
The Caucal Hierarchy: Interpretations in the
(W)MSO+U Logic?

Pawe l Parys

Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland

Abstract

The Caucal hierarchy contains graphs that can be obtained from finite directed
graphs by alternately applying the unfolding operation and inverse rational map-
pings. The goal of this work is to check whether the hierarchy is closed under
interpretations in logics extending the monadic second-order logic by the un-
bounding quantifier, U (saying that a subformula holds for arbitrarily large finite
sets). We prove that by applying interpretations described in the MSO+Ufin

logic (hence also in its fragment WMSO+U) to graphs of the Caucal hierarchy
we can only obtain graphs on the same level of the hierarchy. Conversely, in-
terpretations described in the more powerful MSO+U logic can give us graphs
with an undecidable MSO theory, hence outside of the Caucal hierarchy.
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1. Introduction

This paper concerns the class of finitely describable infinite graphs intro-
duced by Caucal [1], called the Caucal hierarchy. Graphs on consecutive levels
of this hierarchy are obtained from finite graphs by alternately applying the
unfolding operation [2] and inverse rational mappings [3]. Since both these op-
erations preserve decidability of the monadic second-order (MSO) theory, graphs
in the Caucal hierarchy have a decidable MSO theory. It turns out that this class
of graphs has also other definitions. It was shown [4, 5] that the Caucal hierar-
chy contains exactly ε-closures of configuration graphs of higher-order pushdown
automata [6]; while generating trees, these automata are in turn equivalent to
a subclass of higher-order recursion schemes called safe recursion schemes [7].
Moreover, Carayol and Wöhrle [5] prove that the defined classes of graphs do
not change if we replace the unfolding operation by another transformation of
graphs called a treegraph operation (a.k.a. Muchnik’s iteration) [8], and simi-
larly, if we replace inverse rational mappings by the more powerful operation of
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MSO-interpretations, or even MSO-transductions [9, 10]. One can also replace
inverse rational mappings by the operation of FO-interpretations, assuming that
the FO formulae have access to the descendant relation [11].

In this paper we try to replace inverse rational mappings or MSO-inter-
pretations in the definition of the Caucal hierarchy by interpretations in some
extensions of the MSO logic. Namely, we investigate logics obtained from MSO
by adding the unbounding quantifier U introduced by Bojańczyk [12]. The
meaning of a formula UX.ϕ is that ϕ holds for arbitrarily large finite sets X.
In the MSO+Ufin logic we can write UX.ϕ only for formulae ϕ whose free set
variables are restricted to range only on finite sets (this fragment subsumes
the more known WMSO+U logic in which all set variables are restricted to
range only on finite sets [13, 14]). We prove (in Theorem 4.1) that the Caucal
hierarchy does not change if we use MSO+Ufin-interpretations in its definition.
In other words, by applying MSO+Ufin-interpretations to graphs in the Caucal
hierarchy, we only obtain graphs on the same level of the hierarchy.

This result shows robustness of the Caucal hierarchy. On the other hand,
it is a bit disappointing (but rather not surprising): it would be nice to find a
class of graphs with decidable properties, larger than the Caucal hierarchy. We
remark that the class of trees generated by all (i.e., not necessarily safe) higher-
order recursion schemes (equivalently, by collapsible pushdown automata [15])
is such a class: these trees have a decidable MSO theory [16], and some of
them are not contained in the Caucal hierarchy [17]. This class lacks a nice
machine-independent definition (using logics, like for the Caucal hierarchy),
though. For some other classes of graphs we only have decidability of first-order
logics [18, 19].

Going further, we examine the full MSO+U logic, where the use of the U
quantifier is unrestricted. We prove (in Theorem 5.1) that by applying interpre-
tations written in the MSO+U logic, we can obtain graphs outside of the Caucal
hierarchy; among them there are graphs with an undecidable MSO theory. This
is very expected, since the model-checking problem for this logic is undecidable,
already over the unlabeled infinite word [20].

We remark, however, that our result is not a direct consequence of unde-
cidability of the model-checking problem for MSO+U. It is rather related to
another interesting theorem, which we prove (in Theorem 5.2) as a side effect:
there exists a fixed formula ϕ of MSO+U such that it is undecidable, given a
regular tree T , whether ϕ holds in T .

This is a journal version of a conference paper [21]. Comparing to the con-
ference paper, we have added Theorems 4.2 and 5.2, as well as several examples.

The paper is structured as follows. In Section 2 we introduce necessary
definitions. In Section 3 we recall basic knowledge on the Caucal hierarchy, and
we establish a relation between graphs in this hierarchy and trees generated by
recursion schemes. In Section 4 we prove that the Caucal hierarchy is closed
under MSO+Ufin-interpretations. Finally, in Section 5 we prove that MSO+U-
interpretations lead to graphs with an undecidable MSO theory.

2



2. Preliminaries

2.1. Logics

A signature Ξ (of a relational structure) is a list of relation names, R1, . . . ,
Rn, together with a number called an arity assigned to each of the names. A
(relational) structure S = (US , RS1 , . . . , R

S
n) over such a signature Ξ is a set US ,

called the universe, together with relations RSi over US , for all relation names in
the signature; the arity of the relations is as specified in the signature. Following
the literature on the Caucal hierarchy [1, 3–5, 22] we forbid the universe to have
isolated elements: every element of US has to appear in at least one of the
relations RS1 , . . . , R

S
n .

We assume three countable sets of variables: VFO of first-order variables,
Vfin of set variables representing finite sets, and V inf of set variables representing
arbitrary sets. First-order variables are denoted using lowercase letters x, y, . . . ,
and set variables (of both kinds) are denoted using capital letters X,Y, . . . . The
atomic formulae are
• R(x1, . . . , xn), where R is a relation name of arity n (coming from a fixed

signature Ξ), and x1, . . . , xn are first-order variables;
• x = y, where x, y are first-order variables;
• x ∈ X, where x is a first-order variable, and X a set variable.

Formulae of the monadic second-order logic with the unbounding quantifier,
MSO+U, are built out of atomic formulae using the Boolean connectives ∨,∧,¬,
the first-order quantifiers ∃x and ∀x, the set quantifiers UX, ∃finX, and ∀finX
for X ∈ Vfin , and the set quantifiers ∃X and ∀X for X ∈ V inf . We use the
standard notion of free variables. In this paper, we also consider three syntactic
fragments of MSO+U. Namely, in the monadic second-order logic, MSO, we are
not allowed to use variables from Vfin , and thus the quantifiers using them: UX
(most importantly), ∃finX, and ∀finX. In the MSO+Ufin logic, the use of the
unbounding quantifier is syntactically restricted: we can write UX.ϕ only when
all free variables of ϕ are from VFO ∪ Vfin (i.e., ϕ has no free variables ranging
over infinite sets). In the weak fragment, WMSO+U, we cannot use variables
from V inf , together with the quantifiers ∃X and ∀X.

In order to evaluate an MSO+U formula ϕ over a signature Ξ in a relational
structure S over the same signature, we also need a valuation ν, which is a
partial function that maps
• variables x ∈ VFO to elements of the universe of S;
• variables X ∈ Vfin to finite subsets of the universe of S;
• variables X ∈ V inf to arbitrary subsets of the universe of S.

The valuation should be defined at least for all free variables of ϕ. We write
S, ν |= ϕ when ϕ is satisfied in S with respect to the valuation ν; this is defined
by induction on the structure of ϕ. For most constructs the definition is as
expected, thus we made it explicit only for ϕ starting with a quantifier ∃fin, ∀fin,
or U:
• we have S, ν |= ∃finX.ψ if there exists a finite subset XS of the universe

of S such that S, ν[X 7→ XS ] |= ψ,
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• we have S, ν |= ∀finX.ψ if for every finite subset XS of the universe of S
it holds S, ν[X 7→ XS ] |= ψ, and

• we have S, ν |= UX.ψ if for every n ∈ N there exists a finite subset XS of
the universe of S having cardinality at least n such that S, ν[X 7→ XS ] |=
ψ.

In other words, ∃finX.ψ, ∀finX.ψ, and UX.ψ say that ψ is satisfied for some
finite set X, for all finite sets X, and for some arbitrarily large finite sets X,
respectively.

We write ϕ(x1, . . . , xn) to denote that the free variables of ϕ are among
x1, . . . , xn. Then, given elements u1, . . . , un in the universe of a structure S, we
say that ϕ(u1, . . . , un) is satisfied in S if ϕ is satisfied in S under the valuation
mapping xi to ui for all i ∈ {1, . . . , n}.

For a logic L, an L-interpretation from Ξ1 to Ξ2 is a family I of L-formulae
ϕR(x1, . . . , xn) over Ξ1, for every relation name R of Ξ2, where n is the arity of
R. Having such an L-interpretation, we can apply it to a structure S over Ξ1;
we obtain a structure I(S) over Ξ2, where every relation RI(S) is given by the
tuples (v1, . . . , vn) of elements of the universe of S for which ϕR(v1, . . . , vn) is
satisfied in S. The universe of I(S) is given implicitly as the set of all elements
occurring in the relations RI(S) (because isolated elements are disallowed by the
definition of a structure, there is no need to have a separate formula defining
the universe).

While writing formulae in this paper, we use the usual notational conven-
tions: we write ϕ⇒ ψ for ¬ϕ ∨ ψ, we write ϕ⇔ ψ for (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ), we
write ∀x ∈ X.ϕ for ∀x. (x ∈ X ⇒ ϕ), we write ∃x ∈ X.ϕ for ∃x. (x ∈ X ∧ ϕ),
and we write x 6= y for ¬(x = y).

2.2. Graphs and the Caucal hierarchy

The Caucal hierarchy consists of directed, edge-labeled graphs (later on,
we also consider node-labeled structures). Thus, for a finite set Σ, a Σ-labeled
graph G is a relational structure over the signature ΞΣ containing binary relation
names Ea for all a ∈ Σ. In other words, G = (V G, (EGa )a∈Σ), where V G is a
set of nodes, and EGa ⊆ V G × V G is a set of a-labeled edges, for every a ∈ Σ
(and where we assume that there are no isolated nodes, i.e., for every v ∈ V G
there is an edge (v, w) or (w, v) in EGa for some w ∈ V G and a ∈ Σ). A graph is
deterministic if for every v ∈ V G and a ∈ Σ there is at most one node w ∈ V G
such that (v, w) ∈ EGa .

A path from a node u to a node v labeled by w = a1 . . . an is a sequence
v0a1v1 . . . anvn ∈ V G(ΣV G)∗, where v0 = u, and vn = v, and (vi−1, vi) ∈ EGai
for all i ∈ {1, . . . , n}. A graph is called an (edge-labeled) tree when it contains
a node r, called the root, such that for every node v ∈ V G there exists a unique
path from r to v. The unfolding Unf (G, r) of a graph G = (V G, (EGa )a∈Σ) from
a node r ∈ V G is the tree T = (V T , (ETa )a∈Σ), where V T is the set of all paths
in G starting from r, and ETa (for every a ∈ Σ) contains pairs (w,w′) such that
w′ = w · a · v for some v ∈ V G.

The Caucal hierarchy is a sequence of classes of graphs and trees; we use
here the characterization from Carayol and Wöhrle [5] as a definition. We define
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Graph(0) to be the class containing all finite Σ-labeled graphs, for all finite sets
of labels Σ. For all n ≥ 0, we let

Tree(n+ 1) = {Unf (G, r) | G ∈ Graph(n), r ∈ V G} , and

Graph(n+ 1) = {I(T ) | T ∈ Tree(n+ 1), I an MSO-interpretation} .

We do not distinguish between isomorphic graphs.

