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Abstract

Several distinct techniques have been proposed to design quasi-polynomial algorithms
for solving parity games since the breakthrough result of Calude, Jain, Khoussainov, Li,
and Stephan (2017): play summaries, progress measures and register games. We argue
that all those techniques can be viewed as instances of the separation approach to solving
parity games, a key technical component of which is constructing (explicitly or implicitly)
an automaton that separates languages of words encoding plays that are (decisively) won
by either of the two players. Our main technical result is a quasi-polynomial lower bound
on the size of such separating automata that nearly matches the current best upper bounds.
This forms a barrier that all existing approaches must overcome in the ongoing quest for
a polynomial-time algorithm for solving parity games. The key and fundamental concept
that we introduce and study is a universal ordered tree. The technical highlights are a
quasi-polynomial lower bound on the size of universal ordered trees and a proof that every
separating safety automaton has a universal tree hidden in its state space.

1 Introduction

1.1 Parity games

The algorithmic problem. A parity game is played on a directed graph by two players who
are called Even and Odd. A play starts at a designated vertex and then the players move by
following outgoing edges forever, thus forming an infinite path. Every vertex of the graph is
owned by one of the two players and it is always the owner of the vertex who moves by following
an outgoing edge from the current vertex to the next one.

This completes the description of the dynamics of a play, but how do we declare the winner
of an infinite path formed in this way? For this, we need to inspect positive integers that label
all edges in the graph, which we refer to as edge priorities, or simply priorities. Player Even is
declared the winner of a play if the highest priority that occurs infinitely many times is even, and
otherwise player Odd wins; equivalently, the winner is the parity of the limsup (limes superior)
of the priorities that occur in the play.

The principal algorithmic problem studied in the context of parity games is deciding the
winner : given a game graph as described above and a starting vertex, does player Even have
a winning strategy—a recipe for winning every play starting from the designated vertex, no
matter what edges her opponent Odd follows whenever it is his turn to move.
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Determinacy and complexity. A positional strategy for Even is a set of edges that go out
of vertices she owns—exactly one such edge for each of her vertices; Even uses such a strategy
by always—if the current vertex is owned by her—following the unique outgoing edge that is
in the strategy. Note that when Even uses a positional strategy, her moves depend only on the
current vertex—they are oblivious to what choices were made by the players so far. A basic
result for parity games that has notable implications is their positional determinacy [11, 28]:
for every starting vertex, exactly one of the players has a winning strategy and hence the set
of vertices is partitioned into the winning set for Even and the winning set for Odd; moreover,
each player has a positional strategy that is winning for her from all starting vertices in her
winning set.

An important corollary of positional determinacy is that deciding the winner in parity games
is well characterized, i.e., it is both in NP and in co-NP [12]. Several further complexity results
suggest that it may be difficult to provide compelling evidence for hardness of solving parity
games: deciding the winner is known to be also in UP and in co-UP [22], and computing
winning strategies is in PLS, PPAD, and even in their subclass CLS [8, 9]. Parity games share
this intriguing complexity-theoretic status with several other related problems, such as mean-
payoff games [33], discounted games, and simple stochastic games [7], but they are no harder
than them since there are polynomial reductions from parity games to mean-payoff games, to
discounted games, and to simple stochastic games [22, 33].

Significance and impact. Parity games play a fundamental role in automata theory, logic,
and their applications to verification and synthesis. Specifically, the algorithmic problem of
deciding the winner in parity games is polynomial-time equivalent to the model checking in the
modal µ-calculus and to checking emptiness of automata on infinite trees with parity accep-
tance conditions [12], and it is at the heart of algorithmic solutions to the Church’s synthesis
problem [29].

The impact of parity games goes well beyond their place of origin in automata theory and
logic. We illustrate it by the resolutions of two long-standing open problems in stochastic plan-
ning and in linear programming, respectively, that were directly enabled by the ingenious exam-
ples of parity games given by Friedmann [17], on which the strategy improvement algorithm [32]
requires exponentially many iterations. Firstly, Fearnley [14] has shown that Friedmann’s ex-
amples can be adapted to prove that Howard’s policy iteration algorithm for Markov decision
processes (MDPs) requires exponentially many iterations. Policy iteration has been well-known
and widely used in stochastic planning and AI since 1960’s, and it has been celebrated for its
fast termination: until Fearnley’s surprise result, no examples were known for which a super-
linear number of iterations was necessary. Secondly, Friedmann, Hansen, and Zwick [18] have
adapted the insights from the lower bounds for parity games and MDPs to prove that natural
randomized pivoting rules in the simplex algorithm for linear programming may require subex-
ponentially many iterations. The following quote from the full version of Friedmann et al. [18]
highlights the role that parity games (PGs) played in their breakthrough:

“our construction can be described and understood without knowing about PGs.
We would like to stress, however, that most of our intuition about the problem was
obtained by thinking in terms of PGs. Thinking in terms of MDPs seems harder,
and we doubt whether we could have obtained our results by thinking directly in
terms of linear programs.”

In both cases, Friedmann’s examples of parity games and their analysis have been pivotal in
resolving the theoretical worst-case complexity of influential algorithms that for many decades
resisted rigorous analysis while performing outstandingly well in practice.
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Current state-of-the-art. It is a long-standing open question whether there is a polynomial-
time algorithm for solving parity games [12]. The study of algorithms for solving parity games
has been dominated for over two decades by algorithms whose run-time was exponential in the
number of distinct priorities [13, 4, 31, 23, 32, 30], or mildly subexponential for large number
of priorities [2, 26]. The breakthrough came in 2017 from Calude et al. [5] who gave the
first quasi-polynomial-time algorithm using the novel idea of play summaries. Several other
quasi-polynomial-time algorithms were developed soon after, including space-efficient progress-
measure based algorithms of Jurdziński and Lazić [24] and of Fearnley, Jain, Schewe, Stephan,
and Wojtczak [15], and the algorithm of Lehtinen [27], based on her concept of register games.

1.2 The separation approach

Bojańczyk and Czerwiński [3, Section 3] have observed that the main technical contribution of
Calude et al. [5] can be elegantly phrased using concepts from automata theory. They have
pointed out that in order to reduce solving a parity game to solving a much simpler safety
game, it suffices to provide a finite safety automaton that achieves the task of separating two
sets AllCyclEven and AllCyclOdd of (infinite) words that are decisively won by the two players,
respectively. For encoding plays in parity games, they use words in which every letter is a pair
that consists of a vertex and a priority. The definition of such a word being decisively won by a
player that was proposed by Bojańczyk and Czerwiński is that the biggest priority that occurs
on every cycle—an infix in which the first vertex and the vertex immediately following the infix
coincide—is of her parity. Concerning separation, for two disjoint languages K and L, we say
that a language S separates K from L ifK ⊆ S and S∩L = ∅, and we say that an automatonA is
a separator of two languages if the language L(A) of words recognized by A separates them. The
main technical contribution of Calude et al. [5] can then be stated as constructing separators—of
quasi-polynomial size—of the languages AllCyclEven and AllCyclOdd.

Note that a separator of AllCyclEven and AllCyclOdd has a significantly easier task than
a recognizer of exactly the set LimsupEven of words that are won by Even—that is required
to accept all words in LimsupEven, and to reject all words in LimsupOdd, the set of all words
that are won by Odd. Instead, a separator may reject some words won by Even and accept
some words won by Odd, as long as it accepts all words that are decisively won by Even, and
it rejects all words that are decisively won by Odd.

What Calude et al. [5] exploit is that if one of the players uses a positional winning strategy
then all plays are indeed encoded by words that are won decisively by her, no matter how
the opponent responds. The formalization of Bojańczyk and Czerwiński [3] is that—using
positional determinacy of parity games [11, 28]—in order to solve a parity game, it suffices
to solve a strategically and algorithmically much simpler safety game that is obtained as a
simple synchronized product of the parity game and a safety automaton that is a separator of
AllCyclEven and AllCyclOdd.

1.3 Our contribution

Our main conceptual contributions include making explicit the notion of a universal ordered
tree and unifying all the existing quasi-polynomial algorithms for parity games [5, 24, 19, 15, 27]
as instances of the separation approach proposed by Bojańczyk and Czerwiński [3].

We point out that a universal tree is the fundamental combinatorial object that can serve
as the data structure on which progress measure lifting algorithms [23, 1, 30, 24, 10] operate,
and that the running time of such algorithms is dictated by the size of the universal tree. As
our main technical results show, however, universal trees are fundamental not only for progress
measure lifting algorithms, but for all algorithms that follow the separation approach.

