
Parity Games: Another View on Lehtinen’s
Algorithm
Paweł Parys
Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
Recently, five quasi-polynomial-time algorithms solving parity games were proposed. We elaborate
on one of the algorithms, by Lehtinen (2018).

Czerwiński et al. (2019) observe that four of the algorithms can be expressed as constructions of
separating automata (of quasi-polynomial size), that is, automata that accept all plays decisively
won by one of the players, and rejecting all plays decisively won by the other player. The separating
automata corresponding to three of the algorithms are deterministic, and it is clear that deterministic
separating automata can be used to solve parity games. The separating automaton corresponding
to the algorithm of Lehtinen is nondeterministic, though. While this particular automaton can be
used to solve parity games, this is not true for every nondeterministic separating automaton. As a
first (more conceptual) contribution, we specify when a nondeterministic separating automaton can
be used to solve parity games.

We also repeat the correctness proof of the Lehtinen’s algorithm, using separating automata. In
this part, we prove that her construction actually leads to a faster algorithm than originally claimed
in her paper: its complexity is nO(log n) rather than nO(log d·log n) (where n is the number of nodes,
and d the number of priorities of a considered parity game), which is similar to complexities of the
other quasi-polynomial-time algorithms.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Parity games, quasi-polynomial time, separating automata, good-for-games
automata

Funding Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

1 Introduction

Parity games have played a fundamental role in automata theory, logic, and their applications
to verification and synthesis since early 1990’s. The algorithmic problem of finding the winner
in parity games can be seen as the algorithmic backend to problems in automated verification
and controller synthesis. It is polynomial-time equivalent to the emptiness problem for
nondeterministic automata on infinite trees with parity acceptance conditions, and to the
model-checking problem for modal µ-calculus [12]. Also, decision problems like validity or
satisfiability for modal logics can be reduced to parity game solving. Moreover, it lies at the
heart of algorithmic solutions to the Church’s synthesis problem [28]. The impact of parity
games reaches relatively far areas of computer science, like Markov decision processes [13]
and linear programming [16].

The problem of solving parity games has interesting complexity-theoretic status. It is a
long-standing open question whether parity games can be solved in polynomial-time. Several
results show that they belong to some classes “slightly above” polynomial time. Namely,
deciding the winner of parity games was shown to be in NP∩coNP [12], and in UP∩coUP [20],
while computing winning strategies is in PLS, PPAD, and even in their subclass CLS [10]. The
same holds for other kinds of games: mean-payoff games [33], discounted games, and simple
stochastic games [8]; parity games, however, are the easiest among them, in the sense that
there are polynomial-time reductions from parity games to the other kinds of games [20, 33],

https://orcid.org/0000-0001-7247-1408
mailto:parys@mimuw.edu.pl

2 Parity Games: Another View on Lehtinen’s Algorithm

but no reductions in the opposite direction are known.
For almost three decades researchers were trying to cutback the complexity of solving

parity games, which resulted in a series of algorithms, all of which were either exponential [32,
5, 30, 21, 31, 29, 1], or mildly subexponential [3, 23]. The next era came unexpectedly in
2017 with a breakthrough result of Calude, Jain, Khoussainov, Li, and Stephan [6] (see
also [17, 24]), who designed an algorithm working in quasi-polynomial time (QPT for short).
This invoked a series of QPT algorithms, which appeared soon after [22, 14, 25, 27].

Four of the QPT algorithms [6, 22, 14, 25], at first glance being quite different, actually
proceed along a similar line—as observed by Bojańczyk and Czerwiński [4, Section 3] and
Czerwiński et al. [9]. Namely, out of all the four algorithms one can extract a construction of
a PG separator, that is, a safety automaton (nondeterministic in the case of Lehtinen [25],
and deterministic in the other algorithms), which accepts all words encoding plays that are
decisively won by one of the players (more precisely: plays consistent with some positional
winning strategy), and rejects all words encoding plays in which the player loses (for plays
that are won by the player, but not decisively, the automaton can behave arbitrarily). The
PG separator does not depend at all on the game graph; it depends only on its size. Having
a PG separator, it is not difficult to convert the original parity game into an equivalent
safety game (by taking a “product” of the parity game and the PG separator), which can
be solved easily—and all the four algorithms actually proceed this way, even if it is not
stated explicitly that a PG separator is constructed. As shown in Czerwiński et al. [9] (see
also Colcombet and Fijalkow [7] for another view on this proof), all PG separators have to
look very similar: their states have to be leaves of some so-called universal tree; particular
papers propose different constructions of these trees, and of the resulting PG separators (of
quasi-polynomial size). Moreover, Czerwiński et al. [9] show a quasi-polynomial lower bound
for the size of a PG separator. Let us also mention that, beside of the four algorithms, there
is a fifth QPT algorithm [27] obtained by speeding up the Zielonka’s recursive algorithm [32];
this algorithm does not fit into the separator approach of Czerwiński et al. [9].

Of course the idea of converting a parity game into an equivalent safety game is itself much
older than QPT algorithms for parity games (see e.g. Bernet, Janin, and Walukiewicz [2]),
and was applied not only to finite games, but also to pushdown and collapsible pushdown
games [15, 18].

In this paper we deliberate on the Lehtinen’s algorithm [25]. As already said, PG
separators corresponding to the other algorithms [6, 22, 14] are deterministic; in such a
situation it is straightforward that the product game (obtained from an original parity game
and the PG separator) is equivalent to the original game (see, e.g., [9, Proposition 3.2]). The
PG separator corresponding to the Lehtinen’s algorithm [25] is nondeterministic, though,
and in general while taking a product of a game with a nondeterministic automaton we do
not obtain an equivalent game. Actually, a notion of good-for-games (GFG) automata was
introduced [19]; this is a subclass of nondeterministic automata for which it is guaranteed
that the product game remains equivalent. But one can see that the Lehtinen’s separator
is not GFG; in consequence, the fact that the Lehtinen’s algorithm actually works is quite
intriguing. As a first contribution we explain this phenomenon. Namely, we define a notion
of suitable-for-parity-games (SFPG) separators, which is more comprehensive that the GFG
notion (but, unlike GFG, applies only to parity games, not to arbitrary games), and which
covers the Lehtinen’s separator. We then prove that the winner does not change while taking
a product of a parity game with an arbitrary SFPG separator, which means that every SFPG
separator can be used to solve parity games. In this way, we establish a framework for solving
parity games via nondeterministic PG separators.

P. Parys 3

As a second contribution, we improve the complexity of the Lehtinen’s algorithm. Let us
recall that the algorithm converts the original parity game with n nodes and d priorities into
a parity game with nO(log d) nodes and O(logn) priorities (which is actually a product of the
original game and of an appropriate SFPG separator). Once the new game is created, it has
to be solved, say by the small progress measures algorithm [21], which is exponential in the
number of priorities: the resulting complexity is nO(log d·logn).1 We observe here that the
resulting parity game is of a special form—it is possible to win the game without seeing n
opponent’s priorities in a row—and in consequence it can be solved faster: in time nO(logn).
This locates the complexity of the Lehtinen’s algorithm much closer to the complexity of the
other QPT algorithms [6, 22, 14, 27], which is nO(log d) (being the same for d close to n, but
better for games with a small number of priorities).

Our paper is structured as follows. In Section 2 we give all necessary definitions. In
Section 3 we define SFPG separators, and we prove that they can be used to solve parity
games. In Section 4 we recall the Lehtinen’s separator, and we prove that the product game
is of a special form. In Section 5 we prove that this product game can be solved quickly.

2 Preliminaries

Parity Games. Parity games are played on game graphs of the form G = (V, V�, V4, vI , E),
where V is a set of nodes, (V�, V4) is a partition of V (which satisfies V� ∪ V4 = V and
V� ∩ V4 = ∅), vI ∈ V is a starting node, and E ⊆ V × {1, 2, . . . , d} × V is a set of directed
edges labeled by numbers called priorities. Typically, we assume that V = {1, 2, . . . , n} for
some natural number n. We use d to denote an upper bound for priorities of edges. Without
loss of generality, we assume that every node has at least one outgoing edge.