Example 2.1. Examples of graphs are presented on Figures 1-5. Graphs T1

and T2 are trees. We see that T1 is the unfolding of G0 from the node depicted
on the top. Likewise, T2 is the unfolding of G1 from the node depicted on top
left.

Let us now observe that G1 can be MSO-interpreted in T1. The a-labeled
edges remain unchanged, thus we take ϕEa(x, y) ≡ Ea(x, y). In order to define
b-labeled edges, we need a formula saying that y is reachable from x via a-labeled
edges (i.e., that every set containing x and closed under following a-labeled edges
contains y):

conna(x, y) ≡ ∀X. (x ∈ X ∧ ∀z ∈ X.∀z′. (Ea(z, z′)⇒ z′ ∈ X)⇒ y ∈ X) .

Using this formula, we say when x and y should be connected by a b-labeled
edge in G1:

ϕEb(x, y) ≡ x 6= y ∧ ∃x′.∃y′. ((x′ = x ∨ Eb(x′, x)) ∧ Eb(y′, y) ∧ conna(y′, x′)) .

This formula says that there is an edge from y′ to y (thus y′ is a node depicted
in the top line on Figure 2, and y is in the bottom line), that x′ is reachable
from y′ via a-labeled edges, and that x either equals x′ or is the node below x;
additionally x 6= y. This results in creating the edges as in G1.

Next, we observe that G2 can be MSO-interpreted in T2. To this end we
define connb(x, y) like conna(x, y) (with a replaced by b). We then take

ϕEa(x, y) ≡ ∃z. (connb(z, x) ∧ z 6= x ∧ connb(z, y) ∧ z 6= y) , and

ϕEb(x, y) ≡ ∃z.∃z′. (connb(z, y) ∧ z 6= y ∧ Ea(z, z′) ∧ connb(z
′, x) ∧ z′ 6= x) .

Notice that the nodes of T2 depicted in the top row are not taken into G2.
Because G0 is finite, we have Gi ∈ Graph(i) and Tj ∈ Tree(j) for i ∈ {0, 1, 2}

and j ∈ {1, 2}. We remark that G0 and T1 are deterministic, while G1, T2, G2

are not (because of multiple b-labeled edges leaving a single node).

2.3. Higher-Order Recursion Schemes

The set of (simple) types is constructed from a unique ground type o using
a binary operation→; namely o is a type, and if α and β are types, so is α→β.
By convention, → associates to the right, that is, α→ β→ γ is understood as
α→ (β → γ). The order of a type α, denoted ord(α) is defined by induction:
ord(o) = 0 and ord(α1→ · · · → αk→ o) = maxi(ord(αi)) + 1 for k ≥ 1.

Having a finite set of letters Σ (an alphabet), a finite set of typed nontermi-
nals N , and a finite set of typed variables V , (applicative) terms over (Σ,N , V )
are defined by induction:
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Figure 5: A graph G2 (the k-th clique consists of k(k + 1)/2 nodes, connected by a-labeled
edges; every node of a clique is connected to every node of the previous clique by a b-labeled
edge)
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• every nonterminal X ∈ N of type α is a term of type α;
• every variable x ∈ V of type α is a term of type α;
• if K1, . . . ,Kk are terms of type o and a ∈ Σ is a letter, then a〈K1, . . . ,Kk〉

is a term of type o;
• if K is a term of type α→ β, and L is a term of type α, then K L is a

term of type β.
The order of a term K, written ord(K), is defined as the order of its type.

A (higher-order) recursion scheme is a tuple G = (Σ,N , S,R), where Σ is
a finite set of letters, N a finite set of typed nonterminals, S ∈ N is a starting
nonterminal of type o, and R a function assigning to every nonterminal X ∈ N
of type α1 → · · · → αk → o a rule of the form X x1 . . . xk → K, where types
of variables x1, . . . , xk are α1, . . . , αk, respectively, and K is a term of type o
over (Σ,N , {x1, . . . , xk}). The order of a recursion scheme is defined as the
maximum of orders of its nonterminals.

Unlike trees in the Caucal hierarchy, trees generated by recursion schemes are
node-labeled; actually, these are infinite terms. They are defined by coinduction
(meaning that they can be infinite; for an introduction to coinductive definitions
and proofs see, e.g., Czajka [23]): for a finite set Σ and for kmax ∈ N, a Σ-node-
labeled tree of maximal arity kmax is of the form a〈T1, . . . , Tk〉, where a ∈ Σ, and
k ≤ kmax, and T1, . . . , Tk are again Σ-node-labeled trees of maximal arity kmax.
For a tree T = a〈T1, . . . , Tk〉, its set of nodes is defined as the smallest set such
that
• ε is a node of T , labeled by a, and
• if u is a node of Ti for some i ∈ {1, . . . , k}, labeled by b, then iu is a node

of T , also labeled by b.
Such a tree can be seen as a relational structure over signature Ξnlt

Σ,kmax
contain-

ing unary relation names La for all a ∈ Σ, and binary relation names Chi for
all i ∈ {1, . . . , kmax}. Its universe is the set of nodes of T ; for a ∈ Σ the relation
LTa contains all nodes labeled by a; for i ∈ {1, . . . , kmax} the i-th child relation
ChTi contains pairs (u, ui) such that both u and ui are nodes of T .

Having a recursion scheme G, we define a rewriting relation→G among terms
of type o over (Σ,N , ∅): we have X L1 . . . Lk →G K[L1/x1, . . . , Lk/xk], where
X is a nonterminal such that the rule R(X) is X x1 . . . xk → K (and where
K[L1/x1, . . . , Lk/xk] is the term obtained from K by substituting L1 for x1, L2

for x2, and so on). We then define a tree generated by G from a term K of type
o over (Σ,N , ∅), by coinduction:
• if there is a reduction sequence from K to a term of the form a〈L1, . . . , Lk〉,

then the tree equals a〈T1, . . . , Tk〉, where T1, . . . , Tk are the trees generated
by G from L1, . . . , Lk, respectively;

• otherwise, the tree equals ω〈〉 (where ω is a distinguished letter).
This tree is over an extended alphabet Σ]{ω}. A tree generated by G (without
a term specified) is the tree generated by G from the starting nonterminal S.

Notice that for every term K of type o over (Σ,N , ∅) there is at most one
term K ′ such that K →G K ′; thus the tree generated by G is unique. Indeed,
every such term is either of the form X L1 . . . Lk (for a nonterminal X) or
a〈L1, . . . , Lk〉. In the former case, the term has a successor in the →G relation;
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in the latter case, we create a node of the generated tree.

Example 2.2. Consider a recursion scheme G1 = ({d, e, f},N1, S,R1), where
N1 contains nonterminals S and X of type o, and Y of type o→ o→ o. The
rules in R1 are

S → Y e〈X, f〈X〉〉 f〈f〈X〉〉 , X → X ,

Y x y → d〈x, Y e〈x, y〉 f〈y〉〉 .

The bracketing convention here is that Y e〈X, f〈X〉〉 denotes Y (e〈X, f〈X〉〉),
etc. The type of both variables x, y is o, respectively. The order of the nonter-
minal Y is 1, and thus also the order of G1 is 1.

Because X →G1 X, the tree generated by G1 from X is ω〈〉. Denote

M0 = N0 = X , Mi = f〈Mi−1〉 , Ni = e〈Ni−1,Mi〉 for i ≥ 1 ,

and likewise

T0 = U0 = ω〈〉 , Ti = f〈Ti−1〉 , Ui = e〈Ui−1, Ti〉 for i ≥ 1 .

The tree generated by G1 from Mi (Ni) is Ti (Ui, respectively). We have

S →G1 Y N1M2 →G1 d〈N1, Y e〈N1,M2〉 f〈M2〉〉 = d〈N1, Y N2M3〉 .

Thus the tree generated by G1 (from the starting nonterminal S) has d-labeled
root, below which we have the tree generated from N1, that is U1, as the first
subtree, and the (infinite) tree generated from Y N2M3 as the second subtree.
Going further, we have

Y NiMi+1 →G1 d〈Ni, Y e〈Ni,Mi+1〉 f〈Mi+1〉〉 = d〈Ni, Y Ni+1Mi+2〉 ,

and thus the tree generated by G1 from Y NiMi+1 has d-labeled root, Ui as the
first subtree, and the tree generated from Y Ni+1Mi+2 as the second subtree (for
every i ∈ N). Overall, the tree Tn1 generated by G1 is depicted on Figure 6.

Example 2.3. Let us now define a more complicated recursion scheme, namely
G3 = ({a, b, c},N3, S,R3) with the following rules in R3:

S → XDB , X xy → a〈y c〈〉, X (Y x) (x y)〉 , B z → b〈z〉 ,
Y x y z → y (x y z) , D y z → y (y z) .

Types of the variables are, respectively,

x : (o→ o)→ o→ o , y : o→ o , z : o .

In consequence, types of the nonterminals are, respectively,

S : o , X : ((o→ o)→ o→ o)→ (o→ o)→ o , B : o→ o ,

Y : ((o→ o)→ o→ o)→ (o→ o)→ o→ o , D : (o→ o)→ o→ o .
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Figure 6: A tree Tn1, which is generated by the recursion scheme G1 from Example 2.2, and
by the pushdown automaton An1 from Example 2.11. Children are ordered from left to right.

The order of G3 is 3.
Denote

D2 = D and Di = Y Di−1 for i ≥ 3 , and

B1 = B and Bi = DiBi−1 for i ≥ 2 .

Notice that Di represents a function of type (o→ o)→ o→ o that applies i
times the function given as the first argument to the value given as the second
argument. In consequence, Bi represents a function of type o→ o that appends
i! times a b-labeled node above the value given as its argument. We have that

S →G3 XD2B1 and

XDi+1Bi →G3 a〈Bi c〈〉, X Di+2Bi+1〉 for i ≥ 2 .

It follows that the tree Tn3 generated by G3 is a comb, where on the rightmost
branch we have an infinite sequence of a-labeled nodes, and to the left of the
k-th a-labeled node there is attached a branch consisting of k! b-labeled nodes,
and finished with a c-labeled node. See Figure 7.

We define when a term is safe, by induction on its structure:
• all nonterminals and variables are safe,
• a term a〈K1, . . . ,Kk〉 is safe if the subterms K1, . . . ,Kk are safe,
• a term M = K L1 . . . Lk is safe if the subterms K,L1, . . . , Lk are safe and

ord(x) ≥ ord(M) for all variables x appearing in M .
A recursion scheme is safe if right-hand sides of all its rules are safe. In this
paper we only consider safe recursion schemes.

Example 2.4. In order to see that the recursion scheme G1 from Example 2.2
is safe, we have to check inequalities

ord(x) ≥ ord(Y e〈x, y〉 f〈y〉) and ord(y) ≥ ord(Y e〈x, y〉 f〈y〉) .
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Figure 7: A tree Tn3, which is generated by the recursion scheme G3 from Example 2.3. The
number b-labeled nodes on the branch leaving the k-th a-labeled node is k!.

They trivially hold: all orders equal 0.
Actually, one can see that every recursion scheme of order 1 (or 0) is safe.

Indeed, if M is a subterm of the right-hand side of a rule in such a recursion
scheme, and if M is of order 0 (recall that in particular the whole right-hand
side is always of order 0), then either
• M is a nonterminal or a variable (and thus M is safe), or
• M is of the form a〈K1, . . . ,Kk〉, where K1, . . . ,Kk are of order 0, or
• M is of the form X L1 . . . Lk, where X is a nonterminal (thus X is safe),

and L1, . . . , Lk are of order 0; the inequality ord(x) ≥ ord(M) trivially
holds in this case, for every variable x, because ord(M) = 0.

