
Improved Complexity Analysis of
Quasi-Polynomial Algorithms Solving Parity

Games

Paweł Parys[0000−0001−7247−1408]? and Aleksander Wiącek

Institute of Informatics, University of Warsaw, Poland

Abstract. We improve the complexity of solving parity games (with
priorities in vertices) for d = ω(logn) by a factor of Θ(d2): the best
complexity known to date was O(mdn1.45+log2(d/ log2 n)), while we obtain
O(mn1.45+log2(d/ log2 n)/d), where n is the number of vertices, m is the
number of edges, and d is the number of priorities.
We base our work on existing algorithms using universal trees, and we
improve their complexity. We present two independent improvements.
First, an improvement by a factor of Θ(d) comes from a more careful
analysis of the width of universal trees. Second, we perform (or rather
recall) a finer analysis of requirements for a universal tree: while for
solving games with priorities on edges one needs an n-universal tree, in
the case of games with priorities in vertices it is enough to use an n/2-
universal tree. This way, we allow solving games of size 2n in the time
needed previously to solve games of size n; such a change divides the
quasi-polynomial complexity again by a factor of Θ(d).

Keywords: Parity games · Universal trees · Quasi-polynomial time

1 Introduction

Parity games have played a fundamental role in automata theory, logic, and
their applications to verification and synthesis since early 1990s. The algorithmic
problem of finding the winner in parity games can be seen as the algorithmic
back end to problems in the automated verification and controller synthesis.
It is polynomial-time equivalent to the emptiness problem for nondeterministic
automata on infinite trees with parity acceptance conditions, and to the model-
checking problem for modal µ-calculus [14]. It lies also at the heart of algorithmic
solutions to the Church’s synthesis problem [29]. Moreover, decision problems
for modal logics like validity or satisfiability of formulae in these logics can be
reduced to parity game solving. Some ideas coming originally from parity games
allowed obtaining new results concerning translations between automata models
for ω-words [5,10], as well as concerning relatively far areas of computer science,
like Markov decision processes [15] and linear programming [19,18].
? Author supported by the National Science Centre, Poland (grant no. 2021/41/B/
ST6/03914).

The complexity of solving parity games, that is, deciding which player has a
winning strategy, is a long standing open question. The problem is known to be
in UP∩ coUP [20] (a subclass of NP∩ coNP) and the search variant (i.e., to find
a winning strategy) is in PLS, PPAD, and even in their subclass CLS [9]. The
study of algorithms for solving parity games has been dominated for over two
decades by algorithms whose run-time was exponential in the number of distinct
priorities [33,6,31,21,32,30,2], or mildly subexponential for a large number of
priorities [4,25]. The breakthrough came in 2017 from Calude, Jain, Khoussainov,
Li, and Stephan [7] who gave the first quasi-polynomial-time algorithm using the
novel idea of play summaries. Several other quasi-polynomial-time algorithms
were developed soon after [22,16,26,28,27,11,24,3].

Fijalkow [17] made explicit the concept of universal trees that is implicit in
the succinct tree coding result of Jurdziński and Lazić [22]. It was then observed
that universal trees are not only present, but actually necessary in all existing
quasi-polynomial-time approaches for solving parity games [8,23,1]. Namely, it
was shown that any algorithm solving a parity game with n vertices, and fol-
lowing existing approaches, needs to operate on an n-universal tree (as defined
in the sequel). There is, however, a catch here: this necessity proof is for par-
ity games with priorities on edges, while quite often one considers less succinct
games with priorities in vertices. (A general method for switching from priorities
on edges to priorities in vertices is to replace each vertex by d vertices, one for
each priority, and to redirect every edge to a copy of the target vertex having
the appropriate priority; then the number of vertices changes from n to nd.)

The main contribution of this paper lies in a finer analysis of the width of
n-universal trees. We improve the upper bound on this width (and thus also the
upper bound on the running time of algorithms using such trees) by a factor of
Θ
(

d
logn

)
, where d is the number of priorities.

Then, a second improvement is obtained by recalling from Jurdziński and
Lazić [22] that in order to solve parity games with priorities in vertices it is
enough to use an bn/2c-universal tree instead of an n-universal trees, exploiting
the “catch” mentioned above. This allows solving games of size 2n in the time
needed previously to solve games of size n and, in consequence, improves the
complexity of solving parity games (with priorities in vertices) once again by a
factor of Θ

(
d

logn

)
.