The game is played by two players who are called Even and Odd. A play starts at the
starting node vI and then the players move by following outgoing edges forever, thus forming
an infinite path. Every node of the graph is owned by one of the two players: nodes from V�
and V4 belong to Even and Odd, respectively. It is always the owner of the node who moves
by following an outgoing edge from the current node to a next one.

The outcome of the two players interacting in a parity game by making moves is an
infinite path in the game graph. We identify such infinite paths with sequences of edges
constituting these paths; thus an infinite path is an infinite word over the alphabet Σn,d =
{1, 2, . . . , n} × {1, 2, . . . , d} × {1, 2, . . . , n} ⊇ E. The set of all infinite words over Σn,d is
denoted Σωn,d.

We write LimsupEvenn,d for the set of infinite words w ∈ Σω
n,d in which the largest

number that occurs infinitely many times in the priority component of the letters is even, and
we write LimsupOddn,d for the set of infinite words w ∈ Σωn,d in which that number is odd.
Observe that the sets LimsupEvenn,d and LimsupOddn,d form a partition of the set Σωn,d of
all infinite words over the alphabet Σn,d. An infinite path in a game graph with n nodes and
edge priorities not exceeding d is won by Even if and only if the play is in LimsupEvenn,d.

A positional strategy for Even is a set of edges that go out of nodes she owns—exactly
one such edge for each of her nodes. Even uses such a strategy by always—if the current
node is owned by her—following the unique outgoing edge that is in the strategy. Note that
when Even uses a positional strategy, her moves depend only on the current node—they
are oblivious to what choices were made by the players so far. If Even wins the game by

1 A better complexity can be obtained by using one of the other QPT algorithms to solve the resulting
game.

4 Parity Games: Another View on Lehtinen’s Algorithm

following such a strategy, no matter what edges her opponent Odd follows whenever it is
her turn to move, then such a strategy is called winning. Analogously we define a positional
(winning) strategy for Odd. A basic result for parity games that has notable implications
is their positional determinacy [11, 26]: exactly one of the players has a positional winning
strategy.

The strategy subgraph of a game graph G with respect to a positional strategy for Even is
the subgraph of G that includes all outgoing edges from nodes owned by Odd and exactly
those outgoing edges from nodes owned by Even that are in the positional strategy. Observe
that the set of plays that arise from Even playing her positional strategy is exactly the set of
all plays in the strategy subgraph.

Let PosEvenn,d and PosOddn,d be the sets of all plays that arise from positional winning
strategies for Even and Odd, respectively, in some game graph with n nodes and priorities
up to d. Clearly PosEvenn,d ⊆ LimsupEvenn,d and PosOddn,d ⊆ LimsupOddn,d. The
difference between PosEvenn,d and LimsupEvenn,d is not only in words that are not valid
paths (where the target of some edge does not match the source of the next edge); in
LimsupEvenn,d \ PosEvenn,d we have for example the path ((1, 2, 1)(1, 1, 2)(2, 2, 2)(2, 1, 1))ω
(if this path follows a positional strategy for Even in some game graph, then ((1, 1, 2)(2, 1, 1))ω
follows such a strategy as well, but the latter path is won by Odd).

Parity and Safety Automata. We consider here only automata reading plays of parity
games, so we assume that the input alphabet is Σn,d for some n and d. We use d′ to
denote an upper bound for priorities emitted by parity automata. A non-deterministic parity
automaton is a tuple A = (Q, sI ,∆), where Q is a finite set of states, sI ∈ Q is an initial state,
and ∆ ⊆ Q×Σn,d × {1, 2, . . . , d′} ×Q is a transition relation. Without loss of generality, we
assume that the transition relation is total, that is, for every state s and letter e, there is
some priority p and some state s′, such that the tuple (s, e, p, s′) is in the transition relation.

Such a parity automaton can be seen as a directed graph, where (s, e, p, s′) ∈ ∆ is an
edge labeled by a letter e and by a priority p. An infinite path in this graph, starting in the
initial state, is called a run of A. The word read by such a run (being a word over Σn,d) is
obtained by projecting every edge of the run to its second component. A run is accepting
if the largest priority that labels infinitely many edges of the run is even. If an accepting
run reading a word w exists, we say that w is accepted, and we write L(A) for the set of all
words accepted by A.

A parity automaton is called a safety automaton if d′ = 2, and there is a set of rejecting
states such that

if (s, e, 1, s′) ∈ ∆, then s′ is rejecting, and
if s is rejecting then all transitions (s, e, p, s′) ∈ ∆ are such that p = 1 and s′ is rejecting.

We notice that a run of a safety automaton is accepting if it does not visit rejecting states.

3 Product Games and SFPG Separators

We first recall the notion of product games and separators considered in Czerwiński et al. [9].

I Definition 3.1. Given a game graph G = (V, V�, V4, vI , E) with at most n nodes and
priorities up to d, and a parity automaton A = (Q, sI ,∆) with input alphabet Σn,d, we define
a game graph G×A, called a synchronized product of G and A, in which

the set of nodes is (V ∪ E)×Q, and the starting node is (vI , sI);
ownership of nodes in V ×Q is inherited from the parity game G, and all nodes in E×Q
belong to Even;

P. Parys 5

for every edge e = (u, p, v) ∈ E and every state s ∈ Q, there is an edge ((u, s), 1, (e, s));
for every edge e = (u, p, v) ∈ E and every transition (s, e, p′, s′) ∈ ∆, there is an edge
((e, s), p′, (v, s′));
there are no other edges except those specified above.

In other words, the players of G×A play in the parity game G, and the automaton A is
fed the edges corresponding to moves made by the players. After every move in G, Even
resolves non-deterministic choices in A. In order to win in G×A, Even has to ensure that
the run of A reading the play from G is accepting.

It is easy to see that if A is deterministic, and L(A) equals LimsupEvenn,d (i.e., the
winning condition in G), then the games G and G×A have the same winner. The crux of
the QPT algorithms is that instead of an automaton recognizing LimsupEvenn,d, we can use
a PG separator.

I Definition 3.2. Let A be a parity automaton with input alphabet Σn,d. We say that A is a
parity games separator (PG separator) if it accepts all words from PosEvenn,d, and rejects
all words from PosOddn,d. If it additionally rejects all words from LimsupOddn,d, it is a
strong PG separator.

While for solving parity games (i.e., for the equivalence between G and G×A described
below) it is enough to have a PG separator, the separators corresponding to the QPT
algorithms [6, 22, 14, 25] are actually strong PG separators (cf. [9, Section 4]).

If A is a PG separator, and Odd can win in G, then she can also win in G×A: she can
ensure that the play from G belongs to PosOddn,d, and such a play is rejected by A. The
same holds for Even, assuming that A is deterministic. If A is nondeterministic, however, it
is possible that Even wins in G but Odd wins in G×A. Indeed, if Even wins in G, she can
only ensure that the resulting play is accepted by A. But in G×A her task is more difficult:
she has to resolve nondeterministic choices of A as they arise, without knowing the whole
play from G. The abilities of Even are described by transition strategies.

IDefinition 3.3. A transition strategy for an automaton A is a function σ : Σ∗n,d×Q×Σn,d →
∆ such that σ(w, s, e) is of the form (s, e, p, s′) for all (w, s, e) ∈ Σ∗n,d ×Q× Σn,d. We use
such a strategy to resolve non-deterministic choices: if the word read so far is w, the state
of A is s, and the next letter to be read is e, then we proceed using the transition f(w, s, e).
We say that a transition strategy σ is winning for a set of words L ⊆ L(A) if for every word
w ∈ L, the run obtained by following σ while reading the word w is accepting.