In consequence, an immediate structural induction shows that right-hand sides
of all the rules are safe, that is, that the recursion scheme is safe.

Notice that not all subterms of a safe term need to be safe. For example,
in the rule for Y in G1 there is a subterm Y e〈x, y〉 of order 1 that has a free
variable x of order 0; this subterm is not safe.

Example 2.5. Let us now see that the recursion scheme G3 from Example 2.3
is safe. We have to check that

2 = ord(x) ≥ ord(Y x) = 2 ,

2 = ord(x) ≥ ord(x y) = 1 , 1 = ord(y) ≥ ord(x y) = 1 ;

besides that, there are some trivially satisfied inequalities, in which the right-
hand side (i.e., the order of a subterm) is 0.

Remark 2.6. Clearly there exist recursion schemes that are not safe. Some of
them can be rewritten as safe recursion schemes generating the same tree. There
exist, however, recursion schemes for which there is no safe recursion scheme
generating the same tree [17].

2.4. Higher-Order Pushdown Automata

We actually need to consider two models of higher-order pushdown au-
tomata: nondeterministic (non-branching) automata of Carayol and Wöhrle [5],
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where letters are read by transitions, and deterministic tree-generating au-
tomata of Knapik, Niwiński, and Urzyczyn [7], where there are special com-
mands for creating labeled tree nodes. We use the name edge-labeled pushdown
automata for the former model, and node-labeled pushdown automata for the
latter model.

Most parts of the definition are common for these two models. Let Γ be
a finite set containing a distinguished initial symbol ⊥ ∈ Γ. For every n ∈ N
we define a set PDn(Γ) of stacks of order n over the stack alphabet Γ: we let
PD0(Γ) = Γ, and for n ≥ 1 as PDn(Γ) we take the set of nonempty sequences of
elements of PDn−1(Γ). For such sequences we use the notation [s1, s2, . . . , sk].
The initial stack ⊥n ∈ PDn(Γ) is also defined by induction: ⊥0 = ⊥, and ⊥n =
[⊥n−1] for n ≥ 1. The function top : PDn(Γ)→ Γ returns the topmost symbol of
a stack: we have top(γ) = γ if γ ∈ PD0(Γ), and top([s1, s2, . . . , sk]) = top(sk).

Next, for every n ∈ N we define a finite set Opn(Γ) of operations on these
stacks, where every op ∈ Opn(Γ) is a partial function from PDn(Γ) to PDn(Γ).
Namely, we take Opn(Γ) = {id} ∪ {rewρ | ρ ∈ Γ} ∪ {pushi, popi | 1 ≤ i ≤ n},
where for γ ∈ PD0(Γ) we define id(γ) = γ and rewρ(γ) = ρ, and for s =
[s1, . . . , sk−1, sk] ∈ PDn(Γ) we define
• pushn(s) = [s1, . . . , sk−1, sk, sk];
• popn(s) = [s1, . . . , sk−1] if k ≥ 2;
• op(s) = [s1, . . . , sk−1, op(sk)] if op ∈ Opn(Γ) \ {pushn, popn} and op(sk)

is defined.
Notice that popi(s) remains undefined if the topmost order-i stack of s has size
1. We overload here the operation names: the same name (e.g. pop4) is used
for operations over stacks of different orders.

Having the above, we define an edge-labeled pushdown automaton of order
n as a tuple A = (Q,Σ,Γ, qI ,∆), where Q is a finite set of states, Σ is a
finite input alphabet, Γ is a finite stack alphabet, qI ∈ Q is an initial state, and
∆ ⊆ Q×Γ×(Σ]{ε})×Q×Opn(Γ) is a transition relation. It is assumed that for
every pair (q, γ) either all tuples (q, γ, a, q′, op) ∈ ∆ have a = ε, or all have a ∈ Σ.
The automaton is deterministic if for every pair (q, γ) there is either exactly one
transition (q, γ, a, q′, op), where a = ε, or there are |Σ| such transitions, one for
every a ∈ Σ. A configuration of A is a pair (q, s) ∈ Q × PDn(Γ), and (qI ,⊥n)
is the initial configuration. For a ∈ Σ ∪ {ε}, there is an a-labeled transition

from a configuration (p, s) to a configuration (q, t), written (p, s)
a−→A (q, t), if

in ∆ there is a tuple (p, top(s), a, q, op) such that op(s) = t. The configuration
graph of A is the edge-labeled graph of all configurations of A reachable from
the initial configuration, with an edge labeled by a ∈ Σ∪{ε} from c to d if there

is a transition c
a−→A d.

Let G be the configuration graph of A (or, in general, any (Σ] {ε})-labeled
graph, in which edges leaving every particular node are either all labeled by
elements of Σ, or all labeled by ε). The ε-closure of G is the Σ-labeled graph
obtained from G by removing all nodes with only outgoing ε-labeled edges and
adding an a-labeled edge between v and w if in G there is a path from v to w
labeled by a word in aε∗. Notice that, in particular,
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Figure 9: The configuration graph of the
automaton A1 from Example 2.9

• nodes without any outgoing edges in G are removed in the ε-closure;
• in the ε-closure there may exist nodes without any outgoing edges (result-

ing from nodes whose all potential successors were removed);
• the initial configuration of A is treated as any other node, hence it may

be removed.
The graph generated by A is the ε-closure of the configuration graph of A.

Remark 2.7. One can imagine several nonequivalent definitions of the ε-clo-
sure of a graph, following the same idea, but differing in some details. We use
the particular definition given above in order order to remain consistent with
the literature (in particular with Carayol and Wöhrle [5], and with Carayol’s
PhD thesis [22]).

Example 2.8. Let us start with a degenerate case, where the order is 0. Na-
mely, consider a (deterministic) edge-labeled pushdown automaton A0 = ({q1,
q2, q3}, {a, b}, {⊥}, q1,∆0) of order 0. It has three states (among which q1 is
initial), two input letters, one stack symbol. The transition relation is defined
as the following set:

∆0 = {(q1,⊥, a, q1, id), (q1,⊥, b, q2, id), (q2,⊥, a, q3, id),

(q2,⊥, b, q3, id), (q3,⊥, ε, q3, id)} .

Notice that the stack of A0 is ⊥ in every configuration, and thus it can be
ignored. Thus, A0 is just a nondeterministic finite automaton. Actually, this is
true for every automaton of order 0, even if the symbol on the stack can change.
This is because the stack, taking only one among finitely many values, can be
treated as a part of a state.

The configuration graph of A0 is depicted on Figure 8. Looking from the
top, the nodes correspond to configurations (q1,⊥), (q2,⊥), and (q3,⊥).

In order to obtain the ε-closure of this graph, we remove the node for the
configuration (q3,⊥) (because all edges leaving this node are ε-labeled). Thus,
this ε-closure, that is, the graph generated by A0 is exactly the graph G0 from
Figure 1.
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Example 2.9. As an example of an edge-labeled pushdown automaton of order
1 consider A1 = ({q1, q2, q3, q4}, {a, b}, {⊥}, q1,∆1). Its transition relation is
defined as the following set:

∆1 = {(q1,⊥, a, q1, push1), (q1,⊥, b, q2, id), (q2,⊥, ε, q2, pop1),

(q2,⊥, ε, q3, id), (q3,⊥, b, q3, pop1), (q3,⊥, a, q4, id)} .

Starting from the initial configuration (q1, [⊥]), the automaton A1 can push
some number of ⊥ symbols to the stack, reading the letter a in every such step.
Then, at some moment, it decides to change the state to q2 and read the letter
b. In state q2 some number of stack symbols can be popped, without reading
any letter (ε-transitions), and then the state changes to q3. In state q3 again
some number of stack symbols can be popped, but this time the automaton
reads b in every step. Finally, it can change its state to q4 while reading a. In
state q4 the automaton gets stuck. The configuration graph of A1 is depicted
on Figure 9. A node in the i-th row and j-th column denotes a configuration
with state qi and with j symbols on the stack.

We can observe that the ε-closure of the aforementioned graph (i.e, the graph
generated by A1) is exactly the graph G1 from Figure 3. Indeed, in the ε-closure
we should remove all configurations with state q2 and q4. Moreover, every path
going down from a node in the top row, then left some number of times, and
then down again should be contracted to a single b-labeled edge. Notice that
a-labeled edges between the third and the fourth row disappear in the ε-closure.

We remark that A1 is not deterministic, because of the two ε-transitions
(q2,⊥, ε, q2, pop1), (q2,⊥, ε, q3, id), both having (q2,⊥) on the first two coordi-
nates.

Example 2.10. Let us now present an automaton A2 of order 2 that generates
the graph G2 from Figure 5. We take A2 = ({qi | i ∈ {1, . . . , 8}}, {a, b}, {⊥},
q1,∆2). The transition relation is

∆2 = {(q1,⊥, ε, q1, push1), (q1,⊥, ε, q2, push1), (q2,⊥, ε, q3, push2),

(q3,⊥, ε, q3, pop1), (q3,⊥, ε, q4, push2), (q4,⊥, ε, q4, pop1),

(q4,⊥, ε, q5, pop1), (q5,⊥, a, q6, pop2), (q6,⊥, ε, q2, pop2),

(q5,⊥, b, q7, pop2), (q7,⊥, ε, q8, pop2), (q8,⊥, ε, q2, pop1)} .

This relation is depicted symbolically on Figure 10.
The configurations of A2 that remain in the generated graph are of the form

(q5, [[⊥k+1], [⊥j+1], [⊥i]]), where 1 ≤ i ≤ j ≤ k, and where [⊥i] denotes the
stack of order 1 consisting of i repetitions of the symbol ⊥. Configurations with
the same value of k are grouped in the same clique of G2; the number of pairs
(i, j) such that 1 ≤ i ≤ j ≤ k is indeed k(k + 1)/2.

It is easy to see that configurations with state q5 reachable from the initial
configuration are exactly all configurations of the aforementioned form. More-
over, after reading a the automaton can return to such a configuration with the
value of k unchanged, and with arbitrary values of i and j (in the appropriate
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Figure 10: Transitions of the automaton A2 from Example 2.10

range). Likewise, after reading b the automaton can return to such a configura-
tion with the value of k decreased by 1, and with arbitrary i and j.

Next, we define a node-labeled pushdown automaton of order n as a tuple
A = (Q,Σ,Γ, qI , δ), where Q,Σ,Γ, qI (and configurations) are as previously, and
δ : Q×Γ→ (Q×Opn(Γ))](Σ×Q∗) is a transition function. This time transitions
are not labeled by anything; we have (p, s)→A (q, t) when δ(p, top(s)) = (q, op)
and op(s) = t. We write →∗A for the reflexive transitive closure of →A. We
define when a node-labeled tree over the alphabet Σ ] {ω} is generated by A
from (p, s), by coinduction:
• if (p, s) →∗A (q, t), and δ(q, top(t)) = (a, q1, . . . , qk) ∈ Σ × Q∗, and trees
T1, . . . , Tk are generated by A from (q1, t), . . . , (qk, t), respectively, then
the tree a〈T1, . . . , Tk〉 is generated by A from (p, s);

• if there is no (q, t) such that (p, s) →∗A (q, t) and δ(q, top(t)) ∈ Σ × Q∗,
then ω〈〉 is generated by A from (p, s).

While talking about the tree generated by A, without referring to a configura-
tion, we mean generating from the initial configuration (qI ,⊥n).

