>(P)), as needed.

Conversely, consider some s € |BM ).(|@“ly(P)). Then there is a state r € |B[“’}>s(|a[“]>(P)) C \B[W]>E(Q)
for which s € |y)_(r). By well-formedness of § also r € |BM>E(T). We can thus pop @“! and one copy of BM
while going to state r, then pop the whole (B[w])“’ remaining in state r, and then pop 7y going to state s; we have
s € |5M)(P)7 as needed. 0

LEMMA 5.2. For every well-formed decomposition &, every set P C Q, and every e € N we have
<[w] =[1]
1.67) (P) =16"").(P),
2. 3Ny C [5)(P), and
—le —=[1 —=le —=[1
3. up(3) = up(3") and upy(3) = upy(3").

Proof. Induction on the structure of 6. The base case of § = X € I is trivial, because g[w] = g[e] = 3[1] = X.
In the case of § = d;...0;, the thesis follows directly from the induction hypothesis, because we can write

|3[w]>(P) = \gkw})(@i]l)(. . (\5[10‘)]>(P)) ---)), and likewise for the other functions and relations. For 0 = {a, B,7)
we have, using Lemma 5.1, the induction hypothesis, and well-formedness of §:
5).(P) = ). ()o@ (P)) = 1. (B (1@ (P)) = [8").(P).
5 (P) = . (B (@) (P)) € 1) (B (1) (P))
WEC B (@) (P)).. )
—_————

€

B (BN @D P))...) = 5 P),

(&

up(3) = up(7) 0 up(B'”) 0 -+ 0 up(5') o up(@l?)

€

— up(7) o up(B) o+ 0 up(B") o up(@™) = up(y) o up(B") 0 up(@") = up(3"),

€

and likewise for up,(-). 0

The next lemma is very important. It allows us to find a decomposition of bounded degree and height for an
arbitrarily large stack content §. This means that arbitrarily large segments of § have to fit into the v parts of
pumping triples in the decomposition.

LEMMA 5.3. Every nonempty stack content § € I'* has a well-formed decomposition & of height at most 2|Q| + 2

and degree at most C, for some C € olPIo®
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Proof. Take C = 21QP(ITP+D+1 4 1 and denote h(a) = |Q \ la) (Q)] for av € T'*. We strengthen the thesis of the
lemma, showing that the height of the resulting decomposition is at most 2h(d) + 2 (which is not greater than
2|Q| + 2). The proof is by induction on A(9).

We represent the stack content § as 6 = 51 X102Xs...0,X,0,41 (where §; € T and X; € I") in such a way
that either h(d;) < h(d) or 6; = € for all # € [1,n + 1], and h(§;X;) > h(J) for all i € [1,n]. To obtain such a
representation, as d; we take the longest prefix of § satisfying h(d;) < h(9), or just §; = e if there is no such
prefix; as X; we take the next letter for which by maximality of ; we have h(51X71) > h(d); then as Jo we take
the longest prefix of the remaining part of ¢ satisfying..., and so on.

By the induction hypothesis, for every nonempty fragment §; we have a well-formed decomposition §; of
height at most 2h(d;) + 2 < 2h(4) and degree at most C. Note that when h(d) = 0, then all §; are empty (we
cannot have h(d;) < 0), hence the induction hypothesis is not needed in this base case.

Ifn < Q‘Q‘ZGF'QH), as 0 we just take the sequence consisting of the decompositions §; for nonempty d;, and
of single-node decompositions for symbols X;; this sequence has length at most 2n + 1 < C. Well-formedness of
¢ follows immediately from well-formedness of the decompositions 9;.

Suppose that n > 2lQIP(ITP+1)  For k </l <nlet gk’g be the well-formed decomposition of §; X ...d, Xy,
obtained as the sequence consisting of the decompositions d; for nonempty d;, and of single-node decompositions
for symbols X;, where i € [k, ¢]. To every i € [1,n] we assign the tuple

<[w]
Si = ((161.)(0))qeq up(Fit1 Xit1 - - - 60 Xnbny1)) -

The first |@Q| components are subsets of @), and the last component is a subset of (Q x I')2, so there are at most
2lQ”” . glQI*Irf? possible tuples S;. Thus, there are some k, ¢ with k < £ < 2IQP(ITP+1) 4 < n for which S = .S,.
Let

a = (51X1 ...(Ska, ﬁ = (S]H_lX]H_l...(SgX(, and Y= 5@+1X@+1...(5an(5n+1 .

Then & = 3171C and 8 = 3k+17g are well-formed decompositions for « and 3, respectively. These decompositions
are sequences of length at most 2k and 2(¢ — k), respectively, which is smaller than C. Moreover, they both have
height at most 2h(d) + 1. Then 6 = (@, 3,v) is a decomposition of §, has degree at most C, and height a most
2h(68) + 2, so it remains to see that ¢ is well-formed.

Observe that

_lw —[1 _[w]lplw
Sk = ((1a)(@)seq. up(3") and St = (@18 (@) geq: up(1)) .
Equality of the last components of S and S, gives us the first condition of well-formedness, namely
-l s — —[w]Blw . _ _
up(y) = up(ﬁ[ ]7). Equalities [@“!)(q) = \a[‘“]ﬁ[ ]>(q) for all ¢ € Q give us [@“!)(P) = Ugser [ally(q) =
Uger |aMBM)(q) = |&[“’]BM>(P) for every set P C @), which is the second condition of well-formedness.

Recall that h(d,X¢) > h(0); equivalently [|0,X,)_(Q)| = |Q| — h(6:X¢) < |Q| — h(d) = []0).(Q)]. Because
08).(Q) = 18). (10).(@)) € 13).(Q) = 66Xe) (5 X .- 6p—1 Xe1) (@) € 18X (@), this ixuplies [laf) (Q)] <
[18).(Q)] < 16).(Q)|. Consider now the relation R = {(r,s) € |aB)_(Q) x [6).(Q) | s € |7).(r)}. By Lemma 4.3
this is a partial function (for every r the set |y)_(r) contains at most one s). On the other hand, for every state
s €10).(Q) = |7).(JaB).(Q)) there exists r € |af)_(Q) such that s € |y)_(r). Together with the cardinality
argument ||a3)_(Q)| < ||9).(Q)| this implies that R is a bijection. Thus, the three sets, |af)_(Q), |5).(Q),
and [0)_(Q), are of the same size. Recalling that |a3)_(Q) is a subset of |3)_(Q), this implies that actually
laB).(Q) = |B8).(Q). Taking into account Lemma 5.2 (which can be used because @ and 3 are both well-formed),

[w] 2lw]
):(Q) =1ap).(Q) = [8).(Q) = [67).(Q)-
In order to show the last condition of well-formedness, consider now a state r € |BM>E(Q). We need to

show that |BM>8(7‘) = {r} and |y)_(r) # 0. The latter follows immediately from the fact that R is a bijection:
r € |aB).(Q), so r has a corresponding element in |y)_(r). In order to show the former, note that, due to
r e |E[“’]B[w])s(Q), there have to exist states ¢ € Q and 1’ € [@“!)_(g) such that r € |BM>E(T'). By Lemma 4.3
we then have [@1)(q) = [a“))_(q) = {1}, and we have already shown that [a“))(q) = [#“1B"“))(g) (cf. the
second condition of well-formedness). Thus r € |E[“’]E[W]>€(q) - |6[“’]B[w]>(q) = {r'} implies r = 1/, so we have

re |BM)E(T), as required (by Lemma 4.3 the set |BM>€(7“) is a singleton). 0

we moreover have |al“!3
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An interesting property of decompositions is described by Lemma 5.4; it says that if we increase the number
of copies of B[W] in a configuration, then the configuration becomes more similar to a configuration with w copies
of B[w]. We assume here that 1 +w = w.

LEMMA 5.4. Let ¢ € Q, let (&,B,7) be a well-formed pumping triple, let n € T, and let M; =
min{EQLEV(r(B[w])i'yn,T(BM)“'W) | 7€ |a“h(q)} for alli € N. Then M;y1 > 1+ M; for alli € N.

Proof. Fix some i € N. Let rmin € [@“!)(¢) be a state for which M, = EQLEV (rmin (B[w])i“’yn, rmin(g[w])“’yn).
We distinguish two cases.

Suppose first that |E[w]>€(rmin) = (). As observed on Page 8, we have rminBM (B
Thus by Lemma 4.6 we have

2]

- )“}777 ~ Tmin (6

).

Mit1 = EQLEV(rmin B (BN oy, rnn B (B 1)
> 1+ min{EQLev(r(B*)iyn, r (B vm) | r € B (ramin)}

By well-formedness of the pumping triple we have |B[w]>(rmin) - |B[w]>(|6[“]>(q)) = |E[W]B[w]>(q) = [a“N(q), so
for all r € |E[w]>(rmin) we have EQLEV(T(B[w})i’yn,r(ﬁ[w])wfyn) > M;, which implies M; 41 > 1+ M;.

Conversely, suppose that there is some r € \BM> (Tmin) € |B[w]> .(Q). By well-formedness of the pumping
triple we have |B[w]>5(7") ={r} and s € |y)_(r) for some s. This implies that rmin(B[w])”l’yn —* T(B[w])i’yn —* sm
)“yn =% sn, that is, M; 11 = w > 14+ M. O

2]

and Trnin(B[W])w'W] — r(B
The next lemma says that if we can pop a stack content of the form S[w], then we can pop it quickly:

LEMMA 5.5. If s € \g[w]>(q) for a well-formed decomposition & of degree at most C and height ¢, then
DIST(qSM, s) < BC’.

Proof. Induction on the structure of §. Suppose that s € \g[w]>(q). Ifo =X = EM, then s € |X)(q) (ie.,
gX —* s) implies DIST(ng7 s) < B by Lemma 4.1.
Suppose that 6 = 0;...6;. Then g[w] = g[lw] e
ro =¢q, rg =1, and r; € |3£w}>(ri_1) for all ¢ € [1,k]. By the induction hypothesis DIST(m_JE”]SE“fl . .SE:],
rﬁﬁ“ﬂl . .SLW]) < DIST(TZ-,SE‘“],”) < BC’~!. Because k < C, we obtain DIST(TOS[w],m) < C-BCL
Finally, suppose that 0 = (@, 3,7). By Lemma 5.1, s € |5M>(q) implies that there is a state r € [@“!)(q)

for which s € |B[w]fy>e(r) = |(B[w])“’7>5(r). The latter means that DIST(T(E[W])“% 5) = 0. We conclude using the
induction hypothesis:

iw], so there have to exist states rg,r1,...,7%r such that

Dist(¢0", 5) < D1st(g8"", r(B“))*7) + Dist(r(B“)*~, s) < Dist(¢a),r) + 0 < BC ' <BC'. O

We now define by induction when two decompositions 4, 5 have the same type, written & L

e if § =0 then § 25,

e if 6 =0;7...0;, and 3231...§k, and 0; t:pgi foralli € {1,...,k}, thengt:pg, and

e if 0 = (@, 3,7), and 5= (I&,B\,W’D, and @ 2 @, and S = B, and |y)_ = |7/)., and up(v) = up(v’), then § LS
The next two lemmata say that, on the one hand, the number of different types is small, and, on the other hand,

that while considering stacks of the form SM, only the type of ¢ is relevant:

LEMMA 5.6. The number of different types (i.e., equivalence classes of the b relation) for decompositions of height

at most £ and degree at most C is at most 9IPI*(CH+D)

Proof. Induction on ¢. For ¢ = 0 we have only |I'| decompositions, consisting of single stack symbols, and
| < 2IPI*(C+1)  For £ > 1 we have

Copyright (©) 2023 by SIAM
Unauthorized reproduction of this article is prohibited



e |I'| decompositions consisting of single stack symbols;
e decompositions being sequences of at most C decompositions of height at most ¢ — 1; for each of them we
have to know its type, where by the induction hypothesis we have at most olPI*(C+1)f possibilities;
e pumping triples (@, 3, 7)), where we have to know the types of @ and 3 (at most ol PI"(C+1)f possibilities for
each, by the induction hypothesis), and the objects |y)_ and up(y).
In the last case, we notice that |7)_(P) = U,cp[7).(p) for every P C @, meaning that the function |v)_ is
determined by the set {(p,q) | ¢ € |7).(p)} C Q*. Likewise, up(7) is a subset of (QI')2. We thus have at most
21QP+IQIPI® < olPI* possibilities for combinations of |v)_ and up(y). Using inequalities C > 3 and C+ 3 < 2¢
< 2|P|4'(C+1)Z, we obtain that the number of possible types is at most

|+ Z ol PI*(C+1)" i | oPI"(CHD) 2+ |P| < (C+3)-2 oI PIM(C+D)C ol P (CH+1) 0

LEMMA 5.7. Let 3,3 be decompositions. If § is well-formed and & = ZS\, then
1. [3) = 5%)) and [5), = [814)..
2. up(3") = up(81)) and upy(3") = up, (1),
8. 0 is well-formed as well, and
4. qg[w]n ~ qoln for all g € Q and n € T,

Proof. We proceed by induction on the structure of 6. If § = X, then also S=X , so the thesis is trivial.
Suppose that § = d;...9;. Then 5 = 31& with &; ® SZ for all i« € [1,k]. Ttem 3 follows

directly from the induction hypothesis. Items 1 and 2 as well: \SMXP) = |3E€w]>(|5£€w,]1>(. . (|3[1w]>(P)) L) =

|;ﬂw]>(|5 ] . (\5w])( P))...)) = |A[‘*’ Y(P) for every P C @, and likewise for the other equalities. By the

induction hypothesis we also have 7"5 5;111 5E€w]n g[w] 5;111 55)]77 for all r € Q and ¢ € [1, k], which implies
g .8}3155‘“]5% e 6L ]77 ~ qoi .. ol 51 531]1 e 5% ]77 by Lemma 4.5. Having this for all 7 € [1, k] we obtain

qg[w]n = qg[“]n as needed for Item 4.

Finally, suppose that § = (@, 3,7). Then 5= (a, B~ ') with @ 28,325, 7). = 7)., and up(y) = up(y’).
We obtain Item 1 using Lemma 5.1 and the induction hypothesis:

BN (P) = I (B (@) (P)) = ) (1B (&) (P))) = [81)(P) and
B.(P) = ). (™). (). (P) = )15 (@) () = [B). () forall PC Q.