Henzinger and Piterman [19] proposed a notion of good-for-games automata: an automa-
ton A is good for games (GFG) if in A there exists a transition strategy that is winning for
L(A). If A is GFG, then Even can use a winning strategy from G and a transition strategy
winning for L(A) to win in G×A. We observe, though, that it is not a problem for Even to
have a transition strategy that depends on G, and on her winning strategy in G. This way
we come to a more comprehensive definition of SFPG separators.

I Definition 3.4. A PG separator A with input alphabet Σn,d is suitable for parity games
(SFPG) if for every game graph G with n nodes and priorities up to d, and for every
positional winning strategy τ for Even in G, the automaton A has a transition strategy σ
winning for the set of all plays in G that arise from τ .

Notice that every deterministic automaton A is good for games: the transition strategy
that in every situation chooses the only available transition allows to accept all words from
L(A). Moreover, every good-for-games PG separator A is SFPG: for every G and τ as

6 Parity Games: Another View on Lehtinen’s Algorithm

in Definition 3.4, all plays in G that arise from τ are accepted by A (because A is a PG
separator), and thus the transition strategy that is winning for the whole L(A) (existing
because A is GFG) can be used for the set of these plays. In the next section we present the
PG separator corresponding to Lehtinen’s algorithm; it is neither deterministic nor good for
games, but it is SFPG.

We now prove that by producting a parity game with an SFPG separator, we obtain an
equivalent game.

I Theorem 3.5. If G is a game graph with n nodes and priorities up to d, and A is an
SFPG separator with input alphabet Σn,d, then Even has a winning strategy in G if and only
if she has a winning strategy in the synchronized product G×A.

Proof. Suppose first that Even has a winning strategy in G. Then, by positional determinacy,
she also has a positional winning strategy τ in G. Because the separator A is SFPG, it
has a transition strategy σ that is winning for the set of all plays in G that arise from τ .
Using τ and σ we define an Even’s strategy in G × A: she plays according to τ in the G
component, and according to σ in the A component. An infinite play of G ×A following
this strategy is a pair: a play w in G following τ , and a run ρ of A reading w and following
σ. By assumption on σ, because w is a play in G that arises from τ , we obtain that ρ is
accepting. This implies that the considered play of G × A is won by Even, and thus the
considered strategy is winning for Even.

Next, suppose that Even does not have a winning strategy in G. Then, by positional
determinacy, Odd has a positional winning strategy τ in G. This strategy can be also used
in G ×A, as Odd takes decisions only in the G part of G ×A. Consider a play of G ×A
following this strategy; it consists of a play w in G following τ , and of a run ρ of A reading w.
Because τ is a positional winning strategy for Odd, we have w ∈ PosOddn,d, hence, because
the PG separator A rejects all words from PosOddn,d, the run ρ is rejecting; the play is won
by Odd. This implies that Even does not have a winning strategy in G×A. J

Notice that the product game G × A is larger, but potentially simpler, than G. For
example, if A is a safety automaton, out of a parity game we obtain a safety game; the latter
can be solved in linear time.

We remark that Colcombet and Fijalkow in their recent work [7] define a similar notion
of good-for-small-games automata: an automaton A is good for (n, d)-parity games if it
satisfies our Theorem 3.5, that is, if for every game graph G with n nodes and priorities up
to d, the games G and G×A are equivalent. Such a definition is purely semantical; it does
not give any hint which automata are indeed good for (n, d)-parity games. Our definition of
SFPG separators is more concrete: it specifies particular conditions on an automaton (what
it should accept / reject, and in which way). In Theorem 3.5 we then prove that every SFPG
separator can be indeed used to solve parity games (i.e., that it is good for (n, d)-parity
games, in the terminology of Colcombet and Fijalkow).

4 Register Automata

In this section we express Lehtinen’s construction [25] as an SFPG separator Rn,d. Recall
that out of a parity game G she constructs an equivalent parity game, which is essentially
G×Rn,d.

The idea of the construction is to store some recently visited priorities in some number of
registers. Let us denote rn(n) = 1 + blog2 nc; this is the number of registers needed to solve

P. Parys 7

games with n nodes. In Lehtinen’s work, rn(n) is called a register index.2
For all positive numbers n and d, such that d is even, we define a non-deterministic parity

automaton Rn,d in the following way.
The set of states of Rn,d is the set of non-increasing rn(n)-sequences 〈rrn(n), . . . , r2, r1〉
of “registers” that hold numbers in {1, 2, . . . , d}. The initial state is 〈1, 1, . . . , 1〉.
For every state s = 〈rrn(n), . . . , r2, r1〉 and letter e = (u, p, v) ∈ Σn,d, we define the update
of s by e to be the state 〈rrn(n), . . . , rk+1, p, . . . , p〉, where k is the greatest index such
that r1, . . . , rk < p.
For every state s = 〈rrn(n), . . . , r2, r1〉 and for every k, 1 ≤ k ≤ rn(n), we define the
k-reset of s to be the state 〈rrn(n), . . . , rk+1, rk−1, . . . , r2, 1〉. We say that this k-reset is
even (odd) if rk is even (odd, respectively).
For every state s and letter e ∈ Σn,d, if s′ is the update of s by e, then in the transition
relation there is a transition (s, e, 1, s′), called a non-reset transition.
For every state s, letter e ∈ Σn,d, and for every k, 1 ≤ k ≤ rn(n), if s′ is the update of s
by e, and s′′ is the even k-reset of s′, then in the transition relation there is a transition
(s, e, 2k, s′′), called an even reset of register k.
For every state s, letter e ∈ Σn,d, and for every k, 1 ≤ k ≤ rn(n), if s′ is the update of s
by e, and s′′ is the odd k-reset of s′, then in the transition relation there is a transition
(s, e, 2k + 1, s′′), called an odd reset of register k.
There are no other transitions in Rn,d except those specified above.

In Theorem 4.2 we prove that Rn,d is indeed an SFPG separator. Moreover, we prove
that its runs are of a special form, as specified by Definition 4.1; this is useful in Section 5,
where we argue that the product game G×Rn,d can be solved faster than an arbitrary parity
game.

I Definition 4.1. Let ρ be a run of a parity automaton. We define bad(ρ) to be the greatest
number m such that in ρ there is an infix containing m transitions emitting some odd priority
p and no transitions emitting higher priority.

I Theorem 4.2. The automaton Rn,d is a strong SFPG separator. Moreover, for every game
graph G with n nodes and priorities up to d, for every Even’s positional winning strategy τ in
G, and for every run ρ of Rn,d that follows the transition strategy existing by Definition 3.4
and that reads a play in G arising from τ , it holds that bad(ρ) ≤ n− 1.

We now prove Theorem 4.2. We start with the easier part, saying that A rejects all
words from LimsupOddn,d. Consider thus a word w ∈ LimsupOddn,d, and a run ρ of Rn,d
reading this word. If from some moment there are no more resets in this run, then indeed ρ
is rejecting. Otherwise, consider the greatest (odd) priority p occurring in w infinitely often,
and consider the greatest index k such that there are infinitely many resets of register k in ρ.
From some moment on, in ρ no priority higher than p is read, and there is no reset of any
register l > k. A little bit later, after k resets of register k, the value of register k is at most
p for the rest of the run. Then, infinitely many times the priority p is read, it is stored to
register k, never overwritten by anything larger, and then reset. This means that there are
infinitely many odd resets of register k, emitting priority 2k + 1, while no higher priorities
are emitted (except in the finite prefix that we have skipped). In consequence, ρ is rejecting.

2 While there exist games with n nodes that can be solved using less registers (i.e., games with a smaller
register index), 1 + blog2 nc is the upper bound.

8 Parity Games: Another View on Lehtinen’s Algorithm

1 1 1

22

3 2 1

2
3

2
3

1 1

2

5 4

4

4

6

Figure 1 An example of a strategy subgraph, together with the corresponding game tree. Dashed
circles depict nodes of the game tree: the largest circle is the root (3, S), inside it we have two
children (2, S1), (2, S2), ordered left to right, and so on; additionally, every node x of the graph also
constitutes a node (0, {x}) (i.e., a leaf) of the game tree. Notice that edges with odd priorities can
only go right. This is a strategy subgraph, so nodes belonging originally to Even have here only a
single successor.