Example 2.11. Let us generate the tree Tn1 depicted on Figure 6 using a node-
labeled pushdown automaton of order 1. To this end, we consider an automaton
An1 = ({q1, q2, q3, q

′
1, q
′
2, q
′
3}, {d, e, f}, {⊥}, q1, δ1) whose transition function is

defined by

δ(q1,⊥) = (d, q2, q
′
1) , δ(q2,⊥) = (e, q′2, q3) , δ(q3,⊥) = (f, q′3) ,

δ(q′1,⊥) = (q1, push1) , δ(q′2,⊥) = (q2, pop1) , δ(q′3,⊥) = (q3, pop1) .

Observe that the automaton indeed generates Tn1.

3. Between Caucal Hierarchy and Safe Recursion Schemes

This section is devoted to a proof of the following theorem, making a bridge
between the Caucal hierarchy and safe recursion schemes.

Theorem 3.1. For every n ≥ 1, a graph G is in Graph(n) if and only if it
can be obtained by applying an MSO-interpretation to a tree generated by a safe
recursion scheme of order n− 1.
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Although it is known that the Caucal hierarchy is closely related to safe
recursion schemes, we are not aware of any paper in which a theorem like our
Theorem 3.1 is shown. Nevertheless, we have the following two results, from
Carayol and Wöhrle [5, Theorem 3] and Knapik et al. [7, Theorems 5.1 and 5.3].

Theorem 3.2. For every n ∈ N, a graph G belongs to Graph(n) if and only if
it is generated by some edge-labeled pushdown automaton of order n.

Theorem 3.3. For every n ∈ N, a tree T is generated by some node-labeled
pushdown automaton of order n if and only if it is generated by some safe
recursion scheme of order n.

Example 3.4. We have seen in Examples 2.1 and 2.8–2.10, for i ∈ {0, 1, 2},
a graph Gi that belongs to Graph(i) and that is generated by an edge-labeled
pushdown automaton of order i.

Likewise, the tree Tn1 from Examples 2.2 and 2.11 was generated both by a
node-labeled pushdown automaton of order 1, and by a safe recursion scheme of
order 1. By Theorem 3.3 also the tree Tn3 from Example 2.3, generated by a safe
recursion scheme of order 3, can be generated by some node-labeled pushdown
automaton of order 3.

At the first glance it may seen that Theorem 3.1 can be obtained by directly
composing the above two theorems, but the settings of edge-labeled and node-
labeled pushdown automata are not immediately compatible. Indeed, besides
the superficial syntactical difference between edge-labeled graphs from Theo-
rem 3.2 (and trees being their unfoldings) and node-labeled trees from Theo-
rem 3.3 we have two problems. First, the number of children of a node in an
edge-labeled tree may be infinite, while in a node-labeled tree it is always finite,
and moreover bounded in the whole tree. In this aspect, node-labeled trees are
similar to deterministic edge-labeled trees instead of all edge-labeled trees. To
deal with this, we use a result from Carayol and Wöhrle [5, Theorem 2].

Theorem 3.5. For every G ∈ Graph(n), where n ≥ 1, there exists a tree T
that is an unfolding of a deterministic graph Gn−1 ∈ Graph(n − 1), and an
MSO-interpretation1 I such that G = I(T ).

Remark 3.6. We say here that T is an unfolding of a deterministic graph
Gn−1 ∈ Graph(n− 1). This is a little bit stronger than saying that T is deter-
ministic and belongs to Tree(n). Indeed, the former implies the latter; from the
latter it follows that T is an unfolding of a graph Gn−1 ∈ Graph(n − 1), but
it is possible that T is deterministic while Gn−1 is not (not all nodes of Gn−1

have to contribute to the unfolding T ).

Example 3.7. In order to prove that the graph G2 from Figure 5 belongs to
Graph(2), we have shown in Example 2.1 that it can be MSO-interpreted in

1Carayol and Wöhrle speak about an inverse rational mapping, which is a special case of
an MSO-interpretation.
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the tree T2 from Figure 4. The tree T2 is not deterministic. Moreover, it has
nodes with arbitrarily large arity (the nodes depicted in the top row). Thus,
it is impossible to represent T2 directly as a node-labeled tree generated by
some node-labeled pushdown automaton, because every node-labeled pushdown
automaton enforces some upper bound on the arity of nodes.

However, instead of MSO-interpreting G2 in T2, we can MSO-interpret this
graph in some other tree, for example in T ′2 depicted in Figure 11. In this
tree, instead of a single node with k outgoing b-labeled edges, we have k nodes
with a single b-labeled edge leaving every node; these nodes are connected by
c-labeled edges. We can modify the MSO-interpretation from Example 2.1 so
that it will work well with T ′2. To this end, we additionally require in ϕEa(x, y)
and ϕEb(x, y) that x and y are not targets of a c-labeled edge, and we replace
subformulae connb(x, y) by formulae saying that y is reachable from x via b- or
c-labeled edges.

The tree T ′2 is an unfolding of the graph G′1 depicted in Figure 12. It is
not difficult to see that G′1 ∈ Graph(1). To this end, we can MSO-interpret G′1
in a tree similar to T1 from Figure 2, but with three rows of nodes instead of
two.

A second problem is that an edge-labeled pushdown automaton of order n
generating a deterministic graph need not to be deterministic itself (and only
deterministic edge-labeled automata can be easily turned into node-labeled au-
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tomata). We thus need a result from Parys [24, Theorem 1.1] (proved also in
Carayol’s PhD thesis [22, Corollary 3.5.3]). In the theorem below, we say that
an edge-labeled pushdown automaton is nonblocking if whenever for a reachable
configuration (p, s) there is a transition (p, top(s), a, q, op), then the operation
op can be applied to s (this means that the automaton never tries to pop from
a stack having only a single element).

Theorem 3.8. If a deterministic graph is generated by some edge-labeled push-
down automaton of order n, then it is also generated by some nonblocking de-
terministic edge-labeled pushdown automaton of order n.

Example 3.9. The most natural edge-labeled pushdown automaton of order 1
generating the graph G′1 is obtained by changing the letters labeling transitions
in the automaton A1 from Example 2.9 (and changing the alphabet to {a, b, c}).
Namely, the transition relation should become

∆′1 = {(q1,⊥, a, q1, push1), (q1,⊥, c, q2, id), (q2,⊥, c, q2, pop1),

(q2,⊥, b, q3, id), (q3,⊥, b, q3, pop1), (q3,⊥, a, q4, id)} .

This automaton is not deterministic, formally, but only for a very superficial
reason. Namely, in the definition of a deterministic automaton, we require that
for every pair (q, γ) there is either an ε-transition, or exactly one transition for
every letter in the alphabet; here some of those transitions are missing. We
can thus add a transition (q4,⊥, ε, q4, id), and transitions (qi,⊥, d, q4, id) for
(i, d) ∈ {(1, b), (2, a), (3, c)}; this does not change the generated graph.

There are, however, other automata generating G′1, which can be nondeter-
ministic in a more severe sense. For example, besides the transition (q4,⊥, ε, q4,
id), we may have a transition (q4,⊥, ε, q4, push1). They cannot exist both in a
deterministic automaton, one of them has to be removed.

Another example: assuming now that q0 is initial (and that there is also a
stack symbol γ besides ⊥), there can be additional transitions:

{(q0,⊥, ε, q5, push1), (q5,⊥, ε, q5, rewγ), (q5, γ, ε, q5, push1),

(q5, γ, ε, q6, pop1), (q6, γ, ε, q1, pop1)} .

These transitions push the γ symbol arbitrarily many times, then they pop it
exactly twice, and later the automaton requires that the topmost stack symbol
is ⊥. Thus, there is exactly one “successful” way of proceeding: the automaton
has to push γ exactly twice. Notice, however, that such a run uses both the
“conflicting” transitions, (q5, γ, ε, q5, push1) and (q5, γ, ε, q6, pop1). This means
that the automaton cannot be determinised by simply removing some transi-
tions.

The above gives us some taste of why Theorem 3.8 is nontrivial. Let us also
remark that the problem is not artificial: the automata created in the proof of
Theorem 3.2 for deterministic graphs can be indeed nondeterministic.
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Figure 13: A transformation of a node-labeled tree T to an edge-labeled tree trn2e(T ). Trees
T ′
1, T

′
2, T

′
3 are obtained by transforming the subtrees T1, T2, T3. Recall that children in a

node-labeled tree are ordered.

In order to finish a proof of Theorem 3.1, it remains to show how to switch
between node-labeled pushdown automata and deterministic edge-labeled push-
down automata. We do that in the remaining part of this section. The proofs
are a bit technical, but essentially straightforward.

We first show how to switch from the node-labeled setting to the edge-labeled
setting. To this end, we define a transformation trn2e that maps every node-
labeled tree T (which is a structure over the signature Ξnlt

Σ,kmax
) to a similar edge-

labeled tree trn2e(T ) (which is a structure over the signature ΞΣ∪{♥,],1,...,kmax}).
In order to obtain the tree trn2e(T ) out of T we proceed as follows:
• for every a-labeled node u of T having children u1, . . . , uk, where a ∈ Σ,

we create in trn2e(T ) three additional nodes vu, wu, zu, and we create a ♥-
labeled edge from u to zu, a ]-labeled edge from u to vu, an a-labeled edge
from vu to wu, and an i-labeled edge from vu to ui, for every i ∈ {1, . . . , k};

• for every ω-labeled node u of T we create in trn2e(T ) an additional node
zu, and a ♥-labeled edge from u to zu.

The transformation is depicted on Figure 13.
Having defined the transformation, we prove that it is compatible with push-

down automata and with MSO-interpretations.

Lemma 3.10. For every node-labeled pushdown automaton An generating a
tree T there exists an edge-labeled pushdown automaton Ae being of the same
order as An and such that trn2e(T ) is an unfolding of the graph generated by Ae.

Proof. LetAn = (Q,Σ,Γ, qI , δ). As the set of states ofAe we take (Q×{0, 1})]
{qA, qB} (the states of the form (q, i) are needed for splitting an edge to a child
into two edges, and the states qA, qB are needed for creating the additional a-
labeled and ♥-labeled edges). The input alphabet ofAe is Σ]{♥, ], 1, . . . , kmax},
where kmax is the maximal number k for which there is a transition of the form
δ(p, γ) = (a, q1, . . . , qk) in An. The stack alphabet of Ae remains Γ, and the
initial state becomes (qI , 0). We modify the transitions as follows:
• for every state q ∈ Q and every stack symbol γ ∈ Γ, we create transitions

((q, 0), γ,♥, qA, id) and ((q, 0), γ, ], (q, 1), id);
• for every stack symbol γ ∈ Γ, we create a transition (qA, γ, ], qB , id);
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• whenever δ(p, γ) = (q, op) is a transition ofAn, inAe we create a transition
((p, 1), γ, ε, (q, 1), op);

• whenever δ(p, γ) = (a, q1, . . . , qk) is a transition of An, in Ae we create
transitions ((p, 1), γ, i, (qi, 0), id) for i ∈ {1, . . . , k}, and ((p, 1), γ, a, qA, id).

It is not difficult to see that Ae actually generates a graph whose unfolding
(from the initial configuration) is trn2e(T ). Indeed, for every configuration (p, s)
of An we have one of the following two cases:
• One possibility is that from (p, s) the automaton An creates an ω-labeled

node of T , that is, while performing transitions from (p, s) it never reaches
a configuration (q, t) with δ(q, top(t)) being of the form (a, q1, . . . , qk).
Then from ((p, 0), s) in Ae we have a ♥-labeled transition to (qA, s), and
a ]-labeled transition to ((p, 1), s). From (qA, s) there is a ]-labeled tran-
sition to (qB , s), and then the automaton gets stuck. From ((p, 1), s) the
automaton Ae can perform some ε-transitions, simulating the transitions
of An, but it never reaches a configuration from which some letter can
be read. In consequence, in the ε-closure (i.e., in the generated graph)
there remain the configurations ((p, 0), s) and (qA, s), together with the
♥-labeled edge; the configurations ((p, 1), s) and (qB , s) get removed (to-
gether with the ]-labeled edges leading to them).

