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Abstract. Iteration is a model-theoretic construction that replicates a
given structure in an infinite, tree-like way. There are two variants of it-
eration: basic iteration (a.k.a. Shelah-Stupp’s iteration), and Muchnik’s
iteration. The latter has an additional unary predicate (not present in ba-
sic iteration), which makes the structure richer. These two variants lead
to two hierarchies of relational structures, generated from finite struc-
tures using MSO-interpretations and either basic iteration or Muchnik’s
iteration. Caucal and Knapik (2018) have shown that the two hierarchies
coincide at level 1, and that every level of the latter hierarchy is closed
under basic iteration (which in particular implies that the former hier-
archy collapses at level 1). We prove the same results using a different,
significantly simpler method.
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1 Introduction

The story about iterations starts with the monadic second-order (MSO) logic.
While defining sets of words or trees, this logic is equiexpressive with finite-state
automata, thus defines regular languages. The MSO logic is of course decid-
able over finite structures. Moreover, it have been shown decidable over natural
numbers with successor [2, 12, 24], and over the infinite complete binary tree [18].

After these fundamental results, a long series of other examples of infi-
nite structures with decidable MSO theory has emerged. They include natural
numbers with successor and an additional unary predicate [13, 21, 23], transi-
tion graphs of pushdown automata [16] or higher-order pushdown automata [3,
4], HR-equational hypergraphs [7] and VR-equational hyperhraphs [9], prefix-
recognizable graphs [5], and trees generated by higher-order recursion sche-
mes [15, 17].

Besides the particular classes of structures with decidable MSO theory, some
operations that preserve MSO-decidability, creating a more complex structure
from a simpler one, were proposed; such operations are called MSO-compatible.
Among those, we have generalised unions of Shelah [20], MSO-interpretations
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(or, more generally, MSO-transductions) [1, 8, 14], unfolding of directed graphs
into trees [11], and iteration. We concentrate here on the last operation on this
list, namely on iteration.

While iterating a structure, we create infinitely many copies of it, and we
organize them in a shape of a tree. Children of every node of the tree are in-
dexed by elements of the structure itself. Thus, elements of the iterated structure
can be seen as nonempty (finite) words whose letters are elements of the original
structure: the last letter is an element in one of the copies, and the prefix without
the last letter is an index of this copy. Relations are preserved within each copy,
and a new binary “son” relation is added, connecting an element in one copy
with all elements belonging to a child of this copy indexed by the former element
(i.e., every word w with words of the form wa). This construction is first men-
tioned by Shelah [20], who refers to an unpublished paper of Stupp [22], which
contains the proof of the fact that this operation is indeed MSO-compatible;
thus the above operation is called Shelah-Stupp’s iteration, or basic iteration.
The resulting structure may be extended by a unary “clone” predicate, which
holds in the unique element of every copy that is an index of this copy among its
siblings (i.e., in words of the form waa); this way we obtain Muchnik’s iteration,
which is also MSO-compatible. This result is attributed to Muchnik, but was
presented by Semenov [19] and Walukiewicz [25].

The MSO-compatible operations allow to create hierarchies of classes of
structures with decidable MSO theories, containing most of the examples men-
tioned so far. In the most known Caucal’s hierarchy of directed graphs [4], one
starts from finite graphs, and repeatedly applies unfolding and MSO-interpreta-
tion. In an equivalent definition [3], unfolding is replaced by Muchnik’s iteration.
We consider here a generalization of the latter hierarchy from directed graphs to
arbitrary relational structures. Thus, starting from finite structures, we construct
structures on the next level of the hierarchy by applying Muchnik’s iteration to
structures on the previous level, followed by arbitrary MSO-interpretations. An-
other hierarchy can be constructed using basic iteration instead of Muchnik’s
iteration.