Combining the two improvements, we decrease the upper bound on the com-
plexity of solving parity games with d = ω(log n) by a factor of Θ

(
d2

log2 n

)
: the

best bound known to date [17,22], namely O(mdn1.45+log2(d/ log2 n)), is decreased
to the bound O(mn1.45+log2(d/ log2 n)/d). We remark that both bounds do not
display polylogarithmic factors; they are dominated by nO(1), where the O(1)
comes from the difference between 1.45 and the actual constant log2 e which
should appear in the exponent (the same style of writing the bound is employed
in prior work). Thus, while writing the bounds in such a form, the improvement
is by a factor of Θ(d2). Simultaneously, the two observations become too weak
to improve asymptotics of the complexity in the case of d = O(log n).

2 Preliminaries

Parity games. A parity game is a two-player game between players Even and Odd
played on a game graph defined as a tuple G = (V, VEven, E, d, π), where (V,E) is
a nonempty finite directed graph in which every vertex has at least one successor;
its vertices are labelled with positive integer priorities by π : V → {1, 2, . . . , d}
(for some even number d ∈ N), and divided between vertices VEven belonging to
Even and vertices VOdd = V \ VEven belonging to Odd. We usually denote |V | by
n and |E| by m.

Intuitively, the dynamics of the game are defined as follows. The play starts
in a designated starting vertex. Then, the player to whom the current vertex
belongs selects a successor of this vertex, and the game continues there. After
an infinite time, we check for the maximal priority visited infinitely often; its
parity says which player wins.

Formally, we define the winner of a game using positional (i.e., memoryless)
strategies. An Even’s positional strategy is a set σ ⊆ E of edges such that for
every vertex v of Even, in σ there is exactly one edge starting in v, and for
every vertex v of Odd, in σ there are all edges starting in v. An Odd’s positional
strategy is defined by swapping the roles of Even and Odd. An Even’s (Odd’s)
positional strategy σ is winning from a vertex v if for every infinite path in the
subgraph (V, σ), the maximal priority occurring infinitely often on this path is
even (odd, respectively). We say that Even/Odd wins from v if Even/Odd has
a positional strategy winning from v.

The above definition accurately describes the winning player due to positional
determinacy of parity games: from every vertex v of a parity game, one of the
players, Even or Odd, wins from v [13]. It follows that if a player can win from
a vertex by a general strategy (not defined here), then he can win also by a
positional strategy.

Trees and universal trees. In progress measure algorithms [22,17,11] strategies
are described by mappings from game graphs to ordered trees, defined as follows:
an ordered tree (or simply a tree) T of height h is a finite connected acyclic graph,
given together with a linear order ≤x for every node x thereof, such that
– there is exactly one node with in-degree 0, called a root ; every other node

has in-degree 1;
– for every leaf (i.e., a node of out-degree 0), the unique path from the root

to this leaf consists of h edges;
– ≤x is a linear order on the children of x (i.e., nodes to which there is an edge

from x), which describes the left-to-right ordering of these children.
The width of a tree T is defined as its number of leaves and denoted |T |.

Let T1 and T2 be two ordered trees of the same height. We say that T1 embeds
into T2 if there is an injective mapping f preserving the child relation and the
≤x relations:
– if y is a child of x in T1, then f(y) is a child of f(x) in T2, and
– if y ≤x z in T1, then f(y) ≤f(x) f(z) in T2.

Fig. 1. All four trees of height 2 and width 3 (left); a 3-universal tree of height 2 (right)

A tree T of height h is n-universal if every ordered tree of height h and width
at most n embeds into T . Consult Figure 1 for an example.

3 On the width of universal trees

In this section we prove an improved upper bound on the width of universal
trees, as described by the following theorem:

Theorem 3.1. For all n, h ∈ N, where n ≥ 1, there exists an n-universal tree
of height h and width at most f(n, h), where

f(n, h) ≤ n ·
(
h− 1 + blog2 nc
blog2 nc

)
≤ n2.45−ε+log2

(
1+ h−1

log2 n

)

for some ε > 0. Additionally, f(n, h) = O(n2.45−ε+log2(h/ log2 n)) if h = ω(log n).