• The other possibility is that from (p, s) the automaton An creates an
a-labeled node of T for some a ∈ Σ, that is, that (p, s) →∗An

(q, t) for a
configuration with δ(q, top(t)) = (a, q1, . . . , qk). Then again from ((p, 0), s)
inAe we have a♥-labeled transition to (qA, s), and a ]-labeled transition to
((p, 1), s). From (qA, s) there is a ]-labeled transition to (qB , s), and then
the automaton gets stuck. From ((p, 1), s) the automaton Ae (without
reading any letters) simulates the transitions of An, leading to ((q, 1), t).
From this configuration there is an a-labeled transition to (qA, t), then a ]-
labeled transition to (qB , t), and then the automaton gets stuck. Because
the configurations (qB , s) and (qB , t) have no successors, they are not
present in the ε-closure; what remains is a ♥-labeled edge from ((p, 0), s)
to (qA, s), a ]-labeled edge from ((p, 0), s) to ((q, 1), t), and an a-labeled
edge from ((q, 1), t) to (qA, t). From ((q, 1), t) the automaton also has
an i-labeled transition to ((qi, 0), t), for every i ∈ {1, . . . , k}. This edge
remains in the ε-closure, since from ((qi, 0), t) at least the ♥ letter can be
read.

Lemma 3.11. Let L ∈ {MSO,MSO+U}. If G = I(T ) for some L-interpreta-
tion, and for some node-labeled tree T , then there exists an L-interpretation I ′

such that G = I ′(trn2e(T )).

Proof. In order to obtain I ′ out of I, in every formula ϕEa(x, y),
• we additionally say that in both x and y there starts a ♥-labeled edge (i.e.,

that ∃z. E♥(x, z)∧∃z. E♥(y, z) holds); nodes satisfying these requirements
are exactly the nodes that come from T ;

• likewise, we relativize the quantification in every formula of I ′ to nodes
with an outgoing ♥-labeled edge;

19



a3

T3 T4 T6 T ′3 T ′4
T ′6

=⇒

�

a4
a6

ω
ω ω

Figure 14: A transformation of a deterministic edge-labeled tree T to a node-labeled tree
tr e2n(T ). It is assumed that Σ = {a1, . . . , a6}. Trees T ′
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the subtrees T3, T4, T6.

• moreover, we replace every atom La(x) for a ∈ Σ (checking that the node
x is labeled by a) by the formula ∃y.∃z. (E](x, y) ∧Ea(y, z)), every atom
Lω(x) (checking that x is labeled by ω) by the formula ¬∃y.E](x, y), and
every atom Chi(x, y) (checking that y is the i-th child of x) by the formula
∃z. (E](x, z) ∧ Ei(z, y)).

The equality I(T ) = I ′(trn2e(T )) is straightforward.

While proving Theorem 3.1, Lemma 3.11 is needed only for L = MSO; the
version with L = MSO+U is useful in Section 5. The situation is the same for
the next lemma, which summarizes the right-to-left part of Theorem 3.1, and
simultaneously has a counterpart for the MSO+U logic.

Lemma 3.12. Let L ∈ {MSO,MSO+U}. For every n ≥ 1, if a graph G can be
obtained by applying an L-interpretation to a tree generated by a safe recursion
scheme of order n− 1, then G can be obtained by applying an L-interpretation
to a tree from Tree(n).

Proof. Suppose that G = I(T ) for some L-interpretation I and for some safe
recursion scheme G of order n − 1 generating a tree T . By Theorem 3.3, T is
generated by a node-labeled pushdown automatonAn of order n−1. Lemma 3.10
gives us then an edge-labeled pushdown automaton Ae of order n− 1 such that
trn2e(T ) is an unfolding of the graph generated by Ae. Moreover, by Lemma 3.11
there is an L-interpretation I ′ such thatG = I ′(trn2e(T )). To finish the proof, we
use Theorem 3.2 to say that the graph generated by Ae belongs to Graph(n−1);
in consequence, its unfolding trn2e(T ) belongs to Tree(n).

We now come to the opposite direction of Theorem 3.1. In this part, for
every deterministic edge-labeled tree T over an alphabet Σ we define a {�, ω}-
node-labeled tree tr e2n(T ) corresponding to T . To this end, we fix some order on
the letters in Σ: let Σ = {a1, . . . , ak}. To the tree tr e2n(T ) we take all nodes of
T , and we label them by �. Moreover, we say that the edge that was ai-labeled
in T , in tr e2n(T ) leads to the i-th child (recall that children in node-labeled
trees are ordered, while in edge-labeled trees they are unordered). Finally, for
every node u of T , and every i ∈ {1, . . . , k} such that there is no ai-labeled edge
leaving u, as the i-th child of u in T ′ we attach a fresh ω-labeled node. The
tr e2n transformation is depicted on Figure 14.
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Like previously, we have to prove that the transformation is compatible with
pushdown automata and with interpretations.

Lemma 3.13. For every nonblocking deterministic edge-labeled pushdown au-
tomaton Ae generating a graph G, and for every node r of G, there exists a
node-labeled pushdown automaton An being of the same order as Ae and gener-
ating the tree tr e2n(Unf (G, r)).

Proof. Let A′e be a modification of Ae that first (deterministically) reaches
the configuration r using ε-transitions, and then operates as Ae from r. Notice
that A′e remains deterministic and nonblocking.

We now change A′e = (Q,Σ,Γ, qI ,∆) into a node-labeled pushdown automa-
ton An, intended to generate tr e2n(Unf (G, r)). Let n be the order of Ae (and of
A′e). We take Q ∪ (Q×Opn(Γ)) as the set of states of An, and {�} as its input
alphabet. The stack alphabet remains Γ, and the initial state remains qI . We
suppose here that Σ = {a1, . . . , ak}, like in the definition of tr e2n. For pairs (p, γ)
being a source of ε-transitions (p, γ, ε, q, op) we define δ(p, γ) = (q, op). If from
a pair (p, γ) we have transitions (p, γ, a1, q1, op1), . . . , (p, γ, ak, qk, opk) (by the
definition of a deterministic automaton, there is exactly one transition for every
letter in Σ), we define δ(p, γ) = (�, (q1, op1), . . . , (qk, opk)). Moreover, for every
state (q, op) ∈ Q×Opn(Γ) and for every γ ∈ Γ we define δ((q, op), γ) = (q, op).

Let us now observe that An indeed generates tr e2n(Unf (G, r)). To this end,
we prove by coinduction that if (p, s) is a node of G (which simultaneously
is a configuration of A′e and of An) then tr e2n(Unf (G, (p, s))) equals the tree
generated by An from (p, s). When applied to the configuration r this gives what
we want, because the tree generated by An from r equals the tree generated by
An from its initial configuration (qI ,⊥n) (this is the case because (qI ,⊥n)→∗An

r).
For a step of coinduction, consider thus a node (p, s) of G. On the one hand,

because (p, s) remains in the ε-closure G, in the transition relation of A′e we have
some transitions (p, top(s), a1, q1, op1), . . . , (q, top(s), ak, qk, opk), one per every
letter of Σ. On the other hand, in An we have δ(p, top(s)) = (�, (q1, op1), . . . ,
(qk, opk)), so the tree generated by An from (p, s) is �〈T ′1, . . . , T ′k〉, where T ′i
are the trees generated by An from ((qi, opi), s), for i ∈ {1, . . . , k}. For every
i ∈ {1, . . . , k} we have one of two cases.
• One case is that in G an ai-labeled edge starts in (p, s). This means that

from (qi, opi(s)) there is a sequence of ε-transitions to a configuration (q, t)
that belongs to G. Then, in An we have ((qi, opi), s)→An (qi, opi(s))→∗An

(q, t). This in particular means that the tree generated by An from (q, t)
equals T ′i , that is, the tree generated by An from ((qi, opi), s). By the
assumption of coinduction, tr e2n(Unf (G, (q, t))) = T ′i .

• The opposite case is that in G no ai-labeled edge starts in (p, s). This
means that when A′e starts performing ε-transitions from (qi, opi(s)) it
only reaches configurations (q, t) for which in ∆ we only have ε-transitions
(q, top(t), ε, q′, op). The fact that A′e is nonblocking is important here: if
A′e reaches a configuration (q, t) with a transition (q, top(t), aj , q

′, op) in
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∆, then the aj-labeled transition could be indeed executed (op could be
applied to t), so (q, t) would be a node of G (there would be an ai-labeled
edge from (p, s) to (q, t)). In consequence also in An there is no (q, t) such
that ((qi, opi), s)→∗An

(q, t) and such that δ(q, top(t)) wants to read the �
letter; the tree generated by An from ((qi, opi), s) is ω〈〉.

In the light of the above, it follows directly from the definition of the transfor-
mation tr e2n that indeed tr e2n(Unf (G, (p, s))) equals �〈T ′1, . . . , T ′k〉.

Lemma 3.14. If G = I(T ) for some MSO-interpretation, and for some de-
terministic edge-labeled tree T , then there exists an MSO-interpretation I ′ such
that G = I ′(tr e2n(T )).

Proof. In order to obtain I ′ out of I, in every formula ϕEa(x, y),
• we additionally say that both x and y are labeled by � (i.e., that L�(x) ∧
L�(y) holds); nodes satisfying these requirements are exactly the nodes
that come from T ;

• likewise, we relativize the quantification in every formula of I ′ to nodes x
satisfying L�(x);

• moreover, we replace every atom Eai(x, y) (checking that there is an ai-
labeled edge from x to y) by the atom Chi(x, y) (checking that y is the
i-th child of x).

The equality I(T ) = I ′(tr e2n(T )) is straightforward.

Having all the above theorems and lemmata, it is now easy to prove Theo-
rem 3.1.

Proof (Theorem 3.1). Suppose first that G can be obtained by applying an
MSO-interpretation to a tree generated by a safe recursion scheme of order n−1.
Then, by Lemma 3.12, it can be obtained by applying an MSO-interpretation
to a tree from Tree(n), which simply means that G belongs to Graph(n).

For the opposite direction, consider some graph G ∈ Graph(n). We first
use Theorem 3.5 to say that there exists a tree T that is an unfolding of a
deterministic graph Gn−1 ∈ Graph(n − 1), and an MSO-interpretation I such
that G = I(T ). By Theorem 3.2 we obtain that Gn−1 is generated by some
edge-labeled pushdown automaton Ae of order n − 1. Because of Theorem 3.8
we can assume that Ae is deterministic and nonblocking. Lemma 3.13 gives
us a node-labeled pushdown automaton An of order n− 1 generating tr e2n(T ),
and Lemma 3.14 gives us an MSO-interpretation I ′ such that G = I ′(tr e2n(T )).
Finally, we use Theorem 3.3 to say that tr e2n(T ) (a tree generated by a node-
labeled pushdown automaton of order n − 1) is generated by a safe recursion
scheme of order n− 1.