For the remaining part of the proof, fix a game graph G, and an Even’s positional winning
strategy τ . Let Gτ be the strategy subgraph of G with respect to τ , and let Vτ be the set
of those nodes of Gτ that are reachable from the starting node. For a priority p, and for
S ⊆ Vτ , let GS,p be the subgraph of Gτ that contains only nodes that belong to S and only
edges of priority not larger than p.

We now define a game tree of Gτ in a top-down fashion. The root of this tree is (dd/2e, Vτ).
Let now (k, S) be an (already defined) node of this tree such that k ≥ 1, and let S1, S2, . . . , Sm
be (the sets of nodes of) all the strongly connected components of GS,2k−1. We assume that
S1, S2, . . . , Sm are sorted topologically, that is, that in GS,2k−1 there are no edges to Si from
Sj when i < j (if there are multiple such orders of S1, S2, . . . , Sm, we fix one of them). In
such a case, (k − 1, S1), (k − 1, S2), . . . , (k − 1, Sm) are children of (k, S), in this order. An
example of a game tree is presented in Figure 1.

Notice that if Si is a strongly connected component of GS,2k−1, then it does not contain
edges of priority 2k−1. Indeed, if such an edge existed inside a strongly connected component,
there would be a cycle in GS,2k−1 (i.e., in Gτ) on which the maximal priority would be 2k− 1
(odd); by reaching such a cycle (recall that S ⊆ Vτ contains only nodes reachable in Gτ from
the starting node) and repeating it forever, we would obtain a play won by Odd, while all
plays in Gτ are, by assumption, won by Even. It follows that Si is actually also a strongly
connected component of GS,2k−2. In other words, GSi,2k−2 = GSi,2k−1.

For a node (k, S) of the game tree, and for l < k, let fstl(S) = S′ for (l, S′) being the
leftmost descendant of (k, S) located on level l.

The following lemma states our thesis in a form suitable for induction. It uses a notion
of a partial run, which is defined like a run, but it needs not to start in the initial state, and
it needs not to be infinite.

I Lemma 4.3. Let (k, S) be a node of the game tree of Gτ , let s be a state of Rn,d, and let
ξ be a nonempty (finite or infinite) path in GS,2k starting in a node v. Assume that if an odd
number 2l + 1 (where l ≥ 1) is contained in some of the registers 1, 2, . . . , rn(|S|) of s, then
l < k and v 6∈ fstl(S). Under these assumptions, there exists a partial run ρ from s reading
ξ, such that
1. in ρ there are no resets of registers above rn(|S|),

P. Parys 9

2. if the register rn(|S|) in s contains an even number not smaller than 2k, then in ρ there
are no odd resets of the register rn(|S|),

3. bad(ρ) ≤ |S| − 1, and
4. ρ follows a transition strategy (that may depend on G, τ, k, S, s): in every step, the non-

determinism is resolved basing only on the prefix of ξ read so far and on the next edge of
ξ that should be read.

In order to finish the proof of Theorem 4.2, we simply use Lemma 4.3 for (k, S) =
(dd/2e, Vτ), and for s = 〈1, 1, . . . , 1〉 (i.e., for the initial state of Rn,d). Indeed, every play
w in G that arises from the strategy τ is a path in GVτ ,2dd/2e; thus the lemma gives is a
run ρ reading w. By Point 3, bad(ρ) is finite, which implies that ρ is accepting. Because
this holds for all G and τ , and because A rejects all words from LimsupOddn,d (as shown at
the beginning), we already know that A is a strong PG separator. Point 4 says that ρ is
constructed following a transition strategy, so A is SFPG. The condition bad(ρ) ≤ |Vτ | − 1
from Point 3 gives us the second part of the theorem’s statement.

Proof of Lemma 4.3. We proceed by induction on k. If k = 0, then there is no nonempty
path ξ in GS,2k (this graph has no edges), so the lemma trivially holds.

For the rest of the proof, suppose that k ≥ 1. Let (k − 1, S1), . . . , (k − 1, Sm) be the
children of (k, S). By definition, S1, . . . , Sm form a division of S. Obviously |Si| ≤ |S|, so
rn(|Si|) ≤ rn(|S|), for all i ∈ {1, . . . ,m}.

Notice first that no matter how ρ is constructed, none of its last rn(|S|) registers contains
an odd number greater than 2k, in all states of ρ—call this property (♠). This holds because
the condition is satisfied in the first state s of ρ, and then only edges of priority up to 2k are
read.

We construct a run ρ reading ξ by repeating the following steps:
in the remaining part of ξ, let ξ′ be the maximal prefix that stays in GSi,2k−1 (i.e., in
GSi,2k−2) for some i (possibly |ξ′| = 0, i.e., already the first edge leaves GSi,2k−1);
if i ≥ 2, then

let j1 < j2 < · · · < jr be the numbers of registers among 1, . . . , rn(|Si|) which, in the
current state, contain an odd priority higher than 1;
while reading the first min(r, |ξ′|) edges of ξ′, we perform resets of the registers
j1, j2, . . . , jmin(r,|ξ′|), consecutively—call these transitions preparatory transitions;

let ξ′′ be the part of ξ′ that remains to be read;
if |ξ′′| > 0, then we use the induction assumption with k − 1 as k and with Si as S to
construct a fragment of a run that reads ξ′′ (we prove below that the induction assumption
can indeed be used)—call the fragment of ρ obtained this way a block of local transitions;
we have now read the whole ξ′;
if ξ already ended, we stop the construction;
otherwise, the next edge of ξ leads outside GSi,2k−1;
if this edge has priority 2k, we reset the register rn(|S|) while reading this edge—call this
a valuable transition;
otherwise, we perform a non-reset transition reading this edge—call this a regressive
transition;
we repeat the procedure from the beginning.

We have to prove that indeed the induction assumption can be used above. To this end,
consider the state s′ from which we are about to start a block of local transitions reading
a path ξ′′ in GSi,2k−2, and let v′ be the first node of this path. Suppose that some of the

10 Parity Games: Another View on Lehtinen’s Algorithm

registers 1, 2, . . . , rn(|Si|) of s′ contains an odd number 2l+ 1, where l ≥ 1. We have to prove
that l < k − 1, and that v′ 6∈ fstl(Si). By Property (♠), l < k. There are three cases:

Suppose that i = 1 and this is the first time when the loop is used. Then there are no
preparatory transitions, so s′ = s and v′ = v. By assumptions of the lemma, v 6∈ fstl(S).
If l = k − 1, we would have v 6∈ fstl(S) = S1, while v ∈ Si = S1; thus l < k − 1. We then
have v′ = v 6∈ fstl(S) = fstl(S1).
Suppose that i = 1 and ξ′′ is preceded in ξ by some edge. This edge is not an edge of
GS1,2k−1, by maximality of the previous block of local transitions. By the definition
of a game tree, there are no edges in GS,2k−1 coming to S1 from S \ S1 (S1, . . . , Sm
are topologically sorted strongly connected components of GS,2k−1). Thus, the edge
preceding ξ′′ has priority 2k. After reading this edge, all registers contain value 2k or
higher, or 1 (if there was a reset); they cannot contain 2l + 1 with 1 ≤ l < k.
Otherwise, i ≥ 2. Then, we are just after preparatory transitions. All odd values (greater
than 1) present before these transitions were reset to 1. Thus, priority 2l+ 1 appears in a
register of s′ because it was read during preparatory transitions, and later no edges with
priority higher than 2l + 1 were read. This already implies that l < k − 1, because only
edges of priority up to 2k − 2 are read during preparatory transitions. Edges of priority
up to 2l + 1 cannot lead to fstl(Si) from Si \ fstl(Si): by the definition of the game tree,
for every level j with l ≤ j ≤ k − 2, there are no edges of priority up to 2j + 1 leading to
fstj(Si) from its (following) siblings. Moreover, there are no edges of priority 2l+ 1 inside
fstl(Si). Thus, after reading an edge of priority 2l + 1, and then some edges of priority
up to 2l + 1, we cannot end inside fstl(Si).