The latter two hierarchies were considered by Caucal and Knapik [6], who
prove that

– the two hierarchies coincide at level 1, and
– every level of the hierarchy involving Muchnik’s iteration is closed under

basic iteration (which in particular implies that the hierarchy involving basic
iteration collapses at level one).

We prove the same results using a different, significantly simpler method.

The proof of Caucal and Knapik is quite indirect: it utilizes prefix-recog-
nizable structures, as well as higher-order pushdown automata. Moreover, their
constructions are rather involved. We, instead, work directly with the definition
of iterations. Recalling that elements of the iterated structure can be seen as
words, our approach is based on a very simple idea saying that a word of words
can be encoded in a word (we only need some separator to mark the glue points).
Based on this idea, we prove that (modulo existence of the aforementioned sepa-
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rator) a composition of a Muchnik’s iteration (applied first) with a basic iteration
(applied later) can be encoded in a single Muchnik’s iteration. From this state-
ment, the aforementioned second main result of Caucal and Knapik (i.e., closure
under basic iteration) easily follows.

2 Preliminaries

The MSO logic and MSO-interpretations. A signature Σ (of a relational
structure) is a finite set of relation names, R1, . . . , Rr, together with a natural
number called an arity assigned to each of the names. A (relational) structure
S = (US , RS1 , . . . , R

S
r ) over such a signature Σ is a set US , called the universe,

together with relations RSi over US , for all relation names in the signature; the
arity of the relations is as specified in the signature.

We assume two countable sets of variables: VFO of first-order variables (de-
noted using lowercase letters x, y, . . . ) and VMSO of set variables (denoted using
capital letters X,Y, . . . ). Atomic formulae are
– R(x1, . . . , xn), where R is a relation name of arity n (coming from a fixed

signature Σ), and x1, . . . , xn are first-order variables, and
– x ∈ X, where x is a first-order variable, and X a set variable.

Formulae of the monadic second-order logic, MSO, are built out of atomic for-
mulae using the Boolean connectives ∨,∧,¬, first-order quantifiers ∃x and ∀x for
x ∈ VFO , and set quantifiers ∃X and ∀X for X ∈ VMSO . We use the standard
notion of free variables.

In order to evaluate an MSO formula ϕ over a signature Σ in a relational
structure S over the same signature, we also need a valuation ν, which is a
partial function that maps
– variables x ∈ VFO to elements of the universe of S, and
– variables X ∈ VMSO to subsets of the universe of S.

The valuation should be defined at least for all free variables of ϕ. We write
S, ν |= ϕ when ϕ is satisfied in S with respect to the valuation ν; this is defined
by induction on the structure of ϕ, in the expected way.

We write ϕ(x1, . . . , xn) to denote that the free variables of ϕ are among
x1, . . . , xn. Then, given elements u1, . . . , un in the universe of a structure S, we
say that ϕ(u1, . . . , un) is satisfied in S if ϕ is satisfied in S under the valuation
mapping xi to ui for all i ∈ {1, . . . , n}.

An MSO-interpretation I = (δ, (ϕR)R∈Σ2) from Σ1 to Σ2 consists of an
MSO-formula δ(x) over Σ1, and of MSO-formulae ϕR(x1, . . . , xn) over Σ1, for
every relation name R ∈ Σ2, where n is the arity of R. Having such an MSO-
interpretation, we can apply it to a structure S over Σ1; we obtain a structure
I(S) over Σ2, where the universe U I(S) consists of those elements v of the uni-
verse of S for which δ(v) is satisfied in S, and where every relation RI(S) consists
of the tuples (v1, . . . , vn) ∈ (U I(S))n for which ϕR(v1, . . . , vn) is satisfied in S.

Iterations and hierarchies. For a set A, by A∗ (or A+) we denote the set of all
finite words (or all nonempty finite words, respectively) over alphabet A. In the



4 P. Parys

sequel, we write [a1a2 . . . ak] for a word consisting of letters a1, a2, . . . , ak, and we
use ◦ to denote concatenation of words (this notation allows us to unambiguously
describe words of words).