We remark that as the height h we usually take (numbers close to) d/2, where
d is the number of priorities in a parity game. The value 2.45−ε in the exponent
means that the actual constant is slightly smaller than 2.45.

Before giving a proof, let us compare the above bound with bounds known to
date: Fijalkow [17, Theorem 4] derives an upper bound of 2dlog2 ne

(h−1+dlog2 ne
dlog2 ne

)
.

The difference is thus in replacing dlog2 ne by blog2 nc. For “a majority” of n
these two values differ by 1, in which case the quotient of the two binomial
coefficients is h−1+dlog2 ne

dlog2 ne
; this quotient is in Θ

(
h

logn

)
if h = ω(log n). Coming

to the asymptotics, the bound of Fijalkow is in O(hn2.45−ε+log2(h/ log2 n)) (see
Jurdziński and Lazić [22, Lemma 6] for a proof), which is indeed worse by a
factor of Θ(h) than our bound.

In order to prove Theorem 3.1, we use a construction of Fijalkow [17, Theorem
4] (which is essentially the same construction as in Jurdziński and Lazić [22]).
He shows that there exists an n-universal tree of height h and width f(n, h),
where the function f (extended to n = 0 by setting f(0, h) = 0, and to h = 0,
n ≥ 1 by setting f(n, 0) = 1) is defined by the following recursive formula:

f(0, h) = 0 for h ≥ 0,

f(n, 0) = 1 for n ≥ 1,

f(n, h) = f(n, h− 1) + f(bn/2c, h) + f(n− 1− bn/2c, h) for n, h ≥ 1. (1)

Compared to Fijalkow [17], we thus perform a more careful analysis of the
above recursive formula. First, we provide an explicit formula for f(n, h):

Lemma 3.2. The function f can be described by the following explicit formula,
for all n, h ≥ 1:

f(n, h) =

blog2 nc−1∑
i=0

2i ·
(
h− 1 + i

h− 1

)
+ (n− 2blog2 nc + 1) ·

(
h− 1 + blog2 nc

h− 1

)
.

While it is possible to confirm the correctness of Lemma 3.2 by an induc-
tive proof, we present here a proof based on generating functions, as it is more
instructive.

Proof (Lemma 3.2). Let F (x, y) =
∑
n,h≥1 f(n, h)x

nyh be a generating function
of the two-dimensional sequence f(n, h), excluding the values for n = 0 and for
h = 0. We multiply both sides of Equation (1) by xnyh, and then we sum the
result over all n, h ≥ 1; we obtain that

F (x, y) =
∑
n≥1
h≥1

f(n, h− 1)xnyh +
∑
k≥1
h≥1

(f(k, h) + f(k − 1, h))x2kyh

+
∑
k≥0
h≥1

2f(k, h)x2k+1yh.

Next, in the first sum above we shift h by 1, and we move components with f(n, 0)
into a separate sum; in the second sum above we split f(k, h) + f(k − 1, h) into
two separate sums, where in the latter we shift k by 1, and we move components
with f(0, h) into a separate sum; in the last sum above, we move components
for k = 0 into a separate sum. We obtain

F (x, y) =
∑
n≥1

f(n, 0)xny +
∑
n≥1
h≥1

f(n, h)xnyh+1

+
∑
k≥1
h≥1

f(k, h)(x2)kyh +
∑
h≥1

f(0, h)x2yh +
∑
k≥1
h≥1

f(k, h)(x2)kyhx2

+
∑
h≥1

2f(0, h)xyh +
∑
k≥1
h≥1

2f(k, h)(x2)kyhx

=
xy

1− x
+ yF (x, y) + F (x2, y) + 0 + x2F (x2, y) + 0 + 2xF (x2, y).

