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Abstract. The Caucal hierarchy contains graphs that can be obtained
from finite graphs by alternately applying the unfolding operation and
inverse rational mappings. The goal of this work is to check whether the
hierarchy is closed under interpretations in logics extending the monadic
second-order logic by the unbounding quantifier U. We prove that by
applying interpretations described in the MSO+Ufin logic (hence also in
its fragment WMSO+U) to graphs of the Caucal hierarchy we can only
obtain graphs on the same level of the hierarchy. Conversely, interpreta-
tions described in the more powerful MSO+U logic can give us graphs
with undecidable MSO theory, hence outside of the Caucal hierarchy.
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1 Introduction

This paper concerns the class of finitely describable infinite graphs introduced
in Caucal [9], called a Caucal hierarchy. Graphs on consecutive levels of this
hierarchy are obtained from finite graphs by alternately applying the unfolding
operation [14] and inverse rational mappings [8]. Since both these operations
preserve decidability of the monadic second-order (MSO) theory, graphs in the
Caucal hierarchy have decidable MSO theory. It turns out that this class of
graphs has also other definitions. It was shown [5, 7] that the Caucal hierarchy
contains exactly ε-closures of configuration graphs of all higher-order pushdown
automata [15]; while generating trees, these automata are in turn equivalent
to a subclass of higher-order recursion schemes called safe schemes [19]. More-
over, Carayol and Wöhrle [7] prove that the defined classes of graphs do not
change if we replace the unfolding operation by the treegraph operation [26],
and similarly, if we replace inverse rational mappings by the stronger operation
of MSO-transductions [13]. One can also replace inverse rational mappings by
the operation of FO-interpretations, assuming that the FO formulae have access
to the descendant relation [10].

In this paper we try to replace inverse rational mappings or MSO-inter-
pretations in the definition of the Caucal hierarchy by interpretations in some
extensions of the MSO logic. Namely, we investigate logics obtained from MSO
by adding the unbounding quantifier U introduced by Bojańczyk [1]. The mean-
ing of a formula UX.ϕ is that ϕ holds for arbitrarily large finite sets X. In the
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MSO+Ufin logic we can write UX.ϕ only for formulae ϕ whose free variables can-
not represent infinite sets (this fragment subsumes the more known WMSO+U
logic in which all monadic variables can only represent finite sets [2, 4]). We prove
that the Caucal hierarchy does not change if we use MSO+Ufin-interpretations in
its definition. In other words, by applying MSO+Ufin-interpretations to graphs
in the Caucal hierarchy, we only obtain graphs on the same level of the hierarchy.

This result shows robustness of the Caucal hierarchy, but is a bit disappoint-
ing (but rather not surprising): it would be nice to find a class of graphs with
decidable properties, larger than than the Caucal hierarchy. We remark that the
class of trees generated by all (i.e., not necessarily safe) higher-order recursion
schemes (equivalently, by collapsible pushdown automata [17]) is such a class:
these trees have decidable MSO theory [20], and some of them are not contained
in the Caucal hierarchy [24]. This class lacks a nice machine-independent defini-
tion (using logics, like for the Caucal hierarchy), though. For some other classes
of graphs we only have decidability of first-order logics [12, 25].

Going further, we also check the full MSO+U logic, where the use of the U
quantifier is unrestricted. For this logic we obtain graphs outside of the Caucal
hierarchy; among them there are graphs with undecidable MSO theory. This is
very expected, since the MSO+U logic is undecidable itself [3].

2 Preliminaries

2.1 Logics

A signature Ξ (of a relational structure) is a list of relation names, R1, . . . , Rn,
together with an arity assigned to each of the names. A (relational) structure
S = (US , RS1 , . . . , R

S
n) over such a signature Ξ is a set US , called the universe,

together with relations RSi over S, for all relation names in the signature; the
arity of the relations is as specified in the signature. Following the literature on
the Caucal hierarchy [8, 9, 7, 5, 6] we forbid the universe to have isolated elements:
every element of US has to appear in at least one of the relations RS1 , . . . , R

S
n .

