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Abstract6

We consider higher-order recursion schemes as generators of infinite trees. A sort (simple type)7

is called homogeneous when all arguments of higher order are taken before any arguments of8

lower order. We prove that every scheme can be converted into an equivalent one (i.e, generating9

the same tree) that is homogeneous, that is, uses only homogeneous sorts. Then, we prove the10

same for safe schemes: every safe scheme can be converted into an equivalent safe homogeneous11

scheme. Furthermore, we compare two definition of safe schemes: the original definition of Damm,12

and the modern one. Finally, we prove a lemma which illustrates usefulness of the homogeneity13

assumption. The results are known, but we prove them in a novel way: by directly manipulating14

considered schemes.15
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1 Introduction21

Higher-order recursion schemes (schemes in short) are used to faithfully represent the control22

flow of programs in languages with higher-order functions. This formalism is equivalent via23

direct translations to simply-typed λY -calculus [19] and to higher-order OI grammars [9, 15].24

Collapsible pushdown systems [10] and ordered tree-pushdown systems [7] are other equivalent25

formalisms. Schemes cover some other models such as indexed grammars [1] and ordered26

multi-pushdown automata [4]. We consider schemes as generators of infinite trees, so we say27

that two schemes are equivalent if they generate the same tree. Likewise, we say that two28

classes of schemes are equi-expressive, if for every scheme in one of the classes there exists29

an equivalent scheme in the other class.30

A sort (simple type) is called homogeneous when all arguments of higher order are31

taken before any arguments of lower order; a scheme is homogeneous when it uses only32

homogeneous sorts. Homogeneous schemes should not be confused with safe schemes. The33

safety assumption was first introduced implicitly by Damm [9]. His restriction was that when34

an argument of some order is applied to a function, then all arguments of greater or the35

same order have to be applied as well. A modern definition of safety (introduced by Knapik,36

Niwiński, Urzyczyn [14]) is slightly different: it says that a subterm of some order cannot37

use parameters of a strictly smaller order. We remark that some authors, while defining38

safe schemes, require that they are also homogeneous [9, 13, 14], while other authors do not39

impose this requirement [3, 6]. In this paper we treat homogeneity separately from safety.40
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28:2 Homogeneity without Loss of Generality

The goal of this paper is to compare the aforementioned notions, and to give simple41

translations between equi-expressive classes of schemes. The main equi-expressivity result42

says that every scheme can be converted into a homogeneous scheme that is equivalent, and43

remains of the same order. This was shown by Broadbent in his PhD thesis [5, Section 3.4],44

and was never published. Furthermore, it is easy to see that the Damm’s definition of safety45

is more restrictive than the modern one. On the other hand, it was observed by Carayol and46

Serre [6] that every scheme that is safe according to the modern definition can be turned into47

an equivalent scheme that is safe according to Damm’s definition. Likewise, it was shown by48

Blum [2] (his paper dates back to 2009, when it was shared on his personal website, but was49

published on arXiv only in 2017), and independently by Carayol and Serre [6], that every50

safe scheme (without the homogeneity assumption) can be converted into an equivalent safe51

scheme that is homogeneous, and remains of the same order.52

All the proofs for safe schemes follow the same idea: they inspect the equivalence between53

safe schemes and higher-order pushdown automata. It is observed that while translating from54

safe schemes to higher-order pushdown automata, schemes can comply with a less restrictive55

definition; simultaneously, when translating from automata to schemes, it is easy to fulfill56

additional requirements on the scheme.57

The proof of Broadbent, dealing with schemes that need not to be safe, is even more58

complicated. Arbitrary schemes are equivalent to collapsible pushdown automata, a gen-59

eralization of higher-order pushdown automata. We can see, though, that the only known60

translation from collapsible pushdown automata to recursion schemes [10] results in schemes61

that are not homogeneous. The actual proof consists of three steps. First, it is observed62

that already while translating a scheme to a collapsible pushdown automaton, the resulting63

automaton is of a special shape. Then, such an automaton is further modified (without64

changing the generated tree), so that it gains some additional properties. Finally, it is65

observed that for the particular automata obtained this way, the translation from automata66

to schemes can be altered so that the resulting schemes are homogeneous.67

We reprove the above results: we give a simple transformation changing any scheme to68

an equivalent homogeneous scheme, and another simple transformation changing any safe69

scheme to a scheme that is safe according to the more restrictive definition of Damm, and70

moreover homogeneous.71

Both our proofs (the one for general schemes, and the one for safe schemes) do not use any72

detour through automata; we directly show how to syntactically modify a scheme so that it73

becomes homogeneous. Roughly, in the case of general schemes we artificially increase orders74

of some arguments, while in the case of safe schemes we split complex rules into multiple75

simpler rules, and we reorder arguments. Our direct approach has the advantage that it76

is more transparent and it sheds some light on the nature of the homogeneity assumption77

(conversely to the previous proofs: while translating a scheme to an automaton and then78

back to a scheme, we obtain a scheme of a completely different shape than the original one).79

In order to give a full picture we have to recall here the result that there is a scheme80

that is not equivalent to any safe scheme [16]. We thus have two groups of equi-expressive81

classes: “unsafe” schemes, either homogeneous or not, and safe schemes, either according to82

the Damm’s definition or to the modern definition, and either homogeneous or not.83

In addition to the above results, in the final section we prove a simple lemma, which84

illustrates usefulness of the homogeneity assumption.85
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2 Preliminaries86

Infinitary λ-calculus. The set of sorts (aka. simple types) is defined by induction: o is a87

sort, and if α and β are sorts, then α→ β is a sort. We omit brackets on the right of an88

arrow, so, for example, o→ (o→ o) is abbreviated to o→ o→ o. Notice that every sort can89

be written in the form α1→ · · · → αs→ o.90

The order of a sort γ, denoted ord(γ), is defined by induction on the structure of γ:91

ord(o) = 0, and ord(α→ β) = max(ord(α) + 1, ord(β)). We observe that ord(α1→ · · · →92

αs→ o) = 1 + max(ord(α1), . . . , ord(αs)) whenever s ≥ 1.93

A sort α1→ · · · → αs→ o is homogeneous if ord(α1) ≥ · · · ≥ ord(αs) and all α1, . . . , αs94

are homogeneous. An equivalent definition says that the sort o is homogeneous, and a sort95