We argue that in the separation approach, it is appropriate to slightly adjust the choice
of languages to be separated, from AllCyclEven and AllCyclOdd proposed by Bojańczyk and

3



Czerwiński [3] to the more suitable PosCyclEven and PosCyclOdd (see Section 2.1 for the def-
initions and the rationale). We also verify, in Section 5, that all the three distinct techniques
of solving parity games in quasi-polynomial time considered in the recent literature (play sum-
maries [5, 19, 15], progress measures [24], and register games [27]) yield separators for languages
PosCyclEven and LimsupOdd, which (as we argue in Section 2.2) makes them suitable for the
separation approach.

The main technical contribution of the paper, described in Sections 3.2 and 4 is a proof
that every (non-deterministic) safety automaton that separates PosCyclEven from LimsupOdd
has a number of states that is at least quasi-polynomial. First, in Section 3.2 we establish a
quasi-polynomial lower bound on the size of universal trees. Then, in Section 4, our argument
is based on proving that in every such an automaton, one can define a sequence of linear quasi-
orders on the set of states, in which each quasi-order is a refinement of the quasi-order that
follows it in the sequence. Such a sequence of linear quasi-orders can be naturally interpreted
as an ordered tree in which every leaf is populated by at least one state of the automaton. We
then also prove that the ordered tree must contain a universal ordered tree [24], and the main
result follows from the earlier quasi-polynomial lower bound for universal trees.

Another technical highlight, presented in Section 5.3, is a construction of a separator from an
arbitrary universal tree, which together with the main technical result implies that the sizes of
smallest universal trees and of smallest separators coincide. The correctness of the construction
relies on existence of the least progress measures that map from vertices of game graphs into
universal trees and witness winning strategies.

The significance of our main technical results is that they provide evidence against the hope
that any of the existing technical approaches to developing quasi-polynomial algorithms for
solving parity games [5, 24, 15, 27] may lead to further improvements to sub-quasi-polynomial
algorithms. In other words, our quasi-polynomial lower bounds for universal trees and separators
form a barrier that all existing approaches must overcome in the ongoing quest for a polynomial-
time algorithm for solving parity games.

We leave open the question whether a stronger version of our main technical result holds,
namely whether every safety automaton separating PosCyclEven from PosCyclOdd has at least
quasi-polynomial number of states. Our argument cannot be directly extended to that setting,
as already the proof of Lemma 2 heavily relies on that fact that no word from LimsupOdd is
accepted.

2 Preliminaries

2.1 Game graphs and play languages

Game graphs and strategy subgraphs. Throughout the paper, we write V for the set of
vertices and E for the set of edges in a parity game graph, and we use n to denote the numbers
of vertices. Typically, we assume that V = {1, 2, . . . , n}. For every edge e ∈ E, its priority π(e)
is a positive integer, and we use d to denote the smallest even number larger than or equal to
priorities of all edges. Without loss of generality, we assume that every vertex has at least one
outgoing edge. We say that a cycle in a game graph is even if the largest edge priority that
occurs on it is even; otherwise it is odd.

Recall that a positional strategy for Even is a set of edges that go out of vertices she owns—
exactly one such edge for each of her vertices. The strategy subgraph of a positional strategy for
Even is the subgraph of the game graph that includes all outgoing edges from vertices owned by
Odd and exactly those outgoing edges from vertices owned by Even that are in the positional
strategy. Observe that the set of plays that arise from Even playing her positional strategy is
exactly the set of all plays in the strategy subgraph. Moreover, note that every cycle in the
strategy subgraph of a positional strategy for Even that is winning for her is even: otherwise,

4



Σω
n,d

PosCyclOddn,d

AllCyclOddn,d

〈(1, 2) (2, 3) (2, 2) (1, 3)〉ω

LimsupOddn,d

(1, 2)(1, 1)ω

PosCyclEvenn,d

AllCyclEvenn,d

〈(1, 1) (2, 2) (2, 1) (1, 2)〉ω

LimsupEvenn,d

(1, 1)(1, 2)ω

Figure 1: Sets of infinite words in Σω
n,d.

by repeating an odd cycle indefinitely, we would get a play that is winning for Odd.

Languages of play encodings. The outcome of the two players interacting in a parity game
by making moves is an infinite path in the game graph. We encode such infinite paths as infinite
words over the alphabet Σn,d = {1, 2, . . . , n} × {1, 2, . . . , d} in a natural way: each move—in
which from vertex v an outgoing edge e is followed—is encoded by the letter (v, π(e)) that
consists of the vertex component v and the priority component π(e).

We write LimsupEvenn,d for the set of infinite words in which the biggest number that
occurs infinitely many times in the priority components of the letters is even, and we write
LimsupOddn,d for the set of infinite words in which that number is odd. Observe that sets
LimsupEvenn,d and LimsupOddn,d form a partition of the set Σω

n,d of all infinite words over the
alphabet Σn,d. As intended, an infinite play in a parity game graph with n vertices and edge
priorities not exceeding d is winning for Even if and only if the infinite-word encoding of the
play is in LimsupEvenn,d.

In order to be usable in the separation approach, automata do not need to recognize
the set LimsupEvenn,d of winning plays—a prohibitive requirement. Instead, Bojańczyk and
Czerwiński argue that it is sufficient that the automaton separates sets AllCyclEvenn,d and
AllCyclOddn,d, that are strict subsets of LimsupEvenn,d and LimsupOddn,d, respectively. We
say that a nonempty infix of a word over the alphabet Σn,d is a cycle if the vertex component of
its first letter coincides with the vertex component of the first letter appearing directly after this
infix. We say that a cycle is even if the highest number that occurs as the priority component
of any letter in the cycle is even; otherwise the cycle is odd. We then define AllCyclEvenn,d to
be the set of infinite words in which every cycle is even, and AllCyclOddn,d to be the set of
infinite words in which every cycle is odd.

We observe that the sets AllCyclEvenn,d and AllCyclOddn,d contain degenerate words that
do not encode plays arising from positional winning strategies, and hence their acceptance or
rejection has no significance in the correctness argument for the separation approach. Instead,
we propose to work with sets of words PosCyclEvenn,d and PosCyclOddn,d—we define them to
consist of all the encodings of plays that arise from positional winning strategies for Even and
Odd, respectively, in some game graph with n vertices and priorities up to d.

It is easy to argue that inclusions between the six sets of Σω
n,d, are as in Figure 1. The

inclusions are strict, as witnessed by the examples of infinite words in the color-shaded areas.
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2.2 Safety automata and the separation approach

Safety automata and games. The fundamental and simple model that the statement of our
main technical result formally refers to is a (non-deterministic) safety automaton. Superficially,
it closely resembles the classic model of finite automata: each safety automaton has a finite
set of states, a designated initial state, and a transition relation. (Without loss of generality,
we assume that the transition relation is total, i.e., for every state s and letter a, there is at
least one state s′, such that the triple (s, a, s′) is in the transition relation.) The differences
between our model of safety automata and the classic model of finite automata with designated
accepting states are as follows:
• safety automata are meant to accept or reject infinite words, not finite ones;
• a safety automaton does not have a designated set of accepting states; instead it has a

designated set of rejecting states;
• a safety automaton accepts an infinite word if there is an infinite run of the automaton

on the word in which no rejecting state ever occurs; otherwise it rejects the infinite word.
We say that a safety automaton is deterministic if the transition relation is a function: for every
state s and letter a, there is a unique state s′, such that the triple (s, a, s′) is a transition.

Finally, we define the elementary concept of safety games, which are played by two players
on finite directed graphs in a similar way to parity games, but the goals of the players are
simpler than in parity games: the safety player wins if a designated set of unsafe vertices is
never visited, and otherwise the opponent (sometimes called the reachability player) wins.

The separation approach. We now explain how safety separating automata allow to reduce
the complex task of solving a parity game to the (conceptually and algorithmically) straightfor-
ward task of solving a safety game, by exploiting positional determinacy of parity games. This is
the essence of the separation approach that implicitly underpins the algorithms of Bernet, Janin,
and Walukiewicz [1] and of Calude et al. [5], as formalized by Bojańczyk and Czerwiński [3,
Chapter 3]. Here, we only consider the simple case of deterministic automata. We postpone
the discussion of using non-deterministic automata in the separation approach to Section 5.6,
which is the only place where non-determinism seems to be needed.

Given a parity game G with at most n vertices and priorities up to d, and a deterministic
safety automaton A with input alphabet Σn,d, we define a safety game as the synchronised
product G×A, in which
• the dynamics of play and ownership of vertices is inherited from the parity game G;
• the automaton A is fed the vertex-priority pairs corresponding to moves made by the

players;
• the safety winning condition is the safety acceptance condition of the automaton A.