Item 2 follows directly from the induction hypothesis and the equality up(y) = up(y’). We observe that the

definition of well-formedness for & uses only the objects up(y), up(B[l]), [all), |BM), \E[w]>6, and |vy),, and for
each of them we already have equality with analogous object for the other decomposition; Item 3 follows.
In order to obtain Item 4, we prove that

T(B[W])w“ﬂ? Rk T(BM)“W’U forall » € Q and k € N.

We proceed by induction on k. For k = 0 this is trivial, as all configurations are related by =z3. Suppose
now that the thesis holds for some k, and we want to prove it for £ + 1. As observed on Page 8, we have

(EM) n =~ TBM (EM) ~n and r(B\[“’ )“J Ay & rBll (B\[w])“’ 'n, and by the induction hypothesis of the external
induction we have 3l (B Whwn/n ~ rﬂ (6 N“+/n. We thus have to prove that

TB[W] (B[W])w,yn Rt ’I"B[UJ] (B\[w] )w,y/77 )

If |6[w]> (r) = 0, this follows by Lemma 4.6 from the induction hypothesis saying that r’(B[ ]) n = k r (6M) ~v'n
for all ' € |BM>(T) C Q. Suppose thus that |BM>€(T) # 0, and take some state 7’ € |BM)E(7‘) C |ﬁ >€( ). By
well-formedness of § we have ' € |BM>€(7“’) = |B[w]>5(7‘l) and s € |y)_(r") = |7).(r") for some s. In consequence
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BB ey sz (B egn 2 am 2 sp and 7B (Bl)ey'n o v (B9 <52 'y <57 sn, so we even
—lw] 5wl w Slw] Alw]\w
have 3 (B )y~ sn~ B (B1)~/n.
Because (), cn(Rk) = (=), from the above it follows that T(B[w])‘”’yn ~ r(plhwy'y for all r € Q, so
qalv] (BM)‘*”W ~ gal! (B\[“’])“’fy’n by Lemma 4.5. We conclude using the induction hypothesis, saying that

S I e RN
g6 n=qa*l(B)m~qa“l (B ) . O

6 Runs going down

In this section we concentrate on runs “going down”, that is, runs oriented on popping the stack. Such runs are
called D-almost-popping runs, and classes reachable by them are collected in Below(-) sets. We also prove basic
properties of these notions. As in previous sections, we assume some fixed e-PDS P = (Q, T, A, A).

Let D = (B+3)-BC??I*1 12 (it turns out that this value of D is suitable for our proofs presented in the next
section). Note that D € 2P1°Y We say that a run = is D-almost-popping if there is no run 7fy that is parallel to
a suffix of m and satisfies STACKGROWTH(7;) > D. For a set 2 of classes, we define Below(2) to be the set of
classes C for which there is a D-almost-popping run 7 from a configuration in a class in Q2 to a configuration in C.
When Q is a set of configurations (instead of classes), we abbreviate Below({[c]~ | ¢ € Q}) into Below(2), and
for a single configuration ¢ we abbreviate Below({c}) into Below(c).

Observe that if 7 is D-almost-popping, then every run parallel to 7 is D-almost-popping as well. It follows that
if from a configuration c there exists a D-almost-popping run to a configuration in a class C, then such a run exists
from every configuration ¢’ € [¢]~. Observe also that every suffix of a D-almost-popping run is D-almost-popping
as well. The next four lemmata bound the size of the Below(-) sets in specific situations:

LEMMA 6.1. Let & be a well-formed decomposition of degree at most C and height £, and let n € T'8. Then there
are at most Ct-|P|PT! classes C for which there is a D-almost-popping run T that starts in pg[w]n for some p € Q,

leads to a configuration in C, and can be shifted to a run from pg[w]. In particular, for every P C @,
—[w] <[w]
| Below({pd""n | p € P})| < |Below({rn | r € [§)(P)})| + C*- [P°+!.

Proof. The second part of the lemma easily follows from the first part. Indeed, consider a class C € Below({pg[w]n |
p € P}). By definition, there exists a D-almost-popping run from pg[w}n for some p € P C QQ to a configuration

in C. If m can be shifted to a run from pg[w], then C is among the at most C* - |P|P*! classes counted by the
first part of the lemma. If not, then 7 reaches a configuration with stack 7, at some moment. For the first such

configuration rn we have r € |3[W]>(P)7 so the second part of 7, from 77 to a configuration in C, witnesses that
C € Below({rn|r € \g[w]>(P)}).

We prove the first part by induction on the structure of §. Suppose first that 6 = X € I, and consider a
D-almost-popping run 7 that starts in pXn for some p € @, and can be shifted to a run from pX. Necessarily
STACKGROWTH(7) < D (because 7 itself is also parallel to a suffix of w). Thus 7 leads to a configuration qun
with |u] = |X| + STACKGROWTH(7) < D. The number of such configurations qun, hence also the number of
classes of these configurations, is at most [Q|- 2o |T|* < Q|- (IT] 4 1)° < [P|P*+! (vecall that 7 is fixed).

Next, suppose that § = 6;...8;. For every D-almost-popping run that starts in pg[w]n and can be shifted

to a run from pg[w] we can find the smallest i € [1, k] such that 7 can be shifted to a run from pg[lw] . .SE“”. By

minimality of ¢, the run 7 crosses a configuration of the form p’SE“’]SE“ﬂl . .35:)]77; then the suffix 7’ of 7 starting

<lw]

there is a D-almost-popping run that starts in p’SE“’] Oitq - .35:)177 and can be shifted to a run from p'SE“]. By the
induction hypothesis, the number of classes reached by such runs 7/, for every fixed 4, is at most C/~% - |P|P+1.
There are C possible values for i, so in total we have at most C* - |P|P*! classes.

Finally, suppose that § = (@, 3,7). For every D-almost-popping run 7 that starts in ngn and can be shifted

to a run from pg[w] we have one of the following possibilities:
e Maybe 7 can be shifted to a run from pal“!. By the induction hypothesis, the number of classes reached by
such runs 7 is at most C/~1 . |P|P+1.
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e Maybe 7 cannot be shifted to a run from pal“! (hence 7 visits a configuration with stack (BM)‘“W]), but
T never pops (BM)‘” going to a configuration with stack 7. Consider the last moment when 7 visits a

configuration of the form T(B[w])“”yn; let 7’ be the suffix of 7 starting at this moment. Let also 7"/ be the

run starting in TBM (BM

)“~yn and performing exactly the same transitions as 7’; after performing the first
transition the two runs coincide. We have ’I“B[W] (B[W])“”yn ~ T(BM )“qn, so 7w’ ans 7'’ are parallel; in particular
7" is D-almost-popping. Moreover, 7’/ can be shifted to a run from TBM, because otherwise 7" and 7’ would
visit a configuration with stack (EM)‘*”W] again, contradicting the maximality of the starting point. Thus,
by the induction hypothesis, the number of classes reached by such runs 7 is at most C/~1 . |P|P+1,

e Finally, maybe at some moment 7 reaches T(B[W])“Wn, then goes to rvyn, and then continues somehow.
Because (EM)“J could be popped, we have r € \BM> _(r), hence by well-formedness of § there exists some

5 € |y).(r); in other words, ry — s for some state s. Recall that 7 can be shifted to a run from pg[w],
hence its suffix after visiting ryn can be shifted to a run ¢ from rv. Thus, by determinism of e-transitions,

o consists entirely of e-transitions. In consequence, the prefix 7’ of m ending in T(B[w])“’yn leads to the same
class as 7; moreover, 7’ is parallel to m, so it is D-almost-popping as well. But «’ satisfies assumptions of
the previous case; no new classes can be reached.

Thus, the total number of classes under consideration is at most 2C*~1 . |P|P+1 < C*. |P|P+1, O

LEMMA 6.2. Let dy,...,0, be well-formed decompositions of degree at most C and height £, and let n € T'8. Then
there are at most k- Ct - |P|P*! classes C for which there is a D-almost-popping run 7 that starts in pg[lw] .. .SL‘”]n

for some p € Q, leads to a configuration in C, and can be shifted to a run from pg[lw] .. .EE:)],

Proof. As in the proof of Lemma 6.1 (the case of § = §; ... ;) we observe that for every class C under consideration
there is a D-almost-popping run that starts in p’ SE“}S% .. .35?]77, ends in a configuration in C, and can be shifted

to a run from p’ggw], for some ¢ € [1,k]. By Lemma 6.1, the number of such classes for every fixed i is at most
Cf-|P|P*L. There are k possible values for i, so in total we have at most k - C* - |P|P+! classes. a

LEMMA 6.3. Let 7 be a D-almost-popping run. Then there are at most |P|*8P —1 classes C for which there exists

a D-almost-popping run 7' from w(|x|) to a configuration in C, but the composition wow' is not D-almost-popping.

Proof. We prove that every class C under consideration satisfies DI1ST([7(|7|)]~,C) < B- (2D — 1); by Lemma 4.4
this bounds the number of possible classes C by |P|B(2P—1) < |P|?BD _ 1,

Consider thus a D-almost-popping run 7’ that starts in 7(|7|), ends in a class C, and is such that 7 o7’ is
not D-almost-popping. By definition we then have a run gp that is parallel to a suffix of 7 o 7’ and satisfies
STACKGROWTH(9p) > D. Because 7’ is D-almost-popping, gp cannot be parallel to a suffix of #/. We can thus
represent gp as g1 © gp, where p; is parallel to a suffix of 7, and gf, is parallel to n’. Let also p3 be a suffix of
op for which STACKGROWTH(p3) is maximal; let us write g, = g2 o g3. Denote k; = STACKGROWTH(p;) for
i € {1,2,3}. Because 7 and 7’ are D-almost-popping, necessarily k&; < D — 1 and k3 < D — 1 (because g and
03 are parallel to suffixes of 7 and 7', respectively). Recall also that STACKGROWTH(gp) = k1 + ko + k3 > D,
so k1 + ko > 1, implying that on the top of the stack of ¢3(0) we have a real stack symbol, pushed there by
01 © 02 (i.e., not an expression of the form 7). Maximality of STACKGROWTH(p3) means that we can then write
02(0) = pan, 03(0) = ¢Xn, and g3(|es|) = rBn (for a, B € T'*), where | X|—|a| = ke and |B] — | X| = k3, and g20 03
can be shifted to a run from pa to rf (intuitively: the “stack height” during g o g3 is minimal at ¢3(0)). Due to
k3 <D —1wehave |f| =ks+1<D,and due to ks < D —1and k1 + ko > 1 we have |o| =1 — ko < k; <D -1.
Thus

DisT(r(|7])]=,C) < DIsT(02(0), 05(Js])) < DisT(pa, ) < (Jal + |8]) - B < B- (2D — 1),
as we wanted; the third inequality is by Lemma 4.1. 0
LEMMA 6.4. For every set S of classes,

| Below(Below(Q))| < | Below ()| - |P|?BP .
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Proof. For every class C € Below(2) we fix some D-almost-popping run n¢ from a configuration in a class in © to
a configuration in C. For every class D € Below(Below(2)) \ Below () we fix a class C(D) € Below(2) such that
D € Below(C(D)), and we fix a D-almost-popping run 77, from 7¢(p)(|7¢(py|) to a configuration in D (recall that a
D-almost-popping run to a configuration in D exists not only from some configuration in C(D), but actually from
every configuration in C(D), in particular from m¢(p) (|7e(p)|)). Because D ¢ Below(£2), the composition m¢(pyomp
is not D-almost-popping. Thus, for every class Cp, the number of classes D € Below(Below(2)) \ Below () with
C(D) = Cp is at most |P|*8P — 1, by Lemma 6.3. We then have at most |Below(Q)| choices for the class
Co. Additionally, Below(Below(£2)) may contain at most |Below(2)| classes from Below (). We thus have
| Below(Below(9))| < |Below ()| - (|P|?BP — 1) + | Below(12)|, as required. O

7 The core of the upper bound proof

Let us fix an e-PDS P = (Q,I', A, A) together with an initial configuration @piXine € QI'. Assuming that

, GinitXinit) 1s weakly bisimulation finite, we want to boun e number of its classes reachable from
L(P X i kly bisimulation finit t to bound th b f its cl hable f
o(1)
[Ginit Xinit]~, showing that it is in Q2P
Our first lemma says that if the e-PDS is weakly bisimulation finite, then generalized configurations with
w repetitions of some stack fragment are equivalent to configurations with a large enough number e € N of

repetitions:

LEMMA 7.1. Let q € Q, let {@,3,7) be a well-formed pumping triple, and let n € T*. If it Xinit —* qa[l]B[l]fm,
—lw]

and if (L(P), GinitXinit) 18 weakly bisimulation finite, then for some e € N we have (8 )¢yn =~ T(B[w])“’vn for all
re|a q).

@1)(q)
Proof. We assume that (L(P), GinitXinit) 18 weakly bisimulation finite, and we denote the number of its classes
by F. We prove the lemma for e = FI?l. Let us formulate a version of the lemma suitable for induction: for

every ¢ € Q, every well-formed decomposition §, and every n € I, if Ginit Xinit —>*7q5[e]77, then qg[e]n ~ qg[w]n.
We prove this statement by induction on the structure of 9, and in the case of & = (a,3,v) we also prove
that r@[wl)ew ~ T(B[w])“’vn for all 7 € [@“!)(¢q). This gives us the actual statement of the lemma; note
that the assumption of the lemma, GinitXinit —* qgmn (which can be reformulated as (Ginit Xinit; ¢) € upo(gm)),
is equivalent to the assumption of our inductive statement, ginitXinit —* qg[e]n (which can be reformulated as
(ginitXinit, q) € upo(g[e]))7 by Lemma 5.2.

If § = X €T, the thesis is trivial because EM = g[e] =X.

Suppose that § = &;...0), and consider some i € [l,k]. For every r € \5[{”] 551]1)((]) we have
r € |3[18] 3£e_]1>(q) by Lemma 5.2, so ginitXinit —* qg[e]n —* rSEe]SEﬂl . .55}77; by the induction hypothesis
we thus have rSEe]SEﬂl . .SLE]U ~ rSEw]Sﬂl .. .Ef]n. By Lemma 4.5 this implies qg[lw] . .Sgi]lgge]ggl . .ggf]n ~

qg[lw} . .8£°ﬂ13£“]3£ﬂl . .35]7). Having this for all ¢ € [1, k], we obtain qg[e]n R qg[w]n, as needed.
Finally, suppose that 6 = (@, §,7). Let R = |[a“l)(¢). By well-formedness of § we have R = |al*! (B[w])i>(q)
for all i > 0. By applying the previous case to the decomposition § = @f3...3 we obtain that
——

¢8I = q@ (B)em ~ @ (3.

