
A Quasi-Polynomial Black-Box Algorithm for
Fixed Point Evaluation
André Arnold
aa-labri@sfr.fr

Damian Niwiński
Institute of Informatics, University of Warsaw, Poland
niwinski@mimuw.edu.pl

Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
We consider nested fixed-point expressions like µz.νy.µx.f(x, y, z) evaluated over a finite lattice, and
ask how many queries to a function f are needed to find the value. The previous upper bounds for a
monotone function f of arity d over the lattice {0, 1}n were of the order nO(d), whereas a lower bound
of Ω

(
n2

lg n

)
is known in case when at least one alternation between the least (µ) and the greatest (ν)

fixed point occurs in the expression. Following a recent development for parity games, we show here
that a quasi-polynomial number of queries is sufficient, namely nlg(d/ lg n)+O(1). The algorithm is
an abstract version of several algorithms proposed recently by a number of authors, which involve
(implicitly or explicitly) the structure of a universal tree. We then show a quasi-polynomial lower
bound for the number of queries used by the algorithms in consideration.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Mu-calculus, Parity games, Quasi-polynomial time, Black-box algorithm

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.10

Funding Paweł Parys: Author supported by the National Science Centre, Poland (grant no.
2016/22/E/ST6/00041).

1 Introduction

Computing fixed points over a finite lattice is a fundamental problem whose algorithmic
nature is not yet completely understood. The problem can be stated as evaluation of an
expression

θdxd.θd−1xd−1. · · · .θ2x2.θ1x1.f (x1, x2, . . . , xd) , (1)

where f is a monotonic mapping f : ({0, 1}n)d → {0, 1}n for some n ≥ 1, and where
θ1, . . . , θd ∈ {µ, ν} with µ and ν standing for the least and the greatest fixed point, respectively.
If every output bit of the function f is a logical OR or a logical AND of some input bits, the
problem is well-known to be equivalent to solving parity games [10, 11] (see, e.g., Arnold
and Niwiński [1, Section 4] for an exact statement of this equivalence), and in this form it
has attracted much attention since at least 20 years. An abstract formulation was previously
considered, e.g., by Browne, Clarke, Jha, Long, and Marrero [4], who made one of the first
complexity improvements. These authors also noticed that several algorithms make use only
of the structure of fixed points, treating the basic operations as black boxes, and suggested a
complexity measure, which in our setting boils down to the following:

I Problem 1.1. How many queries to the function f are needed to evaluate Expression (1)?
© André Arnold, Damian Niwiński, and Paweł Parys;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 10; pp. 10:1–10:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aa-labri@sfr.fr
mailto:niwinski@mimuw.edu.pl
https://orcid.org/0000-0001-7247-1408
mailto:parys@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.CSL.2021.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

The problem has been taken by Parys [24], who showed in particular that at least Ω
(
n2

lgn

)
queries are needed in case when at least one alternation between µ and ν occurs in the
expression. One might have expected that this lower bound extends to roughly nd in general
case, but we will see below that it is not the case.

The breakthrough result by Calude, Jain, Khoussainov, Li, and Stephan [5] exhibiting
a quasi-polynomial time algorithm for parity games has triggered an intensive flow of
research [12, 13, 14, 18, 19, 21, 22, 25], aiming in potential improvement, but also in better
understanding of the new complexity situation. The new algorithm has a direct consequence
on fixed-point computation: it applies to Expression (1) if the function f is given by a
vector of Boolean terms. While these terms can be in general exponential in n and d,
Hausmann and Schröder [14] showed that the blow-up can be controlled: Expression (1) can
be evaluated in quasi-polynomial time provided that the function f itself can be evaluated in
quasi-polynomial time.

In the present paper we focus on the black-box model and evaluate Expression (1) using
a quasi-polynomial number of queries to the function f . The algorithm is an abstract version
of some recent algorithms for parity games. Our starting point was an algorithm proposed
by Parys [25], which is a standard McNaughton–Zielonka’s algorithm [23, 29] enhanced by
some additional control over recursion. But we also exploit the subsequent improvement by
Lehtinen, Schewe, and Wojtczak [22], and a generalisation by Jurdziński and Morvan [19],
where the control mechanism uses universal trees—a key tool in the modern analysis of parity
games [8].

The number of queries to the function f is bounded by n2·lg(d/ lgn)+O(1) (in this paper lg
stands for the binary logarithm). It can be further improved to nlg(d/ lgn)+O(1) (i.e., almost
quadratically) by reorganising the algorithm in asymmetric manner, which is a celebrated
trick in fixed-point computation invented by Seidl [26]. While the symmetric version of our
algorithm resembles the aforementioned recursive algorithms solving parity games [19, 22, 25],
the asymmetric version is close to the earlier quasi-polynomial algorithms solving parity
games [5, 12, 18, 21]. In consequence, we see a direct link between the two families of
algorithms for parity games, which is hardly visible until the µ-calculus perspective is
adopted. Finally we show a kind of a lower bound for the class of algorithms in consideration.
While this is not an absolute lower bound for the black-box complexity like, e.g., in Parys [24],
we show that any algorithm of the considered form must involve a universal tree and therefore,
by the result of Czerwiński et al. [8], it uses a quasi-polynomial number of queries.

Related work. As mentioned above, we build on recent algorithms for parity games [19,
22, 25]. All these algorithms exploit the concept of dominion introduced by Jurdziński,
Paterson, and Zwick [20], and our initial step in this paper is a fixed-point interpretation
of dominions. The key result on decompositions of dominions is similar to the result on
attractor decompositions of dominions considered by Jurdziński and Morvan [19].

The relation of the new techniques for parity games to the µ-calculus has been addressed
by Lehtinen [21], who showed, in particular, a new upper bound on the alternation depth of a
fixed-point formula. Hausmann and Schröder in the aforementioned work [14] invent a quasi-
polynomial time algorithm for computing fixed points of monotone set-valued functions.1
They did not considered black-box model, but it can be seen that their algorithm (adapted
to Expression (1)) performs n · ddlgne+2 queries to the function f , which is similar to our

1 After the submission of our paper, Hausmann and Schröder released a new version of their work [15],
where they develop a unified method of fixed-point evaluation based on universal graphs [7].

A. Arnold, D. Niwiński, and P. Parys 10:3

algorithm in its asymmetric version. These authors ask in the conclusion whether this
method can also incorporate the algorithm by Parys [25]. For parity games, this question is
essentially answered by a meta-algorithm of Jurdziński and Morvan [19], that captures all
algorithms known so far including [22, 25]. In our work (that we started not knowing the
work of Hausmann and Schröder [14, 15]) we develop a quasi-polynomial method directly for
fixed-point evaluation, and additionally show its limitation.

The concept of symbolic algorithms considered for parity games by Chatterjee, Dvořák,
Henzinger, and Svozil [6], and also by Jurdziński and Morvan [19], is related to Problem 1.1
if the function f is induced by the binary relation of game moves. Then Expression (1)
represents the winning region in a parity game [10] (see also [1]), and any black-box algorithm
solving Problem 1.1 can be adapted to a symbolic algorithm for parity games.

The complexity of solving parity games is tantalisingly close to polynomial time. As the
problem is in NP ∩ co-NP (even in UP ∩ co-UP [16]), one can hardly expect a lower bound
above the P-completeness, which holds already for reachability games [28]. The research in
this direction focuses on specific classes of algorithms. The aforementioned (almost) quadratic
lower bound by Parys [24] concerns the number of queries used by a black-box algorithm.
Recently Czerwiński et al. [8] estimated the size of universal trees, which are behind the
algorithms exhibiting a separation scheme first pinpointed by Bojańczyk and Czerwiński [3].
This gives evidence that the quasi-polynomial complexity of the original algorithm [5] as
well as the follow-ups [12, 13, 18, 21] is tight. There has been some hope that the newest
approach based on controlling recursion in the McNaughton–Zielonka algorithm [19, 22, 25]
may avoid this barrier, but our present results give evidence that it is not the case.

2 Basic concepts

Fixed points. By the celebrated theorem of Knaster and Tarski, if f : L→ L is a monotone
function over a complete lattice 〈L,≤〉, then it has the least (µ) and the greatest (ν) fixed
points satisfying the formulae

µx.f(x) = inf {a | f(a) ≤ a} and νx.f(x) = sup {a | a ≤ f(a)} , (2)

respectively. For a monotone function of several arguments, we can apply fixed-point
operators successively; for example, νy.µx.g(x, y) is the greatest fixed point of the mapping
y 7→ µx.g(x, y), etc. This gives the semantics of Expression (1).

As it is easy to see that

θy.θx.g(x, y) = θx.g(x, x), (3)

for θ ∈ {µ, ν}, we can without loss of generality assume that the µ and ν operators in
Expression (1) alternate.

In this paper, as L we take a finite power Bn of the Boolean lattice B = {0, 1} with the
componentwise order denoted by ≤. We denote the least and the greatest element of Bn
by 0 and 1, respectively (assuming that n is clear from the context). We use a semiring
notation for join and meet, that is, for A,B ∈ Bn we write

A+B
def= sup(A,B) and A ∗B def= inf(A,B).

Moreover, for f : (Bn)d → Bn and for A ∈ Bn, let f�A : (Bn)d−1 → Bn be the mapping
defined by

f�A(x1, . . . , xd−1) def= f(x1, . . . , xd−1, A).

We refer the reader to Arnold and Niwiński [1] for basic properties of fixed points.

CSL 2021

10:4 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Restrictions. If A ≤ B, and f : (Bn)d → Bn is monotone in each argument, we let

fA,B(x1, . . . , xd)
def= A+B ∗ f(x1, . . . , xd).

Clearly fA,B is monotone as well. Note that f0,1 = f .
In this paper we often consider a generalisation of Expression (1) where f is replaced by

the restricted function fA,B. Namely, for Θ = 〈θd, θd−1, . . . , θ1〉, with θi ∈ {µ, ν}, we form
an expression (Θ, f, (A,B)) whose value is

‖(Θ, f, (A,B))‖ def= θdxd.θd−1xd−1. · · · .θ1x1.fA,B(x1, . . . , xd).