Proposition 1. If G is a parity game with n vertices and priorities up to d, and A is a
deterministic safety automaton that separates PosCyclEvenn,d from PosCyclOddn,d, then Even
has a winning strategy in G if and only if she has a winning strategy in the synchronized-product
safety game G×A.

Proof. If Even has a winning strategy in the parity game G then—by positional determinacy [11,
28]—she also has one that is positional. We argue that if Even uses such a positional winning
strategy in G when playing the synchronized-product game G×A, then she also wins the latter.
This follows from every infinite play in the strategy subgraph of a positional winning strategy
for Even having only even cycles, which implies that the encoding of such a play is an infinite
word in PosCyclEvenn,d, and hence it is accepted by the automaton A.

Otherwise, Odd has a positional winning strategy in G, and it can be transferred to a
winning strategy for him in G×A in the same way as we argued for Even above.
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In the rest of the paper, we focus on separators of PosCyclEvenn,d and LimsupOddn,d (rather
than on separators of PosCyclEvenn,d and PosCyclOddn,d), for two reasons. Firstly—as de-
scribed in Section 5—all the known quasi-polynomial algorithms for parity games are under-
pinned by separators of PosCyclEvenn,d and LimsupOddn,d, which also separate PosCyclEvenn,d
from PosCyclOddn,d and hence meet the assumption of Proposition 1. Secondly, although some
separators that we describe in Section 5 even separate AllCyclEvenn,d from LimsupOddn,d, the
quasi-polynomial lower bound that we give in Section 4 relies on the property that the safety
automaton separates PosCyclEvenn,d and LimsupOddn,d, which again holds for all automata
that separate AllCyclEvenn,d and LimsupOddn,d.

3 Universal ordered trees

3.1 Definition

An ordered tree is a prefix-closed set of sequences of a linearly ordered set. We refer to such
sequences as tree nodes, we call the elements of such sequences branching directions, and we use
the standard ancestor-descendent terminology for nodes. For example: node 〈〉 is the root of a
tree; node 〈x〉 is the child of the root that is reached from the root via the branching direction x;
node 〈x, y〉 is the parent of node 〈x, y, z〉; nodes 〈〉, 〈x〉, and 〈x, y〉 are ancestors of node 〈x, y, z〉;
and nodes 〈x, y〉 and 〈x, y, z〉 are descendants of nodes 〈〉 and 〈x〉. Moreover, a node is a leaf if
it does not have any descendants. A natural linear order on nodes in an ordered tree that we
are going to use is the lexicographic order on sequences induced by the assumed linear order
on the set of branching directions. For example, we have 〈x〉 < 〈x, y〉, and 〈x, y, w〉 < 〈x, z〉 if
y < z.

An (n, h)-universal (ordered) tree is an ordered tree of height h, such that every ordered tree
of height at most h and with at most n leaves can be isomorphically embedded into it; in such
an embedding, the root of the tree must be mapped onto the root of the universal tree, and the
children of every node must be mapped—injectively and in an order-preserving way—onto the
children of its image.

Ordered trees are the key technical concept that underpins the design of the progress measure
lifting algorithm [23] for solving parity games. For nearly two decades, this algorithm and its
variants [1, 30, 6, 24, 10] have been consistently matching or beating the worst-case performance
guarantees of the state-of-the-art algorithms. In this paper, we make explicit the implicit
observations of Jurdziński and Lazić [24] that:
• any (n, d/2)-universal tree can be used as the data structure using which the progress

measure lifting algorithm can solve any parity game with at most n vertices and at most
d distinct priorities;
• the worst-case run-time analysis of the progress measure algorithm is dominated by the

size of the universal tree that it uses.
In particular, Jurdziński and Lazić have (implicitly) given a construction of universal trees of
quasi-polynomial size, and they have argued that the progress measure lifting algorithm can
use their universal trees to achieve the state-of-the-art worst-case performance for solving parity
games [24].

Theorem 1 (Jurdziński and Lazić [24, Lemmas 1 and 6]). For all positive integers n and h, there
is an (n, h)-universal tree with at most quasi-polynomial number of leaves; more specifically, it

is at most 2n
(dlgne+h+1

h

)
, which is polynomial in n if h = O(lg n), and it is O

(
hnlg(h/lgn)+1.45

)
if h = ω(lg n).
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3.2 Lower bounds for universal trees

The main technical result in this section is a quasi-polynomial lower bound on the size of univer-
sal ordered trees that matches the upper bound of Jurdziński and Lazić [24] up to a small polyno-
mial factor. It follows that the smallest universal ordered trees have quasi-polynomial size, and
hence the worst-case performance of the succinct progress measure algorithm of Jurdziński and
Lazić [24] cannot be improved to sub-quasi-polynomial by designing smaller universal ordered
trees.1

Theorem 2. For all positive integers n and h, every (n, h)-universal tree has at least
(blgnc+h−1
blgnc

)
leaves, which is at least nlg(h/lgn)−1 provided 2h ≤ n.

This lower bound result shares some similarities with a result of Goldberg and Lifschitz [20],
which is for universal trees of a different kind: the height is not bounded and the trees are not
ordered.

Proof. We first give a derivation of the latter bound from the former: we show that(
blg nc+ h− 1

blg nc

)
≥ nlg(h/ lgn)−1 provided 2h ≤ n

We start from the inequality
(
k
`

)` ≤ (k`) applied to the binomial coefficient
(blgnc+h−1
blgnc

)
, and

take the lg of both sides. This yields

lg

(
blg nc+ h− 1

blg nc

)
≥ blg nc ·

[
lg
(
blg nc+ h− 1

)
− lgblg nc

]
≥

(lg n− 1) · (lg h− lg lgn) ≥ lg n ·
(

lg(h/ lg n)− 1
)

The second inequality follows since n ≥ 2, and the third by the assumption 2h ≤ n.

To prove the first bound, we proceed by induction and show that any (n, h)-universal tree
has at least g(n, h) leaves, where

g(n, h) =
n∑
δ=1

g(bn/δc, h− 1)

and g(n, 1) = n, g(1, h) = 1.
The bounds are clear for h = 1 or n = 1.
Let T be a (n, h)-universal tree, and δ ∈ {1, . . . , n}. We claim that the number of nodes at

depth h− 1 of degree greater than or equal to δ is at least g(bn/δc, h− 1).
Let Tδ be the subtree of T obtained by removing all leaves and all nodes at depth h− 1 of

degree less than δ: the leaves of the tree Tδ have height exactly h− 1.
We argue that Tδ is (bn/δc, h− 1)-universal. Indeed, let t be a tree with bn/δc leaves all at

depth h−1. To each leaf of t we append δ children, yielding the tree t+ which has bn/δc · δ ≤ n
leaves all at depth h. Since T is (n, h)-universal, the tree t+ embeds into T . Observe that the
embedding induces an embedding of t into Tδ, since the leaves of t have degree δ in t+, hence
are also in Tδ.

Let `δ be the number of nodes at depth h− 1 with degree exactly δ. So far we proved that
the number of nodes at depth h−1 of degree greater than or equal to δ is at least g(bn/δc, h−1),
so

n∑
i=δ

`i ≥ g(bn/δc, h− 1).

1The quasi polynomial lower bound on the size of universal trees has appeared in the technical report [16],
which has been merged into this paper.
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Thus the number of leaves of T is

n∑
i=1

`i · i =
n∑
δ=1

n∑
i=δ

`i ≥
n∑
δ=1

g(bn/δc, h− 1) = g(n, h).

It remains to prove that:

g(n, h) ≥
(
blg nc+ h− 1

blg nc

)
.

Define G(p, h) = g(2p, h) for p ≥ 0 and h ≥ 1. Then we have

G(p, h) ≥
∑p

k=0G(p− k, h− 1),
G(p, 1) ≥ 1,
G(0, h) = 1.

To obtain a lower bound on G we define G by

G(p, h) = G(p, h− 1) +G(p− 1, h),

G(p, 1) = 1,

G(0, h) = 1,

so that G(p, h) ≥ G(p, h). We verify by induction that G(p, h) =
(
p+h−1

p

)
, which follows from

Pascal’s identity (
p+ h− 1

p

)
=

(
p+ h− 2

p

)
+

(
p+ h− 2

p− 1

)
.

This implies that G(p, h) ≥
(
p+h−1

p

)
. Putting everything together we obtain

g(n, h) ≥
(
blg nc+ h− 1

blg nc

)
.

4 Universal trees grow inside separating automata: the lower
bound

The main result of this section is to show that any separating automaton contains a universal
tree. Combined with Theorem 2 this implies a quasipolynomial lower bound on the number
of states of any separating automata. Since all known quasipolynomial time algorithms for
solving parity games implicitly or explicitly construct a separating automaton, the size of which
dictates the complexity, this result explains in a unified way the quasipolynomial barrier and
pinpoints the underlying combinatorial structure behind all recent algorithms.