α→ β is homogeneous if ord(α) = ord(α→ β)− 1 and α, β are homogeneous.96

While defining λ-terms, we assume existence of the following sets:97

Σ—a set of symbols (alphabet), and98

V—a set of variables with assigned sorts; we write xα, yα, zα, . . . for variables of sort α.99

We consider infinitary, sorted λ-calculus. Infinitary λ-terms (or just λ-terms) are defined100

by coinduction (for an introduction to coinductive definitions and proofs see, e.g., Czajka [8]),101

according to the following rules:102

node constructor—if Ko
1 , . . . ,K

o
r are λ-terms, then (a〈Ko

1 , . . . ,K
o
r 〉)o is a λ-term, for103

every a ∈ Σ,104

variable—every variable xα ∈ V is a λ-term,105

application—if Kα→β and Lα are λ-terms, then (Kα→β Lα)β is a λ-term, and106

λ-binder—if Kβ is a λ-term and xα ∈ V is a variable, then (λxα.Kβ)α→β is a λ-term.107

We naturally identify λ-terms differing only in names of bound variables. We often omit108

sort annotations of λ-terms, but we keep in mind that every λ-term (and every variable) has109

a particular sort. The set of free variables of a λ-term M , denoted FV (M), is defined as110

usual. A λ-term M is closed if FV (M) = ∅. We assume that in V there are always some111

fresh variables of every sort, not appearing in λ-terms under consideration.112

The order of a λ-term M , written ord(M), is just the order of its sort. The complexity of113

a λ-term M is the smallest number m ∈ N ∪ {∞} such that all subterms of M are of order114

at most m.115

Reductions. By M [N/x] (where we require that N is of the same sort as x) we denote the116

λ-term obtained by substituting N for x. This is by definition a capture-avoiding substitution,117

which means that free variables of N are not captured by λ-binders in M ; this is achieved by118

appropriately renaming bound variables in M .119

A compatible closure  of a relation � is defined by induction according to the following120

rules:121

if M � N , then M  N ,122

if Kj  K ′j for some j ∈ {1, . . . , r} and Ki = K ′i for all i ∈ {1, . . . , r} \ {j}, then123

a〈K1, . . . ,Kr〉 a〈K ′1, . . . ,K ′r〉,124

if K  K ′, then K L K ′ L,125

if L L′, then K L K L′, and126

if K  K ′, then λx.K  λx.K ′.127

The relation →β of β-reduction is defined as the compatible closure of the relation128

{((λx.K)L,K[L/x])}. The relation →η of η-conversion is defined as the compatible closure129

of the relation {(λx.K x,K) | x 6∈ FV (K)}. We let (→βη) = (→β) ∪ (→η). As a restriction130

of β-reduction, we define the relation h−→β of head β-reduction: it contains all pairs of the131
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28:4 Homogeneity without Loss of Generality

form132

((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) .133
134

For relations  and �, by ( ) ◦ (�) we denote their composition, by  k (where k ∈ N)135

the composition of  with itself k times, and by  ∗ the reflexive transitive closure of136

 . Moreover,  ∞ is the infinitary closure of  , defined by coinduction, according to the137

following rules:138

if M  ∗ a〈K1, . . . ,Kr〉 and Ki  ∞ K ′i for all i ∈ {1, . . . , r}, then M  ∞ a〈K ′1, . . . ,K ′r〉,139

if M  ∗ x then M  ∞ x,140

if M  ∗ K L, and K  ∞ K ′, and L ∞ L′, then M  ∞ K ′ L′, and141

if M  ∗ λx.K and K  ∞ K ′, then M  ∞ λx.K ′.142

Trees; Böhm Trees. A tree is defined as a λ-term that is built using only node constructors,143

that is, not using variables, applications, nor λ-binders.144

We consider Böhm trees only for closed λ-terms of sort o. For such a λ-term M , its Böhm145

tree BT (M) is defined by coinduction, as follows:146

if M h−→∗β a〈K1, . . . ,Kr〉 for some a ∈ Σ and some λ-terms K1, . . . ,Kr, then BT(M) =147

a〈BT (K1), . . . ,BT (Kr)〉;148

otherwise BT (M) = ⊥〈〉 (where ⊥ ∈ Σ is a distinguished symbol).149

With such a definition it is easy to see that for every M there is exactly one Böhm tree. It150

is a consequence of Kennaway, Klop, Sleep, de Vries [11] and Kennaway, van Oostrom, de151

Vries [12] that the Böhm tree does not change during βη-reductions.152

I Fact 1. If M and N are closed λ-terms of sort o and M →∞βη N , then BT(M) =153

BT (N). J154

Higher-Order Recursion Schemes. A higher-order recursion scheme (or just a scheme) is155

a triple G = (N ,R, Xo
0 ), where N ⊆ V is a finite set of nonterminals, Xo

0 ∈ N is a starting156

nonterminal, being of sort o, and R is a function that maps every nonterminal X ∈ N to a157

finite λ-term of the form λx1. · · · .λxs.M , where158

the sorts of X and λx1. · · · .λxs.M are the same,159

FV (M) ⊆ N ∪ {x1, . . . , xs},160

M is of sort o, and161

M is a finite applicative term, that is, it does not contain any λ-binders.162

We assume that elements of N are not used as bound variables, and that R(X) is not a163

nonterminal.1 When R(X) = λx1. · · · .λxs.M , we say that X x1 . . . xs →M is a rule of G,164

and M is its right side. The order of the scheme is defined as the maximum of orders of165

nonterminals in N .166

The infinitary λ-term generated by a scheme G = (N ,R, X0) from a λ-term M , denoted167

ΛG(M), is defined as the limit of the following process starting fromM : take any nonterminal168