The object (Θ, f, (A,B)), where the length of Θ equals the number of arguments in the
monotone function f : Bn → Bn and where A ≤ B, is called a fixed-point expression over Bn
(or simply a fixed-point expression if n is clear from the context). We write |Θ|µ and |Θ|ν for
the number of µ and ν operators in Θ, respectively.
I Remark 2.1. The above restriction allows us to “narrow the scope” of a function f to an
interval [A,B] = {x | A ≤ x ≤ B} that can be identified with BI , where I = {i ∈ {1, . . . , n} |
Ai < Bi}. It would be perhaps more natural to define it with a function

A+B ∗ f(A+ x1 ∗B,A+ x2 ∗B, . . . , A+ xn ∗B);

such a function clearly depends only on the bits xi with i ∈ I. But one can easily prove
that θx.A+B ∗ f(A+B ∗ x) = θx.A+B ∗ f(x), and consequently (by induction) the two
definitions lead to the same fixed points. We have chosen fA,B above for its simplicity.

Because ‖(Θ, f, (A,B))‖ is a fixed point of fA,B , it lies between the bounds A,B:

I Proposition 2.2. For every fixed-point expression (Θ, f, (A,B)),

A ≤ ‖(Θ, f, (A,B))‖ ≤ B.

Moreover, the value of (Θ, f, (A,B)) does not depend on the bounds A and B, assuming
that it lies between these bounds (see Appendix A for a proof):

I Proposition 2.3. If A ≤ C ≤ ‖(Θ, f, (A,B))‖ ≤ D ≤ B, then

‖(Θ, f, (A,B))‖ = ‖(Θ, f, (C,D))‖.

Duality. The dual of b ∈ B is b = 1 − b, and the dual of a vector x = (x1, . . . , xn) ∈ Bn
is x = (x1, . . . , xn). The dual of a function f : (Bn)d → Bn is the function f̃ defined by
f̃(x1, . . . , xd) = f(x1, . . . , xd). The dual θ̃ of θ ∈ {ν, µ} is the other element of {ν, µ}, and the
dual of Θ = 〈θ1, . . . , θd〉 is Θ̃ def= 〈θ̃1, . . . , θ̃d〉. The dual of F = (Θ, f, (A,B)) is F̃ def= (Θ̃, f̃ ,
(B,A)). The following is a direct consequence of the definition.

I Proposition 2.4. For every fixed-point expression F we have ‖F̃‖ = ‖F‖.

This proposition allows us to perform proofs by duality: it is enough to prove statements
for one of the fixed-point operators, µ or ν, and then a proof for the other operator follows
by considering the dual expression.

Trees. Ordered trees (or simply trees) are defined by induction: if T1, . . . , Tk are ordered
trees, then 〈T1, . . . , Tk〉 is an ordered tree (where possibly k = 0, which is the base of the
induction). A node, a leaf, a child, a descendant, a parent, an ancestor, etc., are defined
as expected; we skip formal definitions. The width of a tree T , denoted |T |, equals 1 for
T = 〈〉, and |T1|+ · · ·+ |Tk| for T = 〈T1, . . . , Tk〉 with k ≥ 1 (we can identify the width with

A. Arnold, D. Niwiński, and P. Parys 10:5

the number of leaves of a tree). The height of a tree T equals 0 for T = 〈〉, and 1 plus the
maximum of heights of T1, . . . , Tk for T = 〈T1, . . . , Tk〉 with k ≥ 1. We allow concatenation
of trees, so that 〈T1, . . . , Tk〉 · 〈Tk+1, . . . , Tp〉 amounts to 〈T1, . . . , Tk, Tk+1, . . . , Tp〉, and Tn
abbreviates T · . . . · T︸ ︷︷ ︸

n

.

A tree is equitable if all its branches have the same length; more formally, T = 〈T1, . . . , Tk〉
is equitable if all T1, . . . , Tk are equitable and have the same height. In the sequel, we almost
exclusively consider equitable trees. The level of a node in an equitable tree of height h is its
distance from the leaves (in particular leaves are at level 0, and the root is at level h).

Intuitively, a tree T embeds in a tree U if T can be obtained from U by pruning some
subtrees. More formally, T = 〈T1, . . . , Tk〉 embeds in U = 〈U1, . . . , Up〉 if there exist indices
j1, . . . , jk such that 1 ≤ j1 < · · · < jk ≤ p and Ti embeds in Uji for all i ∈ {1, . . . , k}. (Thus
〈〉 embeds in every tree.)

A tree U is (n, h)-universal if it is equitable, has height h, and every (equitable) tree T
of height at most h and width at most n embeds in U . In this statement it does not matter
whether or not we require that T is equitable, because every tree embeds in some equitable
tree of the same height and width. We know three families of (n, h)-universal trees:

Cn,0 = Pn,0 = Sn,0 = S0,h = 〈〉,
Cn,h = 〈Cn,h−1〉n for h ≥ 1,

Pn,h = 〈Pbn/2c,h−1〉bn/2c · 〈Pn,h−1〉 · 〈Pbn/2c,h−1〉bn/2c for h ≥ 1,
Sn,h = Sbn/2c,h · 〈Sn,h−1〉 · Sbn/2c,h for n, h ≥ 1.

I Proposition 2.5 ([19, Proposition 3.2]). Trees Cn,h, Pn,h, and Sn,h are (n, h)-universal.

Trees Pn,h and Sn,h are of quasi-polynomial width; more precisely, they have, respectively,
nlgn+lg(h/ lgn)+O(1) and nlg(h/ lgn)+O(1) leaves [18, 25].

3 Algorithm

3.1 Symmetric version
In this section we present an algorithm that computes the value of a fixed-point expression
F . To this end, we define a value ‖F‖U,V parameterised by two trees U, V . This value can
be computed using |U | · |V | queries to f (cf. Lemma 3.2). Simultaneously, if U and V are
universal, this value actually equals ‖F‖ (cf. Lemma 3.1). Later, we also prove that this is a
necessary condition: the above equality holds only when the trees U and V are universal
(cf. Theorem 5.1).

Let F = (Θ, f, (A,B)) be a fixed-point expression, and let U and V be equitable trees of
height, respectively, |Θ|µ and |Θ|ν . We define a value ‖F‖U,V by induction on the length of
Θ:
(1) if Θ = 〈〉, as ‖F‖U,V we take ‖F‖, that is, A+B ∗ f();
(2) if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉, then we take B0 = B, and

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj

for j ∈ {1, . . . , p}, and ‖F‖U,V = Bp;
(3) if Θ = 〈µ〉 ·Θ′ and U = 〈U1, . . . , Up〉, then we take A0 = A, and

Aj = ‖(Θ′, f�Aj−1 , (Aj−1, B))‖Uj ,V

for j ∈ {1, . . . , p}, and ‖F‖U,V = Ap.

CSL 2021

10:6 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

I Lemma 3.1. Let F = (Θ, f, (A,B)) be a fixed point expression, and let U and V be
(n, |Θ|µ)- and (n, |Θ|ν)-universal trees, respectively. Then ‖F‖U,V = ‖F‖.

The above lemma is proven in Section 4. We can easily compute ‖F‖U,V , following
directly its definition:

I Lemma 3.2. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let U and V be
equitable trees of height, respectively, |Θ|µ and |Θ|ν . There is an algorithm that computes
‖F‖U,V using |U | · |V | queries to the function f .

Proof. The proof goes by induction on the length of Θ. A single query is asked in Case (1) of
the definition of ‖F‖U,V , when all parameters of the original function f have been instantiated,
so the claim is true. In Case (2), when V = 〈V1, . . . , Vp〉 (where p ≥ 1, because V has height
|Θ|µ ≥ 1), the number of queries needed to compute ‖F‖U,V amounts to the sum of the
analogous numbers for ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj , which, by the induction hypothesis,
equals

|U | · |V1|+ · · ·+ |U | · |Vp| = |U | · |V |.

Case (3) is similar. J

I Remark 3.3. The above direct “naive” algorithm computing ‖F‖U,V can be made “adaptive”:
whenever in Case (2) we have that Bj−1 = Bj−2 and Vj = Vj−1, we do not need to compute
Bj as ‖(Θ′, f�Bj−1 , (A,Bj−1))‖U,Vj , but we can simply take Bj = Bj−1, saving some number
of queries to the function f ; likewise in Case (3).

Lemma 3.1 combined with Lemma 3.2 and with the estimation of the width of the
universal tree Sn,h recalled after Proposition 2.5, yields a possible answer to Problem 1.1:
n2·lg(d/ lgn)+O(1) queries to the function f are enough to evaluate Expression (1). In the next
section we improve this complexity (almost) quadratically.

The above algorithm can be seen as a translation of the generic recursive algorithm
of Jurdziński and Morvan [19] solving parity games (which is also parameterised by two
trees assumed to be universal) to the setting of µ-calculus. There is one difference: the
algorithm for parity games includes computation of attractors, which is absent here. The
above algorithm used with trees Sn,h resembles the recursive algorithm of Lehtinen, Schewe,
and Wojtczak [22], and the adaptive version of the algorithm (cf. Remark 3.3) used with trees
Pn,h resembles the recursive algorithm of Parys [25]. The adaptive version of the algorithm
used with the complete trees Cn,h gives a version of the naive-iteration algorithm that works
in polynomial time assuming that n is fixed (cf. Parys [24]).