Let S = (US , RS1 , . . . , R
S
r ) be a relational structure over a signature Σ, and

let ],& 6∈ Σ be new relation names, where ] is binary and & unary. The basic
(a.k.a. Shelah-Stupp’s) iteration of S, denoted S], is a relational structure over
Σ ∪ {]}, where

– the universe US
]

is (US)+ (i.e., the set of nonempty words whose letters are
elements of US),

– the relation RS
]

i contains all tuples of the form (w ◦ [a1], . . . w ◦ [an]) such
that (a1, . . . , an) ∈ RSi (where w ∈ (US)∗ and a1, . . . , an ∈ US), for every
i ∈ {1, . . . , r}, and

– the relation ]S
]

contains all pairs of the form (w,w ◦ [a]) (where w ∈ (US)+

and a ∈ US).
The Muchnik’s iteration of S, denoted S],&, is a relational structure over Σ ∪
{],&}, where

– the universe US
],&

and the relations RS
],&

i and ]S
],&

are defined as in S],
– the relation &S

],&

contains all elements of the form w◦[aa] (where w ∈ (US)∗

and a ∈ US).
In the sequel, we also use $ as an alternative for the ] symbol (and then we write
S$ instead of S]).

Example 2.1. This example is borrowed from Caucal and Knapik [6]. Consider a
structure S with universe {1, 2, 3}, and with the following binary relations α, β,
depicted by arrows:

1

2

3
β

α α

A fragment of Muchnik’s iteration S],& has the following shape (the basic
iteration S] looks similarly, except that the & predicate should be removed):

1

2

3
β

α α

11

12

13
β

α α 21

22

23
β

α α

31

32

33
β

α α

&

&

&
]]

]

]
]

]
] ]

]

111

112

113
β

α α

&
]]

]

121

122

123
β

α α
&

]
] ]

131

132

133
β

α α
&

]
]

]

ut
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For every n ∈ N we define two families of relational structures, hgrn and
hgrbasicn , as follows:

hgr0 = hgrbasic0 = finite relational structures,

hgrn+1 = {I(S],&) | S ∈ hgrn ∧ I is an MSO-interpretation},
hgrbasicn+1 = {I(S]) | S ∈ hgrbasicn ∧ I is an MSO-interpretation}.

More formally, the classes contain also all structures isomorphic to the structures
present in the above definition.

Recall that the composition of two MSO-interpretations is again an MSO-
interpretation [10], that there exists an identity MSO-interpretation, and that
a structure MSO-interpreted in a finite structure is again finite. It follows that
the above definition (where iterations and MSO-interpretations appear alternat-
ingly, starting from an iteration) covers any sequence of iterations and MSO-
interpretations applied to a finite structure; then the level n counts the number
of iterations.

3 Equality on level 1

In this section we concentrate on the first main result of the paper:

Theorem 3.1 (cf. Caucal and Knapik [6, Corollary 14]). The classes
hgr1 and hgrbasic1 coincide.

In order to prove this result, Caucal and Knapik use a passage through
prefix-recognizable structures. Below, we give a straightforward, direct proof.

Proof (Theorem 3.1). Clearly hgrbasic1 is contained in hgr1. In order to prove the
other inclusion, consider a structure in hgr1. It is of the form I(S],&) for some
finite structure S and MSO-interpretation I. We are going to prove that there
is a finite structure T and an MSO-interpretation J such that S],& = J(T ]).
This shows that I(S],&), which equals I(J(T ])), belongs to hgrbasic1 , because a
composition of two MSO-interpretations is again an MSO-interpretation.