X appearing in the current term, and replace it by R(X). We define Λ(G) = ΛG(X0); observe169

that this is a closed λ-term of sort o and of complexity not greater than the order of the170

scheme. The tree generated by G is defined as BT (Λ(G)).171

We say that a scheme G = (N ,R, X0) is homogeneous if sorts of all nonterminals in N172

are homogeneous. Notice that then also the sort of every subterm of R(X) is homogeneous,173

for every nonterminal X ∈ N .174

1 Without the last condition, it would be necessary to give a more complicated definition of Λ(G). On the
other hand, it is easy to ensure this condition, without changing the tree generated by the scheme.
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I Example 1. Consider a scheme G1 with nonterminals Y o0 , Y
o→((o→o)→o)→o
1 , Y o→o2 , and175

Y
o→(o→o)→o
3 , where Y0 is starting; and rules176

Y0 → Y1 (b〈c〈〉〉) (Y3 (c〈〉)) , Y2 x
o → x ,177

Y1 x
o z(o→o)→o → a〈z Y2, Y1 (b〈x〉) (Y3 x)〉 , Y3 x

o yo→o → y x .178
179

Then180

Λ(G1) = M1 (b〈c〈〉〉) ((λxo.λyo→o.y x) (c〈〉)) ,181
182

where M1 is the unique λ-term such that183

M1 = λxo.λz(o→o)→o.a〈z (λxo.x),M1 (b〈x〉) ((λxo.λyo→o.y x)x)〉 .184
185

We can see that BT(Λ(G1)) = a〈T0, a〈T1, a〈T2, . . .〉〉〉, where T0 = c〈〉, and Ti+1 = b〈Ti〉 for186

i ∈ N.187

Notice that the sorts of Y1 and of Y3 are not homogeneous: the first parameter is of order188

0, and the second of order 2 or 1. J189

3 Ensuring Homogeneity190

We now prove our main theorem:191

I Theorem 2. For every scheme G = (N ,R, X0) one can construct in logarithmic space a192

homogeneous scheme H that is of the same order as G and such that BT (Λ(H)) = BT (Λ(G)).193

Let us first present the general idea of the proof. Consider thus a nonterminal X with194

R(X) = λx.λy.K, where ord(x) < ord(y) (like Y1 or Y3 in Example 1). The sort of X is not195

homogeneous, as it does not satisfy ord(x) ≥ ord(y). How can we make it homogeneous?196

One idea, which does not work, is to swap the order of x and y. The sort of λy.λx.K is197

indeed homogeneous. Such a swap is problematic, though: possibly there are places where198

only one argument is given to X, corresponding to the parameter x (e.g., in Example 1 we199

always give only one argument to Y3). When the parameters are swapped, we cannot pass a200

value of x to X, without passing a value of y.201

There is another simple idea, which actually works. Namely, we should raise the order of202

x to ord(y). How can we do that? Simply instead of passing to X an argument M of a low203

order ord(x), we pass a function λz.M (of order ord(y), higher than ord(x)), which ignores204

its argument z and returns M . On the other side, we change every use of x in K to xN ,205

where N is an arbitrary λ-term of the same sort as z.206

Notice that after such a modification of the sort of x, the order of λx.λy.K remains as207

before the modification. This is very important: thanks to this property (orders of subterms208

do not change), we can perform the modification independently in every place. Moreover, as209

a side effect, also the order of the whole scheme remains unchanged.210

There is one more difficulty to overcome, while proving the theorem. Namely, in λ-211

calculus it would be possible to simply write λz.M instead of M , whenever we wanted to212

convert M into a function returning M . This is not so trivial for schemes, as we cannot213

use λ-binders—we should use nonterminals instead. Say that we want to change the order214

of M from 0 (sort o) to 1 (sort o→ o). To this end, we introduce a nonterminal S with215

R(S) = λxo.λzo.x, and we write SM instead of λz.M (that is, instead of M in the original216

scheme).217
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28:6 Homogeneity without Loss of Generality

Notice, though, that the sort of the new nonterminal S has to be homogeneous as218

well. This means that using such a nonterminal S we can raise the order only by one,219

as we cannot have R(S) = λxo.λz.x with ord(z) > 0. If we want to raise the order of220

M from 0 to 2 (or more), beside of S we need another nonterminal S′ which raises the221

order from 1 to 2 (again only by one), etc. As we start now from sort o→ o, we should222

take R(S′) = λxo→o1 .λzo→o1 .λzo.x1 z. We then write S′ (SM) instead of M , which, after223

expanding S and S′, equals224

(λxo→o1 .λzo→o1 .λzo.x1 z) ((λxo.λzo.x)M) .225
226

This β-reduces (in three steps) to λzo→o1 .λzo.M , thus it is a function of order 2 ignoring its227

arguments and returning M .228

We now come to details. First, we define sorts γk; these will be sorts of the spare229

parameters (i.e., of z in the above explanation). The definition is by induction:230

γ0 = o, γk = γk−1→ o for k ≥ 1.231
232

For example, γ1 = o→ o and γ2 = (o→ o)→ o. We see that ord(γk) = k for all k ∈ N.233

Next, we have an operation Rk, which says how to raise the order of a sort α to k. For234

every sort α and every k ≥ ord(α) we define:235

Rk(α) = γk−1→ γk−2→ · · · → γord(α)→ α .236
237

In particular Rord(α)(α) = α. We see that ord(Rk(α)) = k. Basing on Rk, we define, by238

induction, a transformation H changing an arbitrary sort into a homogeneous one:239

H(o) = o, H(α→ β) = Rord(α→β)−1(H(α))→H(β).240
241

Notice that ord(H(α)) = ord(α) for every sort α, and that H(α) is indeed homogeneous.242

Next, we come to transforming λ-terms. For every sort α appearing in the original scheme243

G (as a sort of a subterm of R(X) for some nonterminal X ∈ N ), and for every k such that244

ord(α) < k ≤ ord(G), we add a nonterminal Sα,k. Its sort is Rk−1(H(α))→Rk(H(α)). Recall245

that Rk(H(α)) = γk−1→Rk−1(H(α)); let us also write Rk−1(H(α)) = β1→ · · · → βs→ o.246

Then the rule for Sα,k is247

R′(Sα,k) = λx.λz.λy1. · · · .λys.x y1 . . . ys .248
249

Here the sort of x is Rk−1(H(α)), the sort of z is γk−1, and the sorts of y1, . . . , ys are250