The former configuration is reachable from ginis Xinit, S0 the class of gal*! (B[W])e'yn is reachable from [ginit Xinit]~-
Moreover, ga“! (B[W])eyn —* r(B[w])ifyn for all ¢ € [0,¢] and r € R, so the classes of r(ﬁ[w])i*yn are reachable as

well; they are among the F classes of our pointed e-LTS. For every i € [0, €] let

oi = (r(BY v~ ren and M; = min{EQLev(r(B“ iy, r(B“))*yn) | r € R} .

There exist at most FI@l = e distinct tuples of |R| classes, so necessarily o; = o for some ¢,j with 0 <7 < j <ee,
and thus also M; = M;. On the other hand M; > (j —¢) + M; by Lemma 5.4 applied to indices i,i+1,...,j — 1.
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Thus necessarily M; = w, meaning that r(BM)i'yn A T(B[w])‘*’vn for all » € R. By Lemma 4.5 we also have

r(BNeyn m v (3= (B m r(B) <y for all r € R, and @) (B)eyn ~ qal“ (B )*yn. Altogether we
obtain

Sl]

7[6] —|w e —(w 7[“"] w 7[“)]
@0 = q@ (B ) m = q@ (B )y = ¢,

as needed. |

We now have Lemma 7.2, our main technical lemma. It says that the number of possible classes of rvn is
small, assuming that the classes C; of sn are fixed, and that « belongs to a pumping triple {-, -, ) of a fixed type.
This is very powerful, because infinitely many stack contents v may be handled this way (intuitively, v is almost
arbitrary). The assumption that v belongs to a pumping triple of a fixed type is very mild; we easily deal with
it later (using the fact that every stack content has a decomposition whose type comes from a small set).

LEMMA 7.2. Let q € Q, let 5o = (@, B,70) be a well-formed decomposition of degree at most C and height at most
2|1Q| + 2, let (Cs)se@[f])(q) be a tuple of classes, and let K = |Below({Cs | s € |3gw]>(q)})|. Let also Q be the set of
pairs (v,m) € I'" x I'* for which

o (@ B.7) = b,

® Ginit Xinit =" qamB[HWL and

e sneCs forallse€ |5([)w]>(q)
If (L(P), ginit Xinit) s weakly bisimulation finite, then the set of tuples of classes

e = {([T’Yﬁ]z)rem[wl)(q) | (v,m) € 2}

o(1)
has at most (K + T)3IQ! elements, for some T € 2277 Moreover, for every tuple (Cp),¢jte1y(q) € © we have

|Below({C,. | r € [a))(q)})| < (K +1)- U for some U € 22|p|0(1).

Proof. If © is empty, the thesis holds trivially. Assuming that € is nonempty, let us fix, for the duration of
the whole proof, a stack content 79 € I'* that occurs on the second coordinate of some pair from 2. Then

sno € C, for all s € |3£)w]>(q), and thus the condition sn € C; can be reformulated as sn ~ sny. We can also write
K = |Below({smo | s € [5,") (@)}

Denote & = al“! and E = B[W]. Note that B is obtained from f by adding w exponents in all pumping triples
inside 3, but the whole § remains repeated only once (in particular, if 5 is just a sequence of symbols, then
B =B). Let also R = |&@)(q). By well-formedness of 8y we have R = |a%)(¢) for all i > 0, as well as |3)(R) = R.

For (v,n) € Q let e, be the smallest number such that ([rB= " yn)x)rer = ([rB“vn)~)rer. By Lemma 7.1
we have e, , € N. We define also the constant D’ = (B+2) - BC2IQI*! 11 and remark that D’ < D, recalling that
D= (B+3) BCAQI+! 42

Next, for all r € R, all (y,n) € Q, and all i € [0,e,, — 1] we fix some j, ,.n: € [i + 1,€q.4], Oy~ € ', and
some finite information 7, ,; (whose goal is to describe the class of r,giyn) in such a way that either
(A) Tryni = [rBiyn)~ € Below(qggw]no), or
(B) Troymi = (', 1 (Tu)ueluy () with ' € R, t € Q, p € TP+, where By & tpl, i, and for all u € ) (t)

we have either (where the goal of 7, is to describe the class of w8, ~ ;)

(B1) 7 = (vu,&u) € Q x T8, where ub, - ,,; ~ Ve Birrmigm and v,€, € NEAR(r B2 BC2QIH! 4 B), or
(B2) Ty = [ubry p,il~ and DIST(Cs,, [uby 4 p.i]~) < B for some s, € |5§”>(q).
If there are multiple choices for some r,v, 7,7, we just take any of them. In the following claim we prove that
there is always at least one choice.

CLAM 7.1. For allr € R, all (v,n) € Q, and all i € [0, ey, — 1] there exist jyy i, Orqyn.i, and Ty p i satisfying
the above conditions.
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Proof. Let r € R, (v,m) € Q, and i € [0, e,,, — 1]. To simplify the notation, let us write e for e, for the chosen
BEN/B

It [rﬂ”yn]~ € Below(q§0 770) we can take T, .y, = [rﬁ“yn] ~, obtaining Item (A). Suppose thus that
[7“ﬁ“y77]z o4 Below(q50 770), in which case we prove Item (B). Note that qggw]no = qgt[)w]n R~ q&ngn R qaﬁew,
where the first equivalence holds by Lemma 4.5 because sn = snq for all s € |3£)w]>(q), the second equivalence holds
by Lemma 5.7 because (@, 3,7) 2 60, and the third equivalence holds by Lemma 4.5 because r’g“”yn R r’gevn
for all 7’ € |a)(q) (cf. the definition of €). We can thus write [rﬁiw]]g ¢ Below(qafeyn).

Recall that r € R = |&5€_i>(q)7 which implies that there exists a sequence of states r¢,7¢_1,...,7; € R such
that 7. € |@)(q), and r; € |B>(rj+1) for all j € [i,e—1], and r; = r. It follows that there is a run from ¢a to r. and
runs from ;1 to r; for all j € [i,e—1], each of them reading at most BC2I@1+1 action symbols (cf. Lemma 5.5).
We compose f these runs shifted appropriately, so that we obtain a run 7 from qaﬂe’yn to rﬁ“m (going through
reBeyn re—1 B¢ m, . risa B ).

Because [7(|7|)]~ ¢ Below(m(0)), the run 7 is not D-almost-popping, which by definition means that there
exists a run 7, that is parallel to a suffix of = and satisfies STACKGROWTH(7y) > D. Let 74 be the shortest suffix
of mf, satisfying STACKGROWTH (%) = D’; note that the stack growth of 7f, changes by at most one in each step,
and D’ < D, so such a suffix exists. For some t1,t € Q, X €T, u € FD/“, and 0, ,; € I'®® we can write

’
3
81 X0y, — tiOr i

(in particular, on the top of the stack of m4(0) there is a standard symbol, pushed earlier by 7). Note that w4
can be shifted to a run from ¢; X to tu, and that 74 is parallel to a suffix w3 of 7.

Because every non-popping transition reads an action symbol, 7, reads at least D — D’ = BC2IQI+1 11 action
symbols before 7§ starts. Simultaneously regevn is reached by 7 before BC2Q+1 4 1 action symbols are read,
so before 73 starts. Let h be the smallest number in [i + 1, ] such that thh'yn is reached by 7 before w3 starts.
We take jy i =h—B—2and r’ =ry. Let us prove that j, - ,; > 4. Clearly j, .+ B+ 2 >4, by definition.
The configuration 73(0) can be written as g,y TB+1yn for some ¢; € Q and x € I'®. Let 7, and 73 be the
fragments of m before 'rhghfyn, and between rhﬁh’m and 73(0), respectively; we have

qafeyn T ! Bt B2y T2 gy Bironit B Ly 9 g Bl

Recalling how 7 was constructed, we see that 73 reads at most (j, ., + B + 2 — i) - BC2@I+1 action symbols (it
is a suffix of a run popping j, ., + B + 2 — i copies of 3); likewise 5 reads at most BC2QH1 action symbols.
On the other hand, every non-popping transition reads some action symbol, so 74 (and 73 as well) reads at least
lu| —1=D"> (B+2)-BC??+! of them. This implies that (.-, + B+ 2 —i)-BCACHL > (B +2). BC2IQI+1,
that is, jyn: > i. By construction we also have r’ € R, j ., < e, and rBiyn ~ Ll n.i-

It remains to define 7, for u € |u)(¢), satisfying Items (B1) or (B2). Take some u € |u)(t). Because
t1X —* tu, we also have t1 X —* u, so DIsT(t1X,u) < B by Lemma 4.1. On the other hand DisT(#1 X, u) > 0,
because e-transitions are deterministic and cannot push, while there is a run from ¢; X to u going through tu (a
configuration with a larger stack). Since qlxﬂh i tBElyp 4 X6, ~.m,i», there is a run o from qlxﬂh omitBELyy
to a configuration ¢ in [u, |~ reading at most B action symbols. Let us choose ¢ so that no e-transitions are
performed at the end of this run (this is possible because e-transitions do not change the class). Because p reads
some action symbols, also the composition 73 o ¢ does not end with an e-transition. We have two cases:

e Suppose first that 7, o 0 may be shifted to a run from r’ B+2. This means that its final configuration

c may be written as v,& B i~n, and the considered shift of the run 7y o o witnesses that v,§, €
NEAR(r/38+2, BC2IQI+1 4 B): taking 7, = (vy, &) we obtain Item (B1).

e Suppose conversely: 7o o 0 cannot be shifted to a run from T/BB+2. In other words, mg o ¢ (before its
end) reaches a configuration with stack Ej"«%”ﬂ‘vn. Recall that the stack in the 7o part always contains
gjr gaLl i+B+1’yn as a suffix. Thus, o pops the B+ 1 copies of E while reading at most B action symbols; some
copy of 3 is popped using only e-transitions. After popping this copy, we reach a configuration of the form

" Birvnithyn where k > 0 and r’ € |6> (Q). By well-formedness of o this implies that |3)_(r") = {r"}
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and |y)_(r") = |70).(r") # 0. Recall that e-transitions are deterministic and that ¢ does not end with an e-
transition. It follows that o, after visiting 7"/ Bjrﬁvﬁ’i*k’m, necessarily pops all the remaining copies of E , then
pops 7, and then continues from s, 7, for some s, € (). Because p reads at most B action symbols (and ends
in ¢ € [uby ~.y,il~), we obtain DIST([s,7]~, [Uby ~,5,i]~) < B. A prefix of 7 o 13 0 g leading to 7! Birvmitkag
can be shifted to a run from ga B 7rrmi=F to r” | witnessing that r” € |a@B°Irrmi=%)(q) = |&@)(q). Together
with 7/ € |E>E(’I“N) and s, € |7).(r") = |v0).(r") this gives us s, € |3£)w]>(q) (cf. Lemma 5.1). Thus, by
assumptions of the lemma, we have s,n € Cs,, which gives us DIST(C;,, [u8y ~.5,i]~) < B, as needed for Item
(B2), where we take 7, = [ty n.i]~- O

o(1)
Observe that there is a number T € 22‘7;‘ such that

Hrrymilm€R,(v,m) €Qie[0,eq, — 1} <K+T.

Indeed, we have \Below(qggw} no)| possible values of 7, - ,; conforming with Item (A) of the definition, which is
at most K + C21Q1+2.|P|P+! by Lemma 6.1. For Item (B) we have |Q? - |T'|P+! possibilities for r/, ¢, sz, and then
for every of at most |Q| states u we have
o at most |[NEAR(r'3B+2, BC2IQI+1 4 B)| possibilities for v,&, in Item (B1), which is at most |P|BS” "' +8 by
Lemma 4.4, and
e at most |Q| possibilities for a state s, and then at most |[{C | D1sT(C;,,C) < B}| possibilities for [u8y ~1.i]~
in Ttem (B2), which is at most |P|® by Lemma 4.4.

CLamm 7.2. Ifr € R, (v,m),(v',n") € Q, 1 € [0,e,, — 1], i" € [0, ey, — 1] are such that Ty ni = Ty i, then
EQLuv(r3ym, 5 'n') > min{EQLEV(r" F/vniqm, " Fnat o ') |1 € R}.

Proof. 1f T, (which equals 7,/ .) is defined according to Item (A), we have [rBivnl~ = Trymi =
[rB%4'1]~, that is, EQLEV(rBiyn, 37 ~v'n) = w. Suppose that Tr~m,i is defined according to Item (B): we
have 7y ni = (7,1, 1, (Tu)uely ) ), where vy ~ tub, ., ; and rB"y'n & tyb, . By Lemma 4.5 we thus
have

EQLEV (3, v /1) 2 min{EQLEV (w6 .5, s ) | 0 € 1) (1)}

For each u € |u)(t) we then consider the component 7,:
o If it is defined according to Item (B2), we simply have [uf,,n,il~ = 7o = [uby+ ,i]~, that is,
EQLEV(UQT,%TM‘, uﬁmxﬂ,/ﬂ-/) = w.
e Suppose that 7, is defined according to Item (B1): we have 7, = (vy,&,), where uby ., =~ vuéugjm’mwn
and ub, o/ i1 & Vo BIra' i 4/ moreover v, &, € NEAR(r'38+2 BC2IQI+1 4 B), meaning that /382 —*
vy&y, which implies that |€,)(v,) C |BBT2)(r') C |BT2)(R) = R. By Lemma 4.5 we have

1 it Ao

EQLEV (U6 i by 1y ir) = EQLEV (0,60 7777 19m, 0,60 87272/
> min{EQLEV (r" 77 miqn, v’ Birar ot o/ ) | v € €4) (v4)}
> min{EQLEV (1" B9 m:im, ¢ Bira' ') | 1" € R} .

By combining the inequalities obtained above we get the thesis of the claim. ]
CLAM 7.3. For all (y,n) € Q we have ey, <|Q|- (K +T).