We assume three countable sets of variables: VFO of first-order variables,
Vfin of monadic variables representing finite sets, and V inf of monadic variables
representing arbitrary sets. First-order variables are denoted using lowercase
letters x, y, . . . , and monadic variables (of both kinds) are denoted using capital
letters X,Y, . . . . The atomic formulae are
– R(x1, . . . , xn), where R is a relation name of arity n (coming from a fixed

signature Ξ), and x1, . . . , xn are first-order variables;
– x = y, where x, y are first-order variables;
– x ∈ X, where x is a first-order variable, and X a monadic variable.

Formulae of the monadic second-order logic with the unbounding quantifier,
MSO+U, are built out of atomic formulae using the boolean connectives ∨,∧,¬,
the first-order quantifiers ∃x and ∀x, the monadic quantifiers UX, ∃finX, and
∀finX for X ∈ Vfin , and the monadic quantifiers ∃X and ∀X for X ∈ V inf .

We use the standard notion of free variables. In this paper, we also consider
three syntactic fragments of MSO+U. Namely, in the monadic second-order logic,
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MSO, we are not allowed to use variables from Vfin , and thus the quantifiers using
them: UX (most importantly), ∃finX, and ∀finX. In the MSO+Ufin logic, the use
of the unbounding quantifier is syntactically restricted: we can write UX.ϕ only
when all free variables are from VFO ∪Vfin (i.e., ϕ has no free variables ranging
over infinite sets). In the weak fragment, WMSO+U, we cannot use variables
from V inf , together with the quantifiers ∃X and ∀X.

In order to evaluate an MSO+U formula ϕ over a signature Ξ in a relational
structure S over the same signature, we also need a valuation ν, which is a
partial function that maps
– variables x ∈ VFO to elements of the universe of S;
– variables X ∈ Vfin to finite subsets of the universe of S;
– variables X ∈ V inf to arbitrary subsets of the universe of S.

The valuation should be defined at least for all free variables of ϕ. We write
S, ν |= ϕ when ϕ is satisfied in S with respect to the valuation ν; this is defined by
induction on the structure of ϕ. For most constructs the definition is as expected,
thus we made it explicit only for ϕ of the form UX.ψ: we have S, ν |= UX.ψ
if for every n ∈ N there exists a finite subset XS of the universe of S having
cardinality at least n, such that S, ν[X 7→ XS ] |= ψ (in other words: UX.ψ says
that ψ is satisfied for arbitrarily large finite sets X).

We write ϕ(x1, . . . , xn) to denote that the free variables of ϕ are among
x1, . . . , xn. Then given elements u1, . . . , un in the universe of a structure S, we
say that ϕ(u1, . . . , un) is satisfied in S if ϕ is satisfied in S under the valuation
mapping xi to ui for all i ∈ {1, . . . , n}.

For a logic L, an L-interpretation from Ξ1 to Ξ2 is a family I of L-formulas
ϕR(x1, . . . , xn) over Ξ1, for every relation name R of Ξ2, where n is the arity of
R. Having such an L-interpretation, we can apply it to a structure S over Ξ1;
we obtain a structure I(S) over Ξ2, where every relation RI(S) is given by the
tuples (v1, . . . , vn) of elements of the universe of S for which ϕR(v1, . . . , vn) is
satisfied in S. The universe of I(S) is given implicitly as the set of all elements
occurring in the relations RI(S) (because isolated elements are disallowed by the
definition of a structure, there is no need to have a separate formula defining the
universe).

2.2 Graphs and the Caucal hierarchy

We consider directed, edge-labeled graphs. Thus, for a finite set Σ, a Σ-labeled
graph G is a relational structure over the signature ΞΣ containing binary relation
names Ea for all a ∈ Σ. In other words, G = (V G, (EGa )a∈Σ), where V G is a
set of vertices, and EGa ⊆ V G × V G is a set of a-labeled edges, for every a ∈ Σ
(and where we assume that there are no isolated vertices, i.e., for every v ∈ V G
there is an edge (v, w) or (w, v) in EGa for some w ∈ V G and a ∈ Σ). A graph is
deterministic if for every v ∈ V G and a ∈ Σ there is at most one vertex w ∈ V G
such that (v, w) ∈ EGa .