β1, . . . , βs, respectively.251

Let again α be a sort appearing in G, and let k be such that ord(α) ≤ k ≤ ord(G).252

The sort of a λ-term may be changed from H(α) to Rk(H(α)) by applying the following253

transformation, also called Rk:254

Rk(M) = Sα,k (Sα,k−1 . . . (Sα,ord(α)+1M) . . . ) .255
256

Here, by appending a nonterminal Sα,i we change the sort from Ri−1(H(α)) to Ri(H(α));257

recall that Rord(α)(H(α)) = H(α).258

We also need an opposite operation, which converts a function back to its value, by259

applying some arguments of sorts γk. First we define some nonterminals of such sorts: we fix260

a symbol e ∈ Σ, and for every k < ord(G) we add a nonterminal Uk of sort γk, and we take:261

R′(U0) = e〈〉, R′(Uk) = λzγk−1 .e〈〉 for k ≥ 1.262
263
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Clearly Uk has sort γk, for every k ∈ N.264

When N is of sort Rk(H(α)), and ord(α) = n (the relation between k and n is k ≥ n),265

we define266

Ln(N) = N Uk−1 Uk−2 . . . Un .267
268

This λ-term is indeed of sort H(α).269

Using the above operations, we define a transformation changing the original scheme270

into a homogeneous one. Let us first describe this transformation informally. It works as271

follows. We first change the sort of every λ-term (i.e., every nonterminal, every variable, and272

every subterm of the right side of every rule) from α to H(α). This causes a problem on273

applications, since to a function of sort H(α→ β) = Rord(α→β)−1(H(α))→H(β) we apply274

an argument of sort H(α). We thus repair the argument by applying Rord(α→β)−1(·) to it.275

This also causes a problem on λ-binders and on variables: the new sort of a λ-binder λxα.Kβ
276

should be H(α→ β) = Rord(α→β)−1(H(α))→H(β), so the sort of the variable should be277

Rord(α→β)−1(H(α)); however, while using this variable, we expect that it will have sort H(α).278

We thus apply Lord(α)(·) to every place where the variable is used. There is no problem with279

nonterminals: every nonterminal simply changes its sort from α to H(α).280

We now define the transformation formally. A raise environment is a function Ω mapping281

some variable names to sorts, where we require that Ω(xα) equals Rk(H(α)) for some282

k ≥ ord(α). Intuitively, Ω(xα) is a new sort that the variable gets after the transformation.283

For a raise environment Ω (such that FV (M) ⊆ dom(Ω)) we define HΩ(M) by coinduction284

on the structure of a λ-term M :285

HΩ(a〈K1, . . . ,Kr〉) = a〈HΩ(K1), . . . ,HΩ(Kr)〉 .286

HΩ(xα) = Lord(α)(xΩ(xα)) if xα ∈ V \ N ,287

HΩ(Xα) = XH(α) if Xα ∈ N ,288

HΩ(K L) = HΩ(K) Rord(K)−1(HΩ(L)) ,289

HΩ(λxα.K) = λxα
′
.HΩ[xα 7→α′](K) , where α′ = Rord(λxα.K)−1(H(α)) .290

291

Here by Ω[xα 7→ α′] we mean the function that maps xα to α′, and every other variable292

y ∈ dom(Ω) to Ω(y). Notice that for M of sort α, the resulting λ-term HΩ(M) is of sort293

H(α); in particular, in the case of an application with K of sort β → γ, the sort of the294

function HΩ(K) being H(β→ γ) = Rord(β→γ)−1(H(β))→H(γ) matches well with the sort295

of the argument, being Rord(β→γ)−1(H(β)).296

The newly created scheme H = (N ′,R′, X0) is as follows. For every nonterminal Xα ∈ N ,297

to N ′ we take a nonterminal XH(α), and we define R′(XH(α)) = H∅(R(Xα)) (where ∅ is298

the raise environment with empty domain). Additionally in N ′ we have nonterminals Sα,k299

and Uk, with appropriate rules, as defined above.300

I Example 1 (continued). While applying our transformation to the scheme G1 from Exam-301

ple 1, we obtain a homogeneous scheme with the following rules (where we write Si instead302

of So,i):303

Y0 → Y1 (S2 (S1 (b〈c〈〉〉))) (Y3 (S1 (c〈〉))) ,304

Y1 x
(o→o)→o→o z(o→o)→o → a〈z Y2, Y1 (S2 (S1 (b〈xU1 U0〉))) (Y3 (S1 (xU1 U0)))〉 ,305

Y2 x
o → x , S1 x

o zo → x , U0 → e〈〉 ,306

Y3 x
o→o yo→o → y (xU0) , S2 x

o→o zo→o yo1 → x y1 , U1 z
o → e〈〉 . J307

308
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28:8 Homogeneity without Loss of Generality

It is easy to see that H can be computed in logarithmic space (in particular its size is309

polynomial in the size of G). We also notice that the order of the scheme remains unchanged;310

this is the case because ord(H(α)) = ord(α) for every sort α.311

It remains to prove that BT(Λ(H)) = BT(Λ(G)) for every closed λ-term Mo. To this312

end, we need to define a variant of our transformation that works with λ-terms, not with313

schemes. We thus define RΛ
k (M) is the same way as Rk(M), but in the definition we replace314

Sα,i with R′(Sα,i) (recall that R′ describes rules of the new scheme). Similarly LΛ
n(N) is315

defined as Ln(N), but in the definition we replace Ui with R′(Ui). Finally, HΛ
Ω(M) is defined316

as HΩ(M), but it uses functions RΛ
i and LΛ

i instead of Ri and Li. In other words, this317

variant of the transformation inserts definitions of the nonterminals Sα,i and Ui instead of318

the nonterminals themselves.319

We immediately see that Λ(H) = HΛ
∅ (Λ(G)). In the remaining part of the section320

we will prove that BT(HΛ
∅ (M)) = BT(M) for every closed λ-term Mo; this implies that321

BT(Λ(H)) = BT(Λ(G)) when instantiated with M = Λ(G). The proof is split to several322

lemmata.323

I Lemma 3. Let P be a λ-term of sort Rk−1(H(α)), where k > ord(α). In such a situation324