Remark 3.15. The technicality of the proof of Theorem 3.1 is a consequence of
a syntactic incompatibility between the node- and edge-labeled settings. Besides
the details arising from this incompatibility, in the right-to-left direction of this
proof, we simply need to use right-to-left directions of Theorems 3.3 and 3.2.
In the left-to-right direction, besides the left-to-right directions of Theorems 3.2
and 3.3, we needed to use also Theorems 3.5 and 3.8.
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Example 3.16. We have seen in Example 2.1 a graph G2, which belonged
to Graph(2). By Theorem 3.1, this graph can be obtained by applying an
MSO-interpretation to a tree generated by a safe recursion scheme of order 1.
Indeed, we show below how to MSO-interpret this graph in the tree Tn1 from
Example 2.2, generated by the recursion scheme G1. Recall that Tn1 is consists
of a shaft of d-labeled nodes, and below each of those nodes there is a tooth
containing nodes labeled by e, f , and ω. To the k-th clique G2 we should take all
f -labeled nodes from the k-th tooth of Tn1. We now write consecutive formulae:

ϕ1(z, z′) ≡ (Ch1(z, z′) ∨ Ch2(z, z′)) ∧ (Le(z) ∨ Lf (z)) ∧ (Le(z
′) ∨ Lf (z′))

says that that z, z′ belong to a tooth, and that there is an edge from z to z′;

ϕ2(X) ≡ ∀z.∀z′. (z ∈ X ∧ (ϕ1(z, z′) ∨ ϕ1(z′, z))⇒ z′ ∈ X)

says that X contains whole teeth;

ϕ3(x, y) ≡ ∀X. (x ∈ X ∧ ϕ2(X)⇒ y ∈ X) .

says that x and y belong to the same tooth; finally

ϕ4(x, y) ≡ ∃zx.∃zy. (Ld(zx) ∧ Ch1(zx, x) ∧ Ch2(zx, zy) ∧ Ch1(zy, y))

says that x and y are topmost nodes of two consecutive teeth. In G2, we create
a-labeled edges between f -labeled nodes remaining in the same tooth:

ϕEa(x, y) ≡ Lf (x) ∧ Lf (y) ∧ ϕ3(x, y) ,

and we create b-labeled edges between f -labeled nodes in consecutive teeth:

ϕEb(x, y) ≡ ∃tx.∃ty. (Lf (x) ∧ Lf (y) ∧ ϕ3(x, tx) ∧ ϕ3(y, ty) ∧ ϕ4(ty, tx)) .

4. Closure under MSO+Ufin-interpretations

We now present the main theorem of this paper.

Theorem 4.1. For every n ∈ N, if G ∈ Graph(n) and if I is an MSO+Ufin-
interpretation, then I(G) ∈ Graph(n).

In Section 5 we prove that Theorem 4.1 does not hold if we consider inter-
pretations in the full MSO+U logic, already when G ∈ Tree(2) ⊆ Graph(2).
Nevertheless, we can prove the result for n ≤ 1, as stated below.

Theorem 4.2. For n ∈ {0, 1}, if G ∈ Graph(n) and if I is an MSO+U-
interpretation, then I(G) ∈ Graph(n).

Proofs of these theorems base on our previous work [25], which we recall
below, in Lemma 4.3. We say that a (Σ × Γ)-node-labeled tree T ′ enriches a
Σ-node-labeled tree T , if it has the same nodes, and every node u labeled in T
by some a is labeled in T ′ by a pair in {a} × Γ.
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Lemma 4.3. Let n ∈ N and L = MSO+Ufin, or let n = 0 and L = MSO+U.
For every formula ϕ of L with free variables in VFO ∪ Vfin , and for every safe
recursion scheme G of order n generating a tree T , there exists a safe recursion
scheme G+ of order n that generates a tree T ′ enriching T , and a formula ϕMSO

of MSO such that for every valuation ν in T (defined at least for all free variables
of ϕ) it holds that T ′, ν |= ϕMSO if and only if T, ν |= ϕ.

Proof. For L = MSO+Ufin, this result was shown by Parys [25, Lemma 5.4],
without observing that the resulting recursion scheme G+ is of the same order
as G, and that it is safe when G is safe. We thus need to inspect the proof, to
see this. Although the proof is not so simple, it applies only two basic kinds of
modifications to the recursion scheme G, in order to obtain G+.

First, it uses a construction of Haddad [26, Section 4.2] (described also by
Parys [27, Section B.1]) to compose a recursion scheme with a morphism into a
finitary applicative structure. It is already observed by Parys [27, Lemma 10.3]
that this construction preserves the order. We shall see that it preserves safety
as well. To this end, we recall basic elements of this translation. First, for every
type α, a new type α• is defined by a structural induction:

o• = o and (β→ γ)• = β•→ · · · → β•︸ ︷︷ ︸
kβ

→γ• ,

where kβ is some positive number depending on β. We immediately see that
ord(α•) = ord(α) (this transformation replicates some arguments, but their
orders remain unchanged).

Next, there is defined a transformation on terms, again by a structural in-
duction:
• a variable of type α is transformed into some variable of type α•;
• a nonterminal of type α is transformed into some nonterminal of type α•;
• a term of the form a〈K1, . . . ,Kk〉 is transformed into a term of the form
a′〈K ′1, . . . ,K ′k〉 for some letter a′ (depending on the original term), and
for some terms K ′1, . . . ,K

′
k, obtained by transforming K1, . . . ,Kk, respec-

tively.
• a term of the form K L, where L is of type β, is transformed into a term

of the form K ′ L′1 . . . L
′
kβ

, for some term K ′ obtained by transforming K,

and for some terms L′1, . . . , L
′
kβ

obtained by transforming L.
Let us observe two things; both follow from the above definition by a straight-

forward structural induction. First, if M ′ is obtained by transforming a term
M of type α, then M ′ is of type α•; in particular ord(M) = ord(M ′). Second,
if M ′ has a free variable x′, then M has a free variable x of some type α such
that x′ is of type α• (again, in particular ord(x′) = ord(x)).

Suppose now that a term M ′ was obtained by transforming a term M . We
prove, by a structural induction, that if M is safe, then also M ′ is safe. If M is
a variable or a nonterminal, then M ′ as well, so M ′ is safe. Likewise, if M is of
the form a〈K1, . . . ,Kk〉, then the subterms K ′1, . . . ,K

′
k of M ′ = a′〈K ′1, . . . ,K ′k〉

are safe by the induction assumption, so M ′ is safe. The only interesting case is
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when M is an application, M = K L1 . . . Lk, and all the subterms K,L1, . . . , Lk
are safe. The term after the transformation can be written as

M ′ = K ′ L′1,1 . . . L
′
1,k1 . . . L

′
k,1 . . . L

′
k,kk

,

where K ′ is obtained by transforming K, and every L′i,j is obtained by trans-
forming Li. By the induction assumption, K ′ and all L′i,j are safe. Consider
now a free variable x′ of M ′. As said above, M has a free variable x such
that ord(x′) = ord(x), and ord(M) = ord(M ′). By safety of M we have that
ord(x′) = ord(x) ≥ ord(M) = ord(M ′), which implies that M ′ is safe. This
shows that the construction of Haddad [26, Section 4.2] preserves safety of the
recursion scheme.

Besides the above construction, in the proof of Parys [25, Lemma 5.4], there
is a second basic set of modifications applied to the recursion scheme: compo-
sition with finite tree transducers. This is realized by converting the recursion
scheme to a collapsible pushdown automaton that generates the same tree [15],
composing the automaton with the transducer, and then converting it back to
a recursion scheme. When the original recursion scheme is safe, we can convert
it to a higher-order pushdown automaton. As stated in Theorem 3.3, this pre-
serves the order. Composing a higher-order pushdown automaton with a finite
tree transducer is as easy as for collapsible pushdown automata, and clearly
preserves the order. Then, the resulting pushdown automaton can be converted
back to a safe recursion scheme, again using Theorem 3.3.

The above finishes the proof of Lemma 4.3 for L = MSO+Ufin. Let us now
concentrate on the MSO+U logic, where we assume that n (i.e., the order of G)
equals 0. We base here on the same result of Parys [25, Lemma 5.4]. Its proof
can be split into two parts:

1. given a node-labeled tree T , and a formula ϕ with free variables in VFO ∪
Vfin , the proof defines a tree T ′ enriching T , and a formula ϕMSO of MSO
such that for every valuation ν in T it holds that T ′, ν |= ϕMSO if and
only if T, ν |= ϕ;

2. then, it is shown that if T is generated by a recursion scheme of order n,
then T ′ as well.

As observed by Parys [28, Theorem 3.2], the proof of part 1 works (without
any significant changes) also for formulae ϕ from the full MSO+U logic. The
assumption that ϕ ∈ MSO+Ufin (i.e., the assumption that subformulae starting
with U have all their free variables in VFO ∪ Vfin) is only needed for part 2.
Thus, from part 1, which we are allowed to use, we obtain a tree T ′, a formula
ϕMSO of MSO, and the equivalence (T ′, ν |= ϕMSO)⇔ (T, ν |= ϕ).

Moreover, as again observed by Parys [28, Theorem 3.2], in the tree T ′

resulting from the proof, the new part of the label of every node x of T is
determined by the subtree of T starting in x. In consequence, it is easy to
convert the scheme G (of order 0) generating T into a scheme G′ (again of order
0) generating T ′. To this end, we only need to change the labels that appear in
rules of the scheme; the shape of the rules remains the same. Namely, consider
a place in a rule where some label is generated, that is, a subterm of the form
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a〈K1, . . . ,Kk〉. Let U be the tree generated by G from a〈K1, . . . ,Kk〉 (this is
well defined, because the term uses no variables—the scheme is of order 0). If
U is a subtree of T , we change the label a in a〈K1, . . . ,Kk〉 into the root’s label
of the corresponding subtree of T ′. (Formally, it is also possible that U is not a
subtree of T ; this means that the subterm is not used while generating T from
the starting nonterminal, so we do not need to change the label in this case.)
This finishes the proof in the case of n = 0 and L = MSO+U.

Corollary 4.4. Let n ∈ N and L = MSO+Ufin, or let n = 0 and L = MSO+U.
For every safe recursion scheme G of order n generating a tree T , and every L-
interpretation I evaluated in T , there exists a safe recursion scheme G+ of order
n generating a tree T+, and an MSO-interpretation IMSO such that IMSO(T+) =
I(T ).

Proof. Suppose that I = (ϕi)i∈{1,...,k}. Basically, we apply Lemma 4.3 con-
secutively for all the formulae of I. More precisely, after i − 1 steps (where
i ∈ {1, . . . , k}) we have a recursion scheme Gi−1 (assuming G0 = G) that gener-
ates a tree Ti−1 enriching T . We modify ϕi to ϕ′i that evaluated in Ti−1 behaves
like ϕi evaluated in T , that is, ignores the part of labels of Ti−1 that was not
present in T . Using Lemma 4.3 for the recursion scheme Gi−1 and for the for-
mula ϕ′i we obtain a recursion scheme Gi that generates a tree Ti enriching Ti−1

(hence enriching T ), and an MSO formula ϕ′MSO,i such that for every valuation
ν in T (defined at least for free variables of ϕi) it holds that Ti, ν |= ϕ′MSO,i

if and only if Ti−1, ν |= ϕ′i, that is, if and only if T, ν |= ϕi. At the very end,
for every i ∈ {1, . . . , k} we modify ϕ′MSO,i into ϕMSO,i that ignores the part of
labels of Tk appended after step i; we then have Tk, ν |= ϕMSO,i if and only if
Ti, ν |= ϕ′MSO,i, that is, if and only if T, ν |= ϕi. Taking G+ = Gk, T+ = Tk,
and IMSO = (ϕMSO,i)i∈{1,...,k} we have IMSO(T+) = I(T ), as required. All the
created recursion schemes are safe and of order n.