A path from a vertex u to a vertex v labeled by w = a1 . . . an is a sequence
v0a1v1 . . . anvn ∈ V G(ΣV G)∗, where v0 = u, and vn = v, and (vi−1, vi) ∈ EGai
for all i ∈ {1, . . . , n}. A graph is called an (edge-labeled) tree when it contains a
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vertex r, called the root, such that for every vertex v ∈ V G there exists a unique
path from r to v. The unfolding Unf (G, r) of a graph G = (V G, (EGa )a∈Σ) from
a vertex r ∈ V G is the tree T = (V T , (ETa )a∈Σ), where V T is the set of all paths
in G starting from r, and ETa (for every a ∈ Σ) contains pairs (w,w′) such that
w′ = w · a · v for some v ∈ V G.

The Caucal hierarchy is a sequence of classes of graphs and trees; we use
here the characterization from Carayol and Wöhrle [7] as a definition. We define
Graph(0) to be the class containing all finite Σ-labeled graphs, for all finite sets
of labels Σ. For all n ≥ 0, we let

Tree(n+ 1) = {Unf (G, r) | G ∈ Graph(n), r ∈ V G} , and

Graph(n+ 1) = {I(T ) | T ∈ Tree(n+ 1), I an MSO-interpretation} .

We do not distinguish between isomorphic graphs.

2.3 Higher-Order Recursion Schemes

The set of sorts (aka. simple types) is constructed from a unique ground sort o
using a binary operation →; namely o is a sort, and if α and β are sorts, so is
α→β. By convention,→ associates to the right, that is, α→β→γ is understood
as α→ (β→ γ). The order of a sort α, denoted ord(α) is defined by induction:
ord(o) = 0 and ord(α1→ · · · → αk→ o) = maxi(ord(αi)) + 1 for k ≥ 1.

Having a finite set of symbols Σ (an alphabet), a finite set of sorted nontermi-
nals N , and a finite set of sorted variables V , (applicative) terms over (Σ,N , V )
are defined by induction:
– every nonterminal N ∈ N of sort α is a term of sort α;
– every variable x ∈ V of sort α is a term of sort α;
– if K1, . . . ,Kk are terms of sort o, and a ∈ Σ is a symbol, then a〈K1, . . . ,Kk〉

is a term of sort o;
– if K is a term of sort α→ β, and L is a term of sort α, then K L is a term

of sort β.
The order of a term K, written ord(K), is defined as the order of its sort.

A (higher-order) recursion scheme is a tuple G = (Σ,N ,R, S), where Σ is
a finite set of symbols, N a finite set of sorted nonterminals, and R a function
assigning to every nonterminal N ∈ N of sort α1→ · · · → αk → o a rule of the
form N x1 . . . xk → K, where the sorts of variables x1, . . . , xk are α1, . . . , αk,
respectively, and K is a term of sort o over (Σ,N , {x1, . . . , xk}); finally, S ∈ N
is a starting nonterminal of sort o. The order of a recursion scheme is defined as
the maximum of orders of its nonterminals.

Unlike trees in the Caucal hierarchy, trees generated by recursion schemes are
node-labeled; actually, these are infinite terms. They are defined by coinduction:
for a finite set Σ and for r ∈ N, a Σ-node-labeled tree of maximal arity r is
of the form a〈T1, . . . , Tk〉, where a ∈ Σ, and k ≤ r, and T1, . . . , Tk are again
Σ-node-labeled trees of maximal arity r. For a tree T = a〈T1, . . . , Tk〉, its set of
vertices is defined as the smallest set such that
– ε is a vertex of T , labeled by a, and
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– if u is a vertex of Ti for some i ∈ {1, . . . , k}, labeled by b, then iu is a vertex
of T , also labeled by b.

Such a tree can be seen as a relational structure over signature Ξnlt
Σ,r containing

unary relation names La for all a ∈ Σ, and binary relation names Chi for all
i ∈ {1, . . . , r}. Its universe is the set of vertices of T ; for a ∈ Σ the relation LTa
contains all vertices labeled by a; for i ∈ {1, . . . , r} the i-th child relation Chi
contains pairs (u, ui) such that both u and ui are vertices of T .