R′(Sα,k)P R′(Uk−1)→∗βη P .325

Proof. Let Rk−1(H(α)) = β1→· · ·→βs→o. Recalling the definition of R′(Sα,k) we observe326

that327

R′(Sα,k)P R′(Uk−1) = (λx.λz.λy1. · · · .λys.x y1 . . . ys)P R′(Uk−1)328

→2
β λy1. · · · .λys.P y1 . . . ys →s

η P . J329
330

I Lemma 4. Let M be a λ-term of sort H(α), and let k ≥ ord(α) = n. In such a situation331

LΛ
n(RΛ

k (M)))→∗βη M .332

Proof. The thesis follows directly from Lemma 3 once we recall that333

LΛ
n(RΛ

k (M)) = R′(Sα,k) (R′(Sα,k−1) . . . (R′(Sα,n+1)M) . . . )334

R′(Uk−1)R′(Uk−2) . . . R′(Un) . J335
336

I Lemma 5. Let M and Nα be λ-terms, xα a variable, and Ω a raise environment such337

that FV (M) \ {xα} ∪ FV (N) ⊆ dom(Ω). Let also α′ = Rk(H(α)) for some k ≥ ord(α). In338

such a situation HΛ
Ω[xα 7→α′](M)[RΛ

k (HΛ
Ω(N))/xα′ ]→∞βη HΛ

Ω(M [N/xα]).339

Proof. The proof is by coinduction on the structure of M . Only the case of M = xα is in-340

teresting. In this case HΛ
Ω[xα 7→α′](M) = LΛ

ord(α)(xα
′), so HΛ

Ω[xα 7→α′](M)[RΛ
k (HΛ

Ω(N))/xα′ ] =341

LΛ
ord(α)(RΛ

k (HΛ
Ω(N))), and by Lemma 4 we have that LΛ

ord(α)(RΛ
k (HΛ

Ω(N))) →∗βη HΛ
Ω(N),342

which is what we need since M [N/xα] = N .343

We remark that in the case of M = λyβ .K, we use the assumption of coinduction for the344

extended raise environment Ω[yβ 7→ β′], and we observe that HΛ
Ω(N) = HΛ

Ω[yβ 7→β′](N) when345

(without loss of generality) we assume that yβ is not free in N . J346

I Lemma 6. If M h−→β N , and Ω is a raise environment such that FV (M) ⊆ dom(Ω), then347

(HΛ
Ω(M),HΛ

Ω(N)) ∈ ( h−→β) ◦ (→∞βη).348

Proof. The proof is by induction on the depth of the head redex in M . The induction349

step is trivial. Consider thus the base case, when M = (λxα.K)L, and N = K[L/xα]. Let350

k = ord(λx.K)− 1, and α′ = Rk(H(α)); clearly k ≥ ord(α). By definition we have that351

HΛ
Ω(M) = (λxα

′
.HΛ

Ω[xα 7→α′](K)) RΛ
k (HΛ

Ω(L)) .352
353
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Taking P = HΛ
Ω[xα 7→α′](K)[RΛ

k (HΛ
Ω(L))/xα′ ] we see that HΛ

Ω(M) h−→β P , and from Lemma 5354

we obtain that P →∞βη HΛ
Ω(N). J355

Using Lemma 6 it is easy to prove by coinduction that for every closed λ-term M of sort o356

it holds that BT (HΛ
∅ (M)) = BT (M). Let us write this in details. The proof is by coinduction357

on the structure of these Böhm trees. According to the definition of a Böhm tree, we have358

two cases. The first of them is that M h−→∗β N for some N that starts with a node constructor.359

In this case, by Lemma 6 (applied to every reduction in the sequence of reductions witnessing360

M
h−→∗β N) we have that (HΛ

∅ (M),HΛ
∅ (N)) ∈ (( h−→β) ◦ (→∞βη))∗. Clearly ( h−→β) ⊆ (→∞βη), thus361

using Fact 1 (multiple times) we obtain that BT(HΛ
∅ (M)) = BT(HΛ

∅ (N)). Let us write362

N = a〈K1, . . . ,Kr〉; then HΛ
∅ (N) = a〈HΛ

∅ (K1), . . . ,HΛ
∅ (Kr)〉. Since BT (HΛ

∅ (Ki)) = BT (Ki)363

by the assumption of coinduction, we can conclude that364

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = a〈BT (HΛ
∅ (K1)), . . . ,BT (HΛ

∅ (Kr))〉365

= a〈BT (K1), . . . ,BT (Kr)〉 = BT (M) .366
367

The opposite case is that no sequence of head β-reductions from M leads to a λ-term368

starting with a node constructor. It is then possible that M h−→∗β N for some N such that no369

head β-reduction can be performed from N (but N does not start with a node constructor).370

Since M , and thus also N , are closed and of sort o, this implies that N is of the form371

. . . K3K2K1 (infinite application). From the definition of HΛ
∅ it follows that HΛ

∅ (N) is372

also such an infinite application, and thus no head β-reduction can be performed from N .373

Moreover, as in the previous case, we can see that BT(HΛ
∅ (M)) = BT(HΛ

∅ (N)). We thus374

have375

BT (HΛ
∅ (M)) = BT (HΛ

∅ (N)) = ⊥〈〉 = BT (M) .376
377

Another possibility is that an infinite sequence of head β-reductions can be performed378

from M . In other words, for every n ∈ N there is a λ-term N such that M h−→n
β N .379

Fix some such n and N . Lemma 6 implies that (HΛ
∅ (M),HΛ

∅ (N)) ∈ (( h−→β) ◦ (→∞βη))n.380

Using Fact 7 (below) we can move all head β-reductions to the front, and obtain that381

(HΛ
∅ (M),HΛ

∅ (N)) ∈ ( h−→β)n ◦ (→∞βη)n (we suppress the proof of Fact 7, as the fact is standard,382

and the proof is not difficult). This can be done for every n, which means that arbitrarily383

long sequences of head β-reductions start in HΛ
∅ (M). Recalling that for every P there is384

at most one Q such that P h−→β Q, and that no head β-reduction can be performed from a385

λ-term starting with a node constructor, we conclude that BT (HΛ
∅ (M)) = ⊥〈〉 = BT (M).386