This gives us the following equation concerning the generating function:

F (x, y) = yF (x, y) + F (x2, y)(1 + 2x+ x2) +
xy

1− x
. (2)

Let H(x, y) = 1−x
y F (x, y); then F (x, y) = y

1−xH(x, y). Note that H is the
generating function representing the differences between values of f for successive

values of n, with h shifted by 1. Substituting this to Equation (2) we obtain:

y

1− x
H(x, y) =

y2

1− x
H(x, y) +

y

1− x2
H(x2, y)(1 + x)2 +

xy

1− x
,

y

1− x
H(x, y) =

y2

1− x
H(x, y) +

y

1− x
H(x2, y)(1 + x) +

xy

1− x
,

H(x, y) = yH(x, y) +H(x2, y)(1 + x) + x.

Next, let us write H(x, y) =
∑
n≥1 x

nhn(y). We substitute this to the equation
above: ∑

n≥1

xnhn(y) =
∑
n≥1

xnyhn(y) +
∑
n≥1

(x2n + x2n+1)hn(y) + x.

In order to find hn, we compare coefficients in front of xn, on both sides of the
equation. For n = 1 we have

h1(y) = yh1(y) + 1, so h1(y) =
1

1− y
,

and for n ≥ 2 we have

hn(y) = yhn(y) + hbn/2c(y), so hn(y) =
hbn/2c(y)

1− y
.

It follows that for all n ≥ 1 we have a formula

hn(y) =
1

(1− y)blog2 nc+1
.

Below, we use the notation [xn]A(x) for the coefficient in front of xn in the
function A(x). We also use the following formula, where k ≥ 1:

1

(1− x)k
=

∞∑
n=0

(
n+ k − 1

n

)
xn. (3)

We now conclude the proof (here we assume that n, h ≥ 1):

f(n, h) = [xnyh]F (x, y) = [xnyh]
y

1− x
H(x, y)

= [yh−1]

n∑
j=0

[xj]H(x, y) = [yh−1]

n∑
j=1

hj(y)

= [yh−1]

blog2 nc−1∑
i=0

2ih2i(y) + (n− 2blog2 nc + 1)h2blog2 nc(y)

=

blog2 nc−1∑
i=0

2i[yh−1]
1

(1− y)i+1
+ (n− 2blog2 nc + 1)[yh−1]

1

(1− y)blog2 nc+1

=

blog2 nc−1∑
i=0

2i ·
(
h− 1 + i

h− 1

)
+ (n− 2blog2 nc + 1) ·

(
h− 1 + blog2 nc

h− 1

)
.

Above, the third line is obtained based on the fact that h2i = h2i+1 = . . . =
h2i+1−1, and the last line is obtained based on Equation (3). This finishes the
proof of Lemma 3.2.

Next, we give two auxiliary lemmata, useful while bounding the asymptotics:

Lemma 3.3. For all x ≥ 0 it holds that ln(1 + x) · (1 + x) ≥ x.

Proof. Denote h(x) = ln(1 + x) · (1 + x) − x. Because h(0) = 0, it is enough to
prove that the function h is increasing. To this end, we compute its derivative.
We obtain h′(x) = ln(1 + x), so h′(x) > 0 for x > 0 and indeed the function h
is increasing.

Lemma 3.4. For every c ≥ 0 the function

αc(x) =
(
1 +

c

x

)x
is nondecreasing for x > 0.

Proof. We compute the derivative of αc:

α′c(x) = αc(x) ·

(
ln
(
1 +

c

x

)
− c

x ·
(
1 + c

x

)) .
Because αc(x) ≥ 0 for x > 0, in order to confirm that α′c(x) ≥ 0 it is enough to
check that

ln
(
1 +

c

x

)
≥ c

x ·
(
1 + c

x

) .
To show this inequality, we multiply to both its sides 1+ c

x and we use Lemma 3.3.

We are now ready to finish the proof of Theorem 3.1:

Proof (Theorem 3.1). In order to obtain f(n, h) ≤ n ·
(h−1+blog2 nc
blog2 nc

)
, we replace

all binomial coefficients in the formula of Lemma 3.2 by
(h−1+blog2 nc
blog2 nc

)
; obviously(

h−1+i
h−1

)
≤
(
h−1+blog2 nc

h−1
)
=
(h−1+blog2 nc
blog2 nc

)
for i ≤ blog2 nc.