Proof. Fix some (v,n) € Q. For every i € N let M; = min{EQLEV(rﬁifyn,rB“’yn) | » € R}, and let r; € R be
a state such that EQLEV(riEi’yn,riB‘*’fyn) = M;. To shorten the notation denote e = ey, Ti = Tr, 4,5, and
Ji = Jri~ym,i for i € [0,e —1].

By Lemma 5.4 we have M, > 1+M; for all i € N. Note that M; = w implies ([r3'yn]x)rer = ([~ )rer,
which is impossible for ¢ < e. Thus for all i < e we have M;;1 > M; with M; € N.
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It remains to prove that (r;, 7;) # (ri, 7i) whenever 0 < i < i’ < e: because there are at most |Q| possibilities
for r; and at most K + T possibilities for 74, this implies that e < |@Q|- (K + T). Suppose to the contrary that
(riy7i) = (ry, i) for some 4,7 with 0 < i < ¢’ < e. Recall that MO < My < - < M., that is, M; < M.

Because EQLEV(nBWn, ri” 777) M; and because EQLEV(r BeAn, i B ‘yn) = My > M; (recall that r; = r;/),
we have EQLEV(nﬂZ"}/n, Ty 6 777) M;. Using Claim 7.2 we obtain

M; = EQLEV(r;8'yn, 787 yn) > min{EQLEV (" B%i~n, " 3% yn) | " € R} .

For all v € R, because EQLEV(T/’Ejiq/n, 7’”5“’777) > Mj, > M; and EQLEV(T”B‘“'W,T”@W yn) > M;, > My >
M;, we also have EQLEV (r” 8Jiym, r" 377 yn) > M;. We thus obtain M; > M;, a contradiction. O

To every (v,m) € Q we now assign the tuple ((Tr 7.0, Jrv.n0))rer. The number of possibilities for 7, , ¢
is at most K + T, and the number of possibilities for j, .0 € [1,€y,,] is at most |Q| - (K + T). We can safely
assume that Q| < T < K 4 T, so the number of possible tuples is at most (K + T)3I?l.

To prove the first part of the lemma, it remains to see that if the same tuple is assigned to two pairs
(v,m),(®'sn") € Q then ryn = ry'n’ for all r € R. Consider thus two such pairs (v,7),(7,n’) € Q. Let
M = min{EQLEV(ryn,ry'n’) | r € R}, and let rmin € R be a state such that EQLEV(rminy7, rminY'n’) = M. By
Claim 7.2 (used with i = ¢’ = 0) we have

M = EQLEV(Fuin V1, Tminy'n’) > min{EQLEV(r” 37 yn, " Biv'y) | " € R},

where j = jr.n.0 = Jr/,0- Next, for every r” € R we prove that EQLEV(T”Ejfyn, r”gjv’n’) > 14+ M, considering
two cases: _
e Suppose first that [37)_(r") = (. Then, by Lemma 4.6 we have

EQLEV(T”Ejyn,r”Bj’y'n’) > 1+ min{EQLEV(ryn,ry'n") | r € |§j>(r")}.

We can conclude recalling that [37)(r”) C |37)(R) = R and that EQLEV(ryn,7y'n') > M for all r € R.

e Conversely, suppose that there is some r € |5j>€(r”) = |B>E(|5j_1>€(r”)) - \g)E(Q) (recall that j > 1). By
well-formedness of §p we have r € \5) (r ) and s € |y0).(r) = |7).(r) = |7).(r) for some s. This implies
that r/BIyn =% ryn —> sn and 7" 37~/ n = ry'n’ =% sn’. Recalling that » € R = |a)(q) we also have
s € |5'y>s(|a>( ) = |§0 )( ) (cf. Lemma 5.1). By assumptions of the lemma we then have sy = s/, implying
that EQLEV(T”Ejyn, r”Bj’y’n’) =w>14+M.

It follows that M > 1+ M, which is only possible for M = w; thus indeed ryn ~ rv'n’ for all » € R. This finishes
the proof of the first part of the thesis.

Recall that every tuple in © is of the form ([ryn]~)rcr for some (y,7) € Q. Thus, in order to obtain the
second part of the thesis, we should bound the size of the set Below({ryn | r € R}) for every pair (y,n) € Q. Fix
some (7y,n) € Q. We classify classes C € Below({ryn | r € R}) as follows:

1. Suppose that C € Below(rvyn) for a state r € R such that [ryn]~ € Below(qg([f]no). Then C €
Below(Below(qg([)w]no)), and the size of this set is at most (K + C2IQ1+2. |P|P+1) . |P|?BD by Lemmata 6.1
and 6.4. _ _ ~

2. Suppose that C € Below(rvyn) for a state r € RN|3)_(Q). By well- formedness of 6o we have r € |3)_(r) and

s € |yo).(r) = |7).(r) for some s which implies ryn —* sn and s € |50 >(q) Then ryn & sn ~= sng, so C
belongs to Below({sno | s € |§0 )(q)}), being a set of size K.

3. Suppose that C € Below(C’) for a class C’ such that DisT(C,s,C’) < B for some s € |ggw]>(q). We then
have a run from sng € Cs to a configuration in C’, reading at most B action symbols. While reading only
B action symbols one cannot push D > B stack symbols (only transitions reading a symbol can push),

so this run is necessarily D-almost-popping; we have C' € Below({Cs | s € |5([)w]>(q)}). This means that

C € Below(Below({Cs | s € |5£)w]>(q)})); by Lemma 6.4 there are at most K - |P|?BP such classes C.
4. Let us assume that none of the three above cases occurs. Among D-almost-popping runs that start from a
configuration in {ryn | r € R} and lead to a configuration in C, we choose a run 7¢ reading the minimal
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number of action symbols. Let us fix the state r for which 7¢(0) = ryn; we have at most |Q| possibilities for
that. Let us abbreviate j = j, 4,50 and 0 = 0, , 0. Because the first case above does not apply, necessarily
Trq,m,0 18 of the form (v, ¢, u, (Tu)ue|wy ). We have ryn = tuf, so there is also a D-almost-popping run ¢
that starts in tuf, leads a configuration in C, and reads the same number of action symbols as m¢. The stack
we I'P'+1 can be seen as a sequence of D’ 4+ 1 well-formed decompositions of height 0 (consisting of single
stack symbols). Thus, by Lemma 6.2, there are at most (D’ + 1) - |P|P*? classes for which the run 7/, can be
shifted to a run from ¢u. For the remaining classes C the run 7, crosses a configuration with stack 6, that
is, a configuration uf for some u € |u)(¢). Let us now also fix this state u; we have at most |@Q| possibilities
for that.

Of course every suffix of a D-almost-popping run is again D-almost-popping; in particular this is the case
for the suffix of 7/ starting in uf, so C € Below(uf). Because the previous case does not apply, we
cannot have DI1ST(Cy, [uf]~) < B for any s € |ggu]>(q). Thus 7, is necessarily of the form (v,,&,), where
uf ~ vy 3ym. Let 7 be a D-almost-popping run from vu&uBiyn to a configuration in C, parallel to T
Because v,&, € NEAR(r/ 3812, BC2IQIH1 4 B), there is a run ¢ from 1/ 71842~y to v,£,37vn reading at most
BC2IQ+1 4+ B < D action symbols. A run reading so few action symbols cannot push D stack symbols, so o
is D-almost-popping. By Lemma 6.3 there are at most |P|?BP —1 classes C for which the composition go 7/
is not D-almost-popping. For remaining classes C the run ¢ o 7§ is D-almost-popping.

Note that j +B+2 <e,, +B+2 <|Q|- (K +T)+ B+2. By Lemma 6.2 (applied to the sequence of
j + B +2 copies of ) there are at most (|Q| - (K + T) + B +2) - C3@I+1. PP+ classes C for which the run
0o mp can be shifted to a run from 7/ Bj +B+2 For remaining classes C the run 7§ crosses a configuration

with stack «yn, that is, a configuration r”/vn for some r” € |§j+8+2>(r’) C R. The suffix of n{ starting in
r"4n is again D-almost-popping, that is, C € Below(r"vn). Because the second case above does not apply,

we have r” & |3)_(Q), so the part of 77 that pops the last copy of 3 necessarily reads some action symbol;
the suffix of 77 starting in r”+yn reads less action symbols than m¢. However this contradicts the minimality
of m¢, so there are no such classes C.

o(1)
By summing up the numbers obtained above we get a number U € 92" such that we have | Below({ryn |
reR}| < (K+1)-U. |

Let us reformulate Lemma 7.2 so that it uses a set of states P in place of a single state ¢:

LEMMA 7.3. Let P C Q, let 6o = (@, 8,7 be a well-formed decomposition of degree at most C and height at
most 2|Q| + 2, let (CS)SGB([)M])(P) be a tuple of classes, and let K = |Below({Cs | s € |S£)“’]>(P)})|, Let also §2 be the
set of pairs (,n) € T* x T'* for which

o (@, B,7) £ 5,

® GinitXinit —* qa[”Bmw for all g € P, and

o sn€Cs forallse |S£,“]>(P).
If (L(P), ginit Xinit) is weakly bisimulation finite, then the set of tuples of classes

0= U[Wﬁ]z%aa[wl)(m | (v,m) € Q}

has at most (K + T)31Q1 clements. Moreover, for every tuple (Cl)refately(py € © we have |Below({C; | r €
[@“)(P)}] < (K +1)- Q|- V.

Proof. For every g € P let Q, be the set of pairs (vy,n) € I'* x I'* for which (@, 3, v) L 50, Ginit Xinit =~ qamﬁmfm,
and sn € C, for all s € |5([)w]>(q); let also ©4 = {([rynlx)re@meng | (1) € Q). Lemma 7.2 implies that
|9, < (K + T)39l and that |Below({C.. | r € [@“!)(q)})| < (K + 1) - U for every tuple (CH)refatny(q) € Oq-

Observe that Q = [ cpy. In consequence, for every tuple (Cp),¢gwnypy € © and for every ¢ € P, the
sub-tuple (C}),¢jzlv1y(q) Pelongs to ©4. Because ja“hy(P) = Uger [a“l)(q) (i.e., every full tuple is completely
determined by the sub-tuples for all ¢ € P), we thus have |0] < II,ep|0,] < ((K + T)3@NIQL Moreover, for
every tuple (Cy),¢[glvy(py € © we have Below({C; | r € la“h(P)}) = Ugep Below({C;. | 7 € [a“l)(q)}), which
implies |Below({C.. | r € [a“))(P)})| <|Q| - (K +1) - U, as required. 0
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While in Lemma 7.3 we describe the situation after appending v to a stack 7 (where + is the last component of
=N
some pumping triple), in Lemma 7.4 we describe the situation after appending the whole § g for a decomposition
0. The decomposition ¢ may contain multiple pumping triples (also in a nested way); Lemma 7.4 uses Lemma 7.3
for each of these triples.

LEMMA 7.4. Let P C Q, let 6o be a well-formed decomposition of degree at most C and height £ < 2|Q| + 2, let

(Cs)seﬁ[“])(}v) be a tuple of classes, and let K = |Below({Cs | s € \S([)w]ﬂP)})\. Let also ) be the set of pairs (6,7)

(of a decomposition and a standard stack content) for which
525,
® Ginit Xinit —* qgmn for all g € P, and
o sn€Cs forallse |55“]>(P).
If (L(P), ginit Xinit) s weakly bisimulation finite, then the set of tuples of classes

O = {([qg[l]n]z)qu | (37 77) € Q}

has at most (K +1) - (|Q| - U + 1)C£ + T)3|Q|2'C£ elements. Moreover, for every tuple (Cy)qep € © we have
|Below({C} | g € P < (K +1)-(|Q- U+ 1)¢ — 1.

Proof. We proceed by induction on the structure of §5. Suppose first that 6o = X € T' (i.e., £ = 0). For all
(6,m), (3\7 n') € Q we have 5[1] =X = ;5\[1], and ¢Xn ~ ¢gXn' for all ¢ € P by Lemma 4.5 (because sn ~ sn’
for all s € |X)(¢) C |X)(P) by assumption). It follows that |©] < 1. Moreover the only tuple in © (if exists)
is of the form ([¢Xn]~)gep for (X,n) € Q. By Lemma 6.1 we have |Below({¢Xn | ¢ € P})| < K + |P|P+L.
Checking the definition of U in the proof of Lemma 7.2 we see that |P|°*! < U (already the component of U
needed to handle Case 1 is greater than |P|P+1), which gives us the desired inequality | Below({¢Xn | ¢ € P})| <
(K+1)-(Q-U+1)— 1.

Next, suppose that 6o = g1 ...00 4. Let Py = P and P; = |g([)‘j3>(Pi,1) for i € [1, k]. Note that P, = |S£)w]>(P).
For each i € [0, k] and each tuple of classes 0 = (Ds)sep, let K; o = |Below({D; | s € P;})|; when i € [1,k] let

Q, & be the set of pairs (d;,7;) for which & ® go,z', Ginit Xinit = qggl]m for all ¢ € P;,_1, and sn; € D, for all s € P;;
let also ©; » = {([qggl]m]z)qepifl | (8i,m:) € Q.o }. The induction hypothesis (where as P we take P;_1, as o we
take ¢ i, and as (Cs)scp, We take o) says that

(7.1) ©io] < (Kio+1)-(Q|-U+ l)cé—l n T)S‘Q‘Q_C[,_l L
72 Ki1,00 < (Kig +1) - (1Q- U+ 1)(:871 -1 for all o’ € 0, 4.

Consider now some tuple (Cj)qep € ©. It is of the form ([qg[”?’]]z)qep for some (§,7) € Q. Because
5 £ 3, we have 8 = 6;...04, where 6; = 8o, for all i € [1,k]. For i € [0,k] let n; = 7&11...75]17, and
o; = ([sni]~)sep,. By definition of Q we have @it Xinit —* qg[l]n for all ¢ € P. By Lemmata 5.2 and 5.7 we
have P,_; = @ﬂ . .ggfj_l)(P) = |5[1w] g[i}l)(P) C \5[11] . .Eﬁl_]g(P), which implies @it Xinit —* qggllm for all

q € P;_y and i € [1, k] (we can first push the whole stack content qgmn, and then pop its topmost part). It follows

that (0;,7;) € Q;.0,, hence also o;_1 = ([qggllm]z)qepi_l € 0,4, for all i € [1,k]. Inequality (7.2) used for the
tuple o;_1 € O, -, gives us

Kito, < (Kig,+1)-(1Q-U+ 1)< " =1 for all i € [1, k.