Remark 4.5. Lemma 4.3 and Corollary 4.4 hold also for arbitrary (not neces-
sarily safe) recursion schemes. It is important for us, however, that if we start
with a safe recursion scheme G, the resulting recursion scheme G+ is safe as well.

Example 4.6. Consider a tree Tsq = T1,1, where

Tk,1 = a〈Uk, Tk+1,k+1〉 ; Tk,j = a〈Bk, Tk,j−1〉 for j ≥ 2 ;

Uk = b〈Fk!, b〈F2k!, b〈F3k!, . . .〉〉〉 ; Bk = b〈Fk!, b〈Fk!, b〈Fk!, . . .〉〉〉 ;
F0 = d〈〉 ; and Fi = c〈Fi−1〉 for i ≥ 1.

In other words, on the rightmost branch of Tsq we have an infinite sequence
of a-labeled nodes, and to the left of every a-labeled node there is attached some
comb. On the rightmost branch of each comb we have an infinite sequence of b-
labeled nodes, and to the left of every b-labeled node there is attached a branch
consisting of some number of c-labeled nodes, and finished with a d-labeled node.
There are two kinds of combs; call them bounded combs and unbounded combs.
The first comb is unbounded, and then between the (k−1)-th unbounded comb
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Figure 15: The tree Tsq from Example 4.6

and the k-th unbounded comb there are k − 1 bounded combs. In a bounded
comb, located between the (k − 1)-th and the k-th unbounded comb, all teeth
contain the same number of c-labeled nodes, namely k!. On the other hand, in
the k-th unbounded comb, the number of c-labeled nodes grows: it equals i · k!
in the i-th tooth. The tree Tsq is depicted on Figure 15.

One can see that Tsq is generated by a safe recursion scheme Gsq with the
following rules:

S → X F DC , X t x y → t y (X (Gt) (Y x) (x y)) ,

Y x y z → y (x y z) , D y z → y (y z) , C z → c〈z〉 ,
F y u→ a〈U y d〈〉, u〉 , G t y u→ a〈B (y d〈〉), t y u〉 ,

B z → b〈z,Bz〉 , U y z → b〈z, U y (y z)〉 ,

where types of the variables are, respectively,

x, t : (o→ o)→ o→ o , y : o→ o , z, u : o .

It is quite clear that in MSO+Ufin we can distinguish bounded combs from
unbounded combs. Indeed, we can write the following formulae:

ψi(y,X) ≡ ∀x ∈ X.∃z. (Chi(z, x) ∧ (z ∈ X ∨ z = y)) ,

for i ∈ {1, 2}, saying that elements of X are consecutive nodes on a branch
starting directly below the node y, and going down always to the i-th child; and

ψU (x) ≡ UX.∃finY.∃y ∈ Y. ψ1(y,X) ∧ ψ2(x, Y ) .
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Figure 16: The graph I(Tsq) from Example 4.6

The formula ψU (x) holds for x being a root of a comb exactly when the comb
is unbounded (here X is a set of nodes on a single tooth of the comb and Y is
a top part of the shaft of the comb).

We now define an MSO+Ufin-interpretation I. For every unbounded comb
we create an a-labeled edge leading to the root of this comb from its parent:

ϕEa(x, y) ≡ La(x) ∧ Ch1(x, y) ∧ ψU (y) .

Moreover, we connect all a-labeled nodes (located on the rightmost branch of
Tsq) by b-labeled edges:

ϕEb(x, y) ≡ La(x) ∧ Ch2(x, y) .

In consequence, the graph I(Tsq), depicted on Figure 16, consists of an infi-
nite branch (b-labeled edges), where in some nodes there additionally starts an
a-labeled edge. The distance between the (k−1)-th and the k-th additional edge
is k, exactly like the distance between the (k − 1)-th and the k-th unbounded
comb in Tsq.

In our formulae we have used the U quantifier. One can prove that there is
no MSO formula ψ′U (x) that holds only in roots of unbounded combs. Indeed,
in MSO we can count the length of a tooth only modulo some fixed number n,
but k! equals j · k! modulo n, for every k ≥ n. Likewise, we cannot determine
which comb is bounded by counting its number from the top of the whole tree
Tsq. (More formally, we can convert the hypothetical MSO formula ψ′U (x) into
a finite automaton that reads a tree with one node marked. Then, using a
pumping lemma, we can show that if the automaton accepts the tree where the
root of an unbounded comb is marked, then it also accepts the tree where the
root of some bounded comb is marked). Having this in mind, we conjecture that
I(Tsq) cannot be MSO-interpreted in Tsq: it is difficult to imagine how nodes in
appropriate distances can be found somewhere in Tsq.

Nevertheless, by Corollary 4.4 there is a recursion scheme G+ of the same
order as Gsq, generating a tree T+ (from the proof we know that T+ enriches
Tsq), and an MSO-interpretation IMSO such that IMSO(T+) = I(Tsq). In our
case it is easy to show appropriate G+, T+, and IMSO . Indeed, it is enough to
use some different letter b′ instead of b on shafts of unbounded combs. This
way, it becomes trivial to detect whether a comb is unbounded: we can replace
the MSO+Ufin formula ϕEa by the MSO formula

ϕEa(x, y) ≡ La(x) ∧ Ch1(x, y) ∧ Lb′(y) .

Moreover, in order to generate T+ by a recursion scheme, we should only change
b to b′ in the rule for the nonterminal U .
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Having Corollary 4.4 and Theorem 3.1, we conclude the proof of our main
theorem, Theorem 4.1, along with Theorem 4.2.

Proof (Theorems 4.1 and 4.2). Let L be the considered logic; namely, let
L = MSO+Ufin for Theorem 4.1 and L = MSO+U for Theorem 4.2. The class
Graph(0) contains exactly all finite graphs, and while interpreting in a finite
graph we can only obtain a finite graph; this establishes the theorem for n = 0.
We thus assume below that n ≥ 1. In this case, the left-to-right implication of
Theorem 3.1 gives us a safe recursion scheme G of order n− 1 generating a tree
T , and an MSO-interpretation I2 such that I2(T ) = G.

Suppose that I2 = (ϕEa(x1, x2))a∈Λ and I = (ψEα(x1, x2))α∈Σ (where I
is the L-interpretation from the statement of the theorems). We create an
L-interpretation I3 such that I3(T ) = I(I2(T )) = I(G). To this end, in every
formula ψEα of I we replace every atomic formula Ea(y, z) by the corresponding
formula ϕEa(y, z) of I2. Moreover, quantification in ψEα should be relativized
to those nodes of T that are actually taken to G, that is, to nodes y satisfying
∃z.

∨
a∈Λ(ϕEa(y, z) ∨ ϕEa(z, y)) (i.e., satisfying ϕEa(y, z) or ϕEa(z, y) for some

a ∈ Λ and for some node z of T ).
Corollary 4.4 gives us then a safe recursion scheme G+ of order n−1 generat-

ing a tree T+, and an MSO-interpretation IMSO such that IMSO(T+) = I3(T ) =
I(G). We conclude that I(G) ∈ Graph(n) by the right-to-left implication of
Theorem 3.1.

5. MSO+U-Interpretations Lead to Difficult Graphs

In this section we consider the full MSO+U logic, for which we prove the
following theorem.

Theorem 5.1. There is a tree T ∈ Tree(2) and an MSO+U-interpretation I
such that I(T ) is a graph with an undecidable MSO theory; in consequence,
I(T ) 6∈ Graph(n) for any n ∈ N.

One can expect such a result, since the MSO+U logic is undecidable over
infinite words [20]. We remark, though, that undecidability of a logic does not
automatically imply that the logic can define some complicated (“undecidable”)
sets. For example, over rational numbers the MSO logic with quantification over
cuts (real numbers) defines the same sets as the standard MSO logic quantify-
ing only over rational numbers [29], but the latter logic is decidable while the
former is not [30, 31]. However, using arguments from topological complexity
one can easily see that MSO+U is more expressive than MSO+Ufin: it is known
that MSO+U can define sets located arbitrarily high in the projective hierar-
chy [32], while the topological complexity of MSO+Ufin can be bounded using
the automata model given by Parys [25]. Nevertheless, expressivity of the logic
itself does not imply anything in the matter of interpretations: as we have seen
in previous sections, MSO+Ufin is more expressive than MSO, and MSO is more
expressive than FO, but interpretations in these logics define the same hierarchy
of graphs.
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Figure 17: Trees C1,m (additionally C1 = C1,0, C2 = C2,0, and C3 = C3,0)

While saying that a logic is undecidable, we mean undecidability of the
problem in which on input we are given a sentence of the logic, and we have to
tell whether this sentence holds in a fixed structure (e.g., in the infinite word or
infinite binary tree, without any labels). A problem more related to Theorem 5.1
is different: the formula should be fixed, but the structure should be given on
input. Theorem 5.2 says that this problem is undecidable, even for structures
being regular trees (i.e., trees generated by recursion schemes of order 0).

Theorem 5.2. There is a fixed sentence ϕund of MSO+U such that it is unde-
cidable, given a safe recursion scheme G of order 0, whether ϕund holds in the
tree generated by G.

We believe that Theorem 5.2 is interesting on its own. It complements the
“standard” undecidability result for the MSO+U logic shown by Bojańczyk,
Parys, and Toruńczyk [20].

Let us now present the “difficult” trees, giving undecidability results de-
scribed by Theorems 5.1 and 5.2. These are combs of depth 4. Let C5 = ]〈〉,
and for k = 4, 3, 2, 1 let Ck be the tree such that Ck = k〈Ck+1, Ck〉 (labels
appearing in C1 are 1, 2, 3, 4, ]). We also consider a variant of C1, where the
first m nodes on the shaft of every C3 subtree are labeled by 3̂ (instead of 3):
let C3,0 = C3 and C3,m = 3̂〈C4, C3,m−1〉 for m ≥ 1; let also Ck,m for k = 2, 1 be
the tree such that Ck,m = k〈Ck+1,m, Ck,m〉. See also Figure 17.

The following lemma puts the basis for Theorems 5.1 and 5.2.

Lemma 5.3. There is a fixed sentence ϕund of MSO+U such that it is unde-
cidable, given a number m ∈ N, whether ϕund holds in the tree C1,m.

Proof. We base on the undecidability proof from Bojańczyk et al. [20]. Let
us thus recall some notions from that paper. A Minsky machine is a (possibly
nondeterministic) device which has a finite state space, and two counters that
can be incremented, decremented, and tested for zero.
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Figure 18: An example sequence S of depth-4 trees (a), its word representation wr(S) (b),
and the corresponding well-formed set X of nodes of C1 (i.e., such that S = seq(X)), where
labels of nodes in X are surrounded by a box (c)

Bojańczyk et al. [20] encode runs of Minsky machines in infinite sequences
of finite trees of depth 4. These are ordered trees (i.e., children of every node
are numbered). Depth of a node is defined as its distance from the root, plus
one (i.e., the root is at depth 1). All leaves are at depth (exactly) 4.

Let ρ be a run of of a Minsky machine, consisting of d configurations. We
assume, by definition, that a run starts in the initial state, and ends in an ac-
cepting state; we, however, do not require anything about values of the counters
in the first or in the last configuration (the machine can itself ensure that they
are zero by applying a zero test, but it does not have to do that). We say that
a vector of natural numbers (n1, . . . , n2d) describes ρ if, for i ∈ {1, . . . , d}, the
numbers n2i−1, n2i store the value of the two counters in the i-th configuration
of ρ. An infinite sequence S of depth-4 trees encodes ρ if
• the degree (i.e., the number of children) of depth-3 nodes tends to infinity;
• all but finitely many depth-1 nodes have the same even degree 2d;
• for every i ∈ {1, . . . , 2d}, all but finitely many depth-2 nodes that are an
i-th child have the same degree, call it ni;

• (n1 − 1, . . . , n2d − 1) describes ρ.
Note that S does not fully specify ρ: the list of visited states is missing.