3.2 Asymmetric version
We now modify the algorithm from the previous section using an idea of Seidl [26]. As
a first step, we define yet another value, ‖F‖V , parameterised by a single tree V . In its
definition, we proceed in an asymmetric way: on the µ side we simply compute all fixed
points, and on the ν side we follow a structure of the tree V . It turns out that ‖F‖V
equals ‖F‖ if V is universal (cf. Lemma 3.4 below). There is however no direct analogue to
Lemma 3.2, and keeping the number of queries low requires some care. We explore the fact
that nested applications of fixed points of the same kind (µ in this case) can be reduced to
a single application over a vector of variables in a system of equations, which is precisely
the idea behind Seidl’s algorithm [26]. Thus, as a second step of our algorithm, we replace
our recursive definition of ‖F‖V by an equivalent system of least fixed-point equations. This

A. Arnold, D. Niwiński, and P. Parys 10:7

Algorithm 1

1: procedure Generate(x,Θ, f ,B, V)
2: begin
3: if Θ = 〈〉 then
4: output “x = B ∗ f”;
5: if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉 then begin
6: B0 = B;
7: Bp = x;
8: for j = 1 to p− 1 do
9: Bj = FreshVariable();
10: for j = 1 to p do
11: Generate(Bj ,Θ′, f�Bj−1 ,Bj−1, Vj);
12: end;
13: if Θ = 〈µ〉 ·Θ′ then
14: Generate(x,Θ′, f�x,B, V);
15: end;
16: xres = FreshVariable();
17: Generate(xres,Θ, f(?, . . . , ?), x0, V);

system has size proportional to |V |, and thus can be solved using such a number of queries
to the function f (see Lemma 3.6 below), yielding the value ‖F‖.

Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable tree of
height |Θ|ν . We define ‖F‖V by induction on the length of Θ:
(1) if Θ = 〈〉, as ‖F‖V we take ‖F‖, that is, A+B ∗ f();
(2) if Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉, then we take B0 = B, and

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖Vj

for j ∈ {1, . . . , p}, and ‖F‖V = Bp;
(3) if Θ = 〈µ〉 ·Θ′, then we take ‖F‖V = µx.‖(Θ′, f�x, (A,B))‖V (i.e., the least fixed point

of the mapping x 7→ ‖(Θ′, f�x, (A,B))‖V).

When we iterate a function n times, starting from the least element (as in the definition
of ‖F‖Cn,h,V), we reach the least fixed point (appearing in the definition of ‖F‖V). It is
thus not difficult to prove the following lemma, saying that instead of computing ‖F‖ we
can compute ‖F‖V for some universal tree V (see Appendix B for more details).

I Lemma 3.4. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . Then ‖F‖V = ‖F‖Cn,|Θ|µ ,V . In particular, if V is (n, |Θ|ν)-universal,
then (by Proposition 2.5 and Lemma 3.1) ‖F‖V = ‖F‖.

Next, we consider a system of equations corresponding to the definition of ‖F‖V . For
simplicity, we assume here that A = 0 and B = 1, that is, we consider F = (Θ, f, (0,1)).
Let V be a set of variables, and let V1 = V] {x0} contain additionally a variable (constant)
x0 that is always valuated to the element 1 of Bn. Our equations will be of the form
x = y0 ∗ f(y1, . . . , yd), where x ∈ V, y0, . . . , yd ∈ V1, and f is a constant denoting the
considered function.

The system of equations is generated by Algorithm 1. In this algorithm, f is an expression
of the form f(?, . . . , ?, yk+1, . . . , yd) for some variables yk+1, . . . , yd ∈ V1. Moreover, f�z for

CSL 2021

10:8 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

1 2 3 4

x1 = x0 ∗ f(x1, x0, x1, x0, x2, x0, x4),
x2 = x1 ∗ f(x2, x1, x2, x1, x2, x0, x4),
x3 = x2 ∗ f(x3, x2, x4, x2, x4, x2, x4),
x4 = x3 ∗ f(x4, x3, x4, x2, x4, x2, x4).

Figure 1 A tree V (left), and the system of equations generated for ‖(〈µ〉 · 〈ν, µ〉3, f, (0,1))‖V

(right). Variable x4 stores the result. Observe a correspondence between variables and leaves of V .

z ∈ V1 denotes f(?, . . . , ?, z, yk+1, . . . , yd) (we substitute z for the last question mark). The
parameter B of the procedure Generate is an element of V1. Note that the algorithm is
syntactical: it depends on the tree V and on the sequence Θ, but not on any particular
interpretation of f. Notice that when the algorithm enters line 4 (i.e., it is going to output
an equation), f contains no ?’s. See also Appendix C for another definition of the system.

For an example of a generated system of equations, see Figure 1.
Now, given F = (Θ, f, (A,B)) and V like in the definition of ‖F‖V , where additionally

A = 0 and B = 1, we can interpret and solve the resulting system in the lattice Bn with
f interpreted by the function f . Thanks to a direct correspondence between the system
and the recursive definition of ‖F‖V , we obtain the following lemma (see Appendix D for a
tedious but straightforward proof).

I Lemma 3.5. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . The value assigned to the variable xres in the least solution of the system
of equations generated by Algorithm 1 equals ‖F‖V .

We are now ready to state an analogue to Lemma 3.2.

I Lemma 3.6. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable tree
of height |Θ|ν . There is an algorithm that computes ‖F‖V using between |V | and |V | · (1+nd)
queries to the function f .

Proof. By Lemma 3.5, it is enough to generate a system of equations using Algorithm 1, and
then to find the least solution of this system, having |V | equations. The least solution can be
found by a standard worklist algorithm (cf. [26, Proposition 2]). In this algorithm, we keep
updating an underapproximation of the least solution, stage by stage, until reaching a fixed
point. In every stage, we re-evaluate right sides only of those equations in which at least one
variable was modified in the previous stage, and we store results in variables appearing on
the left side (before the first stage we set x0 to 1, other variables to 0, and we treat all of
them as modified). Each among d arguments of |V | equations can be updated (increased) at
most n times, yielding at most |V | · (1 + nd) (and at least |V |) queries to the function f . J

For V = Sn,|Θ|ν , the number of queries becomes nlg(d/ lgn)+O(1), so (almost) quadratically
better than for the algorithm of Section 3.1, and, to our knowledge, the best so far.

I Corollary 3.7. There is an algorithm to evaluate the Expression (1) using at most
nlg(d/ lgn)+O(1) queries.

The reduction from an expression using nested µ and ν fixed-point operators to a system
of equations involving only the least fixed point can be compared to a reduction from parity
games to reachability (or safety) games. As explained in Czerwiński et al. [8], such a reduction
stands behind the “iterative” quasi-polynomial algorithms [5, 12, 18, 21], but (for universal
trees of exponential width) is present also in earlier results [2, 17].

A. Arnold, D. Niwiński, and P. Parys 10:9

3.3 Time and space complexity
Although our main interest is in the number of queries to the function f performed by our
algorithms, let us also analyse their time and space complexity. Let tf be the time needed to
answer a single query (i.e., to compute the value of f for given arguments), and, as previously,
let n and d denote, respectively, the height of the considered lattice and the arity of f .

The symmetric version of our algorithm spends time tf · n2·lg(d/ lgn)+O(1) on computing
values of the function f , and beside of that performs some recursive calls following the
structure of universal trees Sn,h (of course there is no need to actually construct these trees).
Formally, the number of recursive calls depends on the number of nodes of the two trees,
not on the number of leaves. However, in every tree, the number of nodes with at least two
children is smaller than the number of leaves, and one can easily improve the algorithm so
that it “skips” nodes with a single child. Thus, the time spent on performing recursive calls
can be ignored. The memory usage is O(n · d) (the depth of the recursion is d, and on every
level it is enough to store a constant number of elements of Bn).

In the asymmetric version, the system of equations can be solved (using the method
described in the proof of Lemma 3.6) in time proportional to the number of queries. Moreover,
we do not need to actually generate the system; we can instead describe it explicitly based on
the considered tree (see Appendix C for details). Such a description allows to navigate in the
system (e.g. to find all equations containing a given variable) with a constant overhead. Thus,
due to Corollary 3.7, the running time is tf · nlg(d/ lgn)+O(1). To compare, the algorithm of
Hausmann and Schröder [14] needs a factor O(n · ddlgne+2) per query, not O(1).

Concerning the memory usage, in a straightforward implementation we store a value for
every variable while solving the system of equations. We can do better, however. Indeed, we
can observe that if we write the i-th equation as

xi = xk(i,0) ∗ f(xk(i,1), . . . , xk(i,d)),

then for all j ∈ {0, . . . , d} we have k(i, j) ≤ k(i′, j) whenever i ≤ i′ (this is best visible while
looking at the explicit description of the system, introduced in Appendix C). Thanks to
this monotonicity of the system, and monotonicity of f , values assigned to the variables
after every stage of the algorithm satisfy xi ≥ xi′ whenever i ≤ i′ (this is satisfied before the
first stage, and is then preserved). Such a valuation can be stored very succinctly, using n
numbers: for every bit of Bn it is enough to remember the number of the last variable in
which this bit is set to 1. Going further: in order to remember which variables were modified
in the last stage, it is enough to remember two last valuations of the variables. It is not
difficult to adapt the algorithm to such a representation of valuations. Thus, the memory
usage can be reduced to O(n), modulo a polylogarithmic factor.

4 Correctness of the algorithms

In this section we prove that if U and V are universal trees, then ‖F‖ = ‖F‖U,V (Lemma 3.1).
As a first step, we introduce sup-dominions and their decompositions, and we prove some
properties of these notions. Let F = (Θ, f, (A,B)) be a fixed-point expression. A value
D ∈ Bn such that A ≤ D ≤ B is a sup-dominion for F if D = ‖(Θ, f, (A,D))‖.

For readers familiar with game-theoretic dominions considered in prior work [19, 20, 22, 25],
the following analogy may be useful: a sup-dominion for (Θ, f, (A,B)) is an area D where
player Even can force the play either to reach A or to ensure the parity condition while not
leaving D. One can also define inf-dominions (by requiring D = ‖(Θ, f, (D,B))‖), describing

CSL 2021

10:10 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

the complement of an analogous area for player Odd; however, we conduct our correctness
proof using only sup-dominions, and then arguing by duality.

We first note some useful properties analogous to the properties of game dominions noted
in prior work [19, 22, 25], stemming from Proposition 2.3.

I Lemma 4.1. For every fixed-point expression F , the value ‖F‖ is a sup-dominion for F .