We now have to check Points 1-4 from the statement of the lemma. Point 1 is immediate:
preparatory and valuable transitions reset only registers up to rn(|S|), regressive transitions
do not reset anything, and local transitions, by Point 1 of the induction assumption, also
reset only registers up to rn(|S|) (recall that rn(|Si|) ≤ rn(|S|)).

Point 4 is also immediate: by definition we create ρ in a deterministic way.
While proving Points 2-3 we assume that |S| ≥ 2; the degenerate case of |S| = 1 is

handled at the very end.
We now prove Point 2 saying that in ρ there are no odd resets of the register rn(|S|) if this

register in the first state of ρ contains an even number not smaller than 2k. Simultaneously,
we prove that odd resets of the register rn(|S|) can appear in ρ only before the first valuable
transition—call this property (♣). Notice first that when we visit some Si such that
rn(|Si|) < rn(|S|), then neither preparatory transitions, nor local transitions (by Point 1 of
the induction assumption) reset the register rn(|S|). On the other hand, rn(|Si|) = rn(|S|)
implies that |Si| > |S|/2, which is possible only for one component Si; call it Smax. Regressive
transitions do not reset anything.

It remains to handle valuable transitions, and transitions reading edges from GSmax,2k−2
in the case of rn(|Smax|) = rn(|S|); these transitions may reset the register rn(|S|). Recall
that, in all states of ρ, none of the last rn(|S|) registers can contain an odd number greater
than 2k (Property (♠)). Consider a valuable transition. After the update by priority 2k, the
registers rn(|S|) and rn(|S|)− 1 contain even numbers not smaller than 2k (we put there 2k
during the update, unless a larger even priority is already there). Thus, when we reset the
register rn(|S|) during a valuable transition, its value is even. Moreover, after this transition,
the register rn(|S|) still contains an even number not smaller than 2k, moved there from the
register rn(|S|) − 1 (here it is important that rn(|S|) ≥ 2, so that the register rn(|S|) − 1
indeed exists).

P. Parys 11

By the definition of a game tree, if we leave GSmax,2k−1, then before entering GSmax,2k−1
again there is an edge of priority 2k, resulting in a valuable transition (edges of priority
up to 2k − 1 cannot go to Si from Sj when i < j). Assuming that the register rn(|S|) of
s (i.e., of the state from which we start ρ) contains an even number not smaller than 2k,
it follows that whenever we reach Smax, the register rn(|S|) contains an even number not
smaller than 2k (either existing there from the beginning of ρ, or since the last valuable
transition). Thus, the register rn(|S|) is not reset during preparatory transitions, and by
Point 2 of the induction assumption, there are no odd resets during the considered block of
local transitions for Smax; we obtain Point 2.

For Property (♣), we do not have the assumption that at the very beginning the register
rn(|S|) contains an even number not smaller than 2k. In consequence, there may be odd
resets of the register rn(|S|) while Smax is visited for the first time, but later, after the first
valuable transition, such resets are again impossible.

Next, concentrate on Point 3. We need to prove that:
for every r, in every infix of ρ without resets of registers above r, there are at most |S| − 1
odd resets of the register r, and
in every infix of ρ without any resets, there are at most |S| − 1 (non-reset) transitions.

For r > rn(|S|) there are no r-resets at all (Point 1). Take some r ≤ rn(|S|), and consider
an infix ρ′ of ρ without any resets of registers above r; let ξ′ be the path read by ρ′. We
are about to bound the number of odd resets of the register r in ρ′. If r < rn(|S|), the infix
ρ′ does not contain valuable transitions, as they reset the register rn(|S|), being above the
register r. If r = rn(|S|), we can also assume that ρ′ does not contain valuable transitions, as
anyway, by Property (♣), after the first valuable transition there are no more odd resets of
the register rn(|S|). In consequence, ξ′ is a path in GS,2k−1. By the definition of a game tree,
such a path can visit components S1, S2, . . . , Sm only in an ascending order; every GSi,2k−1
is visited by ξ′ at most once. By Point 3 of the induction assumption, in the block of local
transitions in ρ′ visiting Si there are at most |Si| − 1 odd resets of the register r without any
resets of registers above r in between. Moreover, in every block of preparatory transitions,
we reset the register r at most once, and there are m− 1 such blocks: before S2, S3, . . . , Sm,
but not before S1. Together, there are at most

∑m
i=1(|Si| − 1) +m− 1 = |S| − 1 odd resets

of the register r in ρ′, as wanted.
The situation is similar when we consider an infix ρ′ of ρ without any resets, and we want

to bound its length. Again, it visits every GSi,2k−1 at most once. In every Si there are at
most |Si| − 1 non-reset transitions in a row, by Point 3 of the induction assumption, and we
have at most m− 1 regressive transitions.

This finishes the proof when |S| ≥ 2. It remains to prove Points 2-3 in the degenerate
case of |S| = 1, when rn(|S|) = 1. In this case, all edges in GS,2k are loops around the only
node in S. None of them can have an odd priority, because by reaching this node and then
repeating this loop we would obtain a play won by Odd, while by assumption all plays in
Gτ are won by Even. Moreover, by assumption, if the register 1 of s (i.e., of the state from
which we start ρ) contained an odd number 2l + 1, then l < k and v 6∈ fstl(S). But, because
|S| = 1, we have fstl(S) = S, and v ∈ S. Thus, the register 1 of s contains an even number.
In consequence, in all states of ρ the last register (the register number rn(|S|)) contains either
an even number or 1; we then update it by an even number (so it cannot contain 1 after this
update), and then we possibly reset it. This means that we can only have even resets of the
register rn(|S|), which gives Point 2. For Point 3, we also need to know that there are no
non-reset transitions. But observe that for |S| = 1 there are no regressive transitions (all
edges of priority up to 2k − 1 stay inside GS1,2k−1), and there are no non-reset transitions

12 Parity Games: Another View on Lehtinen’s Algorithm

among local transitions, by Point 3 of the induction assumption. J

We remark that the proof presented above is based on Lehtinen’s work [25]. We only
prove a slightly stronger property, and we expand some details that in Lehtinen’s paper are
treated in a quite sketchy way.

Because states of Rn,d consist of non-increasing rn(n)-sequences of priorities in {1, . . . , d},
and because rn(n) = 1 + blog2 nc, the number of states of Rn,d is

ηn,d =
(

rn(n) + d− 1
rn(n)

)
= dO(logn) = nO(log d) ;

from every state the automaton has rn(n) + 1 transitions reading every letter e ∈ Σn,d (a
non-reset transition, and a reset transition for every register). In consequence, for a game
graph G with n nodes, m edges, and priorities up to d, the product game G × Rn,d has
(n+m) · ηn,d nodes, m · ηn,d · (rn(n) + 2) edges, and uses 2 · rn(n) + 1 priorities. Using a
standard (i.e., not quasi-polynomial-time) algorithm to solve such a game, the number of
priorities goes to the exponent, thus we obtain complexity nO(log d·logn).

5 Safety Register Automata

In the final section we show that the property bad(ρ) ≤ n− 1 obtained in Theorem 4.2 allows
us to solve the product game G×Rn,d faster: in time nO(logn) instead of nO(log d·logn). We
could prove this directly, but instead we modify the parity automaton Rn,d into a safety
automaton Sn,d.