Notice that o = ([sn]x)sepr, = (Cs)sep, and o = ([qg[ll?’]]z)qep = (C,)qep; in particular K}, = K and
Below({C;, | ¢ € P}) = Ko,,- Thus, the above inequalities imply that

Kio, < (K+1)-(|Q U+ 1)*=0¢"" 1 for all 7 € [0, k].
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In particular, because k < C, we have

(7.3) Below({C, | ¢ € P}) = Kooy < (K +1)-(JQ- U+ )¢ —1 and
(7.4) Kig, < (K+1)-(|Q-U+ 1)< g for all i € [1, k.

Inequality (7.3) already gives us the second part of the thesis of the lemma. Inequality (7.4) can be substituted
in Inequality (7.1), giving us

(7.5) [©i0:] < (K+1)-(Q|-U+ 1)0(:2*1 n T)3‘Q‘2'C271 .

From the above it follows that for every tuple oy € © we have found a sequence of tuples o1, ..., such that
0i—1 € 0,4, for all i € [1,k], where o, = (Cs)sep, is fixed (does not depend on o). Notice that there are at
most |O &, | choices for o;_1, then at most |Oy_1 4, ,| choices for o;_s, and so on. Thus, by Inequality (7.5),
we obtain the desired inequality

0] < (K +1)-(1Q| - U+ 1) + TP < (K 4+ 1) (1Q| - U+ 1) 4+ T3¢,

Finally, suppose that 8 = (d@o, Bg,70). Let R = [al))(P) and S = [357)(P). Notice that [B)(R) = R,

by well-formedness of dg. Let Q3 be the set of pairs (v,7) for which (@, 8, 7) = 60, GinitXinit =" qEE]BE]w]

for all ¢ € P, and snp € C, for all s € S; let also O3 = {([ryn]~)rer | (7,1) € Q3}. Going further, for every
tuple 0 = (D,),er let Ky = |Below({D, | r € R})|, let Q2 be the set of pairs (3,7') for which 3 ® Bo»
Ginit Xinit —* rg[l]n' for all » € R, and rif € D, for all r € R; let also O2 5 = {([rﬁ[l]n’]z)reR | (B,1') € a6}
Likewise, again for every tuple ¢ = (D,)ycr, let 1, be the set of pairs (@,n”) for which @ L
Ginit Xinit —* qaltly” for all ¢ € P, and 1’ € D, for all r € R; let also ©1 5 = {([ga|x)geq | (B;0") € 1.0}
Finally, for every tuple o = (C;)qep let K, = [Below({C, | ¢ € P})|. Lemma 7.3 gives us inequalities

(7.6) 03] < (K +T)!I%F < (K +1)- (|Q| - U+ 1)< + T)lefte™ and
(7.7) Ko <(K+1)-1Q-U<(K+1)-(Q- U+ 1S —1 for all & € O

For every tuple o (indexed by elements of R), by the induction hypothesis for 3, we obtain

(78) |®2,o’| < ((Ko. —+ ]_) . (‘Q| U+ 1)C£_1 + T)3|Q|2'C1{_1 nd
(7.9) Ko < (Ko +1)-(|1Q- U+ 1)CZ71 -1 for all o’ € O3 4,

and by the induction hypothesis for @y we obtain

(7.10) 010 < (Ky+1)-(IQ]- U+ 1) 4 T)dl@c and
(7.11) K., <(Ky+1)-(Q|-U+1< " —1 for all o’ € O 4.

Consider now some tuple o9 = (C)qep € ©. It is of the form ([qg[l]n]z)qep for some (§,7) € Q.
Because 8 =2 80, we have & = (@,3,7)), where @ P @, B ® Bos 7). = o)., and up(y) = up(yo). Let
n = n and " = B[I]WL Let also o1 = ([rn”]x)rer and o9 = ([r1]x)rer. By definition of Q we have
Ginit Xinit —* qgmn = gallly” for all ¢ € P, so (@,n") € Q.»,. We also have (@o, By, 7 P 5o, s0 (v,m) € Q3. By
Lemmata 5.2 and 5.7 we have R = |a([)”]>(P) = [a“ly(P) C [alV))(P), which implies Ginit Xinit —* rﬁmn' for all
r € R (we can first push the whole stack content qgmn, and then pop its topmost part), and thus (3,7') € Q2.4,.

N
In consequence og = ([qa[l]'f]//]z)qep € 010, 01 = ([rﬁ[ ]n’]z)reR € O24,, and o2 = ([ryn]x)rer € Os.
Inequalities (7.7), (7.9) and (7.11) give us

KL, <(K+1)-(1Q-U+1)> " —1<(K+1)-(Q- U+ 1) —1,
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which is the second part of the thesis of the lemma. For i € {1,2} we rather need
Ko, < (K+1)-(1Q- U+ 1P 1< (K + 1) (|Qf- U+ 1)<V 1,
Substituting this to Inequalities (7.8) and (7.10) we obtain that

(7.12) max(|01,0,], Q2,05 ]) < (K +1)-(|Q]- U+ 1)SC " 4 )3l

From the above it follows that for every tuple oy € © we have found tuples 01,03 such that oy € 01 ,,
01 € O24,, and o3 € O3. There are at most |O3| choices for o2, then at most |©3 4,| choices for o1, and then
at most |©1 4, | choices for og. Thus, by Inequalities (7.6) and (7.12), we obtain the desired inequality

Ol < (K +1)-(IQ1- U+ D + TP C) < (K +1)- (@ - U+ )< + ¥ o

THEOREM 7.1. If (L(P), ginitXinit) s weakly bisimulation finite, then it has at most Z classes for some Z €

22\79\0(1)

Proof. Let C; = [s]x for all s € @, which is the class containing configurations with no successors. Clearly
Below(C1) = 1. For every type of a well-formed decomposition (i.e., equivalence class of the = relation) fix
some decomposition dg having this type. For such a decomposition §y and for a state ¢ € Q let Qq 5, be

the set of pairs (&,7) for which & 2 S0, GnitXinie — qgmn, and sn € C, for all s € \SE“]>(q). Let also

0,5, = {[qgmn]z | (0,m) € Q,5,}- Assuming that 0o has degree at most C and height at most 2|Q| + 2, by
Lemma 7.4 we have

‘6q750| <V=(1+1)-(Q|-U+ 1)C2IQI+2 n T)3|Q|24C2\Q\+2 .

Consider now an arbitrary configuration g reachable from ginit Xinit. Configurations with empty stack belong
to Co. If 0 is nonempty, by Lemma 5.3 we obtain a well-formed decomposition ¢ of height at most 2|Q| + 2 and

degree at most C. Let 5 be the fixed representative of the type of 6. We see that (§,e) € Q_= , so [¢f]~ € ©

q,60” 4,50°
By Lemma 5.6 there are at most oIPI*(CH+DHC™® hoices for the type of §, hence for the decomposition &g.

Once ¢q and 9§ is fixed, we have only V choices for the class [¢d]~ € © 0.5,- Thus, in total we have at most

R ) o(1)
Z=1+]|Q| 2/PI"C+D%9? [y ¢ 2™ ossible classes. O

8 The Algorithm

In this section we prove the following theorem:

THEOREM 8.1. Given an e-PDS P = (Q,T, A, A), its initial configuration G Xinit € QT, and a number Z € N,
one can decide in time O(Z|P|O(1)) whether the number of classes of P reachable from [Ginit Xinit]~ s at most Z.

Having in mind results from the previous section (in particular, Theorem 7.1), it follows that the weak
bisimulation finiteness problem for e-PDS can be solved in 2-EXPTIME.

We remark that the algorithm provided by Theorem 8.1 not only answers Yes or No, but in the case of a
positive answer, it actually computes a description of the weak bisimulation quotient of P, which is an e-LTS that
is weakly bisimilar to P and has at most Z configurations.

Let us fix the input to our problem: an e-PDS P, an initial configuration ginit Xinit, and a bound Z € N. The
algorithm will compute relations =z, over the set of reachable configurations, for consecutive k = 0,1,2,.... By
definition we have (=) C (~+1) C (=) for all k € N, and it is easy to see that if (=p41) = (=) for some k, then
necessarily (=) = (=). It follows that either every =;1 has more classes than =z until the number of classes
starts exceeding Z, or at some moment, necessarily for k < Z, the number of classes stops growing at quantity at
most Z with (=) = (=g+1) = (=). It is thus enough to examine the first Z relations =, checking whether any
of them has more than Z classes.

In order to avoid special treatment of configurations with empty stack, we assume that such configurations

can never be reached. This is without loss of generality: we can add a new initial configuration ¢, X7 .. together
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with a transition ¢/, X/ SN Ginit Xinit X[y (for a fresh action symbol init). After performing this transition, the
system behaves as previously, but has additionally the X/ symbol on the bottom on the stack; such a change
adds exactly one new weak bisimulation class, containing the new initial configuration.

Let us now see how we can represent the relations &7 in a finite, succinct way. First, note that =g always
has exactly one class, so we need no representation for it. Consider now some k > 1. Note that a class of ~, is
uniquely described by a tuple of classes of ~j_1 reachable after reading a single action symbol. More formally,

for a configuration ¢ we define
DEscy(c) = {(a, [d]g_1) | c == d,a € A};

then we have DESC(c) = DESC(¢') < ¢ = . We can thus take DESCy(c) as a finite representation of the class
[c]k- By Lemma 4.4 DEscCg(c), as a set, has size at most [P, and while storing it in memory, we can remember
every class [d],—1 as a number of this class on the list of all classes of & _;. The memory size needed for storing
DEscCg(c) is thus negligible compared to the desired complexity of our algorithm.

In our algorithm, beside of a list of classes, we also compute a partial function CONS saying how a class
changes when a stack grows. It is a function that assigns a class of ~ to some tuples (g, X, (C;)r¢|x)(q)) With
qg € Q, X €T, and C, being classes of ~, defined by taking CONSy(q, X, ([rali)re|x)(q) = [¢Xalr for all
reachable configurations ¢Xa. Note that ([rajx)re|xy(q) = ([ra']k)re|x)(q) implies ¢Xa = ¢X o' by Lemma 4.5,
meaning that [¢X ], depends only on the classes [ra]; (without necessarily knowing the stack content «). While
storing CONSy, we represent both the result and the classes C, as their numbers on the list of all reachable classes.

Moreover, for every reachable class C of = let UP,(C) be the class of ~_; containing C (recall that ¢ =, ¢/
implies ¢ ~p_1 ).

We have already said that our algorithm computes the relations ~; for consecutive k = 0,1,2,.... Now we
can be more precise: for every k, it computes a list of reachable classes of =, together with the functions CONSy
and Upy (except for UPg, which makes no sense). This can be done easily for k¥ = 0, because = is a trivial
relation consisting of a single class.

When we start the computation for some k > 1, we assume that the objects mentioned above are already
computed for k — 1. Note first that whenever we have some new reachable class C of a2, which means that we
know DESCy(c) for ¢ € C, then we can easily compute UP,(C). Indeed, if k£ = 1, then UP,(C) is always the only
class of &, and if k > 2, recall that Up(C) is a class described by DESCk_1(c) for configurations ¢ € C, and we
have

DEsci_1(c) = {(a, UPr_1(D)) | (a,D) € DESCk(c)} .

The function CONSy is computed by considering configurations with stack height n, for consecutive n =
1,2,3,.... Formally, we define CONS,, to be CONSy with domain restricted to tuples (¢, X, ([rax)re|x)(q)) for
reachable configurations ¢ X« satisfying | Xa| < n. Note that the domain of CONSy ,, only becomes larger when
n increases. For n = 0 the domain of this function is empty (we cannot have |Xa| < 0). For n > 1 we assume
that CONSy, ,—1 is already computed. We first compute the domain of CONSy, ;,, using the following lemma:

LEMMA 8.1. The domain of CONSy, is the set of
o tuples (¢, X, ()rep) with GinieXinit = ¢X, and
o tuples (q, X, (CONSk »—1(7, Y, (Cs)se|vy(r)))re|x)(q)) Such that in the domain of CONSg ,_1 there is a tuple

(', Y, (Cs)seiyy(p)), and there is a transition p'Y’ N pX'Y, and pX' —* ¢X.

Proof. By definition, the domain of CONSy, ,, contains tuples (¢, X, ([ralx)r¢|x)(q)) for reachable configurations
gX o« with | Xa| < n. Consider such a configuration. If |[Xa| = 1 (i.e., a = ¢), we have @it Xint —* ¢X; the
tuple is added by the first item of the lemma. Note that we have |X)(¢) = @ thanks to our assumption that no
configurations with empty stack are reachable.

Conversely, suppose that 2 < |Xa| < n, consider a run from ¢nitXint to ¢X«, and consider the last
configuration with stack of height || on this run. It is of the form p'Y’a/, and o = Yo' for some Y. Then
we have a transition p'Y’ <> pX'Y leading to pX’a. The remaining part of the run may be shifted to a run
from pX’, so we have pX’ —* ¢X. The configuration p’Y’«’ is reachable, and |Y'o/| < n — 1, so the tuple
(', Y, (Cs)sejyy(pry) is in the domain of CONSg 1. Thus our original tuple fulfils the conditions of the second
item of the lemma.
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The proof of the opposite inclusion (i.e., that every tuple specified in the lemma belongs to the domain of
CONS,,,) is very similar, and thus it is left to the reader. O

Using standard means we can compute in time polynomial in |P|:

e the set of pairs pX, qY of configurations with stack of height 1 such that pX —* ¢qY, and

e the set | X)(p) for every configuration pX with stack of height 1.

Thus, Lemma 8.1 allows us to easily find the domain of CONSy ., based on the previously computed function
CONS.p—1.
Next, we compute values of this function. Take some tuple (g, X, (C;)re|x)(q)) in its domain. Imagine also a
reachable configuration ¢Xa such that C, = [ra]y for r € |X)(¢) and | Xa| < n (the algorithm described below
does not depend on «, only its correctness proof does). Notice that the height of the stack content « is at most
n — 1, so UP,(C,) is already known. We have two cases:
e If (¢, X) is in e-mode, then for some r we have a popping transition ¢X S (and |X)(q) = {r}); we have
gXa =y ra, so we should take C, as the value of CONSy .

e Otherwise (¢, X) is not in e-mode. We compute the description DESCi(¢X ) of the class [¢X o], from
definition, by listing all possible classes of ~2;_; that can be reached from gX « after reading a single letter.
To this end, we consider all transitions starting in (g, X):

— for transitions of the form ¢X <% 7 we have ¢Xa == ra and [rajy_1 = UPg(C,);
— for transitions of the form ¢X <% sY we have gXa == sYo and

[sYalg—1 = CONs_1(s, Y, (UPk(Cr))re|v)(s))

(where [Y)(s) € [X)(q));
— for transitions of the form ¢X <% tZY we have gXa == tZY o and

[tZY alp—1 = CONsy_1(t, Z, (CONSk_1(5,Y, (UPk(Cr))re|vy(s)))se|2) (1))

(where |Y)(s) C |X)(q) for s € |Z)(1)).