Recall that xlog2 y = ylog2 x for any x, y > 0. The second inequality from
the theorem’s statement is obtained using, consecutively, the estimation

(
n
k

)
≤(

en
k

)k, the inequality log2 e < 1.45, and Lemma 3.4:

f(n, h) ≤ n ·
(
h− 1 + blog2 nc
blog2 nc

)
≤ n ·

(
e

(
1 +

h− 1

blog2 nc

))blog2 nc

≤ n · elog2 n ·
(
1 +

h− 1

blog2 nc

)blog2 nc

= n1+log2 e ·
(
1 +

h− 1

blog2 nc

)blog2 nc

≤ n2.45−ε ·
(
1 +

h− 1

log2 n

)log2 n

= n
2.45−ε+log2

(
1+ h−1

log2 n

)
.

Assume now that h = ω(log n). Then

log2

(
1 +

h− 1

log2 n

)
= log2

(
h

log2 n
· (1 + o(1))

)
= log2

(
h

log2 n

)
+ log2(1 + o(1)).

The component log2(1 + o(1)) = o(1) can be removed at the cost of decreasing
the constant ε, hence we obtain that

f(n, h) ≤ n2.45−ε+log2

(
1+ h−1

log2 n

)
= O

(
n
2.45−ε+log2

(
h

log2 n

))
. ut

4 Using smaller trees

Papers showing how to solve parity games with use of universal trees [17,11,23,24]
assume that in order to solve games with n vertices one needs n-universal trees.
And for games with priorities on edges it can be shown that n-universality is
indeed required [8,1]. However most papers (including ours) define parity games
with priorities on vertices, in which case the necessity proof does not apply.

Let us come back to the paper of Jurdziński and Lazić [22]. Although it
does not mention universal trees explicitly, it uses a very particular universal
tree, called succinct tree coding. The important point is that this tree is not
n-universal, but rather η-universal, where η can be either the number of vertices
of odd priority, or the number of vertices of even priority, whatever is smaller,
so clearly η ≤ bn/2c (formally, throughout their paper η denotes the number
of vertices of even priority, but they explain at the beginning of Section 4 that
priorities can be shifted by 1 ensuring that η ≤ bn/2c). Moreover, by looking
into their paper one can see that the only “interface” between Section 2, defining
the succinct tree coding, and later sections, using the coding, is Lemma 1, where
it is shown that the succinct tree coding is an η-universal tree. It is then easy to
see that the algorithm of Jurdziński and Lazić works equally well with any other
η-universal tree (of appropriate height, namely d/2) in place of the succinct tree
coding. In particular, we can use the universal trees from our Theorem 3.1, being
of smaller width.

Let us now bound the width of a universal tree that is needed for the algo-
rithm, comparing it with previous approaches. In order to avoid the additional
parameter η, we replace it in the sequel by bn/2c, making use of the inequality
η ≤ bn/2c. Substituting d/2 for h and bn/2c for n in the formula from Theo-
rem 3.1, we obtain that the width of an bn/2c-universal tree T of height d/2 can
satisfy

|T | ≤
⌊n
2

⌋
·
(
d/2− 1 + blog2bn/2cc

blog2bn/2cc

)
.

To compare, for an n-universal tree T ′ by Theorem 3.1 we have

|T ′| ≤ n ·
(
d/2− 1 + blog2 nc

blog2 nc

)
.

For natural n we always have blog2bn/2cc = blog2(n/2)c = blog2 nc − 1, so the
quotient of the two binomial coefficients is d/2−1+blog2 nc

blog2 nc
, which is in Θ

(
d

logn

)
if d = ω(log n).

Let us now determine the asymptotics for d = ω(log n). First, let us simplify
the formula for the n-universal tree T ′:

|T ′| = O(n2.45−ε+log2(d/2/ log2 n)) = O(n1.45−ε+log2(d/ log2 n)).