I Lemma 4.2. If D is a sup-dominion for a fixed-point expression (Θ, f, (A,B)), and
A ≤ A′ ≤ D, then D is also a sup-dominion for (Θ, f, (A′, B)).

Lemmata 4.1 and 4.2 are immediate consequences of definitions and of Proposition 2.3.

I Lemma 4.3. Let F = (Θ, f, (A,B)) be a fixed-point expression with Θ = 〈θ〉 ·Θ′. If D is
a sup-dominion for F , then D is also a sup-dominion for (Θ′, f�D, (A,D)).

Proof. We have by definition D = ‖(Θ, f, (A,D))‖ = θx.‖(Θ′, f�x, (A,D))‖. This means
that D is a fixed point of the mapping x 7→ ‖(Θ′, f�x, (A,D))‖, that is, D = ‖(Θ′, f�D,
(A,D))‖, as required. J

I Lemma 4.4. Let F = (Θ, f, (A,B)) be a fixed-point expression with Θ = 〈µ〉 · Θ′. For
every sup-dominion D for F such that A < D there exists a sup-dominion D′ for (Θ′, f�A,
(A,B)) such that A < D′ ≤ D.

Proof. Let g(x) = ‖(Θ′, f�x, (A,D))‖ so that D = ‖(Θ, f, (A,D))‖ = µx.g(x). We have,
by monotonicity, D = g(D) ≥ g(A) = ‖(Θ′, f�A, (A,D))‖. Hence, from Proposition 2.3 we
obtain g(A) = ‖(Θ′, f�A, (A, g(A)))‖. That is, g(A) is a sup-dominion for (Θ′, f�A, (A,B)),
which moreover satisfies A ≤ g(A) ≤ D (where A ≤ g(A) is by Proposition 2.2). If g(A) = A,
we would have D = µx.g(x) ≤ A, a contradiction. Hence g(A) > A, and D′ = g(A) satisfies
the claim. J

Next, we define the crucial concept of the paper: dominion decompositions. Let F = (Θ, f,
(A,B)) be a fixed-point expression. The definition is by induction on the length of Θ. A pair
(D,H) is a sup-dominion decomposition for F if D is a sup-dominion for F and

if Θ = 〈〉, then H = 〈〉;
if Θ = 〈ν〉 ·Θ′, then (D,H) is a sup-dominion decomposition for (Θ′, f�D, (A,D));
if Θ = 〈µ〉 · Θ′, then H = 〈(D1,H1), . . . , (Dk,Hk)〉, where, assuming D0 = A, for
every i ∈ {1, . . . , k} the pair (Di,Hi) is a sup-dominion decomposition for (Θ′, f�Di−1 ,

(Di−1, B)), and Dk = D.

To a sup-dominion decomposition (D,H) we can assign a tree TH by forgetting the
dominions stored in the decomposition and taking only its “shape”: for H = 〈(D1,H1), . . . ,
(Dk,Hk)〉 we let TH = 〈TH1 , . . . , THk〉.

The following crucial lemma states that every dominion has a decomposition (not neces-
sarily unique). Here by |D −A|1 (for D ≥ A) we denote the number of bits that are 1 in D
but 0 in A.

I Lemma 4.5. Let F = (Θ, f, (A,B)) be a fixed-point expression. For every sup-dominion
D for F such that A < D there exists a sup-dominion decomposition (D,H) for F such that
TH is an equitable tree of height |Θ|µ and of width at most |D −A|1.

Proof. The proof is by induction on the length of Θ. For Θ = 〈〉 we just take H = 〈〉 (notice
that TH has width 1 ≤ |D−A|1, because A < D). For Θ = 〈ν〉 ·Θ′, by Lemma 4.3 D is also
a sup-dominion for (Θ′, f�D, (A,D)), and thus the sup-dominion decomposition exists by
the induction hypothesis.

A. Arnold, D. Niwiński, and P. Parys 10:11

Finally, suppose that Θ = 〈µ〉 ·Θ′. We first construct a sequence A = D0 < D1 < · · · <
Dk ≤ D such that Di is a sup-dominion for (Θ′, f�Di−1 , (Di−1, B)), for every i ∈ {1, . . . , k}.
We start with k = 0 (and D0 = A). Then, as long as Dk < D, we create Dk+1 as follows.
First, because D is a sup-dominion for F and because A ≤ Dk, by Lemma 4.2 we have that
D is a sup-dominion for (Θ, f, (Dk, B)). Second, by Lemma 4.4 (applied to D and (Θ, f,
(Dk, B))) there exists sup-dominion Dk+1 for (Θ′, f�Dk , (Dk, B)) such that Dk < Dk+1 ≤ D.
We can thus attach this Dk+1 to the sequence. We end the construction when Dk = D.
To finish the proof, we use the induction hypothesis, which says that every Di can be
extended to a sup-dominion decomposition (Di,Hi) for (Θ′, f�Di−1 , (Di−1, B)) such that
THi is an equitable tree of height |Θ|µ − 1 and of width at most |Di − Di−1|1. Then
H = 〈(D1,H1), . . . , (Dk,Hk)〉 satisfies the thesis. J

Coming slowly to the proof of Lemma 3.1, let us state some basic properties of the value
‖F‖U,V . The first two lemmata can be shown by a straightforward induction on the length
of Θ:

I Lemma 4.6. For every fixed-point expression (Θ, f, (A,B)) and for all equitable trees U, V
of height, respectively, |Θ|µ and |Θ|ν ,

A ≤ ‖(Θ, f, (A,B))‖U,V ≤ B.

I Lemma 4.7. For every fixed-point expression F = (Θ, f, (A,B)) and for all equitable trees
U, V of height, respectively, |Θ|µ and |Θ|ν , we have ‖F̃‖V,U = ‖F‖U,V .

Moreover, again by a straightforward induction, it follows that ‖(Θ, f, (A,B))‖U,V is
monotone in f , A, and B. This value is also monotone in U and V , in the following sense:

I Lemma 4.8. Let F = (Θ, f, (A,B)) be a fixed-point expression, let T,U be equitable trees
of height |Θ|µ, and let T ′, V be equitable trees of height |Θ|ν . If T embeds in U , and T ′
embeds in V , then ‖F‖T,V ≤ ‖F‖U,V ≤ ‖F‖U,T ′ .

Proof. It is enough to prove the inequality ‖F‖T,V ≤ ‖F‖U,V ; the second inequality follows
then by duality (using Lemma 4.7). The proof is by induction on the length of Θ. For
empty Θ both values, ‖F‖T,V and ‖F‖U,V are defined as A + B ∗ f(); we have equality.
For Θ = 〈ν〉 ·Θ′, the inductive definitions of ‖F‖T,V and ‖F‖U,V are the same (we descend
recursively using the tree V), so it is enough to use the induction hypothesis and monotonicity.
Suppose that Θ = 〈µ〉 ·Θ′, and T = 〈T1, . . . , Tk〉, and U = 〈U1, . . . , Up〉. Then ‖F‖T,V and
‖F‖U,V are defined as A′k and Ap, respectively, where

A′0 = A0 = A,

A′i = ‖(Θ′, f�A
′
i−1 , (A′i−1, B))‖Ti,V for i ∈ {1, . . . , k}, and

Aj = ‖(Θ′, f�Aj−1 , (Aj−1, B))‖Uj ,V for j ∈ {1, . . . , p}.

Observe that if Ti embeds in Uj , and A′i−1 ≤ Aj−1, then by monotonicity and by the
induction hypothesis we obtain that A′i ≤ Aj . Moreover, always Aj−1 ≤ Aj , by Lemma 4.6
(this way, we can skip subtrees Uj to which no Ti needs to be embedded). Using these
inequalities and the definition of embedding we easily obtain the required thesis A′k ≤ Ap. J

The next lemma is crucial in the proof of Lemma 3.1.

I Lemma 4.9. Let F = (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . If (D,H) is a sup-dominion decomposition for F , then D ≤ ‖F‖TH,V .

CSL 2021

10:12 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Proof. The proof is by induction on the length of Θ. If Θ = 〈〉, we have (by the definition of
a sup-dominion) D = ‖(Θ, f, (A,D))‖ = A+D ∗ f() ≤ A+B ∗ f() = ‖F‖TH,V .

Suppose that Θ = 〈ν〉 ·Θ′ and V = 〈V1, . . . , Vp〉. Recall the values Bj from the definition
of ‖F‖TH,V (page 5). We prove by an internal induction on j ∈ {0, . . . , p} that D ≤ Bj
(this gives the thesis since ‖F‖TH,V = Bp). For j = 0 the thesis is clear: D ≤ B = B0.
Next, for j > 0 we prove D ≤ Bj assuming D ≤ Bj−1. Recall that (D,H) is a sup-
dominion decomposition for (Θ′, f�D, (A,D)). Thus, the induction hypothesis implies that
D ≤ ‖(Θ′, f�D, (A,D))‖TH,Vj . Using the assumption D ≤ Bj−1 and monotonicity, we obtain
that D ≤ ‖(Θ′, f�Bj−1 , (A,Bj−1))‖TH,Vj = Bj , as required.