We define the safety automaton Sn,d in the following way:
The set of states of Sn,d is the set of pairs: the first component is a state of the
automaton Rn,d and the other component is an (rn(n) + 1)-sequence 〈crn(n), . . . , c1, c0〉
of counters with values in {1, . . . , n}; additionally, in Sn,d we have a designated rejecting
state rej.
Throughout this definition, c always stands for the sequence 〈crn(n), . . . , c1, c0〉.
The initial state is (s0, c0), where s0 is the initial state of Rn,d and c0 = 〈n, n, . . . , n〉.
For each transition (s, e, 2k, s′) in Rn,d that is an even reset of the register k, we have a
transition

(
(s, c), e, 2, (s′, c′)

)
in Sn,d, where c′ = 〈crn(n), . . . , ck+1, ck, n, . . . , n〉.

For each transition (s, e, 2k + 1, s′) in Rn,d that has an odd priority (i.e., is a non-reset
transition, or is an odd reset of the register k), we have a transition

(
(s, c), e, 2, (s′, c′)

)
in Sn,d, where c′ = 〈crn(n), . . . , ck+1, ck − 1, n, . . . , n〉, if ck > 1.
For each transition (s, e, 2k + 1, s′) in Rn,d that has an odd priority we have a transition(
(s, c), e, 1, rej

)
in Sn,d, where ck = 1.

Moreover, for every letter e, we have a transition (rej, e, 1, rej) in Sn,d.
There are no other transitions in Sn,d except those specified above.

I Theorem 5.1. The automaton Sn,d is a strong SFPG separator.

Proof. Consider first a word w ∈ LimsupOddn,d, and a run ρS of Sn,d reading this word; we
have to prove that ρS is rejecting. While projecting every state of ρS to its first component,
we obtain a run ρR of Rn,d also reading w. By Theorem 4.2, Rn,d is a strong SFPG separator,
so it rejects all words from LimsupOddn,d (cf. Definition 3.2); ρR is rejecting. Let p be the
largest priority emitted by ρR infinitely often; p is odd. Consider the suffix of ρR in which
no larger priority is emitted. Concentrate now on ρS . Emitting the priority p by ρR results
in decreasing the counter (p− 1)/2 by 1, while emitting priorities lower than p leaves the

P. Parys 13

counter (p− 1)/2 unchanged. Thus, after n transitions emitting the priority p the rejecting
state is reached; ρS is rejecting.

Next, consider a game graph G with n nodes and priorities up to d, and an Even’s
positional winning strategy τ in G. Let σR be the transition strategy in Rn,d that is
winning for the set of all plays in G that arise from τ , existing because Rn,d is SFPG
(cf. Definition 3.4). We extend σR to a transition strategy σS for automaton Sn,d: in σS we
resolve nondeterministic choices in the same way as in σR; the difference is only that in Sn,d
we additionally update the counters (in a deterministic way). We have to prove that σS is
winning for the set of all plays in G that arise from τ . To this end, consider such a play; let
ρS be the run of Sn,d that follows σS and reads this play. Let ρR be the corresponding run
of Rn,d, obtained by projecting every state of ρS to its first component. By Theorem 4.2,
bad(ρR) ≤ n− 1. Notice that when ρR emits an odd priority 2k+ 1, we decrease the counter
k by 1, and when it emits any higher priority, we reset the counter k to n. Because priority
2k+ 1 is emitted at most n− 1 times without emitting any higher priority in between (by the
condition bad(ρR) ≤ n− 1), we obtain that the rejecting state is not reached. In consequence
ρS is accepting, which finishes the proof. J

We see that Sn,d has ξn,d = ηn,d · nrn(n)+1 + 1 states, and that from every state it has at
most rn(n) + 1 transitions reading every letter. Thus, for a game graph G with n nodes, m
edges, and priorities up to d, the product game G×Sn,d has (n+m) · ξn,d nodes and no more
than m · ξn,d · (rn(n) + 2) edges. This safety game can be solved in linear time. Without loss
of generality we can assume that d ≤ n, so the running time is of the form nO(logn).
I Remark 5.2. Let us underline two aspects of the definition of SFPG separators that are
important for the proofs of Theorems 4.2 and 5.1. First, the transition strategies that we
create actually depend on G and τ (unlike in the definition of good-for-games automata).
Second, in our transition strategies we choose a next transition basing not only on the priority
of an edge to be read, but also basing on its target. For this reason, we use automata that
read edges (i.e., triples: source, priority, target), not just priorities, nor pairs: source node of
an edge, priority of the edge (as in Bojańczyk and Czerwiński [4, Section 3]).

We believe that it is possible to construct a transition strategy that does not depend on
G and τ , and that chooses a next transition basing only on priorities (i.e., without knowing
which nodes are visited). The proof of existence of such a transition strategy would be more
involved than the proof presented above, however.

Nevertheless, Rn,d and Sn,d are not good for games, due to some words (not being
in PosEvenn,d) that can be accepted by these automata, but not in a deterministic way.
Interestingly, Rn,d accepts exactly LimsupEvenn,d, the set of winning plays (while L(Sn,d)
is smaller).

References
1 Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero. Solving parity games via

priority promotion. Formal Methods in System Design, 52(2):193–226, 2018. doi:10.1007/
s10703-018-0315-1.

2 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: From parity games
to safety games. ITA, 36(3):261–275, 2002. doi:10.1051/ita:2002013.

3 Henrik Björklund and Sergei G. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics, 155(2):210–229,
2007. doi:10.1016/j.dam.2006.04.029.

4 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox, February 2018. URL:
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf.

http://dx.doi.org/10.1007/s10703-018-0315-1
http://dx.doi.org/10.1007/s10703-018-0315-1
http://dx.doi.org/10.1051/ita:2002013
http://dx.doi.org/10.1016/j.dam.2006.04.029
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf

14 Parity Games: Another View on Lehtinen’s Algorithm

5 Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long, and Wilfredo R. Marrero.
An improved algorithm for the evaluation of fixpoint expressions. Theor. Comput. Sci.,
178(1-2):237–255, 1997. doi:10.1016/S0304-3975(96)00228-9.

6 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

7 Thomas Colcombet and Nathanaël Fijalkow. Universal graphs and good for games automata:
New tools for infinite duration games. In Mikołaj Bojańczyk and Alex Simpson, editors,
Foundations of Software Science and Computation Structures - 22nd International Conference,
FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume
11425 of Lecture Notes in Computer Science, pages 1–26. Springer, 2019. doi:10.1007/
978-3-030-17127-8_1.

8 Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

9 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić,
and Paweł Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

10 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous local search. In Dana
Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 790–804.
SIAM, 2011. doi:10.1137/1.9781611973082.62.

11 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377. IEEE Computer Society, 1991.
doi:10.1109/SFCS.1991.185392.

12 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for the
µ-calculus and its fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001. doi:10.1016/
S0304-3975(00)00034-7.

13 John Fearnley. Exponential lower bounds for policy iteration. In Samson Abramsky, Cyril
Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Au-
tomata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux,
France, July 6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer
Science, pages 551–562. Springer, 2010. doi:10.1007/978-3-642-14162-1_46.

14 John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. In Hakan
Erdogmus and Klaus Havelund, editors, Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10-14, 2017,
pages 112–121. ACM, 2017. doi:10.1145/3092282.3092286.

15 Wladimir Fridman and Martin Zimmermann. Playing pushdown parity games in a hurry. In
Marco Faella and Aniello Murano, editors, Proceedings Third International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2012, Napoli, Italy, September
6-8, 2012., volume 96 of EPTCS, pages 183–196, 2012. doi:10.4204/EPTCS.96.14.

16 Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential lower bounds for
randomized pivoting rules for the simplex algorithm. In Lance Fortnow and Salil P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 283–292. ACM, 2011. doi:10.1145/1993636.1993675.

http://dx.doi.org/10.1016/S0304-3975(96)00228-9
http://dx.doi.org/10.1145/3055399.3055409
http://dx.doi.org/10.1007/978-3-030-17127-8_1
http://dx.doi.org/10.1007/978-3-030-17127-8_1
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1137/1.9781611975482.142
http://dx.doi.org/10.1137/1.9781611973082.62
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1007/978-3-642-14162-1_46
http://dx.doi.org/10.1145/3092282.3092286
http://dx.doi.org/10.4204/EPTCS.96.14
http://dx.doi.org/10.1145/1993636.1993675

P. Parys 15

17 Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial
time algorithm for parity games. CoRR, abs/1702.01953, 2017. arXiv:1702.01953.