For the bn/2c-universal tree T we thus have

|T | = O
(⌊n

2

⌋1.45−ε+log2(d/ log2bn/2c)
)

= O
((n

2

)1.45−ε+log2(d/ log2 n)
)
. (4)

The second equality above is obtained by replacing
⌊
n
2

⌋
with the slightly greater

value of n2 , and by observing that

log2

(
d

log2bn/2c

)
= log2

(
d

log2 n
· (1 + o(1))

)
= log2

(
d

log2 n

)
+ log2(1 + o(1));

the component log2(1 + o(1)) = o(1) can be removed at the cost of decreasing
the constant ε. We continue by analysing the logarithm of the bound:

log2

(n
2

)
·
(
1.45− ε+ log2

d

log2 n

)
= (log2 n− 1) ·

(
1.45− ε+ log2

d

log2 n

)
≤ log2 n ·

(
1.45− ε+ log2

d

log2 n

)
− log2

d

log2 n
+ ε

≤ log2 n ·
(
1.45− ε+ o(1) + log2

d

log2 n

)
− log2 d+ ε; (5)

the last equality above was obtained by observing that

− log2
d

log2 n
= − log2 d+ log2 log2 n = − log2 d+ log2 n · o(1).

Combining Equations (4) and (5), we obtain the following bound on |T |:

|T | = O
(
n1.45−ε+o(1)+log2(d/ log2 n) · 1

d

)
.

The o(1) component can be removed at the cost of decreasing the constant ε
again; we can thus write

|T | = O
(
n1.45−ε+log2(d/ log2 n) · 1

d

)
.

We now come to the complexity of the algorithm itself. As observed by Jur-
dziński and Lazić [22, Theorem 7], their algorithm, when using a universal tree
T̂ , works in time O(m · log n · log d · |T̂ |). Using T as T̂ , and observing that the
polylogarithmic function O(log n · log d) can be again “eaten” by the −ε compo-
nent of the exponent, we obtain the following bound on the complexity, which
is our main theorem:

Theorem 4.1. For d = ω(log n) one can find a winner in a parity game with n
vertices, m edges, and d priorities in time

O
(
m · n1.45+log2(d/ log2 n) · 1

d

)
.

Remark 4.2. Compared to the previous bound of O
(
m · d · n1.45+log2(d/ log2 n)

)
(from Fijalkow [17]), we obtain an improvement by a factor of Θ(d2). One Θ(d) is
gained in Theorem 3.1, by improving the bound for the size of a universal tree.
A second Θ(d) is gained by using bn/2c-universal trees instead of n-universal
trees.

Remark 4.3. The complexity obtained in Fijalkow [17] is the same as in Jurdz-
iński and Lazić [22]: he gains a factor of Θ(d) by using a better construction of a
universal tree instead of the “succinct tree coding”, but simultaneously he loses
a factor of Θ(d) due to using n-universal trees in place of bn/2c-universal trees.

Let us also use this place to note that there is a small mistake in the
paper of Jurdziński and Lazić [22]. Namely, in the proof of Lemma 6 they
switch to analysing a simpler expression

(dlog2 ηe+d/2
dlog2 ηe

)
in place of

(dlog2 ηe+d/2+1
dlog2 ηe+1

)
,

saying that the simpler expression is within a constant factor of the latter
one. This statement is false, though: the quotient of the two expressions is
dlog2 ηe+d/2+1
dlog2 ηe+1 , which is in Θ

(
d

log η

)
if d = ω(log η). Thus, the actual com-

plexity upper bound resulting from their analysis of the algorithm for d =
ω(log η) should not be O

(
m · d · η1.45+log2(d/ log2 η)

)
as they claim, but rather

O
(
m · d2 · η1.45+log2(d/ log2 η)

)
(and taking n/2 for η this gives us the complexity

O
(
m · d · n1.45+log2(d/ log2 n)

)
, the same as in Fijalkow [17]).

Remark 4.4. While the current paper was under preparation, Dell’Erba and
Schewe [12] published some other improvement of Jurdziński and Lazić’s al-
gorithm [22]. A complete discussion is difficult to perform, since the authors
have not provided a precise bound.