Finally, suppose that Θ = 〈µ〉 ·Θ′ and H = 〈(D1,H1), . . . , (Dk,Hk)〉. Recall the values
Aj from the definition of ‖F‖TH,V . We prove by an internal induction on j ∈ {0, . . . , k} that
Dj ≤ Aj (this gives the thesis since ‖F‖TH,V = Ak). For j = 0 the thesis is clear: D0 =
A = A0. Next, for j > 0 we prove Dj ≤ Aj assuming Dj−1 ≤ Aj−1. Recall that (Dj ,Hj) is
a sup-dominion decomposition for (Θ′, f�Dj−1 , (Dj−1, B)). Thus, the induction hypothesis
implies that Dj ≤ ‖(Θ′, f�Dj−1 , (Dj−1, B))‖THj ,V . Using the assumption Dj−1 ≤ Aj−1 and
monotonicity, we obtain that Dj ≤ ‖(Θ′, f�Aj−1 , (Aj−1, B))‖THj ,V = Aj , as required. J

Proof of Lemma 3.1. Recall that we prove ‖F‖U,V = ‖F‖, where F = (Θ, f, (A,B)) and
U, V are universal. It is actually enough to prove ‖F‖ ≤ ‖F‖U,V , because then the converse
inequality follows by duality (using Proposition 2.4 and Lemma 4.7). By Lemma 4.1 ‖F‖ is
a sup-dominion for F . If ‖F‖ = A, then clearly ‖F‖ ≤ ‖F‖U,V , by Lemma 4.6. Otherwise
‖F‖ > A, so by Lemma 4.5 there exists a sup-dominion decomposition (‖F‖,H) for F such
that TH is an equitable tree of height |Θ|µ and width at most |‖F‖ − A|1 ≤ n. It follows
that TH embeds in U , and thus ‖F‖ ≤ ‖F‖TH,V ≤ ‖F‖U,V by Lemmata 4.8 and 4.9. J

5 Lower bound

We now present a lower bound for the number of queries used in our method. To this end,
we prove that our algorithms work only if they are driven by universal trees:

I Theorem 5.1. Let U, V be equitable trees of height h.
(1) If ‖F‖U,V = ‖F‖ for all fixed-point expressions over Bn of the form F = (Θ, f, (0,1)),

where |Θ|µ = |Θ|ν = h, then U and V are (n, h)-universal.
(2) If ‖F‖V = ‖F‖ for all fixed-point expressions as above, then V is (n, h)-universal.

To estimate the number of queries used by the algorithms of Section 3, we combine
Theorem 5.1 with a result by Czerwiński et al. [8, Theorem 2.3] saying that any (n, h)-
universal tree has at least

(blgnc+h−1
blgnc

)
leaves (which is at least nlg(h/ lgn)−1 if h ≤ n lgn, and

at least
(
n
2
)lg(h/ lgn) in general). Recall that the number of queries used by our algorithms is

proportional to widths of the employed trees (cf. Lemmata 3.2 and 3.6), thus by the above it
is also quasi-polynomial.

The rest of this section is devoted to the proof of Theorem 5.1. Observe first that
Point (2) of this theorem is a direct consequence of Point (1), because ‖F‖V = ‖F‖Cn,h,V ,
by Lemma 3.4. It is thus enough to prove Point (1). Moreover, we can assume that h ≥ 1,
because for height h = 0 there exists only one tree U = V = 〈〉, which is (n, 0)-universal.

In order to prove Point (1), fix an equitable tree T of height h ≥ 1 and of width (exactly)
n. The core of our proof is a “difficult example”: a fixed-point expression FT such that
if ‖FT ‖U,V is correct (i.e., equal to ‖FT ‖) for some U then T embeds in U , under some
mild assumptions saying, roughly, that V is nontrivial. In order to achieve this property, we

A. Arnold, D. Niwiński, and P. Parys 10:13

1 2 3 4 5 6 7 8 9 10 0 x2, x1

3

2 x6, x5

1 x4, x3

Figure 2 Example equitable tree T of height 3 with numbers in leaves. On the right: layer
numbers and corresponding variable names. Dotted and dashed areas represent bits set to 1 in the
values A(v) and B(v) for ancestors v of the 8-th leaf. Thus, the 8-th bit of f3(x1, x2, x3, x4, x5, x6)
is 1 if at least the following bits are set to 1: the first 8 bits of x1, the first 7 bits of x2, the first 8
bits of x3, the first 6 bits of x4, the first 9 bits of x5, and the first 4 bits of x6.

construct FT that has only one sup-dominion decomposition, which has the shape of the
tree T (this claim needs not be proven, but it helps to understand the construction). The
construction is to a large degree motivated by the work of Czerwiński et al. [8]. Existence of
FT for every T essentially implies that U is universal, as soon as we deal with the additional
assumptions on the tree V , which is done at the very end.

Let us assign numbers 1, . . . , n to leaves of T , consecutively from left to right. For every
node v we define two values A(v), B(v) ∈ Bn, as follows:

if the leftmost leaf descendant of v has number i, then bits number 1, 2, . . . , i− 1 in A(v)
are set to 1 (and the remaining bits are set to 0), and
if the rightmost leaf descendant of v has number j, then bits number 1, 2, . . . , j in B(v)
are set to 1 (and the remaining bits are set to 0).

Having these values, for every level ` ∈ {0, . . . , h} we define two functions, g+
` , g

−
` : Bn → Bn.

For every x ∈ Bn, we consider the rightmost node v at level ` such that A(v) ≤ x (such a v
exists, because A(v) = 0 for the extreme-leftmost node v), and we take

g+
` (x) = B(v), and g−` (x) =

{
1 if x = 1,
A(v) otherwise.

Finally, for every level ` ∈ {0, . . . , h} we define a function f` : (Bn)2` → Bn, by induction on
`, as follows:

f0() = 1, and
f`(x1, . . . , x2`−2, x2`−1, x2`) = f`−1(x1, . . . , x2`−2) ∗ g−`−1(x2`−1) ∗ g+

`−1(x2`) for ` ≥ 1.

The sequence of fixed-point operators corresponding to f` is Θ` = 〈µ, ν〉`. As the resulting
expression we take FT = (Θh, fh, (0,1)). See Figure 2 for an example.

Directly from the definition it follows that for every node v at level `,

g+
` (A(v)) = B(v), g−` (B(v)) = B(v), g−` (x) ≤ A(v) if x < B(v). (4)

Another useful property is that for every fixed-point expression of the form (Θ, f ∗C, (A,B))
we can move the multiplicative constant C from “the function” to “the bound” (anyway, it
will be just multiplied by the function):

‖(Θ, f ∗ C, (A,B))‖ = ‖(Θ, f, (A,B ∗ C))‖,

CSL 2021

10:14 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Figure 3 Example tree T (left) and the corresponding comb CT (right)

or, more specifically (assuming ` ≥ 1),

‖(Θ`−1, (f`�D)�C , (A,B))‖ = ‖(Θ`−1, f`−1, (A,B ∗ g−`−1(C) ∗ g+
`−1(D)))‖. (5)

The same holds for the value parameterised by two trees, ‖ · ‖U,V .
Analysing the definition of FT , it is not difficult to prove by induction on ` that

‖(Θ`, f`, (0, B(v)))‖ ≥ B(v).

for every node v of T located at level ` (see Appendix E for details). In particular, taking
the root of T as v, we obtain the following lemma.

I Lemma 5.2. ‖FT ‖ = 1.

Next, we define trees used on the “inf” side. Namely, for every ` ∈ {0, . . . , h} we define
an equitable tree C` (“comb”) of height `:

C0 = 〈〉,
C` = 〈C`−1〉 for ` ≥ 1, if every node at level `− 1 in T has at most one child, and
C` = 〈C`−1, S`−1〉 for ` ≥ 1, if some node at level ` − 1 in T has at least two children,
where S`−1 is the (unique) tree of height `− 1 having exactly one leaf.

Moreover, we define CT = Ch. See Figure 3 for an illustration. Notice that the information
about T is “shifted by one level” in CT ; in particular C1 always equals 〈〈〉〉 (leaves of T have
no children), and the shape of CT does not depend on the fact whether or not the root of T
has at least two children. Attention: trees C` and S` defined here should not be confused
with universal trees Cn,h and Sn,h defined earlier.

It is easy to see by induction on ` ∈ {1, . . . , h} that the width of C` plus the number of
nodes of T at level `− 1 is at most n+ 1. In particular, the width of CT is at most n.

For a node v of T we write T (v) for the subtree of T starting at v.

I Lemma 5.3. Let U be an equitable tree of height ` ∈ {0, . . . , h}, and let v be a node of T
located at level `. If T (v) does not embed in U , then ‖(Θ`, f`, (A(v), B(v)))‖U,C` < B(v). If
additionally v has at most one child, then ‖(Θ`, f`, (A(v), B(v)))‖U,C` ≤ A(v).

Proof. The proof is by induction on `. For ` = 0 the node v is a leaf, so surely T (v) (i.e., 〈〉)
embeds in U ; there is nothing to prove.

Suppose now that ` ≥ 1. Let Θ′` = 〈ν〉 · 〈µ, ν〉l−1 and let U = 〈U1, . . . , Up〉. We first prove
that for every child c of v and for every U ′ ∈ {U1, . . . , Up},

‖(Θ′`, f`�A(c), (A(c), B(v)))‖U ′,C` ≤
{
B(c) if T (c) embeds in U ′,
A(c) otherwise. (6)

A. Arnold, D. Niwiński, and P. Parys 10:15

Denote E = ‖(Θ′`, f`�A(c), (A(c), B(v)))‖U ′,C` . Let

B1 = ‖(Θ`−1, (f`�A(c))�B(v), (A(c), B(v)))‖U ′,C`−1 and (7)

B2 = ‖(Θ`−1, (f`�A(c))�B1 , (A(c), B1))‖U ′,S`−1 . (8)

By definition, E equals B1 when C` = 〈C`−1〉, and equals B2 when C` = 〈C`−1, S`−1〉.
Because g−`−1(B(v)) = B(v) ≥ B(c) and g+

`−1(A(c)) = B(c) (cf. Equalities (4)), we can
simplify Equalities (7) and (8) (using also Equality (5)) to

B1 = ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 , and (9)
B2 = ‖(Θ`−1, f`−1, (A(c), B(c) ∗ g−`−1(B1)))‖U ′,S`−1 . (10)

We now have three cases.
First, suppose that T (c) embeds in U ′. In this case B2 ≤ B1 ≤ B(c) by Lemma 4.6

and Equalities (8) and (9), so E ≤ B(c) (no matter whether E equals B1 or B2).
Next, suppose that T (c) does not embed in U ′ and that C` = 〈C`−1〉. By definition of

C` this means that c (and every other node at level ` − 1) has at most one child. Thus,
the induction hypothesis implies that ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 ≤ A(c), that is,
E = B1 ≤ A(c) (by Equality (9)).