I Fact 7. For all λ-terms M,N of sort o, if (M,N) ∈ (→∞βη) ◦ ( h−→β), then (M,N) ∈387

( h−→β) ◦ (→∞βη). J388

4 Safe Schemes389

In this section we consider safe schemes. Let us recall that we have two definitions of safety.390

Following Carayol and Serre [6] we use the name “safe schemes” for schemes that are safe391

according to the modern definition, and “Damm-safe schemes” for schemes that are safe392

according to the definition of Damm. We now give these definitions.393

We define by coinduction when an applicative term is safe, with respect to a set of394

nonterminals N :395
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M = a〈K1, . . . ,Kr〉 is safe if K1, . . . ,Kr are safe,396

M = x ∈ V (in particular M = X ∈ N ) is always safe, and397

M = K L1 . . . Ls (with s ≥ 1) is safe if K,L1, . . . , Ls are safe, and additionally ord(x) ≥398

ord(M) for all x ∈ FV (M) \ N .399

Damm-safe applicative terms are also defined by coinduction:400

M = a〈K1, . . . ,Kr〉 is Damm-safe if K1, . . . ,Kr are Damm-safe,401

M = x ∈ V (in particular M = X ∈ N ) is always Damm-safe, and402

M = K L1 . . . Ls (with s ≥ 1) is Damm-safe if K,L1, . . . , Ls are Damm-safe, and403

additionally ord(Li) ≥ ord(M) for all i ∈ {1, . . . , s}.404

A scheme G = (N ,R, X0) is safe (Damm-safe) if the right side of every of its rules (i.e., the405

term M when R(X) = λx1. · · · .λxs.M) is safe (Damm-safe, respectively).406

Notice that not every subterm of a (Damm-)safe term need to be (Damm-)safe. But,407

for example, subterms appearing as arguments are (Damm-)safe, etc. We remark that the408

definition of safe applicative terms can be extended to λ-terms which are not applicative [3],409

but we refrain from doing this.410

I Example 2. Consider a scheme G2 with the following rules:411

S →W (X (b〈〉)) , W g(o→o)→o → Y (X (Y g)) , Y g(o→o)→o → g A ,412

X xo fo→o → f x , Axo → a〈x〉 .413
414

This scheme is safe, but not Damm-safe; in particular the subterm X (Y g) is not Damm-safe415

since ord(Y g) = 0 < 2 = ord(X (Y g)). Moreover, the sort of X is not homogeneous. Notice416

that BT (Λ(G2)) = a〈a〈b〈〉〉〉. J417

It is easy to prove by coinduction that every Damm-safe applicative term is also safe; in418

consequence every Damm-safe scheme is also safe. We now give two transformations: first419

we show how to convert a safe scheme into an equivalent scheme that is Damm-safe; then we420

show how to convert a Damm-safe scheme into an equivalent scheme that is Damm-safe and421

homogeneous.422

I Theorem 8. For every safe scheme G = (N ,R, X0) one can construct in logarithmic423

space a Damm-safe scheme H = (N ′,R′, Y0) that is of the same order as G and such that424

BT (Λ(H)) = BT (Λ(G)).425

Let us fix some (arbitrary) order ≺ on variables. When FV (M) \ {N} = {x1, . . . , xk},426

where x1 ≺ · · · ≺ xk, then we write OV (M) for the sequence (x1, . . . , xk).427

The transformation of Theorem 8 amounts to splitting every rule of G into multiple428

simpler rules. More precisely, for every safe subterm M of the right side of every rule of429

G, and for every nonterminal M = X ∈ N , we create a new nonterminal denoted bMc. If430

OV (M) = (xα1
1 , . . . , xαkk ), and if the sort ofM is β, then the sort of bMc is α1→· · ·→αk→β.431

To the new set of nonterminals N ′, we take all such nonterminals bMc. As the starting432

nonterminal we take Y0 = bX0c.433

We now define R′(bMc) for every nonterminal bMc ∈ N ′. Consider first the case434

when M = X is a nonterminal from N . Suppose that R(X) = λx1. · · · .λxs.K, and435

OV (K) = (y1, . . . , yk). In such a situation we put R′(bMc) = λx1. · · · .λxs.bKc y1 . . . yr (on436

the list y1, . . . , yr we have those of x1, . . . , xs which are free in K, reordered according to ≺).437

Suppose now that M is not a nonterminal from N . Let OV (M) = (x1, . . . , xk). Let also438

y1, . . . , ys be variables of sorts α1, . . . , αs, where α1→ · · · → αs→ o is the sort of M . We439

have three possibilities, depending on the shape of M .440
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If M = a〈K1, . . . ,Kr〉, and OV (Ki) = (zi,1, . . . , zi,mi) for all i ∈ {1, . . . , r}, then441

R′(bMc) = λx1. · · · .λxk.a〈bK1c z1,1 . . . z1,m1 , . . . , bKrc zr,1 . . . zr,mr 〉 .442
443

If M = x, then R′(bMc) = λx.λy1. · · · .λys.x y1 . . . ys.444

If M = K0K1 . . . Kr, where r ≥ 1, and K0 is not an application, and OV (Ki) =445

(zi,1 . . . zi,mi) for all i ∈ {0, . . . , r}, then446

R′(bMc) = λx1. · · · .λxk.λy1. · · · .λys.bK0c z0,1 . . . z0,m0447

(bK1c z1,1 . . . z1,m1) . . . (bKrc zr,1 . . . zr,mr ) y1 . . . ys .448
449

Notice that in the first and the third case, the subterms Ki are safe, so bKic is indeed450

a nonterminal in N ′. It is also easy to prove that the right side of every rule is Damm-451

safe. Indeed, for subterms of sort o (i.e., of order 0) there is nothing to check. The only452

subterms which are of higher order (and which are not a part of a larger application) are453

bKic zi,1 . . . zi,mi in the last case of the definition. By safety of Ki we have that ord(zi,j) ≥454

ord(Ki), since zi,j is free in Ki, and exactly this is needed to claim that bKic zi,1 . . . zi,mi is455