References

1. Arnold, A., Niwiński, D., Parys, P.: A quasi-polynomial black-box algorithm for
fixed point evaluation. In: CSL. LIPIcs, vol. 183, pp. 9:1–9:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving parity games via priority
promotion. Formal Methods Syst. Des. 52(2), 193–226 (2018)

3. Benerecetti, M., Dell’Erba, D., Mogavero, F., Schewe, S., Wojtczak, D.: Priority
promotion with Parysian flair. CoRR abs/2105.01738 (2021)

4. Björklund, H., Vorobyov, S.G.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discret. Appl. Math. 155(2), 210–
229 (2007)

5. Boker, U., Lehtinen, K.: On the way to alternating weak automata. In: FSTTCS.
LIPIcs, vol. 122, pp. 21:1–21:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018)

6. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.R.: An improved al-
gorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci. 178(1-2),
237–255 (1997)

7. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: STOC. pp. 252–263. ACM (2017)

8. Czerwiński, W., Daviaud, L., Fijalkow, N., Jurdziński, M., Lazić, R., Parys, P.:
Universal trees grow inside separating automata: Quasi-polynomial lower bounds
for parity games. In: SODA. pp. 2333–2349. SIAM (2019)

9. Daskalakis, C., Papadimitriou, C.H.: Continuous local search. In: SODA. pp. 790–
804. SIAM (2011)

10. Daviaud, L., Jurdziński, M., Lehtinen, K.: Alternating weak automata from uni-
versal trees. In: CONCUR. LIPIcs, vol. 140, pp. 18:1–18:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

11. Daviaud, L., Jurdziński, M., Thejaswini, K.S.: The Strahler number of a parity
game. In: ICALP. LIPIcs, vol. 168, pp. 123:1–123:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

12. Dell’Erba, D., Schewe, S.: Smaller progress measures and separating automata for
parity games. CoRR abs/2205.00744 (2022)

13. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (ex-
tended abstract). In: FOCS. pp. 368–377. IEEE Computer Society (1991)

14. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the µ-calculus and
its fragments. Theor. Comput. Sci. 258(1-2), 491–522 (2001)

15. Fearnley, J.: Exponential lower bounds for policy iteration. In: ICALP (2). Lecture
Notes in Computer Science, vol. 6199, pp. 551–562. Springer (2010)

16. Fearnley, J., Jain, S., de Keijzer, B., Schewe, S., Stephan, F., Wojtczak, D.: An
ordered approach to solving parity games in quasi-polynomial time and quasi-linear
space. Int. J. Softw. Tools Technol. Transf. 21(3), 325–349 (2019)

17. Fijalkow, N.: An optimal value iteration algorithm for parity games. CoRR
abs/1801.09618 (2018)

18. Friedmann, O.: A subexponential lower bound for Zadeh’s pivoting rule for solv-
ing linear programs and games. In: IPCO. Lecture Notes in Computer Science,
vol. 6655, pp. 192–206. Springer (2011)

19. Friedmann, O., Hansen, T.D., Zwick, U.: Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In: STOC. pp. 283–292. ACM
(2011)

20. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998)

21. Jurdziński, M.: Small progress measures for solving parity games. In: STACS. Lec-
ture Notes in Computer Science, vol. 1770, pp. 290–301. Springer (2000)

22. Jurdziński, M., Lazić, R.: Succinct progress measures for solving parity games. In:
LICS. pp. 1–9. IEEE Computer Society (2017)

23. Jurdziński, M., Morvan, R.: A universal attractor decomposition algorithm for
parity games. CoRR abs/2001.04333 (2020)

24. Jurdziński, M., Morvan, R., Ohlmann, P., Thejaswini, K.S.: A symmetric attractor-
decomposition lifting algorithm for parity games. CoRR abs/2010.08288 (2020)

25. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

26. Lehtinen, K.: A modal µ perspective on solving parity games in quasi-polynomial
time. In: LICS. pp. 639–648. ACM (2018)

27. Lehtinen, K., Parys, P., Schewe, S., Wojtczak, D.: A recursive approach to solving
parity games in quasipolynomial time. Log. Methods Comput. Sci. 18(1) (2022)

28. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: MFCS.
LIPIcs, vol. 138, pp. 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

29. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston, MA, USA (1972)

30. Schewe, S.: Solving parity games in big steps. J. Comput. Syst. Sci. 84, 243–262
(2017)

31. Seidl, H.: Fast and simple nested fixpoints. Inf. Process. Lett. 59(6), 303–308 (1996)
32. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving

parity games. In: CAV. Lecture Notes in Computer Science, vol. 1855, pp. 202–
215. Springer (2000)

33. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

	Improved Complexity Analysis of Quasi-Polynomial Algorithms Solving Parity Games