Finally, suppose that T (c) does not embed in U ′, but C` = 〈C`−1, S`−1〉. In this case
the induction hypothesis implies that ‖(Θ`−1, f`−1, (A(c), B(c)))‖U ′,C`−1 < B(c), that is,
B1 < B(c) (by Equality (9)). Then g−`−1(B1) ≤ A(c) (cf. Equalities (4)), so E = B2 ≤ A(c)
by Lemma 4.6 and Equality (10). This finishes the proof of Inequality (6).

Recall now that ‖(Θ`, f`, (A(v), B(v)))‖U,C` is defined as Ap, where Aj = ‖(Θ′`, f`�Aj−1 ,

(Aj−1, B(v)))‖Uj ,C` for j ∈ {1, . . . , p} and A0 = A(v). Notice that A0 equals A(c) for the
leftmost child c of v. If Aj−1 ≤ A(c) for some child c of v, by monotonicity we have
Aj ≤ ‖(Θ′`, f`�A(c), (A(c), B(v)))‖Uj ,C` , so we can apply Inequality (6). If Aj−1 ≤ A(c) and
T (c) does not embed in Uj , we obtain that Aj ≤ A(c) as well. Contrarily, if Aj−1 ≤ A(c)
and T (c) embeds in Uj , we obtain that Aj ≤ B(c) = A(c′), where c′ is the right sibling of c.
We know that T (v) does not embed in U , so ‖(Θ`, f`, (A(v), B(v)))‖U,C` = Ap ≤ A(c) for
some child c of v (this is the first child that “could not be embedded”), and A(c) < B(v), as
required in the thesis. If moreover v has exactly one child (i.e., c is the only child of v), then
A(c) = A(v). J

I Corollary 5.4. Let U, V be equitable trees of height h. If ‖FT ‖U,V = ‖FT ‖ and CT embeds
in V , then T embeds in U . If ‖F̃T ‖U,V = ‖F̃T ‖ and CT embeds in U , then T embeds in V .

Proof. For the first part, by Lemmata 5.2 and 4.8 we have 1 = ‖FT ‖ = ‖FT ‖U,V ≤ ‖FT ‖U,CT ,
that is, ‖FT ‖U,CT = 1. But Lemma 5.3 (where as v we take the root of T) allows ‖FT ‖U,CT
to be 1 only if T embeds in U . The second part is a consequence of the first part and of the
equalities ‖F̃T ‖ = ‖FT ‖ (Proposition 2.4) and ‖F̃T ‖U,V = ‖FT ‖V,U (Lemma 4.7). J

We now finish the proof of (Point (1) of) Theorem 5.1. From this point, the tree T
is no longer fixed. Recall that we have two equitable trees U, V of height h ≥ 1, and we
assume that ‖F‖U,V = ‖F‖ for all fixed-point expressions of the form F = (Θ, f, (0,1)),
where |Θ|µ = |Θ|ν = h. The goal is to prove that U and V are (n, h)-universal, that is, every
equitable tree T of height h and width at most n can be embedded in U and V .

The difficulty is that in order to prove that a tree T embeds in U , we already need to
know that some tree, namely CT , embeds in V , and in order to prove that a tree T embeds
in V , we already need to know that some tree, namely CT , embeds in U (cf. Corollary 5.4).

CSL 2021

10:16 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

In order to deal with this circular dependency, we argue that CT is “simpler” than T . To
compare these trees, we introduce a parameter called a stick length.

The stick length of an equitable tree T of height h is the greatest number s ∈ {0, . . . , h}
such that all nodes at levels 0, 1, . . . , s have at most one child. We prove by induction on
h− s that every equitable tree T of height h, width at most n, and stick length s embeds in
U and in V .

The only tree T of height h and stick length s = h is Sh (a single branch); it clearly
embeds in every tree of height h, in particular in U and in V .

For an induction step, consider an equitable tree T of height h, width at most n, and
stick length s < h. Recall that the corresponding tree CT has height h and width at most
n. It is also easy to see that it has stick length s+ 1 (if all nodes at some level ` in T have
at most one child, then all nodes at level ` + 1 in CT have at most one child). Thus, CT
embeds in U and in V by the induction hypothesis. If T has width n, it embeds in U and in
V by Corollary 5.4, as required. If the width is smaller, we consider the tree T ′ of width n
obtained from T by attaching an appropriate number of trees Sh−1 directly below the root.
This tree also has stick length s, height h, and is equitable, so it embeds in U and in V by
the above, and hence T embeds as well.

I Remark 5.5. Theorem 5.1 can be strengthened in the following way: it is enough to assume
that the equalities ‖F‖U,V = ‖F‖ and ‖F‖U = ‖F‖ hold for those monotonic functions f ,
where every output bit is a logical OR or a logical AND of some input bits. Indeed, all
functions constructed in the proof are of this kind. This makes a connection with parity
games (cf. Introduction).

6 Conclusion

It is well known that a nested fixed point like µx.νy.µx.f(x, y, z) can be computed by a
formula

µγz.νβy.µαx.f(x, y, z),

for sufficiently large ordinals α, β, γ, where θηx means that only η iterations of a fixed point
θx are computed (cf. e.g. [27]). Our algorithms refine this idea in two ways: the iterations
follow a more subtle tree structure, and moreover they are combined with narrowing the
scope according to the nested A+B ∗ f pattern. In the asymmetric case, the restrictions
apply only to one kind of fixed points, but the complexity—somewhat surprisingly—actually
improves as we eventually compute a single fixed point (albeit of a larger system).

Our black-box algorithms, when adapted to parity games, match the best complexity
known so far, but do not improve it. Our lower bound, in view of Remark 5.5, gives an
evidence that in the algorithm by Jurdziński and Morvan [19] the use of (not others but)
universal trees is indeed necessary.

This may suggest that any polynomial algorithm for parity games—if it exists—should
involve some other structure of the game, which remains to be discovered. On the other
hand, it is an intriguing question if the lower bound can be strengthen to an “absolute” lower
bound for the number of queries, like the aforementioned (almost) quadratic lower bound [24].
A recently developed theory around the complexity of computing the Nash equilibria [9]
warns us that some problems in NP ∩ co-NP may be hard.

A. Arnold, D. Niwiński, and P. Parys 10:17

References
1 André Arnold and Damian Niwiński. Rudiments of µ-Calculus. Studies in Logic and the

Foundations of Mathematics. Elsevier, 2001.
2 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games

to safety games. RAIRO Theor. Informatics Appl., 36(3):261–275, 2002. doi:10.1051/ita:
2002013.

3 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox. Informal lecture notes,
2018. URL: https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf.

4 Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and Wilfredo R. Marrero.
An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci.,
178(1-2):237–255, 1997. doi:10.1016/S0304-3975(96)00228-9.

5 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

6 Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and Alexander Svozil. Quasipoly-
nomial set-based symbolic algorithms for parity games. In Gilles Barthe, Geoff Sut-
cliffe, and Margus Veanes, editors, LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November
2018, volume 57 of EPiC Series in Computing, pages 233–253. EasyChair, 2018. URL:
http://www.easychair.org/publications/paper/L8b1.

7 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata:
New tools for infinite duration games. In Mikołaj Bojańczyk and Alex Simpson, editors,
Foundations of Software Science and Computation Structures - 22nd International Conference,
FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume
11425 of Lecture Notes in Computer Science, pages 1–26. Springer, 2019. doi:10.1007/
978-3-030-17127-8_1.

8 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić,
and Paweł Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

9 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a Nash equilibrium. Commun. ACM, 52(2):89–97, 2009. doi:10.1145/1461928.
1461951.

10 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

11 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

12 John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In Hakan
Erdogmus and Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017,
pages 112–121. ACM, 2017. doi:10.1145/3092282.3092286.

13 Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial
time algorithm for parity games. CoRR, abs/1702.01953, 2017. arXiv:1702.01953.

CSL 2021

http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.1051/ita:2002013
https://www.mimuw.edu.pl/~bojan/upload/reduced-may-25.pdf
http://dx.doi.org/10.1016/S0304-3975(96)00228-9
http://dx.doi.org/10.1145/3055399.3055409
http://www.easychair.org/publications/paper/L8b1
http://dx.doi.org/10.1007/978-3-030-17127-8_1
http://dx.doi.org/10.1007/978-3-030-17127-8_1
http://dx.doi.org/10.1137/1.9781611975482.142
http://dx.doi.org/10.1145/1461928.1461951
http://dx.doi.org/10.1145/1461928.1461951
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1145/3092282.3092286
http://arxiv.org/abs/1702.01953

10:18 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

14 Daniel Hausmann and Lutz Schröder. Computing nested fixpoints in quasipolynomial time.
CoRR, abs/1907.07020v2, 2019. arXiv:1907.07020v2.

15 Daniel Hausmann and Lutz Schröder. Quasipolynomial computation of nested fixpoints. CoRR,
abs/1907.07020v3, 2019. arXiv:1907.07020v3.

16 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

17 Marcin Jurdziński. Small progress measures for solving parity games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3_24.

18 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

19 Marcin Jurdziński and Rémi Morvan. A universal attractor decomposition algorithm for parity
games. CoRR, abs/2001.04333, 2020. arXiv:2001.04333.

20 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexponential algorithm
for solving parity games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 117–123.
ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109571.

21 Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial
time. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
639–648. ACM, 2018. doi:10.1145/3209108.3209115.

22 Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. Improving the complexity of Parys’
recursive algorithm. CoRR, abs/1904.11810, 2019. arXiv:1904.11810.

23 Robert McNaughton. Infinite games played on finite graphs. Ann. Pure Appl. Logic, 65(2):149–
184, 1993. doi:10.1016/0168-0072(93)90036-D.

24 Paweł Parys. Some results on complexity of µ-calculus evaluation in the black-box model.
RAIRO - Theor. Inf. and Applic., 47(1):97–109, 2013. doi:10.1051/ita/2012030.

25 Paweł Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In Peter Ross-
manith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany, volume 138 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

26 Helmut Seidl. Fast and simple nested fixpoints. Inf. Process. Lett., 59(6):303–308, 1996.
doi:10.1016/0020-0190(96)00130-5.