This finishes the description of how to compute CONSy, ,, knowing CONSy, ,—; and CONS,_;. Of course the
values of CONSy,,, do not depend on n, only the domain of this function grows. We can also see (cf. Lemma 8.1)
that if CONSy ,, has the same domain as CONSj ,,—1, then the domain will not grow any more. For such n we
have CoNs;, = CONSy, ,; we can stop the computation. Recall that we also stop the computation whenever we
see more than Z classes of a7. Thus, in the domain of CONS},, we may have at most |Q| - |T'| - ZI9! tuples, and
this is simultaneously a bound for n. As already said, the considered values of k are bounded by Z. It follows
that the running time is in O(Z”;"O(l))7 as declared.

9 Lower bound

Our lower bound is shown via a reduction from the acceptance problem of exponentially space-bounded alternating
Turing machines. These are being introduced in Section 9.1. Section 9.2 recalls Defender’s Forcing gadgets and
introduces a gadget for checking if a certain prefix of the stack is in a given regular language. Encodings of
numbers and configurations are subject of Section 9.3 and Section 9.4, respectively. A gadget for verifying if a
certain prefix of the stack consists of two consecutive configurations of an exponentially space-bounded alternating
Turing machine is introduced in Section 9.5, whereas Section 9.6 provides a gadget for pushing a successor
configuration on top of a configuration that can be found as the prefix of the stack. The actual simulation of an
exponentially space-bounded alternating Turing machine is given in Section 9.7. Building upon these gadgets,
Section 9.8 provides the final reduction from the acceptance problem of exponentially space-bounded alternating
Turing machines to the weak bisimulation finiteness problem for e-PDS.

9.1 Alternating Turing machines. An alternating Turing machine is a tuple M = (Q, Y, %, T, qo, ), where
@ = Qv W Q3 is a finite set of states that is partitioned into universal states (v and existential states ()3,
T is a finite tape alphabet,

> C T is an input alphabet,

TCOQXxTxQxTx{=1,1} is a set of transitions,
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® ¢o € (Q is an initial state, and

e Oe T\ X is a blank symbol.
A configuration of M is a word of the form u(p,U)v, where u,v € T* and (p,U) € Q x Y. It is universal if
p € Qv and existential if p € Q3. For all (p,U) € Q x T we define T(,, )y = {(p,U,q,Y,d) € T | g € Qrm,Y €
T,d € {—1,1}}. By Confaq we denote the set of configurations of M. For each pair u = (¢,Z) € T x Y, where
t = (p,U,q,Y,d) we define the relation ,C Conf ¢ x Confay, where w, w" € Conf x:

whpw > Juve T {w =uZ(p,U)v and v’ = u(q, Z)Yv ?fd = -1,
w=u(p,U)Zv and w' =uY(q,Z)v ifd=1.
Note that if w -, w and w F,, w”, then v’ = w”. We say that w' a successor configuration of w if w -, w’
for some p € T' x Y. Since we use them for showing 2-EXPTIME-hardness, we assume without loss of generality
that our alternating Turing machines do not contain any cyclic computations, that is, computations of the form
wey F way - we), where n > 1 and wg) = wey,). This implies that we can do induction on the length of
the longest computation starting in a given configuration. We define the set of accepting configurations as the
smallest set C' C Conf that satisfies the following properties:
e For every existential configuration w € Y*(p, U)Y* for which there exists some ¢ € T}, 1), some Z € T and
some configuration w’ € C with w - z) w’, we have w € C.
e For every universal configuration w € Y*(p, U)Y* such that for all ¢ € T(;, 1) there exists some Z € T and
some configuration w’ € C with w - z) w’, we have w € C.
We note that a configuration w € Y*(p,U)Y* with Ty, ;) = 0 is accepting if, and only if, it is universal.
Given a function f: N — N with f(n) > n for all n € N, the language of an f-space-bounded alternating
Turing machine M is given by

LM)={zg...xp_1 €X" | n>1,(q,x0)x71 ... xp,_10F (=7 g accepting}.

THEOREM 9.1. WEAK BISIMULATION FINITENESS FOR e-PDS is 2-EXPTIME-hard under polynomial time
reductions.

Fix any language L in 2-EXPTIME. Fix a 2")-space-bounded alternating Turing machine M =
(Qm, Y, XM, T, q0,0) such that L = L(M), where ¢ is a polynomial (it is folklore that such a machine ex-
ists for every language in 2-EXPTIME). Moreover fix some input z = zg...z,—1 € X%,. We construct in time
polynomial in n an e-PDS P = (Q,T', A, A) and a configuration ¢;# € QT of P such that € L(M) if, and only
if, (L(P), q1#) is not weakly bisimulation finite. This is sufficient since 2-EXPTIME is closed under complement.

In the following let us identify ¢ with £(n) and let N = 2¢. We assume without loss of generality that £ > 2
and hence N — 1 >n. Weset T' = {#,0,1} UT U (Qm x T)U{#; | i €]0,¢—1]}.

Note that configurations of M needed for accepting inputs of length n are words from the language

N ITR(Qp x T)YTN 1=k For every such configuration w = wy .. . wy_ we write Pos(w) to denote the unique
k € [0, N — 1] such that wy € Q¢ x T, hereby denoting the position of the read/write head of the configuration
w.
The following lemma is an immediate consequence of the definition of I-,:

LEMMA 9.1. Forallpu= (t,2) € TxY witht = (p,U,q,Y,d) and all configurations w and w' of M we have w -,
w' if, and only if, Pos(w') = Pos(w)+d and h,(w) = k) (w'), where hy,, b}, : (TU(QmxT))* = (TU(Qm xT))*
are the letter-to-letter morphisms such that for all X € T U (Qam x L) we have

" X otherwise, " X otherwise. O

Throughout Section 9 we constantly add fresh rules; they implicitly come with fresh control states and action
symbols. Whenever we introduce such rules, we prove that certain configurations, whose control states appear
in those rules, have certain properties. These properties however are not influenced by rules that are introduced
later. In particular, if we describe rules starting in some pair (¢, z) € @ x I', then the reader may assume that no
other rules starting in this pair are introduced later in the text. Before we introduce these rules we will introduce
some gadgets in the next section.
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9.2 Gadgets for the lower bound construction. Inspired by the “Defender’s forcing” technique of Jancar
and Srba [10], given a finite set of control states {SOURCE, SOURCE'} U { TARGET;, TARGET), | i € I'} and a stack
symbol X, we introduce a notation

(SOURCE, SOURCE') X N {{TARGET;, TARGET})X |i € I}

to denote the following set of rules, where all action symbols and control states that are not in {SOURCE, SOURCE'}
U {TARGET;, TARGET) | i € I} are newly introduced and where 4,j € I:

SOURCEX < WAITX , SOURCE'X <= CHOOSE,X ,

SOURCEX <% CHOOSE,X ,

WAITX < TARGET; X , CHOOSE,X < TARGET,X ,
CHOOSE; X SN TARGET; X if i # j.

The wit of the gadget, justified in details in Jancar and Srba [10, Section 4], is that for all stack contents v € I'™*
we have
SOURCEXY ~ SOURCE' Xy <= Ji € I. TARGET; Xy ~ TARGET, X 7.

Analogously (by adding appropriate push rules at the end), given a set of control states {SOURCE, SOURCE' } U
{TARGET, TARGET'}, a set of stack symbols {X}U{Y; € I' | i € I}, one can construct a gadget

(SOURCE, SOURCE') X LN (TARGET, TARGET') {V; X |i € I}

such that for all stack contents v € I'* we have SOURCEX~Y =~ SOURCE X~ if, and only if, TARGETY; X~ ~
TARGET'Y; Xy for some i € I. In any case, both gadgets have size O(|I]).

Going further, given a finite language L C I'* of the form L = ¥, ...%,,, where ¥; C T for all j € [1,m], by
suitably cascading the above gadget m times, one can construct a gadget

(SOURCE, SOURCE') X N (TARGET, TARGET') L

such that for all stack contents v € I'* we have SOURCEX Y ~ SOURCE' X if, and only if, there exists some w € L
such that TARGETwY ~ TARGET w.

A deterministic finite automaton (DFA) is a tuple A = (5,%,04, 80, F), where S is a finite set of states,
Y is a finite alphabet, 64 : S x ¥ — S is the transition function, sq € S is the initial state, and F' C S
is a set of final states. The function d4 is naturally extended to a function from S x ¥* inductively via
0a(s,e) = s and d4(s,aw) = d4(04(s,a),w) for all ¢ € ¥ and all w € E*. A language L C ¥* is regular if
L =L(A) = {w € ¥* | da(sp,w) € F} for some DFA A = (S,%,04, 50, F). Finally, given a regular language
L C ¥*, where ¥ C T'\ {#}, and two control states p and p’ we introduce a gadget

PREFIX-CHECK# L#

(p,0")#

such that for all stack contents of the form v = #6064/, where 6 € ¥* and 8 € I'*, we have py =~ p'~ if, and only
if, # € L. Assuming some DFA A = (S,%,d4, 80, F) such that L(A) = L, we construct the gadget as follows,
where all symbols and control states (except for p and p’) are freshly introduced, where s € S, where s’ is a copy
of every such s € S, and where a € X:

1 1
p#‘—>80, p/#%séa
sa < 6a(s,a), s'a < d4(s,a),
2 2
s>t ifsckF, sH <t ifscF,

s#t ifsgF.

Since the above rules only allow to execute runs reading at most two action symbols, note that, by construction,
both {[py]~ | v € T*} and {[p'v]~ | 7 € T'*} are finite sets of classes all of which are weakly bisimulation finite.
For all of the prefix checking rules that we will introduce below where, say, L is an involved regular language, it
holds implicitly that one can compute in polynomial time in n = |z| a DFA A with L(A) = L.
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9.3 Encoding numbers. The binary presentation of a number k € [0, N — 1] is defined as

-1
Q= Qg1 ... 0o, where ay; € {0,1} are such that k = Z 20 Qg -
i=0
In particular, note that ap = 0° and ay_; = ag_; = 1°. Conversely, for each u € {0,1}¢ let = € N

be the unique k£ € [0, N — 1] such that a(k) = w. For any two k, k" € [0,N — 1] with k& # k', we define
MSB(k, k') = max{i € [0, — 1] | au; # s} to be the most significant bit in which the binary presentations of
k and k" differ.

In this subsection we present rules allowing us to verify whether one number is a successor of another number.
We start by adding the following set of rules, where i,7 € [0, — 1] and b € {0,1}:

INC;b <> INC; ¢_1b, INCh <% INCy_1 b,
ING; jb < ING; j_1 i j > i,
ING; ;0 < ING;;_y if j =1, INC;b < ING;_1 .
ING; ;1 < ING; ;1 if j <,

Observe that there is no rule involving INC; _; nor Irl\\IE_l on its left-hand side. We have the following
characterization:

LEMMA 9.2. For all i € [0, — 1], all k, k" € [0, N — 1], and all stack contents v,7" € T'* we have INC;apy ~
INCag Y if, and only if, K" = k+1 and i = MSB(k, k). Moreover, both {[INC;¥]~ | ¥ € T*} and {[INCY]~ | v € T*}
are finite sets of classes all of which are weakly bisimulation finite.

Proof. The first statement of the lemma follows immediately from inspection of the above rules and the equivalence
of the following two statements:
o ' =k+1andi=MSB(k,k+1);
e the following three conditions hold for all j € [0,¢ — 1]:
— Q=g if j >4,
— (aw; =1and oy ; =0) if j = ¢, and
— (ag,; =1and ap ; =0) if j <.
The second statement follows from inspection of the above rules, which imply that the weak bisimulation class
both of INCy and of INCY’ is determined by the first £ letters of ~. |

We now add a few more rules. Assuming that the top of the stack is of the form ap#;Xay for some
X € TU(Qaq x T), these rules allow us to verify, starting from two control states INC and INC’, whether it holds
that ¥’ = k + 1 and i is the most significant bit position in which k and &’ differ. In the following rules we have
XeTU(@QmxT),ie[0,£—1],and b e {0,1}:

INCh <% INCD, INC'b < TEMP,
TEMPbD < TEMP,
TEMP#; N TEMP; ,
TEMP; X N INg; .

LEMMA 9.3. For all k,k' € [O,N — 1], all i € [0,£ — 1], all X € TU (Qm x T), and all v € T* we
have INCap#; Xapy ~ INC'og#: Xy if, and only if, ¥ = k + 1 and MSB(k,k') = i. Moreover, both
{[INcy]x~ | v € T*} and {[INC'y]x | v € T*} are finite sets of classes all of which are weakly bisimulation
finite.

Proof. Looking at the first rules what will be applied (yielding an a-labeled transition, possibly followed by

a sequence of e-transitions) we see that INCap#; Xapy ~ INC'ap#; X a7y if, and only if, INCap#; X apy ~
INC; a7y, which by Lemma 9.2 holds if, and only if, &' = k+1 and i = MSB(k, k’). That the sets {[INCY]~ | v € T*}
and {[INC'v]~ | v € T*} are both finite sets of classes all of which are weakly bisimulation finite follows immediately
from inspection of the above rules and Lemma 9.2. 0
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9.4 Encoding configurations. The encoding of a configuration w = wy ... wy_1 of M is defined to be the

following word S, € I'*:
N-1
Buw = wog (H #MSB(il,i)wiai> :

i=1
Ezample. For £ = 3 (hence for N = 2¢ = 8) and w = ab(q, c)abcbb we have
Buw = a000#b001#1 (q, ¢)010#0a011#20100#0c101#1 011040111 .
a0
We remark that 3, contains precisely 2~1~% occurrences of #;, for every i € [0,£ — 1].