Sequences of depth-4 trees are then represented in infinite words over {1,
2, 3, 4}. The word representation of such a sequence S, denoted wr(S), is the
(unique) infinite word obtained by listing labels of all nodes of trees in S, in the
prefix order (i.e., a node before its descendants). Consult Figure 18(a,b) for an
example.

From Bojańczyk et al. [20, Lemma 3.2] we have the following theorem.

Theorem 5.4. For every Minsky machine M there is a sentence ϕM of MSO+U
which is true in the word wr(S) (for an infinite sequence S of depth-4 trees) if
and only if S encodes a run of M .2

2Bojańczyk et al. [20, Lemma 3.2] say how the formula works for all words over {1, 2, 3, 4},
while here we only say how it works for words of the form wr(S).
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We assume here that an infinite word is a structure over the signature con-
sisting of a unary relation Lk(x), for every k ∈ {1, 2, 3, 4}, saying that the label
at position x is k, and of a binary relation Succ(x, y) saying that the position y
is the successor of the position x.

We now want to encode the infinite words (and, indirectly, sequences of
depth-4 trees) in sets of nodes of C1 (or of C1,m). We say that a set X of nodes
of C1 is well-formed if

1. X contains all 1-labeled nodes;
2. X contains no ]-labeled nodes;
3. X is upward closed (i.e., if y ∈ X, and if y is not the root, then the parent

of y belongs to X);
4. if x ∈ X is labeled by k ≤ 3, then its left child belongs to X; and
5. for k ∈ {2, 3, 4}, every k-labeled node has a k-labeled descendant not in
X.

Likewise we define a well-formed set of nodes of C1,m (in this definition we treat

labels 3 and 3̂ as identical).
We now write an MSO formula ϕwf (X) saying that X is well-formed. To

this end, we write

ϕsib(x, y) ≡ ∀Y. (x ∈ Y ∧ ∀z ∈ Y.∀z′. (Ch2(z, z′)⇒ z′ ∈ Y )⇒ y ∈ Y )

to say that y lies below x on the same shaft of the same comb, and

ϕpar (x, y) ≡ ∃x′. (Ch1(x, x′) ∧ ϕsib(x′, y))

to say that y belongs to the shaft that starts in the left child of x. Then, we write
formulae corresponding to particular point of the definition of a well-formed set:

η1(X) ≡ ∀x. (L1(x)⇒ x ∈ X) , η2(X) ≡ ∀x ∈ X.¬L](x) ,

η3(X) ≡ ∀y ∈ X.∀x((Ch1(x, y) ∨ Ch2(x, y))⇒ x ∈ X) ,

η4(X) ≡ ∀x ∈ X.∀y(Ch1(x, y) ∧ ¬L](y)⇒ y ∈ X) ,

η5(X) ≡ ∀x. (¬L](x)⇒ ∃y. (ϕpar (x, y) ∧ y 6∈ X)) .

Finally, we take

ϕwf (X) ≡ η1(X) ∧ η2(X) ∧ η3(X) ∧ η4(X) ∧ η5(X) .

To every well-formed set X we assign a corresponding sequence of depth-4
trees, denoted seq(X), as follows: we treat nodes in X as nodes of trees in S;
label k of a node specifies its depth; k-labeled nodes of X lying on the same
shaft (for k ≥ 2) become consecutive siblings, and their closest (k − 1)-labeled
ancestor becomes their parent. Notice that the mapping seq establishes a one-
to-one correspondence between well-formed sets X and sequences of depth-4
trees. Moreover, if we list the label of all elements of X in the prefix order, we
obtain the word wr(S). Again, consult Figure 18 for an example.

It follows from Theorem 5.4 that for every Minsky machine M there is a
formula ϕ′M (X) of MSO+U such that for every m ∈ N and for every well-
formed set X, the formula ϕ′M (X) is true in the tree C1,m if and only if seq(X)
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encodes a run of M . We obtain ϕ′M out of ϕM from Theorem 5.4 in the following
way:
• we relativize quantification to those nodes that belong to X;
• we replace every atom Succ(x, y) by a formula saying that y is the successor

of x while visiting the set X according to the prefix order (clearly this can
be written in MSO); and

• we replace every atom L3(x) by L3(x) ∨ L3̂(x) (atoms Lk(x) for k 6= 3
remain unchanged).

We also construct a formula ϕch(X) such that for every m ∈ N and for every
well-formed set X, the formula ϕch(X) is true in the tree C1,m if and only if
every depth-2 node of seq(X) that is a first child has degree m. This is possible,
because in C1,m the first m nodes of every order-3 shaft are marked with 3̂. We
can thus write

ϕch(X) ≡ ∀x.∀y.∀z. (L1(x) ∧ Ch1(x, y) ∧ ϕpar (y, z)⇒ (L3̂(z)⇔ z ∈ X)) .

To finish the proof, take a Minsky machine Mund such that the following
problem is undecidable: given a number m ∈ N, does there exist a run of Mund

starting in a configuration where the value of the first counter is m. Such a
machine clearly exists: one can take a Minsky machine simulating a universal
Turing machine, where the input to the latter is encoded in the value of the first
counter.

We take

ϕund ≡ ∃X. (ϕwf (X) ∧ ϕ′Mund
(X) ∧ ϕch(X)) .

Observe that, for every m ≥ 1, the sentence ϕund is true in C1,m if and only
if there exists a run of Mund starting in a configuration where the value of the
first counter is m − 1. Indeed, suppose that ϕund is true in C1,m. Let X be
a set that makes the sentence true. The subformula ϕwf (X) ensures that X is
well-formed, and the subformula ϕ′Mund

(X) ensures that seq(X) encodes a run
of Mund . Moreover, ϕch(X) ensures that the first coordinate of the vector that
describes this run (i.e., the value of the first counter in the first configuration)
is m − 1. Thus, there exists a run as requested. Conversely, suppose that
there exists a run of Mund starting in a configuration where the value of the
first counter is m − 1. Clearly there exists a sequence S of depth-4 trees that
encodes this run. Moreover, we can assume that all (not only all but finitely
many) depth-2 nodes that are a first child have degree m. As already said, there
is a well-formed set X such that S = seq(X); this set makes ϕund true in C1,m.

We have thus reduced an undecidable problem to the problem of determining,
given m ∈ N, whether ϕund holds in C1,m. It follows that the latter problem is
also undecidable; this finishes the proof.

Having established Lemma 5.3, Theorems 5.1 and 5.2 follow easily.

Proof (Theorem 5.2). We take the sentence ϕund from Lemma 5.3, and we
reduce the question whether ϕund holds in C1,m for a given m ∈ N (undecidable
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by Lemma 5.3) to our question whether ϕund holds in the tree generated by
a given safe recursion scheme of order 0 (showing that the latter question is
undecidable). To this end, we observe that given m ∈ N one can construct a
recursion scheme Gm of order 0 that generates C1,m. This, in turn, is rather
obvious. Indeed, we can take a scheme that “simulates” the definition of C1,m.
Namely, it has nonterminals C1,m, C2,m, C4, and C3,j for all j ∈ {0, . . . ,m} with
C1,m being the starting nonterminal (recall that m is fixed; the scheme, and in
particular the number of nonterminals it uses, may depend on m), and rules

Ck,m → k〈Ck+1,m, Ck,m〉 for k ∈ {1, 2},
C3,j → 3̂〈C4, C3,j−1〉 for j ∈ {1, . . . ,m},
C3,0 → 3〈C4, C3,0〉 , and

C4 → k〈]〈〉, Ck〉 .

Proof (Theorem 5.1). We consider a tree T0 consisting of an infinite branch,
where below the (m + 1)-th node of this branch we attach C1,m. Formally, we
define T0 by coinduction: Tm = a〈C1,m, Tm+1〉 for m ∈ N.

Moreover, out of the sentence ϕund from Lemma 5.3 we construct a formula
ϕ′und(x) of MSO+U which is true for x being a root of a comb C1,m in T0 if
and only if ϕund is true in C1,m. To this end, we relativize the quantification in
ϕund to nodes being descendants of x.

Having ϕ′und , we consider an MSO+U-interpretation I0 consisting of two
formulae:

ψa(x1, x2) ≡ La(x1) ∧ Ch2(x1, x2) ,

which is true if x1 and x2 are consecutive nodes on the main branch, and

ψb(x1, x2) ≡ La(x1) ∧ Ch1(x1, x2) ∧ ϕ′und(x2) ,

which is true if x2 is a root of a comb C1,m in which ϕund is true, and x1 is
its parent. The effect is that I0(T0) consists of an infinite path with a-labeled
edges, where for m ∈ N such that C1,m |= ϕund we additionally have a b-labeled
edge starting in the m-th node of that path.

The question whether C1,m |= ϕund for a given m ∈ N is undecidable by
Lemma 5.3. However, we can easily reduce it to the question whether a given
sentence ψ of MSO holds in I0(T0). Namely, given m ∈ N, we consider the
sentence saying that the m-th node on the main branch of I0(T0) has an outgoing
b-labeled edge; this sentence is true in I0(T0) if and only if C1,m |= ϕund . This
means that I0(T0) has an undecidable MSO theory.

Next, observe that T0 is generated by a safe recursion scheme G of order 1,
with the following rules:

S → T C3 , C1 x→ 1〈C2 x,C1 x〉 , C3 → 3〈C4, C3〉 ,
T x→ a〈C1 x, T 3̂〈C4, x〉〉 , C2 x→ 2〈x,C2 x〉 , C4 → 4〈]〈〉, C4〉 .
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Finally, because I0(T0) is obtained by applying an MSO+U-interpretation
to a tree generated by a safe recursion scheme of order 1, from Lemma 3.12 we
know that I0(T0) = I(T ) for some MSO+U-interpretation I and some tree T
from Tree(2). This establishes the first part of the theorem.

The part saying that I(T ) 6∈ Graph(n) for any n ∈ N follows immediately,
because all graphs in Graph(n), for all n ∈ N, have a decidable MSO theory
(while I(T ) does not).

6. Conclusion

In this paper we have answered to the following question: what can happen,
if we apply MSO+Ufin- or MSO+U-interpretations to graphs on the n-th level of
the Caucal hierarchy. It turns out that for MSO+Ufin we can only obtain graphs
being again on the same level of the Caucal hierarchy (Theorem 4.1). The same
holds for the full MSO+U logic only in the case of n ≤ 1 (Theorem 4.2). For
n ≥ 2, MSO+U-interpretations can give us graphs with an undecidable MSO
theory, thus outside of the Caucal hierarchy (Theorem 5.1). As a side effect,
we have also exhibited a fixed sentence of MSO+U such that it is undecidable
whether this sentence holds in a given regular tree (Theorem 5.2).
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Orléans, France, Vol. 47 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016, pp. 21:1–21:8 (2016). doi:10.4230/LIPIcs.STACS.
2016.21.

[21] P. Parys, Extensions of the Caucal hierarchy?, in: C. Mart́ın-Vide,
A. Okhotin, D. Shapira (Eds.), Language and Automata Theory and Ap-
plications - 13th International Conference, LATA 2019, St. Petersburg,
Russia, March 26-29, 2019, Proceedings, Vol. 11417 of Lecture Notes in
Computer Science, Springer, 2019, pp. 368–380 (2019). doi:10.1007/

978-3-030-13435-8_27.

[22] A. Carayol, Automates infinis, logiques et langages, Ph.D. thesis, Université
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