18 Matthew Hague, Roland Meyer, Sebastian Muskalla, and Martin Zimmermann. Parity to
safety in polynomial time for pushdown and collapsible pushdown systems. In Igor Potapov,
Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume
117 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.MFCS.2018.57.

19 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In Zoltán
Ésik, editor, Computer Science Logic, volume 4207 of Lecture Notes in Computer Science, pages
395–410, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/11874683_26.

20 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett.,
68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

21 Marcin Jurdziński. Small progress measures for solving parity games. In Horst Reichel
and Sophie Tison, editors, STACS 2000, 17th Annual Symposium on Theoretical Aspects of
Computer Science, Lille, France, February 2000, Proceedings, volume 1770 of Lecture Notes in
Computer Science, pages 290–301. Springer, 2000. doi:10.1007/3-540-46541-3_24.

22 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–9. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.
8005092.

23 Marcin Jurdziński, Mike Paterson, and Uri Zwick. A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008. doi:10.1137/070686652.

24 Bakhadyr Khoussainov. A brief excursion to parity games. In Mizuho Hoshi and Shinnosuke
Seki, editors, Developments in Language Theory - 22nd International Conference, DLT 2018,
Tokyo, Japan, September 10-14, 2018, Proceedings, volume 11088 of Lecture Notes in Computer
Science, pages 24–35. Springer, 2018. doi:10.1007/978-3-319-98654-8_3.

25 Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial
time. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
639–648. ACM, 2018. doi:10.1145/3209108.3209115.

26 Andrzej W. Mostowski. Games with forbidden positions. Technical Report 78, Uniwersytet
Gdański, 1991.

27 Paweł Parys. Parity games: Zielonka’s algorithm in quasi-polynomial time. In Peter Ross-
manith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen,
Germany, volume 138 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.10.

28 Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American Mathe-
matical Society, Boston, MA, USA, 1972.

29 Sven Schewe. Solving parity games in big steps. J. Comput. Syst. Sci., 84:243–262, 2017.
doi:10.1016/j.jcss.2016.10.002.

30 Helmut Seidl. Fast and simple nested fixpoints. Inf. Process. Lett., 59(6):303–308, 1996.
doi:10.1016/0020-0190(96)00130-5.

31 Jens Vöge and Marcin Jurdziński. A discrete strategy improvement algorithm for solving
parity games. In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings,
volume 1855 of Lecture Notes in Computer Science, pages 202–215. Springer, 2000. doi:
10.1007/10722167_18.

32 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

http://arxiv.org/abs/1702.01953
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.57
http://dx.doi.org/10.1007/11874683_26
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1109/LICS.2017.8005092
http://dx.doi.org/10.1109/LICS.2017.8005092
http://dx.doi.org/10.1137/070686652
http://dx.doi.org/10.1007/978-3-319-98654-8_3
http://dx.doi.org/10.1145/3209108.3209115
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.10
http://dx.doi.org/10.1016/j.jcss.2016.10.002
http://dx.doi.org/10.1016/0020-0190(96)00130-5
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

16 Parity Games: Another View on Lehtinen’s Algorithm

33 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996. doi:10.1016/0304-3975(95)00188-3.

A Appendix

In Remark 5.2 we claim that Rn,d and Sn,d are not good for games, that L(Rn,d) =
LimsupEvenn,d, and that L(Sn,d) (LimsupEvenn,d. We prove these facts below.

I Lemma A.1. It holds that L(Rn,d) = LimsupEvenn,d.

Proof. Because Rn,d is a strong PG separator, we already know that it rejects all words from
LimsupOddn,d. It remains to prove that it accepts all words from LimsupEvenn,d. Consider
thus a word w ∈ LimsupEvenn,d. Let p be the greatest priority that appears in w infinitely
often; p is even. We consider a run ρ of Rn,d that performs a reset of the register 1 while
reading an edge with priority p, and a non-reset transition while reading any other edge.
Let us see that ρ is accepting. From some moment on, there are no more priorities higher
than p in w. Then, after reading the priority p, the register 1 is reset to 1, and later it is
never updated to any value higher than p. Thus, whenever the priority p is read, we set the
register 1 to p, and then we reset it—it is an even reset. We thus have infinitely many even
resets of the register 1, only finitely many odd resets of this register, and no resets of any
higher register; the run is accepting. J

I Lemma A.2. For d ≥ 2 · rn(n) + 2, the automaton Rn,d is not good for games.

Proof. Consider some transition strategy σ for Rn,d. We have to prove that σ is not winning
for the whole L(Rn,d) (having this for every transition strategy σ implies that Rn,d is not
good for games).

To this end, we construct a play ξ by induction. The first edge of ξ is (1, 2, 1). Supposing
that some prefix of ξ is already constructed, we run Rn,d on this prefix, following the
transition strategy σ. If the last transition of such a partial run is

a non-reset transition—we append (1, 2, 1) to ξ;
an odd reset of a register k—we append (1, 2k + 2, 1) to ξ;
an even reset of a register k—we append (1, 2k + 1, 1) to ξ.

By the assumption d ≥ 2 · rn(n) + 2, all edges appearing in the above definition belong to
Σn,d.

Suppose that ρ is accepting. Then, for some number k, in ρ there are infinitely many
even resets of the register k, and only finitely many odd resets of the register k and resets of
higher registers. Thus, the highest priority that is appended to ξ infinitely often is 2k + 1
(by the definition of ξ). This means that ξ ∈ LimsupOddn,d, so ξ is rejected by Rn,d, which
is a contradiction.

We thus have that ρ is rejecting. By the definition of Rn,d this means that in ρ either
from some moment on, there are only non-reset transitions, or
for some register k, in ρ there are infinitely many odd resets of the register k, and only
finitely many resets of higher registers.

Then, the highest priority appended to ξ infinitely often is even (2 in the former case, and
2k+ 2 in the latter case), so ξ ∈ LimsupEvenn,d, that is, ξ ∈ L(Rn,d) (by Lemma A.1). This
means that σ is not winning for L(Rn,d), as we wanted to prove. J

I Lemma A.3. For n ≥ 2 and d ≥ 6, the automaton Sn,d is not good for games.

http://dx.doi.org/10.1016/0304-3975(95)00188-3

P. Parys 17

Proof. Denote r = rn(n). The assumption n ≥ 2 can be rewritten as r ≥ 2; in the
proof below we indeed use the fact that there are at least two registers. Denote also sI =
(〈1, 1, . . . , 1〉, 〈n, n, . . . , n〉) (this is the initial state of Sn,d) and s2 = (〈4, 1, . . . , 1〉, 〈n, 1, . . . , 1〉).
Recall that rej denotes the rejecting state of Sn,d. For i = 0, 1, 2, 3, respectively, let ki be the
largest number such that there exists a partial run of Sn,d that

starts in sI , ends in s2, and reads the word (1, 4, 1)(1, 1, 1)k0 ;
starts in s2, avoids rej, and reads the word (1, 1, 1)k1 ;
starts in s2, avoids rej, and reads the word (1, 2, 1)(1, 3, 1)k2 ;
starts in s2, avoids rej, and reads the word (1, 2, 1)(1, 5, 1)k3 .