DEFINITION 9.1. For all configurations w = wy . .. wx_1 of M and for allu € {0,1}=¢ let us define, by induction
on |u|, the infix Bfuu) of Buw:
. ﬁff) = Bw, and
e if u € {0,1} for some i € [0, — 1], then &(U“O) and Y are the unique infizes of B satisfying
B = B Hea B

Recalling that @ denotes the unique number that the binary string u € {0,1}* encodes, for all u € {0,1}*
we have 8\ = wyas. A simple induction yields that for all i € [0,4] and all u € {0,1}%, the infix B appears
exactly once in 3, and, for all j € [0, — 1] we have that B contains precisely |2¢=17177 | occurrences of #;.

9.5 Gadget for checking the successor relation among configurations. In this subsection we show how
to check whether the successor relation holds between two configurations written on the top of the stack. First,
we construct a gadget verifying whether head positions agree; more precisely, given d € {—1,1}, and assuming
that the stack starts with #08,,# 8., the gadget allows us to test whether Pos(w’) = Pos(w) + d. To this end,
for all d € {—1,1}, all i € [0,£ — 1], and all X € T' we add the following rules:

(9.13) (Pos,, Pos))# N {(Posq,j, Posy ;)# | j € [0,£ 1]},

(9.14) P0Sg; X < Posg; if X & Qa x T, Pos) X < Posjy; if X ¢ Qu x T,
(9.15) Pos); X < Poslj, if X € Qum x T,
(9.16) Pos)j ;X < Pos)j; if X & Qum x T,
(9.17) P0sg X < INc; if X € Quq x T, d =—1, Posj, X <+ INC if X € Qu x Y,d =—1,
(9.18) P0sg: X < INC if X € Qu x Y,d =1, Pos, X <+ INCc; if X € Qu x T, d =1.

LEMMA 9.4. For all d € {—1,1}, all length-N configurations w,w’ of M, and all v € T* we have

POSa# Buw #Buwy =~ POS,#Buw #Bwy = Pos(w') = Pos(w) +d.

Moreover, both {[P0say|~ | v € T*} and {[Posyy]~ | v € I'*} are finite sets of classes all of which are weakly
bisimulation finite.

Proof. Let d € {—1,1}, let w' = wjy ... why_;, w =wo ... wn—1, k' = Pos(w’), and k = Pos(w). We then have
W, Wi € Qaq x Y. By the definition on an encoding we have

N-1 N—-1
Bur = whar (H #MSB(il,i)wgaz) and B, = wo (H #MSB(il,i)wiai> :

i=1 =1

Let v € I'* and let us define § = #08,#0,7y. We provide a proof only in the case of d = —1; the case of d =1 is
completely analogous. By inspecting rules in Lines (9.14)-(9.18), for all i € [0,£— 1] we have P0sg 6y ~ Posy ;0
if, and only if,

/ ~ Tra
INC; Qe #MSB (k! k1) - - - WN 10N 17 BwY = INCOp#MmsB(k k+1) - - - WN-1QON-17 -
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By Lemma 9.2 the latter equivalence holds if, and only if, ¥ = k 4+ 1 and ¢ = MSB(k,k’). By properties of
the Defender’s forcing gadget used in Line (9.13) we have P0sg 0y ~ Pos,dv if, and only if, there exists some
i € [0,£—1] such that Posg ;v ~ Pos ;0v. Thus, Posgdy =~ Pos;dy if, and only if, there exists some i € [0,£—1]
such that k' = k41 and ¢ = MSB(k, k'), that is, if, and only if, Pos(w’) = Pos(w) + d, as required.

Let us finally prove that {[P0s4y]~ | v € I'*} is a finite set of classes all of which are weakly bisimulation
finite; the same can analogously be proven for {[Pos,y]~ | v € I'*}. By inspecting the above rules, there is a
constant ¢ € N (essentially depending on the Defender’s forcing gadget) such that for all stack contents v € T'*,
when applying the rules from a configuration of the form P0S;v one can only execute a run reading at most ¢
action symbols and for some 4/ € I'* either get stuck in a dead end of the form P0s,4 v/, or reach a configuration
of the form INC;y' or Ifl\Y]fy’ . In the former case, finiteness is clear, in the latter two cases finiteness immediately
follows from the fact that {[INC;y]~ | v € I'*} is a finite set of classes all of which are weakly bisimulation finite
for all i € [0, — 1] and the same holds for the set {[INCY]~ | v € I'*} according to Lemma 9.2. 0

Once head positions are verified, the remaining part of the successor relation may be checked with a help
of letter-to-letter morphisms, as explained in Lemma 9.1. This is realized by our next gadget, which for each
p €T x T allows to verify, assuming that the top of the stack is # /5, # fw, whether w -, w’ holds. In order to
construct this gadget, for all u = (¢t,Z) € T x ' with t = (p,U, q,Y,d), all X € T, and all i € [0,£ — 1] we add the
following rules, where rules involving the control states Posy and Pos!, have already been introduced above and
where the morphisms A, and h;l are defined in Lemma 9.1:

(9.19) Succ, # N Posq#, Succ),# N Pos)#,
(9.20) Succ, # N DESC,, ¢, Succ), # N DESC), ;1 ,
(9.21) DESC, (X < DESC,, if X # #,
(9.22) DESC,, ¢# < DESC,, 1,
(9.23) DEsc,, ; X N DESC,i—1X , DEsc), ; X N DEsc), ; X,
1 1
(9.24) DEsc, ;X — PopP, ;X , DEsc), ;X — Pop), ;X ,
9.25 Popr, ;X < Pop,; if X i PoP, . X < Pop/, ., if X i
M, 122 22 1223
(9.26) PoP,, i #; s DESC,i 1, POP), #; < DESC,;_;,
h (X f

. ESC,, 1 X «— = FINAL, X, BSC/, | X «—— FINAL, X .

9.27 DMX”()F u X DEsc), ;X —— FINAL, X

LEMMA 9.5. For all length-N configurations w,w’ of M, all p € T x Y, and all v € T* we have

SUCC, #Buw #BwY = SUCC, #Buw#Bwy = whkyw'.

Moreover, both {[Succ,v]~ | v € T*} and {[Succ)y]x | v € T*} are finite sets of classes all of which are weakly
bisimulation finite.

Proof. Let us first prove the second statement of the lemma. Consider the following (smallest) partial order >
relating the above control states as follows:

DEsc,, ¢

Succy, DEsc,¢—1 = PoP, ¢_1 = DESC, ¢_2 = POP, y_2 > --- = DESC,, _1 » FINAL,,,

~
Pos,

Succ, = DESc), , , = PoP), , ; = DESC), , 5 = POP), , o > --- = DESC|, ; = FINAL,, .
<

/
Posu

For all rules that appear in Lines (9.19)—(9.27) in which, say, p; is the control state on the left-hand side of the
rule and ps is the control state on the right-hand side, observe that either p; = py or p; = p2. Furthermore, if the
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rule is a reading rule (i.e., is not an e-rule) we have £ >~ r. Since moreover any configuration having control state
FINAL,, or FINAL), is a dead end, and recalling that both {[P0s,7]~ | v € T*} and {[P0Os,7]~ | v € T*} are finite
sets of classes all of which are weakly bisimulation finite by Lemma 9.4, it follows that both {[Succ,v]~ | v € T*}
and {[Succ)y]x | v € T*} are indeed finite sets of classes all of which are weakly bisimulation finite.

Let us now prove the first statement of the lemma. Let u = (¢, Z) with t = (p, U, q,Y, d) and let us introduce
the abbreviation § = #,y#03.. By inspecting Lines (9.19) and (9.20) we have Succ,dvy ~ SUCC’H&V if, and only
if, P04y ~ Pos};0v and DESC,, ¢Sy #Buy ~ DESC;,zqﬁw’#Bw% Since, on the one hand, Pos 6y ~ Pos/,dy
if, and only if Pos(w’) = Pos(w) + d by Lemma 9.4 and, on the other hand, w +, w’ if, and only if,
Pos(w') = Pos(w) + d and hy(w) = hj,(w’) by Lemma 9.1, for proving the first statement of the lemma it
is enough to prove that DESC, ¢fuw # 0wy = DESCL,@qu’#ﬁwV if, and only if, h,(w) = hj,(w’). Hence, by
inspection of Lines (9.21) and (9.22), it is sufficient to prove that

(9.28) DESCi— 18wy = DESC), o 1 Buw#Buwy <= hu(w) = hj,(w').

Let w = wp...wy—1 and w' = w)...wy_,. For all u € {0,1}=* we have defined an infix B of By,
and an infix Bgf) of By (cf. Definition 9.1); recall that Bq(uu) (and /J’gf)) appears precisely once in 5, (in By,
respectively). Let 57(1,@ be the unique suffix of 3, starting just after fyu) (then 1(,]“)55,)”) is a suffix of By),
and analogously, let 51(5) be the unique suffix of B, starting just after 51(5), (then ,61(5)51(5) is a suffix of B,).
For all i € [0, — 1] and all u € {0,1}* we have that both 67(1,“) and ﬂgf) contain precisely one occurrence
of #4_1_4; we have 61(1,") = ﬂ&uo)#g,1,¢6&U1), and analogously ﬁq(vu,) = Bfﬁo)#pi,lﬁfﬁl) by Definition 9.1. As
a consequence, by inspection of the rules from Lines (9.23)-(9.26), for all ¢ € [0,¢ — 1], all u € {0,1}*, and
all b € {0,1} we have DESC,—1-i85"65"y =% DESC,—a-ifS" 60"y and DEsc), , ;86 %8,y ==
DESC’HJ_Q_iBSfb)51(517)#61,,7. We also have 3, = )5 and B = ,81(1}6,)555,). By a direct induction on i € [0, )
this implies that for all u € {0, 1}" we have DESC,, ¢—1 847 = DESCH,g,l,iﬁ&u)é&")’y and DESCL’blﬁw/#wa =
DESCL,e—l—zﬂg)(sq(ﬁ)#Bw'V-

For all u € {0, 1}4 we have 61(,,“) = wgog and Bgf) = w’ﬂag by Definition 9.1. As a consequence, by inspection
of the rules in Line (9.27), for all u € {0,1}* we have

DESC, 10wy == DESC,, 185"y LACN FINAL, 85y

and analogously

u u u h;t(w/ﬁ) u) o(u
DESCL,Z,lﬁw/#Bwv = DESCL’,lﬁ( )5;,)#&”7 _ FINALLﬁfU,)égﬂ)#ﬁwv.

o

Inspecting the rules once again, we see that they are all deterministic, and that only symbols from {0, 1} can
be read, until the state becomes DESC,, _; or DESCLﬁl. After reaching such a state, it is only possible to read
the symbol £, (X) or h/,(X) (depending on whether the state is DESC,,, 1 or DESC), _;), where X is the topmost
stack symbol. No further transitions are possible after reading this symbol (and reaching the state FINAL, or
FINALL). It follows that all runs that one can execute from the configuration DESC,, ¢—1 8.7y are deterministic and
the maximal such runs are precisely the runs reading a word from the set {uh,(wz) | u € {0,1}*}. Analogously,
all runs that one can execute from the configuration DESCiMf1 Buw #Pwy are deterministic and the maximal such
runs are precisely the runs reading a word from the set {uh),(wy) | u € {0, 1}¥}. Thus, Equivalence (9.28) and
hence the lemma hold by the following equivalences:

DESCy 018wy = DESC), o1 Bur #8uy

{uhy(wg) | u € {0,1}} = {uhj,(wf) | u € {0,1}}
Vu € {0,1}. hy(wg) = h,, (wy)

hu(w)=h,(w'). O

[
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9.6 A gadget for pushing successor configurations. Before listing quite involved rules, the following
lemma states that one can design a gadget that allows to push a successor configuration of a configuration whose
encoding is assumed to be on the top of the stack:

LEMMA 9.6. For allt = (p,U,q,Y,d) € T, when adding the rules Lines (9.29)—(9.40) below, for all length-N
configurations w of M and all v € I'* we have

AZ e T, w' € Y*(q, Z)Y*. wh z) w and
PUSH;#8.,7 ~ PUSH,# 5., — ’ ’ (t,2)
Hbu? b PLAY (g, 2) #0048y ~ PLAY (g 2 # B #Bur,

For all t = (p,U,q,Y,d) € T and all X € T’ we add the rule
(9.29) (PUSH,, PusH}) X LN {(PusH,z), PUSH(;,2)) X | Z € T},

and for all u = (¢,Z) € {t} x T we add the following rules, where © = T U (Qum x T) and where
Q={#,]7€[0,0—1]}:

(9.30) (Pust,, PUsi, ) X —— (CHECK,, CHECK,) 640, 1} #001°X ,

(9.31) (Ctp,, CTD),) X LN {(NEXT,,, NEXT/,) X, (DONE,,, DONE,,) X } ,

(9.32) (NEXT,,, NEXT),) X 2, (CHECK,,, CHECK),) ©{0,1}QX ,

(9.33) CHECK, X < Inc, CHECK), X < Ind,

(9.34) CHECK, X 2, Ctp, X, CHECK), X 2, Ctp, X,

(9.35) DONE, X N HEADCHK, #X , DoNE, X N HEADCHK, #X ,
(9.36) (HEADCHK,, HEADCHKL)# [IRErPCOHROHL QX DL # , where L=TUQU{0,1},
(9.37) DONE, X =N FINCHK, #X , DonE, X 2 FINCHK #X
(9.38) (FINCHK,,, FINCHK/, ) # < Prects Qs OV (V) # ;

(9.39) DONE, X N Succ, #X , DoNE;, X N Succ), #X ,
(9.40) DONE, X A PLAY (. 1) #X , DoNE;, X < PLAY{, 7 #X .

We remark that the final control states of the form PLAY (4 7) and PLAY'( ,z) Will be connected to a gadget further
below.