Damm-safe.456

Let Exp(K) be the λ-term obtained by repeatedly replacing in K all nonterminals bLc457

such that L 6∈ N by R′(L) (this is similar to ΛH(K), but we do not expand nonterminals of458

the form bXc, where X ∈ N ). It is easy to prove by induction on the structure of a finite459

applicative term M , that if OV (M) = (x1, . . . , xk), then Exp(R′(bMc))x1 . . . xk →∗βη M (if460

we identify nonterminals X ∈ N with bXc). In consequence Λ(H)→∞βη Λ(G), which implies461

that BT (Λ(H)) = BT (Λ(G)), by Fact 1.462

I Example 2 (continued). While applying our transformation to the safe scheme G2 from463

Example 2, we obtain a Damm-safe scheme H2 with the following rules (where variables464

x, f, g are of sorts o, o→ o, and (o→ o)→ o, respectively; we assume that f ≺ g ≺ x):465

bSc → bW (X (b〈〉)c , bXcx f → bf xc f x , bgc g f → g f ,466

bW c g → bY (X (Y g))c g , bAcx→ ba〈x〉cx , bxcx→ x ,467

bY c g → bg Ac g , bfc f x→ f x , bb〈〉c → b〈〉 ,468

bW (X (b〈〉)c → bW c bX (b〈〉)c , bY gc g → bY c (bgc g) ,469

bX (b〈〉)c f → bXc bb〈〉c f , bg Ac g → bgc g bAc ,470

bY (X (Y g))c g → bY c (bX (Y g)c g) , bf xc f x→ bfc f (bxcx) ,471

bX (Y g)c g f → bXc (bY gc g) f , ba〈x〉cx→ a〈bxcx〉 . J472
473

We now come to the second transformation.474

I Theorem 9. For every Damm-safe scheme G = (N ,R, X0) one can construct in logarithmic475

space a homogeneous Damm-safe scheme H = (N ′,R′, X0) that is of the same order as G476

and such that BT (Λ(H)) = BT (Λ(G)).477

We remark that the transformation from the previous section (which converts a scheme478

to a homogeneous scheme), when applied to a Damm-safe scheme results in a scheme that is479

homogeneous, but no longer (Damm-)safe. Indeed, we have there (on argument positions)480

subterms of the form Sα,k+1M , where k = ord(M). Recalling that the order of Sα,k+1M is481

k + 1, we notice that such a subterm is not Damm-safe (and if, e.g., M is a variable, it is482

also not safe).483

We thus use a different approach: we reorder parameters / arguments. This approach484

works only because the scheme is Damm-safe. Indeed, Damm-safety ensures that when an485
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argument of some order k is applied, then simultaneously all arguments of orders higher than486

k are applied, and thus we can move our argument of order k behind these arguments.487

Before giving a formal definition of our transformation, let us extend the notion of Damm-488

safety from applicative terms to λ-terms. To this end, to the definition of a Damm-safe489

terms, we add an item saying that a λ-term M = λx1. · · · .λxs.K (with s ≥ 1) is Damm-safe490

if K is Damm-safe, and additionally ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}.491

For sorts α1, . . . , αs, let sort(α1, . . . , αs) be the permutation (i1, . . . , is) of (1, . . . , s)492

for which either ord(αij ) = ord(αij+1) and ij < ij+1, or ord(αij ) > ord(αij+1), for every493

j ∈ {1, . . . , s}. Having the sorting function, we define our transformation on sorts, by494

induction: when α = α1→ · · · → αs→ o, and sort(α1, . . . , αs) = (i1, . . . , is), we put S(α) =495

S(αi1)→ · · · → S(αis)→ o (in particular S(o) = o). Similarly, for Damm-safe λ-terms we496

define by coinduction:497

if M = a〈K1, . . . ,Kr〉, then S(M) = a〈S(K1), . . . ,S(Kr)〉,498

if M = xα ∈ V , then S(M) = xS(α) (where x is either a “real” variable, or a nonterminal),499

if M = K Lα1
1 . . . Lαss (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and K is Damm-500

safe, then S(M) = S(K) S(Li1) . . . S(Lis), and501

finally, if M = λxα1
1 . · · · .λxαss .K (with s ≥ 1), and sort(α1, . . . , αs) = (i1, . . . , is), and502

ord(xi) ≥ ord(K) for all i ∈ {1, . . . , s}, then S(M) = λx
S(αi1 )
i1

. · · · .λxS(αis )
is

.S(K).503

Notice that for a λ-term M of sort α, the sort of S(M) is S(α).504

It may appear that the definition is ambiguous (but it is not). The problem is that505

while transforming an application M = K L1 . . . Lk+m, where both K and N = K L1 . . . Lk506

are Damm-safe, we may proceed in two ways: we may sort all the arguments L1 . . . Lk+m,507

but we may also separately sort the arguments L1 . . . Lk and separately the arguments508

Lk+1 . . . Lk+m. We notice, though, that the effect will be the same. Indeed, we have that509

ord(Li) ≥ ord(N) for i ≤ k, because N is Damm-safe, and ord(Li) < ord(N) for i > k510

because these Li are given as arguments to N . This means that even while sorting all the511

arguments L1 . . . Lk+m together, the arguments Li for i ≤ k will appear before the arguments512

for i > k. The same can be said about a sequence of λ-binders M = λx1. · · · .λxk+m.K in513

which ord(xi) ≥ ord(λxk+1. · · · .λxk+m.K) for all i ∈ {1, . . . , k}.514

Having a transformation of λ-terms, it is immediate to define a transformation on schemes:515

we take N ′ = {XS(α) | Xα ∈ N , and R′(XS(α)) = S(R(Xα)) for all Xα ∈ N .516

On the one hand, it should be clear that H is homogeneous, Damm-safe, and of the same517

order as G. On the other hand, it is easy to prove the following lemma.518

I Lemma 10. If M = (λx1. · · · .λxs.K)L1 . . . Ls is a Damm-safe λ-term, and M h−→s
β N ,519

then N is Damm-safe, and S(M) h−→s
β S(N). J520

Using the above lemma it is easy to prove by coinduction that BT (S(M)) = BT (M) for521

every Damm-safe λ-term M . Because Λ(H) = S(Λ(G)), and because Λ(G) is Damm-safe, it522