Theorem 3. Every non-deterministic safety automaton that separates PosCyclEvenn,d from

LimsupOddn,d has at least
(blgnc+d/2−1

blgnc
)

states, which is at least nlg(d/lgn)−2.

The rest of this section is devoted to the proof of Theorem 3. The proof shows that, if
an automaton A fulfils conditions of Theorem 3, then it necessarily has the structure of an
(n, d/2)-universal tree (cf. Section 3.1 for a definition; recall that d is assumed to be even) in
its states. The core of the proof of Theorem 3 is the following lemma.

Lemma 1. Let A be a non-deterministic safety automaton that separates PosCyclEvenn,d from
LimsupOddn,d. Then there is an injective mapping from the leaves of some (n, d/2)-universal
tree into the states of A.
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Note that once the lemma is established, our main theorem follows from the quasi-polynomial
lower bounds for universal trees stated in Theorem 2, since d ≤ n.

We prove Lemma 1 in two steps. In the first step, we show that any safety automaton
separating PosCyclEvenn,d from LimsupOddn,d must have a special structure, which we call
tree-like (Lemma 2). Then, assuming this special structure, we prove that there is a universal
tree whose leaves embed in the states of A (Lemma 3).

Linear quasi-order. A binary relation � on a set X is called a linear quasi-order if it is
reflexive, transitive, and total (i.e. such that for all x, y ∈ X either x � y, or y � x, or both). If
x � y and y 6� x, then we write x ≺ y. An equivalence class of � is a maximal set e ⊆ X such
that x � y and y � x for all x, y ∈ e. It is well-known that the equivalence classes of � form
a partition of X and given two equivalence classes e and e′, there exist x ∈ e and y ∈ e′ such
that x � y if and only if for all x ∈ e and y ∈ e′, x � y. When this is the case, it is denoted by
e � e′, and e ≺ e′ when additionally e′ 6� e.

Given two linear quasi-orders �1 and �2, we write �1⊆�2 if for all x, y ∈ X, x �1 y implies
x �2 y. In that case, any equivalence class of �2 is formed with a partition of equivalence
classes of �1. In other word, an equivalence class of �1 is included in a unique equivalence class
of �2 and disjoint from the other ones.

Tree decomposition.

Recall that we consider the alphabet Σn,d = {1, 2, . . . , n}×{1, 2, . . . , d}. The second component
of a letter a is called its priority and is denoted by pr(a).

For an automaton A over Σn,d, a tree-decomposition of A is a sequence of linear quasi-orders
�1 ⊆ �3 ⊆ · · · ⊆�d+1 on the set of non-rejecting states of A such that:
1) if p

a−→ q then p �2i+1 q whenever 2i+ 1 > pr(a),
2) if p

a−→ q and pr(a) is odd then p �2i+1 q whenever 2i+ 1 ≤ pr(a), and
3) �d+1 has a single equivalence class, containing all non-rejecting states of A.
In other words, reading a letter cannot cause an increase with respect to orders with indices
greater than its priority, and additionally reading a letter with odd priority necessarily causes
a decrease with respect to orders with indices smaller than or equal to this latter. If there is a
tree-decomposition of A, we call A to be tree-like. Given a tree decomposition D of A, we define
the D-tree of A, denoted treeD(A), as follows (recall the notation on trees from Section 5.3):
• nodes of treeD(A) are sequences 〈ed−1, ed−3, . . . , ep〉, where p ∈ {1, 3, 5, . . . , d − 1}, and

where every branching direction ei is an equivalence class of the quasi-order �i, such that
ed−1 ⊇ ed−3 ⊇ · · · ⊇ ep,
• the order between branching directions ei, e

′
i being equivalence classes of �i is ei < e′i

when ei ≺i e′i.
Notice that for a non-rejecting state q ofA, there is a unique sequence ed−1 ⊇ ed−3 ⊇ · · · ⊇ e1

where for all i, ei is an equivalence class of �i containing q. One can thus assign a non-rejecting
state q to the corresponding leaf 〈ed−1, ed−3, . . . , e1〉, in such a way that for all odd priority
p ∈ {1, 3, . . . , d1}, q ≺p q′ if and only if the p-truncation of the leaf assigned to q is smaller in
the lexicographic order than the p-truncation of the leaf assigned to q′.

An automaton is said accessible if for every state q there exists a run from an initial state
to q, and moreover, if q is non-rejecting, there exists such a run which does not go through any
rejecting state. The first of the two steps of the proof of Lemma 1 can be summarized by the
following lemma.

Lemma 2. Every accessible non-deterministic safety automaton separating PosCyclEvenn,d
from LimsupOddn,d is tree-like.
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Proof. We define the linear quasi-orders inductively starting from higher indices, that is, in the
order �d+1,�d−1, . . . ,�1. As �d+1 we take the quasi-order in which all non-rejecting states are
in a single equivalence class. Condition 3) is already satisfied.

Assume now that the quasi-orders �d+1,�d−1, . . . ,�2i+3 are already defined, and that they
fulfil Conditions 1) and 2). We define �2i+1 as a refinement of �2i+3. If q ≺2i+3 r then we
set q ≺2i+1 r as well. So it remains to define whether �2i+1 holds for states q and r in the
same equivalence class of �2i+3. Before this, notice that we are already guaranteed that �2i+1

satisfies Conditions 1) and 2) for letters a of priority higher than 2i+ 1. Indeed, Condition 1)
talks only about letters with priorities smaller than 2i+1. By Condition 2) applied to �2i+3 we
know that if pr(a) is odd, and pr(a) ≥ 2i+ 3 (i.e., pr(a) > 2i+ 1), and q

a−→ r, then q �2i+3 r,
so also q �2i+1 r. Therefore we only need to define �2i+1 in such a way that Condition 1)
is satisfied for letters with priorities from the set {1, . . . , 2i} and Condition 2) is satisfied for
letters with priority 2i + 1. Intuitively speaking, now we only have to care about letters with
priorities at most 2i+ 1.

Let e be an arbitrary equivalence class of �2i+3. Consider an automaton Ae,2i+1, which
contains a part of A consisting of only these states that belong to the class e, and only these
transitions that have endpoints inside e and are labelled by letters with priorities at most 2i+ 1
(notice that Ae,2i+1 needs not to be complete). Observe now that there cannot be any cycle in
Ae,2i+1 such that the maximal priority of a letter on that cycle is odd. Indeed, otherwise we
could consider the infinite run that first reaches this cycle from an initial state in A and without
visiting any rejecting state (which is possible under the assumption that A is accessible), and
then goes around this cycle forever (note that none of the state in the cycle is rejecting); the
word read by this run would be in LimsupOddn,d, but it would be accepted by the automaton
(while it should not). Notice that this exactly the point in the proof of Lemma 2 where we
need assumption about rejecting all the words from LimsupOddn,d. Rejecting all the words
from PosCyclOddn,d would not be sufficient, as the above described word may have some even
cycle and thus does not have to belong to PosCyclOddn,d. Therefore, on every path in Ae,2i+1

at most |Ae,2i+1| − 1 edges are labelled by letters with priority 2i + 1. Let the resistance of a
state in Ae,2i+1 be the maximal number of edges labelled by letters with priority 2i + 1 over
all paths starting in that state. By the previous observation, the resistance of a state is always
finite. Having defined the resistance, for two states q, r in Ae,2i+1 we say that q �2i+1 r if the
resistance of q is not greater than the resistance of r.

We have to show that such a definition of �2i+1 indeed fulfils Conditions 1) and 2). For
Condition 1) we have to check that letters with priority smaller than 2i + 1 never cause an
increase in the quasi-order �2i+1. Consider a with pr(a) < 2i+ 1 such that q

a−→ r. We know
by the induction assumption that q �2i+3 r. If q �2i+3 r then as well q �2i+1 r, and we are
done with Condition 1). Otherwise, q and r are in the same equivalence class of �2i+3, and it
is enough to show that q has resistance not greater than r. However, if r has resistance k and
q

a−→ r, then q as well has resistance at least k, as one can take a path starting from r that has
k edges labelled by letters with priority 2i+ 1, and prepend it by the edge from q to r reading
a. Thus, q cannot have smaller resistance than r. This implies that indeed q �2i+1 r, and in
effect Condition 1) is fulfilled. For Condition 2) we need to show that letters with priority 2i+1
cause a decrease with respect to �2i+1. Let q

a−→ r, where pr(a) = 2i + 1. By the induction
assumption for �2i+3, from Condition 1) we know that q �2i+3 r. If q �2i+3 r, then we are
done as before, so assume that q and r are in the same equivalence class of �2i+3. In order to
show that q �2i+1 r it is enough to show that q has greater resistance than r. Assume that
the resistance of r equals k, so there is a path ρ starting in r with k edges labelled by letters
with priority 2i+ 1. Then by q

a−→ r and pr(a) = 2i+ 1 we know that the path using the edge
from q to r, and then continuing as ρ, starts at q and has k + 1 edges labelled by letters with
priority 2i + 1. Thus, the resistance of q is greater than the resistance of r, hence q �2i+1 r,
which finishes the proof of Condition 2).
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Now we aim at proving Lemma 1. First notice that we can assume that A is accessible,
by removing the states that are not reachable from initial states and by making rejecting the
non-rejecting states which are only reachable by visiting a rejecting state. By Lemma 2 we
know that there is a tree-decomposition D of A. We are going to prove that treeD(A) is a
(n, d/2)-universal tree and that there is an injective mapping from its leaves into the states of
A, which will finish the proof of Lemma 1.