27 Igor Walukiewicz. Monadic second order logic on tree-like structures. In Claude Puech and
Rüdiger Reischuk, editors, STACS 96, 13th Annual Symposium on Theoretical Aspects of
Computer Science, Grenoble, France, February 22-24, 1996, Proceedings, volume 1046 of Lecture
Notes in Computer Science, pages 401–413. Springer, 1996. doi:10.1007/3-540-60922-9_33.

28 Shipei Zhang, Oleg Sokolsky, and Scott A. Smolka. On the parallel complexity of model
checking in the modal mu-calculus. In Proceedings of the Ninth Annual Symposium on Logic in
Computer Science (LICS ’94), Paris, France, July 4-7, 1994, pages 154–163. IEEE Computer
Society, 1994. doi:10.1109/LICS.1994.316075.

29 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

http://arxiv.org/abs/1907.07020v2
http://arxiv.org/abs/1907.07020v3
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1109/LICS.2017.8005092
http://dx.doi.org/10.1109/LICS.2017.8005092
http://arxiv.org/abs/2001.04333
http://dl.acm.org/citation.cfm?id=1109557.1109571
http://dx.doi.org/10.1145/3209108.3209115
http://arxiv.org/abs/1904.11810
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1051/ita/2012030
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.10
http://dx.doi.org/10.1016/0020-0190(96)00130-5
http://dx.doi.org/10.1007/3-540-60922-9_33
http://dx.doi.org/10.1109/LICS.1994.316075
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

A. Arnold, D. Niwiński, and P. Parys 10:19

A Proof of Proposition 2.3

I Proposition 2.3. If A ≤ C ≤ ‖(Θ, f, (A,B))‖ ≤ D ≤ B, then

‖(Θ, f, (A,B))‖ = ‖(Θ, f, (C,D))‖.

Proof. The proof is by induction on the length of Θ.
In the base case of Θ = 〈〉, the thesis amounts to A+B ∗ f() = C +D ∗ f(), assuming

that A ≤ C ≤ A + B ∗ f() ≤ D ≤ B. But we have that B ∗ f() ≤ A + B ∗ f() ≤ D and
B ∗ f() ≤ f(), which implies that B ∗ f() ≤ D ∗ f(). Since moreover A ≤ C, we obtain that
A+B ∗ f() ≤ C +D ∗ f(). The converse inequality A+B ∗ f() ≥ C +D ∗ f() can be proven
analogously.

Suppose now that Θ = 〈θ〉·Θ′. Let E = ‖(Θ, f, (A,B))‖. Then E = θx.g(x) where g(x) =
‖(Θ′, f�x, (A,B))‖. By Proposition 2.2 it follows that A ≤ g(x) ≤ B for all x ∈ Bn, which
due to the inequalities A ≤ C and D ≤ B implies that A ≤ C ∗ g(x) ≤ g(x) ≤ D+ g(x) ≤ B.
By the induction hypothesis,

g(x) = ‖(Θ′, f�x, (A,B))‖ = ‖(Θ′, f�x, (C ∗ g(x), D + g(x)))‖.

Let h(x, y) = ‖(Θ′, f�x, (C ∗ g(y), D + g(y)))‖, so that h(x, x) = g(x). By Equality (3),
E = θx.g(x) = θy.θx.h(x, y), so E = θx.h(x,E). Recalling that g(E) = E, by assumption
we have that C ≤ g(E) ≤ D. Unravelling the definition of h in E = θx.h(x,E), we obtain
that

E = θx.‖(Θ′, f�x, (C ∗ g(E), D + g(E)))‖ = θx.‖(Θ′, f�x, (C,D))‖ = ‖(Θ, f, (C,D))‖,

as required. J

B Proof of Lemma 3.4

Heading towards a proof of Lemma 3.4, we first note an analogue to Proposition 2.2
and Lemma 4.6, which follows by a straightforward induction:

I Lemma B.1. For every fixed-point expression (Θ, f, (A,B)) and for every equitable tree V
of height |Θ|ν ,

A ≤ ‖(Θ, f, (A,B))‖V ≤ B.

As already mentioned, while proving Lemma 3.4 we make use of the following simple fact.

I Proposition B.2. For a monotone mapping f : Bn → Bn,

µx.f(x) = f(. . . (f︸ ︷︷ ︸
n

(0)) . . .).

We now generalize Lemma 3.4 a bit, to a variant suitable for an inductive proof (Lemma 3.4
follows from Lemma B.3 by taking A′ = A):

I Lemma B.3. Let (Θ, f, (A,B)) be a fixed-point expression, and let V be an equitable tree
of height |Θ|ν . If A ≤ A′ ≤ ‖(Θ, f, (A,B))‖V , then

‖(Θ, f, (A,B))‖V = ‖(Θ, f, (A′, B))‖Cn,|Θ|µ ,V .

CSL 2021

10:20 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

Proof. Induction on the length of Θ. Let h = |Θ|µ. For Θ = 〈〉 on the one hand due to
A ≤ A′ we have

‖(Θ, f, (A,B))‖V = A+B ∗ f() ≤ A′ +B ∗ f() = ‖(Θ, f, (A′, B))‖Cn,h,V ,

and on the other hand due to A′ ≤ ‖(Θ, f, (A,B))‖V we have

A′ +B ∗ f() ≤ A+B ∗ f() +B ∗ f() = A+B ∗ f().

Next, suppose that Θ = 〈ν〉 · Θ′ and V = 〈V1, . . . , Vp〉. Let B0 = B′0 = B and for
j ∈ {1, . . . , p}, let

Bj = ‖(Θ′, f�Bj−1 , (A,Bj−1))‖Vj , B′j = ‖(Θ′, f�B
′
j−1 , (A′, B′j−1))‖Cn,h,Vj .

Since A ≤ A′ ≤ ‖(Θ, f, (A,B))‖V = Bp ≤ Bp−1 ≤ · · · ≤ B0 (the inequalities between the
Bj ’s are by Lemma B.1), we have by the induction hypothesis

Bj = ‖(Θ′, f�Bj−1 , (A′, Bj−1))‖Cn,h,Vj .

Thus, Bj−1 = B′j−1 implies Bj = B′j , and since B0 = B′0 = B, we have ‖(Θ, f, (A,B))‖V =
Bp = B′p = ‖(Θ, f, (A′, B))‖Cn,h,V .

Finally, suppose that Θ = 〈µ〉 ·Θ′. Let us define

E0 = 0, Ej = ‖(Θ′, f�Ej−1 , (A,B))‖V for j ∈ {1, . . . , n}, and (11)

A′0 = A′, A′j = ‖(Θ′, f�A
′
j−1 , (A′j−1, B))‖Cn,h−1,V for j ∈ {1, . . . , n}. (12)

Let E = En. By Proposition B.2 we have E = µx.‖(Θ′, f�x, (A,B))‖V = ‖(Θ, f, (A,B))‖V .
Simultaneously, by the definition of ‖(Θ, f, (A′, B))‖Cn,h,V we have ‖(Θ, f, (A′, B))‖Cn,h,V =
A′n. Moreover, by Lemma 4.6 we have A ≤ A′ = A′0 ≤ A′1 ≤ · · · ≤ A′n, that is, A ≤ A′j for
all j ∈ {0, . . . , n}. We now prove by induction on j ∈ {0, . . . , n} that Ej ≤ A′j ≤ E (for
j = n we obtain the required equality E = En = A′n). For j = 0 the inequality boils down
to 0 ≤ A′ ≤ E, which holds by assumption. Suppose thus that j ∈ {1, . . . , n} and that
Ej−1 ≤ A′j−1 ≤ E. By monotonicity and by the induction hypothesis it follows that

Ej
(11)
≤ ‖(Θ′, f�A

′
j−1 , (A′j−1, B))‖V = ‖(Θ′, f�A

′
j−1 , (A′j−1, B))‖Cn,h,V = A′j .

Again by monotonicity and again by the induction hypothesis, since A ≤ A′j−1 ≤ E =
‖(Θ′, f�E , (A,B))‖V ,

A′j
(12)
≤ ‖(Θ′, f�E , (A′j−1, B))‖Cn,h,V = ‖(Θ′, f�E , (A,B))‖V = E. J

C An explicit definition of the system of equations

In this section we give an explicit description of the system of equations generated by
Algorithm 1 for ‖(Θ, f, (A,B))‖V , where |Θ|ν = h. Without loss of generality we may assume
that Θ = 〈µ〉 · 〈ν, µ〉h; to reach such a situation from a general case, one can add additional
parameters (quantified by µ) on which f does not depend (and compress neighbouring
occurrences of µ using Equality (3)). Suppose that leaves of V are numbered 1, . . . ,m from
left to right (where m = |V |). For all i ∈ {1, . . . ,m} and ` ∈ {0, . . . , h}, let λ`(i) be the least
number j ∈ {0, . . . ,m− 1} such that leaves number j + 1 and i have the same ancestor at
level `, and let ρ`(i) be the greatest number j ∈ {1, . . . ,m} such that leaves number i and

A. Arnold, D. Niwiński, and P. Parys 10:21

j have the same ancestor at level ` (in particular, λ0(i) = i − 1 and ρ0(i) = i). In other
words, if v is the ancestor of the i-th leaf located at level `, then λ`(i) is the number of the
leftmost leaf descendant of v, decreased by one, and ρ`(i) is the number of the rightmost leaf
descendant of v. In the system, we use variables x1, . . . , xm and additionally the variable x0
that is valuated to 1. For every i ∈ {1, . . . ,m} we have an equation

xi = xλ0(i) ∗ f(xρ0(i), xλ0(i), xρ1(i), xλ1(i), xρ2(i), xλ2(i), . . . , xρh−1(i), xλh−1(i), xρh(i)). (?)

It is the variable xm that stores the result (i.e., xres = xm).
We now prove that the system generated by Algorithm 1 is indeed of the above form.

Originally, the last argument of the procedure Generate is a subtree of the input tree V .
Let us consider a modification of this procedure, where the last argument is a node of V ,
being the root of this subtree (and then, in the procedure, we consider the subtree starting
in this node).