Notice that there exists a partial run from sI to s2 that reads (1, 4, 1)(1, 1, 1)k for some k
(thus k0 is well defined): for example, the state s2 is reached if we first reset r − 1 times the
register r − 1 having value 4 (even resets, changing the state to (〈4, 1, . . . , 1〉, 〈n, n, . . . , n〉)),
then, for j = r− 1, r− 2, . . . , 1, we reset n− 1 times the register j having value 1 (odd resets),
and finally we can perform n − 1 non-reset transitions. Likewise, if while reading (1, 2, 1)
from s2 we reset some of the registers (this is an even reset: the registers have value 2 or 4),
we do not reach rej, so k2 and k3 are well defined. Notice also that all ki are finite. Indeed,
suppose for example that there is a partial run from sI to s2 (i.e., not visiting rej) that reads
(1, 4, 1)(1, 1, 1)k for k larger than the number of states of Sn,d. Then, it contains a cycle. We
can repeat this cycle forever, obtaining an infinite run reading (1, 4, 1)(1, 1, 1)ω. This run
is accepting (it does not visit rej), but the word is in LimsupOddn,d, which is impossible:
Sn,d rejects all words from LimsupOddn,d. This shows that k0 is finite, and similarly we can
prove that k1, k2, k3 are finite.

Consider now three infinite plays:

w1 = (1, 4, 1)(1, 1, 1)k0(1, 1, 1)k1(1, 6, 1)ω ,
w2 = (1, 4, 1)(1, 1, 1)k0(1, 2, 1)(1, 3, 1)k2(1, 6, 1)ω ,
w3 = (1, 4, 1)(1, 1, 1)k0(1, 2, 1)(1, 5, 1)k3(1, 6, 1)ω .

Observe that the words can be accepted by Sn,d. Indeed, by the definition of the numbers
ki, there is a partial run from sI that avoids rej and reads the finite prefix of wj (for j = 1, 2, 3)
before (1, 6, 1)ω. Then, while reading (1, 6, 1)ω, we can perform an even reset of the register
r (having value 6); even resets do not lead to rej, so the run is accepting.

Next, we prove that there is no single transition strategy that allows to accept simulta-
neously w1, w2, and w3. To this end, suppose that ρ1, ρ2, ρ3 are accepting runs reading
respectively w1, w2, w3, and following the same transition strategy.

Let s′2 be the state reached after reading the prefix (1, 4, 1)(1, 1, 1)k0 (this state is the
same in the three runs). As the runs are accepting, we have s′2 6= rej. Because the priorities
read so far are only 1 and 4, the registers of s′2 can contain only values 1 or 4: say that there
is 1 in the lower l registers, and 4 in the remaining r − l registers.

Suppose first that l = r, that is, that s′2 = (〈1, 1, . . . , 1〉, 〈cr, cr−1, . . . , c0〉). In this
situation there is a partial run from s2 = (〈4, 1, . . . , 1〉, 〈n, 1, . . . , 1〉) to s′2 reading (1, 1, 1)k′

1

for some k′1 > 0. Indeed, we first reset the register r having value 4, which leads to
(〈1, 1, . . . , 1〉, 〈n, n, . . . , n〉); then, for j = r, r − 1, . . . , 1, we reset n− cj times the register j
having value 1 (odd resets); finally, we perform n− c0 non-reset transitions. It follows that
there is a partial run from s2 that avoids rej and reads (1, 1, 1)k′

1+k1 : we first reach s′2, and
then we follow ρ1. This contradicts the maximality of k1; it was impossible that l = r.

We thus have l ≤ r − 1. This is only possible if the register r contained the value 4 in
all states of the considered prefix of the run (except the initial state). Thus there were no
odd resets of the register r so far; the counter number r in s′2 has value n. We now observe

18 Parity Games: Another View on Lehtinen’s Algorithm

that from s′2 we can reach s2 reading (1, 1, 1)k′
0 for some k′0. Indeed, if l = r − 1, we have

s′2 = (〈4, 1, . . . , 1〉, 〈n, cr−1, . . . , c0〉); by performing an appropriate number of odd resets of
registers r− 1, . . . , 1, and of non-reset transitions, we can change the counters to 〈n, 1, . . . , 1〉.
If l < r− 1, we first reset r− 1− l times the register r− 1 having value 4 (even resets), which
changes the state to (〈4, 1, . . . , 1〉, 〈n, n, . . . , n〉)), and then we continue as above. Notice now
that a composition of the considered prefix of the run and of this partial run is a partial run
from from sI to s2 that reads (1, 4, 1)(1, 1, 1)k0+k′

0 . By maximality of k0 we have that k′0 = 0,
which is only possible if s′2 = s2.

We already know that after reading (1, 4, 1)(1, 1, 1)k0 the runs ρi reach the state s2.
Consider now the transition of ρ2 and ρ3 reading (1, 2, 1); in both runs this is the same
transition. A non-reset transition from s2 would lead to rej (the last counter in s2 contains
1), so this is a reset transition. One case is that this transition resets the register r, and leads
to s3 = (〈2, 2, . . . , 2, 1〉, 〈n, n, n, . . . , n〉). We can instead reset the register r− 1 while reading
(1, 2, 1), which leads to s′3 = (〈4, 2, . . . , 2, 1〉, 〈n, 1, n, . . . , n〉), and then reset the register r
while reading (1, 3, 1), which leads to s′′3 = (〈3, 3, . . . , 3, 1〉, 〈n, n, n, . . . , n〉). We know that
there is a partial run from s3 that reads (1, 3, 1)k2 and avoids rej (a fragment of ρ2). But
the same partial run can be executed from s′′3 (an update by the priority 3 results in the
same, no matter whether we start from s3 or from s′′3). Thus, by going through s′3 and s′′3 we
obtain a partial run from s2 that reads (1, 2, 1)(1, 3, 1)1+k2 and avoids rej. This contradicts
the maximality of k2.

The remaining case is that the transition of ρ2 and ρ3 reading (1, 2, 1) resets some register
other than r. The transition leads to a state s4 = (〈4, 2, . . . , 2, 1〉, 〈n, 1, cr−2, . . . , c1, n〉)
(where the counter number r − 1 remains 1, and the counters cr−2, . . . , c1 are either 1 or
n). We can instead reset the register r while reading (1, 2, 1), which leads to s3 as above,
and then, while reading (1, 5, 1)k′

3 , we can reset n− 1 times the register r − 1 (odd resets,
leading to (〈5, 5, . . . , 5, 1〉, 〈n, 1, n, . . . , n〉)), and reset n−1 times appropriate registers among
r − 2, . . . , 1, so that the state becomes s′4 = (〈5, 5, . . . , 5, 1〉, 〈n, 1, cr−2, . . . , c1, n〉). Notice
that k′3 ≥ n− 1 > 0. We know that there is a partial run from s4 that reads (1, 5, 1)k3 and
avoids rej (a fragment of ρ3). But the same partial run can be executed from s′4 (an update
by the priority 5 results in the same, no meter whether we start from s4 or from s′4). Thus,
by going through s3 and s′4 we obtain a partial run from s2 that reads (1, 2, 1)(1, 5, 1)k′

3+k3

and avoids rej. This contradicts the maximality of k3.
We thus obtain that w1, w2, w3 ∈ L(Sn,d) cannot be accepted while following a common

transition strategy. In other words, no transition strategy is winning for the whole L(Sn,d);
the automaton is not good for games. J

I Lemma A.4. For d ≥ 2 we have that L(Sn,d) (LimsupEvenn,d.

Proof. We already know that Sn,d rejects all words from LimsupOddn,d; it is thus enough to
prove that LimsupEvenn,d \ L(Sn,d) 6= ∅. Let k be the largest number such that there exists
a partial run of Sn,d that starts in the initial state, avoid rej, and reads (1, 1, 1)k. As in the
proof of Lemma A.3, the number k is finite (not larger than the number of states of Sn,d).
Consider the word (1, 1, 1)k+1(1, 2, 1)ω ∈ LimsupEvenn,d. Because at the beginning we have
(1, 1, 1) repeated k + 1 times, every run reading this word is rejecting (otherwise existence of
the partial run reading (1, 1, 1)k+1 and avoiding rej would contradict the maximality of k).
Thus, this word belongs to LimsupEvenn,d \ L(Sn,d). J

	Introduction
	Preliminaries
	Product Games and SFPG Separators
	Register Automata
	Safety Register Automata
	Appendix