By definition, there is a one-to-one function between the leaves of treeD(A) and the equiv-
alence classes of �1, mapping a leaf 〈ed−1, ed−3, . . . , e1〉 to e1. For every equivalence class e of
�1, pick a state qe in e. Consider the function mapping a leaf 〈ed−1, ed−3, . . . , e1〉 of treeD(A)
to the state qe1 . This function is injective from the leaves of treeD(A) into the states of the
automaton. Thus, in order to prove Lemma 1 it remains to show the following lemma.

Lemma 3. For every tree-decomposition D of an automaton A, the D-tree of A is (n, d/2)-
universal.

Proof. It is enough to show that every tree of height at most d/2 and with at most n leaves
can be embedded in treeD(A). Thus, take such a tree t. Without loss of generality, we assume
that t has exactly n leaves, and that all the leaves are on depth d/2. Otherwise, if the number
of leaves is less than n, add some branches to the tree so as to have exactly n leaves; and if a
leaf is not at depth d/2, add a path from this leaf so as to reach depth d/2. If such a tree can
be embedded in treeD(A), the original one too.

As a running example, consider the following tree t with n = 8 and d = 6.

µ(1) µ(2) · · · µ(8)

The proof follows the following steps:

1. Construction of a game Gt from t, where Even owns no vertices but wins from every
vertex,

2. Construction of an infinite play wt in Gt (which is thus in PosCyclEvenn,d),

3. Using wt, proof that t is embedded in treeD(A).

1. Construction of Gt.

As the set of vertices of Gt we take {1, . . . , n}, where all vertices belong to Odd, and n is the
starting vertex. For a vertex u ∈ {1, . . . , n}, let µ(u) denote the u-th leaf of t in the lexicographic
order. Let u and v be two vertices such that µ(u) > µ(v) and p the smallest element of {1, . . . , d}
such that µ(u)|p = µ(v)|p. Note that p must be even (in the tree this corresponds to consider
the smallest common ancestor of µ(u) and µ(v)). We define an edge from u to v with priority
p − 1 and one from v to u with priority p. We also define self-loops labelled by every even
priority p around every node. Remark that by definition Even wins from every vertex.

On our running example, this construction is depicted below. For the sake of readability,
an edge drawn between two sets of vertices A and B means that there is such an edge between
all the pairs of vertices from A×B; and the self-loops are not represented.
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2. Construction of wt.

We now construct an infinite word wt which is a play in Gt. Note that in such a case, wt ∈
PosCyclEvenn,d.

Let us first explain the construction on our running example. The play is as follows:

1. Follow the cycle between vertices 8 and 7 a big number of times, going through edge
priority 1, 2, 1, 2...,

2. Reach vertex 6 from vertex 7, with edge priority 3,

3. Follow the cycle between vertices 6 and 5 a big number of times, going through edge
priority 1, 2, 1, 2...,

4. Reach vertex 8 from vertex 5, with edge priority 4,

5. Repeat steps 1, 2, 3 and 4 a big number of times,

6. Reach vertex 4 from vertex 5, with edge priority 5,

7. Take the self-loop around vertex 4 with edge priority 2 (the self-loops are not drawn on
the picture of Gt) a big number of times,

8. Reach vertex 3 from vertex 4, with edge priority 3,

9. Follow the cycle going through vertices 3, 2 and 1 a big number of times, with edge priority
1, 1, 2, 1, 1, 2...,

10. Reach vertex 4 from vertex 1, with edge priority 4,

11. Repeat steps 7, 8, 9 and 10 a big number of times.

12. After all those steps, to make the run infinite, once reached vertex 1 after step 9, take the
self-loop around 1 with edge priority 2 infinitely many times.

We give now the technical definition of such a play. To this end, for every node x of t, we
define two finite words wx and ux. If x is a leaf, we set wx = ux = ε.

Otherwise, for a node y, let fl(y) denote the smallest number v such that µ(v) is a descendant
of y. In other words, µ(fl(y)) is the leftmost leaf in the subtree rooted in y. In our example, if
r is the root of the tree and y its right child then fl(r) = 1 and fl(y) = 5.

Let x be an inner node at distance k > 0 from the leaves, and let x1, . . . , x` be the children
of x, listed from left to right. Then we set:

wx = ux` (fl(x`), 2k − 1)ux`−1
(fl(x`−1), 2k − 1) . . . ux2 (fl(x2), 2k − 1)ux1 and

ux =
(
wx (fl(x), 2k)

)|A|
.

where |A| is the number of states in A. We set wt = wr(1, 2)ω where r is the root of the tree
treeD(A). Notice that the highest priority appearing in wr is at most d (because the height of
t is d/2), and so wt ∈ Σω

n,d.
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In the following picture, we give the pairs (wx, ux) associated with the nodes x of our running
example, where c321 denote the word ((3, 1)(2, 1)(1, 2))|A|, c4 the word (4, 2)|A|, c65 the word
((6, 1)(5, 2))|A| and c87 the ((8, 1)(7, 2))|A|.

wr = (c87(7, 3)c65(5, 4))|A|(5, 5)(c4(4, 3)c321(1, 4))|A|

wx = c4(4, 3)c321
ux = (c4(4, 3)c321(1, 4))|A|

wx = (3, 1)(2, 1)
ux = c321

(ε, ε)

µ(1)

(ε, ε)

µ(2)

(ε, ε)

wx = ε
ux = c4

(ε, ε)

wx = c87(7, 3)c65
ux = (c87(7, 3)c65(5, 4))|A|

wx = (6, 1)
ux = c65

(ε, ε)

· · ·
(ε, ε)

wx = (8, 1)
ux = c87

(ε, ε) (ε, ε)

µ(8)

Thus, we obtain:

wt = (c87(7, 3)c65(5, 4))|A|(5, 5)(c4(4, 3)c321(1, 4))|A|(1, 2)ω

Let us prove now that wt encodes a play in Gt. To this end, notice that all vertices v
appearing in wx or ux are such that µ(v) is a descendant of x. In wt we have three kinds of
letters:
• letters (fl(xi), 2k − 1), appearing in the definition of wx;
• letters (fl(x), 2k), appearing in the definition of ux;
• letters (1, 2) appearing in the definition of wt.

Consider x at distance k from the leaves, and x1, . . . , x` be the children of x, listed from left
to right. A letter (fl(xi), 2k − 1) is followed either by a letter (v, p) of uxi−1 , or (if this word
is empty) by (v, p) = (fl(xi−1), 2k − 1), or by (v, p) = (fl(x), 2k); By definition, in all of those
cases, because xi is the right sibling of xi−1, the lowest common ancestor of µ(fl(xi)) and µ(v)
is x. Thus there is an edge from fl(xi) to v with priority 2k − 1. A letter (fl(x), 2k) is followed
either by a letter (v, p) of wx, in which case, because µ(v) must be on the right of µ(fl(x)), and
their lowest common ancestor is x, there is an edge in Gt from fl(x) to v with priority 2k; or by
(v, p) = (fl(x), 2k− 1), which is valid because there is a self-loop around fl(x) of priority 2k; or
if x is the root, by (v, p) = (1, 2), in which case, necessarily (fl(x), 2k) = (1, 2k) and it is valid
since there is a self-loop around 1 with priority 2k. A letter (1, 2) is followed by (1, 2), and by
definition there is a self-loop around 1 with priority 2. Thus, wt encodes a play in Gt.

3. Proof that t is embedded in treeD(A).

We prove the following claim for every node x of t, being at distance k from the leaves.

Claim 1. Let ρ be a finite run of A not visiting rejecting states (ρ needs not to start in an
initial state), that either:
• reads wx and is such that all states visited by ρ belong to the same equivalence class of
�2k+1, or
• reads ux.