Consider now a recursive call

Generate(x, 〈µ〉 · 〈ν, µ〉`, f ,B, u) with f = f(?, . . . , ?, y2`+2, . . . , y2h+1)

performed during the considered execution of Algorithm 1. It is easy to prove (by induction
on the depth of the recursion) that, if i is the number of the rightmost leaf descendant of the
node u,

u is located at level `,
for every j ∈ {` + 1, . . . , h}, the argument y2j contains the variable xλj−1(i), and the
argument y2j+1 contains the variable xρj(i),
the argument B contains the variable xλ`(i), and
the argument x contains the variable xρ`(i), that is, xi.

From the above claim it follows that equations generated in line 4 of the algorithm are indeed
of the form (?).

D Proof of Lemma 3.5

I Lemma 3.5. Let F = (Θ, f, (0,1)) be a fixed-point expression, and let V be an equitable
tree of height |Θ|ν . The value assigned to the variable xres in the least solution of the system
of equations generated by Algorithm 1 equals ‖F‖V .

Proof. In order to facilitate an inductive proof of this lemma, we slightly modify Algorithm 1.
Namely, we replace line 14 by the following three lines:
x′ = FreshVariable();
Generate(x,Θ′, f�x′ ,B, V);
output “x′ = x”;

This way, we replace some occurrences of the variable x in the resulting system of equations
by a fresh variable x′, and we add an equation ensuring that x′ equals x. It should be
clear that there is a one-to-one correspondence between solutions of the original system of
equations and solutions of the new one; in particular the least solution is the same (modulo
the difference that in the new system some variables are multiplicated). Thus, from now on
we only consider the modified algorithm.

Let d be the length of Θ. We prove a claim concerning any recursive call

Generate(x, Θ̂, f ,B, V̂) with f = f(?, . . . , ?, yk+1, . . . , yd).

CSL 2021

10:22 A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

We assume that k (i.e., the number of ?’s) equals the length of Θ̂, and V̂ is an equitable tree
of height |Θ̂|ν (we use here symbols Θ̂ and V̂ , not Θ and V , in order to distinguish these
arguments from the original sequence Θ and from the original tree V). Moreover, we assume
that the variable contained in the argument x is not contained in any of the arguments
yk+1, . . . , yd,B. All calls appearing in the modified version of the algorithm satisfy the above
two conditions (while the second condition is not satisfied by the original algorithm; this
is why we consider the modification). Let S be the system of equations generated by the
above call. A solution of S is a function that maps every variable appearing in S (including
those that do not appear on the left side of any equation) to an element of Bn. Consider
also a valuation val : {yk+1, . . . , yd,B} → Bn. Based on the the original function f (of arity
d), the valuation induces a new function fval of arity k, in an obvious way. Let B = val(B)
and E = ‖(Θ̂, fval , (0, B))‖

V̂
.

B Claim. (1) For every solution R of S that extends val it holds R(x) ≥ E, and
(2) there exists a solution R of S that extends val and such that R(x) = E.

Equivalently, the claim says that in the least solution of S among those that extend the
valuation val, the variable x is valuated to E. In particular, while considering the main call
of the algorithm (i.e., the call in line 17), this claim gives us the thesis of the lemma. It thus
remains to prove the claim, which is done by induction on k.

For k = 0 (i.e., Θ̂ = 〈〉) the system S consists of a single equation, namely x =
B ∗ f(y1, . . . , yd). The valuation val already assigns values to the variables y1, . . . , yd,B (but
not to x), so there is a unique solution that extends val; it maps x to B ∗ fval(), that is, to E.

Next, suppose that Θ̂ = 〈ν〉 · Θ̂′. Let V̂ = 〈V̂1, . . . , V̂p〉, let B0 = B, and for j ∈
{1, . . . , p} let Bj = ‖(Θ̂′, (fval)�Bj−1 , (0, Bj−1))‖

V̂j
. Then, by definition, E = Bp. More-

over, for every j ∈ {1, . . . , p}, let Sj be the system of equations generated by the call
Generate(Bj , Θ̂′, f�Bj−1 ,Bj−1, V̂j) in line 11 of the algorithm.

Consider now a solution R of S that extends val. We prove by induction on j ∈ {0, . . . , p}
that R(Bj) ≥ Bj ; for j = p this gives Point (1) of the claim, because Bp = x and Bp = E.
For j = 0 we have B0 = B, so R(B0) = val(B) = B = B0. For the induction step, we
prove R(Bj) ≥ Bj assuming R(Bj−1) ≥ Bj−1, where j ∈ {1, . . . , p}. Because Sj is a part
of S, our solution R (when restricted to variables appearing in Sj) is also a solution of Sj .
Moreover, it extends val[Bj−1 7→ R(Bj−1)]. Observe that the function of arity k− 1 induced
by the valuation val[Bj−1 7→ R(Bj−1)] (i.e., fval[Bj−1 7→R(Bj−1)]) equals (fval)�R(Bj−1) (below,
similar equalities are used implicitly). Thus, by the induction hypothesis (used for this
valuation) and by monotonicity,

R(Bj) ≥ ‖(Θ̂′, (fval)�R(Bj−1), (0, R(Bj−1)))‖
V̂j
≥ ‖(Θ̂′, (fval)�Bj−1 , (0, Bj−1))‖

V̂j
= Bj .

In order to prove Point (2) of the claim, for every j ∈ {1, . . . , p} we create by the induction
hypothesis a solution Rj to Sj that extends val[Bj−1 7→ Bj−1] and such that Rj(Bj) = Bj .
Observe that the systems S1, . . . ,Sp have pairwise disjoint sets of variables, except for the
variables yk+1, . . . , yd whose values are fixed by val, and except for variables B1, . . . ,Bp−1
shared by consecutive systems, for which we also fix values in a consistent way. It follows
that the solutions R1, . . . , Rp may be merged into a solution R of the whole system S (being
a union of S1, . . . ,Sp). This solution extends val, and satisfies R(x) = Rp(Bp) = Bp = E.

We now come to the last case, namely Θ̂ = 〈µ〉 · Θ̂′. Let S ′ be the system of equations
generated by the call Generate(x, Θ̂′, f�x′ ,B, V̂) in the modified line 14 of the algorithm;
in other words, this is S without the equation x′ = x. Recall that, in this case, E is the
least fixed point of the mapping C 7→ ‖(Θ̂′, (fval)�C , (0, B))‖

V̂
. For Point (1) of the claim,

A. Arnold, D. Niwiński, and P. Parys 10:23

consider a solution R of S that extends val. This is also a solution of S ′, and R(x′) = R(x).
Thus, by the induction hypothesis used for the valuation val[x′ 7→ R(x)],

R(x) ≥ ‖(Θ̂′, (fval)�R(x), (0, B))‖
V̂
.

By Equalities (2) this means that R(x) can only be greater than the least fixed point of
the aforementioned mapping, that is R(x) ≥ E. This proves Point (1). For Point (2), the
induction hypothesis gives us a solution R of S ′ that extends val[x′ 7→ E] and such that
R(x) = ‖(Θ̂′, (fval)�E , (0, B))‖

V̂
, that is, R(x) = E. We also have R(x′) = E, so R is a

solution of S as well. This finishes the proof of the claim, and thus of the whole lemma. J

Lemmata 4.1 and 4.2 are immediate consequences of definitions and of Proposition 2.3.

E Proof of Lemma 5.2

As already mentioned, we obtain Lemma 5.2 by taking the root of T as v in the following
lemma.

I Lemma E.1. For every node v of T located at level `,

‖(Θ`, f`, (0, B(v)))‖ ≥ B(v).

Proof. The proof is by induction on `. Let E = ‖(Θ`, f`, (0, B(v)))‖. For ` = 0 we simply
have E = 0 +B(v) ∗ 1 = B(v).

Suppose now that ` ≥ 1. Let Θ′` = 〈ν〉 · 〈µ, ν〉l−1, and let c be the rightmost node at level
`− 1 such that A(c) ≤ E. We first prove that

‖(Θ′`, f`�E , (0, B(c)))‖ ≥ B(c). (13)

To this end, observe that

‖(Θ`−1, (f`�E)�B(c), (0, B(c)))‖ (5)= ‖(Θ`−1, f`−1, (0, B(c) ∗ g−`−1(B(c)) ∗ g+
`−1(E)))‖

(4)= ‖(Θ`−1, f`−1, (0, B(c) ∗B(c) ∗B(c)))‖ ≥ B(c),

where the last inequality is by the induction hypothesis. Moreover, by Proposition 2.2 we
have a converse inequality. Together, this means that B(c) is a fixed point of the mapping
x 7→ ‖(Θ`−1, (f`�E)�x, (0, B(c)))‖. By definition ‖(Θ′`, f`�E , (0, B(c)))‖ is the greatest fixed
points of this mapping, so it can be only greater. This finishes the proof of Inequality (13).

If B(v) ≤ A(c), the thesis (i.e., E ≥ B(v)) is true, since A(c) ≤ E. Otherwise, B(v) > A(c)
implies that B(v) ≥ B(c) (because c is not higher in the tree than v). Thus, because E is a
fixed point and by monotonicity we have that

E = ‖(Θ′`, f`�E , (0, B(v)))‖ ≥ ‖(Θ′`, f`�E , (0, B(c)))‖
(13)
≥ B(c).

If c is the rightmost node at level ` − 1, we have E ≥ B(c) = 1 ≥ B(v) and again we are
done. In the remaining case, the node c′ one to the right from c satisfies A(c′) = B(c) ≤ E,
contrary to the definition of c. J

CSL 2021

	Introduction
	Basic concepts
	Algorithm
	Symmetric version
	Asymmetric version
	Time and space complexity

	Correctness of the algorithms
	Lower bound
	Conclusion
	Proof of Proposition 2.3
	Proof of Lemma 3.4
	An explicit definition of the system of equations
	Proof of Lemma 3.5
	Proof of Lemma 5.2