Proof of Lemma 9.6. Let t = (p,U,q,Y,d) € T, let w € T*(Qr x T)T* be some configuration of length N, and
let v € I'* be some stack content. For any stack content § € I'* and control states r» and ' we introduce the
notation (r & r’)d and (r % r’)d as an abbreviation for r§ &~ ' and rd % r'§, respectively. For all i € [0, N — 1]
and all Y;,...,Yy_1 € O, let us also introduce the notation

O(Yi, o, Yno1) = Yiai##mse(i,it1) Yir1Qit1 - - - F#FMSB(N—2,N—1) YN 1QN 17 Buw -
We have the following claim:
CLAM 9.1. Forallpe{t} x Y, alli € [1,N —2], and allY;,...,YN_1 € © we have
(Ctp,, ~ CTD:)(S(Yi, .., YN_1) < 3¥,_;€0.(Ctp, ~ CTD:)(S(Yi_l,Yi L YNo1).
Proof of Claim 9.1. First we claim that (DONE,, % DONEL)(S(Yi, ..., Yy_1): indeed, the prefix

#YiQiF#MSB(i,i+1) Vit 10641 - - - FFMSB(N—2,N—1) YN 1N 17
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of #6(Yi,...,Yn_1) is not in the regular language #00°(T" \ {#})*#, simply because a; # 0 due to i # 0; thus
by the rules in Lines (9.37) and (9.38) it follows that (DONE, % DONE,,)d(Yi, ..., Yn_1).

Let us fix any ¢ € [1, N — 2]. The claim follows from the following equivalences, where the second one
follows from the just proven (DONE,, % DONEL)& (Yi,...,Yn_1) and the penultimate equivalence follows from the

equivalence (INC = INC')y#,;6(Yi,...,Yn_1) <= y = a;_; and j = MSB(i — 1,4), which holds for y € {0,1}* by
Lemma 9.3:

(Ctp, =~ CTD},)6(Y5, ..., Y1)

G328 gy, | € 0,y € {0,1}, #; € Q. (CHECK,, ~ CHBOK.)Y;_1y#;0(Yi, ..., Yn_1)) or
(DONE,, = DONE,,)6(Yi, ..., Yn_1)

— TVi1 €0,y €{0,1}",#; € Q. (CHECK,, ~ CHECK),)Y;_1y#;0(Y;, ..., YNn_1)

3083y, | 0,y e 0,1}, #, € Q.

(INC =~ INC')y#;0(Y3, ..., Yn—1) and (CTD,, = CTD,,)Y; 1y#;06(Yi,..., YN 1)
& 3,1 €0.(Ctp, = CTD,,)Yi 10i 1#wmss(i-1,:)0(Vi, - -, Yn_1)
< 3,1 €0.(Ctp, = CtD,)6(Y;—1,Y ..., Yn_1).
This completes the proof of Claim 9.1. ]
Next we have the following claim, where we recall that t = (p,U, q,Y,d) and p = (¢, Z):

CLaM 9.2, Forallp= (t,Z) € {t} x T and allw' =Y;...Yy_1 € ON we have (CTD, = CTD},)6(Yo, ..., YNn_1)
if, and only if, w =, w' and (PLAY (4 z) ~ PLAY(, 7)) #Buw #Buw-

Proof of Claim 9.2. Let u = (t,Z) € {t} x T and let w’ = Yy...Yy_1 € OF. Recall that 6(Yo,...,Yn_1) =
Bu#Buwy- Firstly, we claim that for all Y € ©, all y € {0,1}*, and all #; € Q we have

(9.41) (CHECK,, % CHECK,,)Y y#; Bu #Buw -

Indeed, (INC % INC')y# jBu #Bw7y follows directly from Lemma 9.3, hence by the rules in Line (9.33) we obtain
Property (9.41) as a consequence.

Secondly, we remark that the presence of the prefix checking rule from Line (9.38) (reachable due to the
rules in Line (9.37)) does not impact the equivalence (DONE, ~ DONE,) S, # w7, simply as the unique prefix
of #Buw #Bwy lying in #(I' \ {#1})*#, namely #0B.,#, clearly lies in the regular language #00¢(T" \ {#})*#
appearing in the rule. Hence, it follows that the relevant equivalence (DONE,, &~ DONE,,)B.# .7y only depends
on the application of the rules appearing in Lines (9.35), (9.36), (9.39) and (9.40). The claim now follows from
the following equivalences:

(Ctpy,, CTD),)0(Yy, ..., YN 1)

Aand <CTDM7 CTDIH>ﬁw’#/Bw'Y
(9.31),(9.32) ' ,

= Y € 0,y € {0,1}", #; € Q: (CHECK,, ~ CHECK,,)Y y#; Bur #Buw
or (DONE,, = DONE,,) By #Buwy

@4y (DONE,, = DONE,,) B # 8wy

(9-89),(9-50,Q:39),(40) 1 T*(Qum x T)T*, (Succ, = SUCC,,)#Buw #Buw,

and (PLAY (q,2) & PLAY(, 7)) #Buw #B8u

= w' is a configuration, (SUCC,, & SUCC,,)#Buw #Bw7,

and <PLAY(q7Z) ~ PLAY/(q7z)>#5w’#ﬁw’Y)

Lemma 9.5
<~

w' is a configuration, w b, w', and (PLAY (g, z) & PLAY(, 7)) #Buw #Bu
= w b, w' and (PLAY (g, z) = PLAY{, 7)) #Buw #Buwy. O
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The lemma now follows from the following equivalences:

(PUsHy, PUSH})#8.,7Y

(929) Ju € {t} x T : (PUSH, ~ PUSH,)#8.7
LR g4e {t} x 0, Yy, Yn-1 €0,y €{0,1}".

<CHECKH ~ CHECK;)YN_Qy#OYN_l 1[#61”’)/
(9.33),(9.34)
<~

e {t} x YT, Y2, Yn_1 € O,y € {0,1}".

(<1Nc ~ INC YykoVi—1 148,y and (CTD,, ~ CTD;>YN,2y#OYN,114#5w)
== E|/,L S {t} X T,YN_Q,YN_1 S @, <CTDH = CTD:)YN_Q(IN_Q#OYN_l(XN_l#Bw’y
<— du € {t} XY, Yn_2,Yn_1 € O. <CTDH ~ CTDL>6(YN727YN71)

=2 3,[1 € {t} XY, Yn_3,¥YN_2,YN_1 €O. <CTD/L ~ CTD:L>5(YN_3, YN_Q,YN_l)

X 3 e (1) X 1, Y0,..., Y1 € ©.(CTD,, ~ CTD,)6(Yo, ..., Yi—1)
Claim 9.2 Ju=(t2)e{ty}xT,w' € OV . whk, v and (PLAY(, 7) ~ PLAY (7)) # B #BuwY

= 3Z €T, w' € T(q,Z)Y" . wh, w and (PLAY (4 7) & PLAY(, 7)) #Buw #Buw - 0

9.7 Simulating M. The next gadget allows us to decide, assuming that the topmost stack content is of the
form #a.,,, whether the configuration w is indeed accepting. For all (p,U) € Q¢ x YT and all t € T(;, 7y we add
the following rules:

(9.42) PLAY (1) # — PUSH# if p € Q3 PLAY/, ;) # <= PUSH|# ifp € Qs,
(9.43) (PLAY (3, 1r) PLAY{, 1)) # — {(PUSHy, PUSH,)# | ¢ € Ty} i p € Qu.

We have the following accompanying lemma:

LEMMA 9.7. For all (p,U) € Qum x Y, all length-N configurations w € T*(p, U)Y* of M, and all vy € T"* we have

PLAY (0 #BuwY # PLAY’(pr)#Bw'y < w is accepting.

Moreover, both {[PLAY (, yyy]~ | v € T*} and {[PLAY(, Y]~ | v € T*} are finite sets of classes all of which are
weakly bisimulation finite.

Proof. Let us first prove the second statement of the lemma. Since the rules in Lines (9.42) and (9.43) mutually
depend on the rules Lines (9.29)—(9.40) we analyze them together. First of all, observe that, immediately by the
definition of the gadget, neither of the prefix checking rules in Lines (9.36) and (9.38) can contribute to an infinity
of classes. An important consequence of Lemma 4.5 is that the class of every configuration ¢Xn is determined by
the tuple (g, X, ([rn]~)re|x)(q))-

By inspection of the rules in Lines (9.29)-(9.40), (9.42), and (9.43) one realizes that the only rule that
decreases the stack height are the rules in Line (9.33), leading to the control states INC and INC’, respectively.
Hence the only such classes of the above form [rn]~ are the classes of the form [INCy]~ or [INC'y]~. But the sets
{[INcy]~ | v € T*} and {[INC'y]~ | v € ['*} are finite sets of classes all of which are weakly bisimulation finite by
Lemma 9.3. Thus, it follows that {[PLAY(, 1)7]~ | 7 € T*} and {[PLAY{, 7)7]~ | 7 € T*} are finite sets of classes
all of which are weakly bisimulation finite.

Let us now prove the first statement of the lemma. Let (p,U) € Qap X T, let w = T*(p,U)YT* be a
configuration of M and let v € I'* be any stack content. We prove the statement by induction on the length of
the longest computation starting in w. We make a case distinction whether w is universal or existential.
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If w is existential we have the following equivalences:
w is accepting
3t =(p,U,q,Y.d) € Tpv), Z € T,w' € T*(q, Z)Y*. w b4 z) w' and w' is accepting
3t =(p,U,q.Y,d) € Tpu), Z € T,w' € Y*(q, Z)T* . w b z) w' and
PLAY (g, 2)# 8w #BuwY # PLAY (7 # 8w # 8w

FmERIS 3t = (p,U,q. Y, d) € T 0. PUSH#Buy # PUSH#Bu7y

€Q5,(9.42)
PES PLAY () #Bu 7 PLAY(, 1) #Bu -

l=1

If w is universal we have the following equivalences:

w is accepting
= Vt=(p,U,q,Y,d) € Ty 3Z € T,w' € Y*(q, Z)T*.w bk, z) w' and w’ is accepting
PN Vt=(p,U,q,Y,d) € Tipuy.3Z € T,w' € Y*(q, Z)T* . w k4, z) w' and
PLAY (g, 2)# 8w #Bu % PLAY (g 7)# B #BuwY
LAY vt = (p,U,q,Y,d) € Tty ). PUSH#Buy # PUSH#Buy

€Qy.(9.43)
PRLS™ PLAY (0 # 8wy # PLAY(, ;) #Buwy. O

9.8 Setting up the initial configuration. Recall that a; denotes the binary encoding for every k € [0,2¢—1],
that © = xg...x,_1 is the input to M and that ¢y € @ is the initial state of M. We add the following rules,
where ©g = YT U {(go,z0)} and Q = {#; | j € [0,¢ —1]}:

) (INTT#, INTT') # e, (CHECK, CHECK') Day_o#to0an 17,

) (Ctp, CTD") X LN {(NExT, NEXT") X, (DONE, DONE') X } ,

) (NEXT, NEXT') X 2=y (CHECK, CHECK') ©0{0, 1}/QX |

) CHECKX s INC, CHECK'X <5 INC',

) CHECKX < CTDX, CHECK'X <2 CTD'X |

) DONEX < INICHK#X | DONE' X s INICHK'#X .
(9.50) (INICHK,INICHK’}# PREFIX-CHECK#(q0,20) 0 #0101 ... #MSB(n—2,m — 1) Tn—10n—1 (QO{0,1}4) " # 7
(9.51) DONEX < PLAY (g )X, DONE'X = PLAY!y, o) #X .

LEMMA 9.8. For all v € T* we have INIT#~y 3 INIT' #v if, and only if, x € L(M). Moreover, {[INITy]~ | v € *}
and {[INIT'v]~ | ¥ € T*} are both finite sets of classes all of which are weakly bisimulation finite.

Proof. Let us first prove the first statement of the lemma. Since the proof is very closely related to the proof of
Lemma 9.6, so we only sketch it here.

Let w, = (qo, o)1 ... 2,10V ™. We have the following equivalences, where the first equivalence can be

proven analogously as Lemma 9.6:

INIT#Yy % INIT #7 = PLAY () 00)#Buw, #7 # PLAY’(qMO)#,wa #y

Lemma 9.7 . .
<~ w, 18 accepting

= x € L(M).

The second statement of the lemma can be shown in the same way as the analogous statement of Lemma 9.7.

Copyright (©) 2023 by SIAM
Unauthorized reproduction of this article is prohibited



We conclude our construction by adding the following initial rules:

a# > qA#,
@A < g AA,
@A g,

GA < g,

Q-7 < INITH# ,

(9.52)
(9-53)
(9.54)
(9.55) @A g,
(9.56)
(9.57)
(9.58)

u# ! #.
The following lemma provides the final desired reduction.
LEMMA 9.9. We have x € L(M) if, and only if, (L(P), q1#) is not weakly bisimulation finite.

Proof. Let us first assume # € L(M). By Lemma 9.8 we have INIT# % INIT'#. For n > 1 we have

g A" # N INIT#, while reading $ from ¢;# necessarily leads to INIT'# % INIT'#. It follows that @ A" # % #
for all n > 1. In consequence g;# is the only reachable configuration in its class (once we enter the configuration

INIT# or INIT'#, we cannot read $ any more). Observe now that if g A" # = g1 # for some n € N, then [w| > n;

on the other hand gy A" # AN @ #. Then DisT([q1 A"#|~, [¢1#]~) = n, which implies g; A"# % g A™# for all
n,m € N with n # m. Moreover, we have gt# —* gy A"# for all n € N. Hence, g;# is not weakly bisimulation
finite since infinitely many configurations, that are pairwise not weakly bisimilar, are reachable from it.

Conversely, assume x ¢ L(M). Then INIT# ~ INIT'# by Lemma 9.8. Moreover, INIT# is weakly bisimulation
finite by Lemma 9.8. From this and by inspection of the rules in Lines (9.52)-(9.58) one easily sees that
@A =~ g AT for all n,m € N. In fact, ¢p# is weakly bisimilar to a finite pointed e-LTS (£, c), where
L has the following shape: the configuration ¢ has an a-loop plus a $-labeled transition to the weakly bisimulation
finite [INIT#]|~ = [INIT' #]~. 0

10 Conclusion

In this paper we have shown that weak bisimulation finiteness is 2-EXPTIME-complete for pushdown systems
with deterministic e-transitions. This improves a previously known ACKERMANN upper bound of the problem
and improves the previously best known 6-EXPSPACE upper bound when e-transitions are not present. It also
generalizes the 2-EXPTIME upper bound for regularity of deterministic pushdown automata and tightens a
previously known EXPTIME lower bound for the problem. The more general case with unrestricted e-transitions
is indeed challenging, since our upper bound proof heavily relied on the fact that the underlying transition system
is finitely branching.
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