Then there exists a node x′ = 〈ed−1, ed−3, . . . , e2k+1〉 of treeD(A) such that
1) the classes ed−1, ed−3, . . . , e2k+1 contain some state visited by ρ,
2) the subtree of t rooted at x embeds in the subtree of treeD(A) rooted at x′.
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Let us first show how this claim finishes the proof of Lemma 3. Because wt ∈ PosCyclEvenn,d,
there is a run of A that reads wt and never visits rejecting states; let ρ be the prefix of this
run that reads wr where r is the root of t. Recall that the distance from the root of t to its
leaves equals d/2. All states visited by ρ belong to the same equivalence class of �d+1, because
this quasi-order has only one equivalence class. Using the claim for the run ρ we obtain that t
embeds in treeD(A) (notice that x′ is necessarily the root of treeD(A)).

We now prove the claim by induction on k, that is, on the distance of the node x to the leaves.
The induction base, for x being a leaf, is simple. In this case wx = ux = ε, and as branching
directions of the node x′ = 〈ed−1, ed−3, . . . , e1〉 we take equivalence classes of �d−1,�d−3, . . . ,�1

containing the only state of ρ; such a node indeed fulfils Conditions 1)–2). Let us focus now
on the induction step. Suppose first that ρ reads wx, and that all visited states belong to the
same equivalence class of �2k+1. Let x1, . . . , x` be the children of x. Recall that

wx = ux` (fl(x`), 2k − 1)ux`−1
(fl(x`−1), 2k − 1) . . . ux2 (fl(x2), 2k − 1)ux1 .

We can divide ρ into fragments ρ`, ρ`−1, . . . , ρ1, where ρi reads uxi . For every i ∈ {1, . . . , `},
by the induction assumption, we can find a node x′i = 〈ei,d−1, ei,d−3, . . . , ei,2k−1〉 that fulfils
Conditions 1)–2) with respect to ρi and xi. By assumption, all states visited by ρ belong
to the same equivalence class of �2k+1, hence also to the same equivalence class of �j for
all j ∈ {2k + 1, 2k + 3, . . . , d − 1}. On the other hand, by Condition 2), the classes ei,j for
i ∈ {1, . . . , `} and j ∈ {2k + 1, 2k + 3, . . . , d − 1} contain some state visited by ρ. It follows
that ei,j = ei′,j for all i, i′ ∈ {1, . . . , r} and j ∈ {2k + 1, 2k + 3, . . . , d − 1}, which implies that
the nodes x′1, . . . , x

′
` are siblings, having a common parent x′. It is easy to see that the node x′

satisfies Conditions 1)–2).
Suppose now that ρ reads ux = (wx (fl(x), 2k))|A|. By the fact that D is a tree-decomposition

of A we know that no transition in ρ goes up with respect to the quasi-order �2k+1, because
all letters of ux have priority at most 2k. As A has at most |A| states, it means that at most
|A| − 1 transitions of the considered run cause a decrease with respect to �2k+1. This implies
that there is a part of this run that reads wx and contains no increase nor decrease with respect
to �2k+1, that is, all states visited by this part of the run belong to the same equivalence class
of �2k+1. We continue with this part of the run as in the previous paragraph, and in this way
we finish the proof of the claim.

5 Separators everywhere

In this section we survey the three distinct techniques that have been developed so far in design of
quasi-polynomial algorithms for solving parity games. There are some original observations and
results here, but they are not as significant and original as our main technical result in Section 4.
We view this section as a constructive first step towards a conceptual unification of the three
distinct technical approaches. The main unifying aspect that we highlight in this section is that
all the three approaches yield constructions of separating safety automata of quasi-polynomial
size, which provides evidence of significance of our main technical result: the quasi-polynomial
lower bound on the size of separators (Theorem 3) forms a barrier that all of those approaches
need to overcome in order to further significantly improve the known complexity of solving parity
games. We note that, in contrast to the results of Calude et al. [5] and Lehtinen [27], not all
of the proposed quasi-polynomial algorithms explicitly construct separating automata or other
objects of (at least) quasi-polynomial size [24, 15], but in the worst case, they too enumerate
structures that form the states of the related separating automata (leaves in a universal tree
and play summaries, respectively).

Inspired by the prominent role that universal trees play in the structure of separating au-
tomata, as exploited in our main technical result (Theorem 3), we place a particular spotlight on
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the concepts of progress measures and universal trees, whose theory we summarize in Section 5.2.
In Section 5.1, as a warm-up, we describe a separating safety automaton due to Bernet et al. [1]
whose size is not of quasi-polynomial (it is exponential). Its simple design offers the pedagogic
value of motivating the more general construction based on universal trees in Section 5.3. In
Section 5.4, we briefly discuss the observation of Bojańczyk and Czerwiński [3] that Calude et
al.’s [5] play summaries construction can be straightforwardly interpreted as defining a sepa-
rating automaton; we refer the reader to their technical exposition, which is highly readable.
Finally, in Section 5.6, we discuss how to adapt the separation approach to also encapsulate
the most recent quasi-polynomial algorithm for solving parity games by Lehtinen [27], based on
register games. This requires care because, unlike the constructions based on play summaries
and universal trees, separating automata that underpin Lehtinen’s reduction from parity games
to register games seem to require non-determinism, and in general, Proposition 1 does not hold
for non-deterministic automata.

5.1 Simple separating safety automata

As a warm-up, we present a simple “multi-counter” separating automaton that is implicit in
the work of Bernet et al. [1]. For all positive integers n and d, such that d is even, we define the
automaton Cn,d that, for every odd priority p, 1 ≤ p ≤ d− 1, keeps a counter cp that stores the
number of occurrences of priority p since the last occurrence of a priority larger than p (even
or odd). It is a safety automaton: it rejects a word immediately once the integer stored in any
of the d/2 counters exceeds n.

In fact, instead of “counting up” (from 0 to n), we prefer to “count down” (from n to 0),
which is equivalent, but it aligns better with the definition of progress measures. More formally,
we define the deterministic safety automaton Cn,d in the following way:
• the set of states of Cn,d is the set of d/2-sequences 〈cd−1, cd−3, . . . , c1〉, such that cp is an

integer such that 0 ≤ cp ≤ n for every odd p, 1 ≤ p ≤ d − 1; and it also contains an
additional rejecting state reject;
• the initial state is 〈n, n, . . . , n〉;
• the transition function δ is defined as follows:

δ
(
〈cd−1, cd−3, . . . , c1〉, (v, p)

)
=


〈cd−1, cd−3, . . . , cp+1, n, . . . , n〉 if p is even,

〈cd−1, cd−3, . . . , cp − 1, n, . . . , n〉 if p is odd and cp > 0,

reject if p is odd and cp = 0;

and δ
(
reject, (v, p)

)
= reject for all (v, p) ∈ Σn,d.

Note that the size of automaton Cn,d is Θ(nd/2).

Proposition 2 (Bernet et al. [1], Bojańczyk and Czerwiński [3]). The automaton Cn,d is a
safety (n, d)-separator of AllCyclEvenn,d and LimsupOddn,d.

Proof. Firstly, we argue that if the unique run of Cn,d on an infinite word contains an occurrence
of the rejecting state then the word is not in AllCyclEvenn,d. Indeed, the only reason for the
unique run of Cn,d to reach the rejecting state is that the state reached after reading some prefix
of the word is 〈cd−1, cd−3, . . . , c1〉 with cp = 0 for an odd p, and (v, p) is subsequently read. It
is easily seen that for this to happen, there must be a suffix of the prefix in which there are n
occurrences of priority p and no priority higher than p occurs, and the currently read letter is
the (n+ 1)-st occurrence of priority p in the prefix. By the pigeonhole principle, it follows that
there is a cycle in the infinite word whose highest priority is p, which is odd.

Secondly, we argue that if a word is in LimsupOddn,d then the unique run of Cn,d on the word
contains an occurrence of the rejecting state. Consider an infinite suffix of the word in which
all priorities occur infinitely many times. Unless the unique run reached the rejecting state on
the corresponding prefix already, let 〈cd−1, cd−3, . . . , c1〉 be the state reached in the unique run
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at the end of the prefix. Note that the highest priority that occurs in the suffix is odd, and by
the assumption that the word is in LimsupOddn,d, there are infinitely many occurrences of it.
Take the shortest prefix of the suffix in which the highest priority p occurs n − cp + 1 times.
The unique run of Cn,d on the original infinite word reaches the rejecting state upon reading
that prefix.