As T we take S enriched with additional predicates (i.e., unary relations).
Namely, for each element a of the universe, we have a predicate Pa that holds
only in this element (it is important that the universe is finite, so we need
only finitely many new predicates). The interpretation J leaves unchanged the
universe, all the relations from the signature of S, and the relation ]; they are
simply inherited from T ]. We only need to define in T ] the “clone” predicate &.
It should hold in elements of the form w ◦ [aa]. But such equality of the last two
letters can be easily expressed in an MSO formula, by taking a disjunction over
all possible elements a of the universe. Indeed, recall that the new Pa predicates
check in T ] whether the last letter is a, and that the ] relation allows us to cut
off the last letter. ut
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4 Closure under basic iteration

We now come to the second main result of the paper:

Theorem 4.1 (cf. Caucal and Knapik [6, Theorem 15]). For every n ≥ 1,
the class hgrn is closed under basic iteration.

In particular, because hgrbasic1 = hgr1 (cf. Theorem 3.1), and because a com-
position of two MSO-interpretations is an MSO-interpretation, we obtain that
hgrbasic2 = hgr1, and likewise hgrbasicn = hgr1 for all n ≥ 1.

The key point in our proof of Theorem 4.1 is that a composition of a Much-
nik’s iteration with a basic iteration can be encoded in a single Muchnik’s it-
eration. As already said in the introduction, this amounts to encoding a word
of words in a single word. In this encoding, we need a separator to be inserted
between concatenated words. We thus consider an operation of adding a distin-
guished element (which will become the separator) to an arbitrary structure.

Let S = (US , RS1 , . . . , R
S
r ) be a relational structure over a signature Σ, and

let † 6∈ Σ be a new unary relation name. The single-element extension of S,
denoted S†, is a relational structure over Σ ∪ {†}, where
– the universe US† is US ] {a†}, for some fresh element a†,

– R
S†
i = RSi for all i ∈ {1, . . . , r}, and

– †S† = {a†}.
In other words, we add a new element to the universe of S, but not to any of
the relations; the new unary predicate † holds only in the new element.

Below, the ≡ symbol stands for isomorphism of structures.

Lemma 4.2. Fix a signature Σ. There exists an MSO-interpretations I such
that for every relational structure S over Σ,

(S],&)$ ≡ I((S†)],&).

Proof. Let S = (US , RS1 , . . . , R
S
r ). Recall that the universe of the double iteration

(S],&)$ is ((US)+)+, and the universe of (S†)],& is (US ] {a†})+. We define an
injective mapping flat : ((US)+)+ → (US ] {a†})+ by

flat([w1w2 . . . wk]) = w1 ◦ [a†] ◦ w2 ◦ [a†] ◦ · · · ◦ [a†] ◦ wk.

It thus concatenates the words w1, . . . , wk being letters of [w1w2 . . . wk], inserting
the separator a† between them.

The universe-restricting formula δ of the interpretation I should select ele-
ments of the image of flat. These are words such that there are no two a† letters
in a row, and the first and the last letter are not a†. This property can be easily
expressed in MSO (recall that the † predicate in (S†)],& checks whether the last
letter is a†, and the ] relation allows to cut off the last letter of a word).

The interpretation I should not change relations Ri in any way, because the
last letter of the last letter of an element of ((US)+)+ (taken into account by
the relations Ri in (S],&)$) is mapped by flat to the last letter of an element of
(US ] {a†})+ (taken into account by the relations Ri in (S†)],&).
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The relations ] and & should remain unchanged as well. Indeed, the ] relation
in (S],&)$ contains pairs of the form (v ◦ [w], v ◦ [w ◦ [a]]). They are mapped by
flat to (flat(v) ◦ [a†] ◦w, flat(v) ◦ [a†] ◦w ◦ [a]) (or just (w,w ◦ [a]), if v is empty),
which are exactly pairs contained in the relation ] in (S†)],&, while restricted to
the image of flat. Likewise, the & predicate in (S],&)$ holds in elements of the
form (v ◦ [w ◦ [aa]]). They are mapped by flat to (flat(v) ◦ [a†] ◦w ◦ [aa]) (or just
(w ◦ [aa]), if v is empty), which are exactly the elements of the image of flat for
which the & predicate holds in (S†)],&.