follows that BT (Λ(H)) = BT (Λ(G)). Notice that in Lemma 10 it is essential that we perform523

all the s head β-reductions at once, not only a single one (since in S(M) the s arguments524

are applied in different order than in M).525

I Example 2 (continued). Let us apply the transformation to the Damm-safe scheme H2526

from our example. Since bXc is the only nonterminal having a non-homogeneous sort, only527

the rules involving bXc are changed, as follows:528

bXc f x→ bf xc f x , bX (Y g)c g f → bXc f (bY gc g) ,529

bX (b〈〉)c f → bXc f bb〈〉c .530
531
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Notice that it does not make sense to apply the transformation to the scheme G2, which is532

not Damm-safe. Indeed, it would be impossible to swap the order of the parameters of X,533

since in the subterm X (Y g) we are applying only one argument to X. J534

5 Consequences of Homogeneity535

Let us say that a λ-term is homogeneous if sorts of all its subterms are homogeneous. By536

definition this means that arguments of higher order are always applied before arguments of537

lower order. Due to this fact, in a homogeneous λ-term (unlike in an arbitrary λ-term) we538

can perform β-reductions starting from redexes concerning variables of the highest order.539

In this section we formalize and prove this property of homogeneous λ-terms (Lemmata 11540

and 12). We remark that this property turned out to be useful e.g. in Parys [17].541

We define the order of a β-reduction as the order of the involved variable. More precisely,542

for a number k ∈ N, the relation →β(k) of β-reduction of order k is defined as the compatible543

closure of the relation {((λx.K)L,K[L/x]) | ord(x) = k}.544

We first give our result for finite λ-terms.545

I Lemma 11. Let M be a finite closed homogeneous λ-term of sort o and complexity at546

most n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every547

k ∈ {0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∗β(k) Nk, and N0 = BT (M).548

For infinite λ-terms we need to be slightly more careful: it is not enough to replace549

the reflexive transitive closure →∗β(k) by the infinitary closure →∞β(k). The problem lies in550

subterms which do not have so-called head normal form: infinite applications . . . K3K2K1,551

and subterms from which we can perform infinitely many head β-reductions. These are552

subterms responsible for creating nodes labeled by ⊥ in the Böhm tree. We cannot deal with553

these subterms by only applying β-reductions. We need to introduce relations that explicitly554

replace such “invalid” subterms by ⊥〈〉.555

The relation h−→β(k) of head β-reduction of order k (where k ∈ N) is defined as556

{((λx.K)LP1 . . . Pn,K[L/x]P1 . . . Pn) | ord(x) = k} .557
558

Consider now the relation containing all pairs of the form (K,λx1. · · · .λxs.⊥〈〉), where K559

and λx1. · · · .λxs.⊥〈〉 are of the same sort, and either for every n ∈ N there is L such that560

K
h−→n
β(k) L, or K is an infinite application. The compatible closure of this relation is denoted561

→⊥(k). By →β⊥(k) we denote the union of →β(k) and →⊥(k). Using this relation we can562

now reformulate Lemma 11 for infinite λ-terms.563

I Lemma 12. Let M be a closed homogeneous λ-term of sort o and complexity at most564

n. Then there exist λ-terms Nn, Nn−1, . . . , N0 such that M = Nn, and for every k ∈565

{0, . . . , n− 1}, Nk is of complexity at most k and Nk+1 →∞β⊥(k) Nk, and N0 = BT (M).566

Notice that Lemma 11 is an immediate consequence of Lemma 12, because when a λ-term567

K is finite, then there is no L such that K →⊥(k) L, and K →∞β(k) M implies K →∗β(k) M568

(every sequence of β-reductions from a finite λ-term is finite). Lemma 12, in turn, is a569

consequence of the following lemma.570

I Lemma 13. Let M be a λ-term of complexity at most k, order at most k−1, and such that571

all free variables of M have order at most k − 1. Then there exists a λ-term P of complexity572

at most k − 1 such that M →∞β⊥(k) P .573
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Proof. The proof is by coinduction. Suppose first that for every n ∈ N there is N such574

that M h−→n
β(k) N . In this situation M →⊥(k) λx1. · · · .λxs.⊥〈〉 (for an appropriate sequence575

of variables x1, . . . , xs, corresponding to the sort of M). Denoting the latter λ-term P we576

obtain the thesis, since the complexity of P equals ord(P ) = ord(M) ≤ k − 1.577

The opposite case is that M h−→∗β(k) N for some N , but there is no N ′ such that N h−→β(k)578

N ′. When N is a variable, the thesis is trivial for P = N , and when N = a〈K1, . . . ,Kr〉,579

the thesis follows directly from the assumption of coinduction. When N = λx.K, the thesis580

also follows from the assumption of coinduction; we only need to observe that ord(N) =581

ord(M) ≤ k − 1 implies that ord(x) ≤ k − 2 ≤ k − 1. Suppose thus that N is an application.582

When N is an infinite application, we again have M →⊥(k) λx1. · · · .λxs.⊥〈〉, and we are583

done. When N = xL1 . . . Ls, by assumption the order of x is at most k−1, so we can simply584

use the assumption of coinduction for all Li. Otherwise N is of the form (λx.K)L1 . . . Ls.585

Since no head β-reduction of order k starts in N , necessarily ord(x) 6= k. Knowing that the586

complexity of N is at most k, and that the sort of λx.K is homogeneous, this implies that587

ord(λx.K) = ord(x)− 1 ≤ k − 1. We can thus again use the assumption of coinduction for588

all the subterms K,L1, . . . , Ls. J589

I Remark. We notice that Lemmata 11 and 12 would be false if we have allowed λ-terms590

involving non-homogeneous sorts. For example, from a λ-term of the form (λx.λy.K)LM591

with ord(x) = 0 and ord(y) = 1 we have to perform a β-reduction of order 0 concerning592

x before a β-reduction of order 1 concerning y. It is, though, possible to reformulate our593

lemmata without the homogeneity assumption. One only has to define the order of a β-594

reduction (λx.K)L→β K[L/x] in a less natural way, as ord(λx.K)−1, not as ord(x) (notice595

that these two numbers coincide for homogeneous sorts).596
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