5.2 Progress measures and universal trees

A fundamental concept that has continued to play a key role throughout the development of
the theory of and algorithms for solving parity games is progress measures [11, 23, 30, 24, 15].
In this section we summarise the concepts underlying the recently discovered link between
quasi-polynomial solvability of parity games and the existence of small (quasi-polynomial size)
universal trees that was implicitly established by Jurdziński and Lazić [24]. This is highly
relevant to this paper on the power and limitations of the separation approach because:
• as we have shown in Section 4, every separating automaton contains a universal tree

hidden in its state space, and hence every separating automaton is at least as big as any
lower bound on the size of universal trees;
• as we show in Section 5.3, small universal trees yield small separating automata.
A progress labelling of a parity game is a mapping µ from the vertices in the game graph to

leaves in an ordered tree; without loss of generality we assume that every leaf has depth d/2.
We write 〈md−1,md−3, . . . ,m1〉 to denote such a leaf, and for every priority p, 1 ≤ p ≤ d, we
define its p-truncation 〈md−1,md−3, . . . ,m1〉|p to be the sequence 〈md−1,md−3, . . . ,mp〉 if p is
odd, and 〈md−1,md−3, . . . ,mp+1〉 if p is even. We say that a progress labelling µ of the game is
a progress measure if the following progress condition holds for every edge (v, u) in the strategy
subgraph of some positional strategy for Even:
• if p is even then µ(v)|π(v,u) ≥ µ(u)|π(v,u);
• if p is odd then µ(v)|π(v,u) > µ(u)|π(v,u).

We recommend inspecting the (brief and elementary) proof of [24, Lemma 2], which establishes
that every cycle in the strategy subgraph whose all edges satisfy the progress condition is even.
It gives a quick insight into the fundamental properties of progress measures and it shows the
easy implication in the following theorem that establishes progress measures as witnesses of
winning strategies in parity games.

Theorem 4 (Emerson and Jutla [11], Jurdziński [23]). Even has a winning strategy from every
vertex in a parity game if and only if there is a progress measure on the game graph.

It is a straightforward but fruitful observation of Jurdziński and Lazić [24] that a progress
measure on a game graph with n vertices and at most d distinct edge priorities is a mapping
from the vertices in the game graph to nodes in an ordered tree of height at most d/2 and
with at most n leaves (all subtrees that no vertex is mapped to can be pruned). It further
motivates the second fundamental concept we explore in this section—universal trees, which we
have already defined in Section 3.1. The following proposition follows directly from the above
“straightforward but fruitful” observation and the definition of a universal tree.

Proposition 3 (Jurdziński and Lazić [24]). Every progress measure on a graph with n vertices
and with at most d priorities can be modified to map into any (n, d/2)-universal tree.

A key conclusion following from this simple fact is that every universal tree is a natural data
structure in which the search for a progress measure (i.e., a witness for a winning strategy for
Even) can be carried out, and that the time needed for this search to uncover one can be (up
to a small polynomial factor) made proportional to the size of the universal tree [24].
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5.3 Separating safety automata from progress measures and universal trees

Jurdziński and Lazić have shown how to construct separators of AllCyclEven and LimsupOdd
that are of quasi-polynomial size, using nodes in their particular universal trees as states [25,
Theorem 9]. We show, instead, how to construct separators of PosCyclEven and LimsupOdd,
using nodes of any universal tree as states. The harder part of the separation property for those
automata is proved using existence of witnesses of winning strategies in the form of progress
measures that map into a universal tree (Theorem 4 and Proposition 3).

For positive integers n and d, such that d is even, let Ln,d/2 be the set of leaves in an (n, d/2)-
universal tree. The definition of the deterministic safety automaton Un,d bears similarity to the
definition of the simple “multi-counter” separator Sn,d from Section 5.1. Again, the states are
d/2-sequences of “counters”, but the “counting down” is done in a more abstract way than
in Sn,d, using instead the natural lexicographic order on the nodes of the universal tree.

More formally, we define a deterministic safety automaton Un,d in the following way:
• the set of states of Un,d is the set Ln,d/2 of leaves in the (n, d/2)-universal tree;
• the initial state is the largest leaf (in the lexicographic tree order);
• the transition function δ is defined as follows:

δ
(
s, (v, p)

)
=


the largest leaf s′ such that s|p = s′|p if p is even,

the largest leaf s′ such that s|p > s′|p if p is odd,

reject if p is odd and no such leaf exists

if s 6= reject; and δ
(
reject, (v, p)

)
= reject for all (v, p) ∈ Σn,d.

Remark 1. Let Tn,d be an ordered tree in which all the leaves have depth d/2 and every non-
leaf node has exactly n + 1 children; note that Tn,d is trivially an (n, d/2)-universal tree. An
instructive exercise that we recommend is to compare the structures of the automaton Un,d based
on the (n, d/2)-universal tree Tn,d and of the simple separating automaton Sn,d from Section 5.1.

Theorem 5. For every (n, d/2)-universal tree, the automaton Sn,d is a safety (n, d)-separator
of PosCyclEvenn,d and LimsupOddn,d.

Proof sketch. In order to prove that Un,d is indeed an (n, d)-separator it suffices to establish the
following:
• every strategy subgraph of a positional winning strategy for Even (with at most n ver-

tices and priorities up to d) has a progress measure that maps vertices into the set of
leaves Ln,d/2 in the (n, d/2)-universal tree;
• for every such progress measure µ, for every word encoding a play in the strategy sub-

graph, and for every position in the word containing a letter (v, p), the state that labels
the position in the unique run of automaton Un,d on the word is a leaf that is (in the
lexicographic tree order) larger than or equal to µ(v);
• for every infinite word in LimsupOddn,d, the unique run of Un,d on the word reaches the

rejecting state.
The first item follows from Theorem 4 and Proposition 3. The second item can be proved by an
easy induction on the position number in the infinite word, and the third item can be proved
by modestly generalizing the corresponding proof for the simple automaton Cn,d that we have
given in Section 5.1.

5.4 Separating safety automata from play summaries

Bojańczyk and Czerwiński [3, Chapter 3] give a pedagogically well-polished explanation of how
the main technical result of Calude et al. [5] can be viewed as a construction of a deterministic
automaton of quasi-polynomial size separating AllCyclEvenn,d from AllCyclOddn,d. We recom-
mend reading it since it is the most transparent exposition of the breakthrough result of Calude
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et al. that we are aware of. Although they state that the automaton accepts all words from
AllCyclEvenn,d, they actually prove that it accepts all words from LimsupEvenn,d, and hence
it separates LimsupEvenn,d from AllCyclOddn,d.

One superficial difference between our exposition and theirs is that we use the model of
safety automata, while they consider the dual model of reachability automata instead. (In
reachability automata, an infinite word is accepted if and only if one of the designated accepting
states is reached; otherwise it is rejected.) If, in Bojańczyk and Czerwiński’s construction, we
swap the roles of players Even and Odd, and we make the accepting states rejecting, we get
a safety automaton that separates AllCyclEvenn,d (and hence also its subset PosCyclEvenn,d)
from LimsupOddn,d.

Theorem 6 (Calude et al. [5], Bojańczyk and Czerwiński [3]). The play summaries data struc-
ture of Calude et al. yields safety (n, d)-separators of AllCyclEvenn,d and LimsupOddn,d that
are of quasi-polynomial size.

5.5 Non-deterministic automata and the separation approach

The possible usage of non-deterministic automata in the separation approach to solving parity
games is less straightforward. First of all, the game dynamics needs to be modified to explicitly
include the choices that resolve non-determinism in every step. We give the power to make
those choices to Even, but this extra power does not suffice to make her win the synchronized-
product game whenever she has a winning strategy in the original parity game. The reason for
this failure in transferring winning strategies from the parity game to the synchronized-product
safety game is that in arbitrary non-deterministic automata it may be impossible to successfully
resolve non-deterministic choices at a position in the input word without knowing the letters at
the later positions. In the game, however, the resulting play depends on the future choices of
the opponent, which the player cannot predict.

A well-known example of non-deterministic automata for which the synchronized-product
game is equivalent to the original game is the class of good-for-games automata [21]. They have
exactly the desired property that the non-deterministic choices of the automaton can always
be resolved based only on the letters in the word at the positions up to the current one, thus
making it possible to continue constructing an accepting run for all words accepted by the
non-deterministic automaton that have the word read so far as a prefix.

Our analysis of Lehtinen’s techniques [27] suggests that the good-for-games property may
not be possible to achieve in the context of her work. However, we argue that we can still achieve
the desired strategy transfer using a weaker property: given a non-deterministic automaton A
that separates PosCyclEvenn,d and LimsupOddn,d—there is a way to resolve non-deterministic
choices based only on the prefix read so far, in such a way that a construction of an accepting
run of A can be continued for all words in PosCyclEvenn,d (but not necessarily for all words
accepted by A).