Finally, the relation $ in (S],&)$ contains pairs of the form (v, v ◦ [w]), which
are mapped by flat to (flat(v), flat(v) ◦ [a†] ◦ w). Thus, the formula ϕ$(x, y) in I
should say that x is obtained from y by cutting off the suffix starting from the
last a†. As for δ, this can be easily expressed in MSO. ut

Remark 4.3. In Lemma 4.2 it is important that Muchnik’s iteration is applied
first, that is, that we take (S],&)$ and not (S])$,&. Indeed, the “clone” predicate
of the second iteration would say that the last two words wk−1, wk in an encoding
w1 ◦ [a†]◦ · · · ◦ [a†]◦wk−1 ◦ [a†]◦wk are equal. We are unable to say this in MSO.

Lemma 4.2 eliminates a composition of iterations, at the cost of using the
single-element extension. We thus need to prove that the classes hgrn are closed
under the latter operation:

Lemma 4.4. For every n ≥ 1, the class hgrn is closed under taking single-
element extensions.

To this end, we need the following lemma:

Lemma 4.5. Fix a signature Σ. There exists an MSO-interpretation I such
that for every relational structure S over Σ,

(S],&)† ≡ I((S†)],&).

Proof. Let S = (US , RS1 , . . . , R
S
r ). Recall that (S],&)† extends S],& by a single

fresh element, while in (S†)],& the fresh element can be used anywhere as a letter
of a word. We define an injective mapping inj : (US)+ ] {a†} → (US ] {a†})+
(i.e., from the universe of (S],&)† to the universe of (S†)],&) by

inj(w) =

{
[a†] if w = a†,
w otherwise.

The universe-restricting formula δ of the interpretation I should select el-
ements of the image of inj. These are words not using a† as a letter, plus the
length-1 word [a†]. Of course we can select such words in MSO (where we can
use the † predicate to check whether the last letter is a†, and the ] relation to
cut off the last letter of a word). All the relations Ri, as well as ] and &, should
remain unchanged by the interpretation I. ut

The next two lemmata allow us to swap an MSO-interpretation with the
operations of iteration or single-element extension.
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Lemma 4.6. Let I be an MSO-interpretation from a signature Σ to a signature
Π. There exists an MSO-interpretation J such that for every relational structure
S over Σ,

(I(S))] = J(S]).

Proof. First, observe that we can write an MSO formula ψ(X) saying that X is
one of the copies in the iteration, (i.e., for some word w, the set X contains all
words of the form w ◦ [a]).

Let I = (δ, (ϕR)R∈Σ). Let δ′(x,X) be a formula obtained from δ(x) by
relativizing to the set X (by saying that, we mean that all quantified objects
should come from the set X, as well as x should belong to X). Then, let δ′′(x) ≡
∃X.(ψ(X)∧δ′(x,X)); this formula says that the last letter of x satisfies δ. Using
δ′′ we can easily write the universe-restricting formula of J , which should say
that all letters of the considered word satisfy δ.

Likewise, we relativize every formula ϕR(x1, . . . , xn) to a setX (saying in par-
ticular that all x1, . . . , xn belong to X), obtaining a formula ϕ′R(x1, . . . , xn, X).
Then, we take ϕ′′R(x1, . . . , xn) ≡ ∃X.(ψ(X) ∧ ϕ′R(x1, . . . , xn, X)). This formula
says that all x1, . . . , xn belong to the same copy in the iteration, and that their
last letters satisfy the formula ϕR; this is exactly the definition of R in (I(S))],
so we can take ϕ′′R to the interpretation J .

Finally, J should leave the relation ] unchanged. ut

The above lemma was also given by Caucal and Knapik [6, Lemma 16], but
their proof contains a flaw. Namely, they propose to just make a conjunction of
ϕR(x1, . . . , xn) with a formula saying that all x1, . . . , xn belong to the same copy
in the iteration. This is not enough (for example, ϕR may contain a subformula,
unrelated to the arguments x1, . . . , xn, saying that all elements of the structure
are connected by some relation α, which is true in some S, but not in S]); all
quantifiers in a formula have to be relativized to the same copy, as in our proof.

Lemma 4.7. Let I be an MSO-interpretation from a signature Σ to a signature
Π. There exists an MSO-interpretation J such that for every relational structure
S over Σ,

(I(S))† = J(S†).

Proof. Let I = (δ, (ϕR)R∈Σ). We relativize the formulae δ and ϕR to elements
not satisfying † (i.e., elements of the original structure S), obtaining δ′ and ϕ′R;
in particular, these formulae say that their arguments do not satisfy †. As the
universe-restricting formula of J we take δ′(x) ∨ †(x), and we use formulae ϕ′R
to define relations. Additionally, we leave the † predicate unchanged. ut

We can now finish the proofs of Lemma 4.4 and Theorem 4.1.

Proof (Lemma 4.4). Induction on n. The base case of n = 0 is trivial: the single-
element extension of a finite structure is again finite. For the induction step,
assume that hgrn is closed under taking single-element extensions, and consider
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a structure from hgrn+1; we have to prove that the single-element extension of
this structure also belongs to hgrn+1. The structure is of the form I(S],&) for
some S ∈ hgrn, and for some MSO-interpretation I. First, by Lemma 4.7, we
can write (I(S],&))† = J((S],&)†), for some MSO-interpretation J . Then, by
Lemma 4.5, we have (S],&)† ≡ K((S†)],&), for some MSO-interpretation K. By
the induction hypothesis, S† ∈ hgrn, so J(K((S†)],&)) ∈ hgrn+1. ut

Proof (Theorem 4.1). Consider a structure from hgrn, where n ≥ 1; we have
to prove that the basic iteration of this structure also belongs to hgrn. The
structure is of the form I(S],&) for some S ∈ hgrn−1, and for some MSO-

interpretation I. First, by Lemma 4.6, we can write (I(S],&))$ = J((S],&)$), for
some MSO-interpretation J . Then, by Lemma 4.2, we have (S],&)$ ≡ K((S†)],&),
for some MSO-interpretation K. By Lemma 4.4 we know that S† ∈ hgrn−1, so
J(K((S†)],&)) ∈ hgrn. ut

Remark 4.8. In Lemma 4.2 we have shown that a composition of Muchnik’s
iteration with basic iteration can be encoded in the Muchnik’s iteration of the
single-element extension. Notice that by removing the “clone” predicate &, the
same proof gives us another statement: a composition of two basic iterations can
be encoded in a single basic iteration of the single-element extension.

Caucal and Knapik [6, Section 5] ask whether inside every hgrn class there
exists a finer hierarchy, where one climbs up from one layer to the next layer via
basic iteration. By the above, we know that two basic iterations can be rewritten
using a single one; thus the answer to this question is negative, assuming that
the classes would be closed under taking single-element extensions (which is a
very natural assumption).

5 Conclusions

Caucal and Knapik [6] have proved that the hgrbasicn hierarchy, involving basic
iterations, collapses at level 1, where it coincided with hgr1, the first level of the
hierarchy involving Muchnik’s iteration. We have done the same, using much
simpler methods. Moreover, we have given an additional insight on the nature of
the two kinds of iterations: a composition of two basic iterations boils down to a
single basic iteration, and a composition of Muchnik’s iteration with basic itera-
tion boils down to just a Muchnik’s iteration. Simultaneously, Caucal’s hierarchy
(being a graph version of hgrn) is strict, which implies that a composition of two
Muchnik’s iteration cannot be reduced to a single Muchnik’s iteration, even if
we only consider directed graphs instead of arbitrary relational structures.
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