Note that our lower bound in Section 4 holds for all non-deterministic automata separating
PosCyclEvenn,d from LimsupOddn,d, regardless of their suitability for strategy transfer, and
hence for solving parity games using the separation approach.

5.6 Separating safety automata from register games

In her very recent work, Lehtinen [27] has given yet another technique for designing a quasi-
polynomial algorithm for solving parity games. We argue here that her register-games technique
can also be seen to fit the separation approach.

For every parity game G, Lehtinen defines the corresponding register game RG, whose
vertices consist of vertices of game G together with b1 + lgnc-sequences 〈rb1+lgnc, . . . , r2, r1〉 of
the so-called registers that hold priorities, i.e., numbers from the set {1, 2, . . . , d}. The game is
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played on a copy of G in the usual way, additionally at her every move player Even is given a
chance—but not an obligation—to “reset” one of the registers, and each register always holds
the biggest priority that has occurred since it was last reset.

What needs explaining is what “resetting a register” entails. When the register at posi-
tion k is reset, then the next register sequence is 〈rb1+lgnc, . . . , rk+1, rk−1, . . . , r1, 1〉, that is
registers at positions 1 to k−1 are promoted to positions 2 to k, respectively, and the just-reset
register is now at position 1 and it has value 1. Moreover—and very importantly for Lehti-
nen’s construction—resetting the register at position k causes the even priority 2k to occur in
game RG if the value in the register was even, and the odd priority 2k+1 otherwise. If, instead,
Even decides not to reset any register then the odd priority 1 occurs.

Lehtinen’s main technical result is that the original parity game G and the register game RG
have the same winners. She proves it by arguing that if Even has a (positional) winning
strategy in G then she has a strategy of resetting registers in RG so that she again wins the
parity condition (albeit with the number of priorities reduced from an arbitrarily large d in G
to only b1 + lg nc in RG). Our approach is to separate the graph structure from Lehtinen’s
mechanism to capture the original parity winning condition using registers. We now define an
automata-theoretic analogue of her construction in which we use non-determinism to model the
ability to pick various resetting strategies.

For all positive numbers n and d, such that d is even, we define the non-deterministic parity
automaton Rn,d in the following way.
• The set of states ofRn,d is the set of non-increasing b1+lg nc-sequences 〈rb1+lgnc, . . . , r2, r1〉

of “registers” that hold numbers in {1, 2, . . . , d}. The initial state is 〈1, 1, . . . , 1〉.
• For every state s = 〈rb1+lgnc, . . . , r2, r1〉 and letter a = (v, p) ∈ Σn,d, we define the update

of s by a to be the state 〈rb1+lgnc, . . . , rk, p, . . . , p〉, where k is the smallest such that
rk > p.
• For every state s = 〈rb1+lgnc, . . . , r2, r1〉 and for every k, 1 ≤ k ≤ b1 + lg nc, we define the
k-reset of s to be the state 〈rb1+lgnc, . . . , rk+1, rk−1, . . . , r2, 1〉.
• Non-deterministic transitions in parity automata are quadruples (s, a, p, s′): upon reading

a letter a in state s, the automaton can perform a transition of priority p and move to
state s′.
• For every state s and letter a = (v, p) ∈ Σn,d, there is a transition (s, a, 1, s′) in the

transition relation, where s′ is the update of s by a; we call this a non-reset transition.
• For every state s, letter a = (v, p) ∈ Σn,d, and for every k, 1 ≤ k ≤ b1 + lg nc, if
s′′ = 〈rb1+lgnc, . . . , r2, r1〉 is the update of s by a and rk is even, then there is a transition
(s, a, 2k, s′) in the transition relation, where s′ is the k-reset of s′′. We say that this
transition is an even reset of register k.
• For every state s, letter a = (v, p) ∈ Σn,d, and for every k, 1 ≤ k ≤ b1 + lg nc, if
s′′ = 〈rb1+lgnc, . . . , r2, r1〉 is the update of s by a and rk is odd, then there is a transition
(s, a, 2k + 1, s′) in the transition relation, where s′ is the k-reset of s′′. We say that this
transition is an odd reset of register k.

Note that a non-deterministic parity automaton accepts an infinite word if and only if there is
an infinite run of the automaton on the word in which the largest priority that occurs infinitely
many times is even. The number of states in the automaton Rn,d is db1+lgnc. One can observe
that the Lehtinen’s register game RG constructed basing on a parity game G is essentially the
same as the synchronized product G×Rn,d.

Since our quasi-polynomial lower bounds apply to safety automata, but not to the more
powerful parity automata, we now show how the non-deterministic parity automaton directly
inspired by Lehtinen’s construction of register games can be turned into a non-deterministic
safety automaton that meets the requirements for the separation approach to work. To this
end, it is enough to take a “synchronized product” of Rn,d with any automaton separating
PosCyclEvenn′,d′ from LimsupOddn′,d′ , where n′ = n · db1+lgnc (the number of vertices in a
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product G ×Rn,d) and d′ = 2blg nc + 4 (an even upper bound for priorities emitted by Rn,d),
for example with the automaton Un′,d′ from Section 5.3. This product Sn,d = Rn,d × Un′,d′ is
constructed as follows:
• We assume that Un′,d′ reads letters of the form ((v, s), p), where v ∈ {1, . . . , n}, and s is a

state of Rn,d, and p ∈ {1, . . . , d′} (i.e., we identify elements of {1, . . . , n′} with pairs (v, s)
of the above form).
• The set of states of Sn,d is the set of pairs of states from Rn,d and Un′,d′ , respectively.
• The initial state is the pair of initial states of the two automata.
• A state in the product is rejecting, if its second coordinate is rejecting.
• For each non-reset transition (s, a, 1, s′) in Rn,d, we have a transition

(
(s, c), a, (s′, c′)

)
in Sn,d, where c′ = 〈cb1+lgnc, . . . , c1, c0 − 1〉, if c0 > 0.
• For each letter a = (v, p) ∈ Σn,d, each transition (s, a, k, s′) of Rn,d, and each transition
δ(q, ((v, s), k)) = q′ of Un′,d′ , we have a transition

(
(s, q), a, (s′, q′)

)
in Sn,d.

Lemma 4. The safety automaton Sn,d separates PosCyclEvenn,d from LimsupOddn,d.

Proof. Consider first a word w ∈ PosCyclEvenn,d; we have to prove that it is accepted by Sn,d.
By definition, w is the encoding of a play that arises from a positional winning strategy for Even
in some game graph G with n vertices and priorities up to d. It is shown in Lehtinen [27] that
if Even has a (positional) winning strategy in G, then she also has a winning strategy in RG,
that is, in the synchronized product G × Rn,d. Moreover, by inspecting the Lehtinen’s proof
we notice that the constructed winning strategy in G × Rn,d is of a special form: on the first
coordinate (i.e., in the game G) Even simply follows her positional winning strategy from G.
This implies that w is a projection of a play w′ in G×Rn,d that is winning for Even (to obtain
w′ from w, we follow the choices of Odd from w and the Even’s winning strategy in G×Rn,d).
By definition of the synchronized product, this means that Rn,d accepts w.

Next, we observe that w′ ∈ PosCyclEvenn′,d′ ; this is because Even has a (positional) winning
strategy in G×Rn,d, and w′ follows this strategy. When the product Sn,d = Rn,d×Un′,d′ reads
w, then the Un′,d′ component (for an appropriate way of resolving non-deterministic choices
in the Rn,d component) reads w′, and hence accepts it (because Un′,d′ accepts all words from
PosCyclEvenn′,d′).

For the opposite direction consider a word w ∈ LimsupOddn,d. Let us first observe that
Rn,d rejects this word. Consider thus a run ρ of Rn,d on w. If from some moment, in this run,
there are no resets, then indeed Rn,d rejects. Otherwise, consider the maximal (odd) priority p
occuring in w infinitely often, and consider the maximal number k such that there are infinitely
many resets of register k in ρ. From some moment on, in ρ no priority higher than p is read, and
there is no reset of any register l > k. A little bit later, there is a reset of register k; from this
moment on, the value of register k is at most p. Moreover, infinitely many times the priority
p is read, it is stored to register k, never overwritten by anything larger, and then reset. This
means that there are infinitely many odd resets of register k (recall that p is odd), and no resets
(except in the finite prefix that we have skipped) of registers l > k. In effect, ρ is rejecting.

Now consider a word w′, being a result of composing w with some run ρ of Rn,d on w; this
word is given as input to the Un′,d′ component of the product automaton Sn,d. Because ρ is
rejecting, we have w′ ∈ LimsupOddn′,d′ . By assumption Un′,d′ rejects w′, thus Sn,d rejects w.
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