Having a recursion scheme G, we define a rewriting relation→G among terms
of sort o over (Σ,N , ∅): we have N L1 . . . Lk →G K[L1/x1, . . . , Lk/xk], where
N is a nonterminal such that the rule R(N) is N x1 . . . xk → K (and where
K[L1/x1, . . . , Lk/xk] is the term obtained from K by substituting L1 for x1, L2

for x2, and so on). We then define a tree generated by G from a term K of sort
o over (Σ,N , ∅), by coinduction:
– if there is a reduction sequence from K to a term of the form a〈L1, . . . , Lk〉,

then the tree equals a〈T1, . . . , Tk〉, where T1, . . . , Tk are the trees generated
by G from L1, . . . , Lk, respectively;

– otherwise, the tree equals ω〈〉 (where ω is a distinguished symbol).
A tree generated by G (without a term specified) is the tree generated by G from
the starting nonterminal S.

We define when a term is safe, by induction on its structure:
– all nonterminals and variables are safe,
– a term a〈K1, . . . ,Kk〉 is safe if the subterms K1, . . . ,Kk are safe,
– a term M = K L1 . . . Lk is safe if K and L1, . . . , Lk are safe, and if ord(x) ≥

ord(M) for all variables x appearing in M .
Notice that not all subterms of a safe term need to be safe. A recursion scheme
is safe if right sides of all its rules are safe.

2.4 Higher-Order Pushdown Automata

We actually need to consider two models of higher-order pushdown automata:
nondeterministic (non-branching) automata of Carayol and Wöhrle [7], where
letters are read by transitions, and deterministic tree-generating automata of
Knapik, Niwiński, and Urzyczyn [19], where there are special commands for
creating labeled tree vertices. We use the name edge-labeled pushdown automata
for the former model, and node-labeled pushdown automata for the latter model.
We only recall those fragments of definitions of these automata that are relevant
for us.

For every n ∈ N, and every finite set Γ containing a distinguished initial
symbol ⊥ ∈ Γ , there are defined
– a set PDn(Γ ) of pushdowns of order n over the stack alphabet Γ ,
– an initial pushdown ⊥n ∈ PDn(Γ ),
– a finite set Opn(Γ ) of operations on these pushdowns, where every op ∈

Opn(Γ ) is a partial function from PDn(Γ ) to PDn(Γ ), and
– a function top : PDn(Γ )→ Γ (returning the topmost symbol of a pushdown).

We assume that Opn(Γ ) contains the identity operation id , mapping every ele-
ment of PDn(Γ ) to itself.
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Having the above, we define an edge-labeled pushdown automaton of order
n as a tuple A = (Q,Σ, Γ, qI , ∆), where Q is a finite set of states, Σ is a
finite input alphabet, Γ is a finite stack alphabet, qI ∈ Q is an initial state, and
∆ ⊆ Q×Γ×(Σ]{ε})×Q×Opn(Γ ) is a transition relation. It is assumed that for
every pair (q, γ) either all tuples (q, γ, a, q′, op) ∈ ∆ have a = ε, or all have a ∈ Σ.
The automaton is deterministic if for every pair (q, γ) there is either exactly one
transition (q, γ, a, q′, op), where a = ε, or there are |Σ| such transitions, one for
every a ∈ Σ. A configuration of A is a pair (q, s) ∈ Q × PDn(Γ ), and (qI ,⊥n)
is the initial configuration. For a ∈ Σ ∪ {ε}, there is an a-labeled transition

from a configuration (p, s) to a configuration (q, t), written (p, s)
a−→A (q, t), if

in ∆ there is a tuple (p, top(s), a, q, op) such that op(s) = t. The configuration
graph of A is the edge-labeled graph of all configurations of A reachable from
the initial configuration, with an edge labeled by a ∈ Σ ∪ {ε} from c to d if

there is a transition c
a−→A d. The ε-closure of such a graph G is the Σ-labeled

graph obtained from G by removing all vertices with only outgoing ε-labeled
edges and adding an a-labeled edge between v and w if in G there is a path from
v to w labeled by a word in aε∗. The graph generated by A is the ε-closure of
the configuration graph of A.

Next, we define a node-labeled pushdown automaton of order n as a tuple
A = (Q,Σ, Γ, qI , δ), where Q,Σ, Γ, qI (and configurations) are as previously, and
δ : Q×Γ → (Q×Opn(Γ ))](Σ×Q∗) is a transition function. This time transitions
are not labeled by anything; we have (p, s)→A (q, t) when δ(p, top(s)) = (q, op)
and op(s) = t. We define when a node-labeled tree over alphabet Σ ∪ {ω} is
generated by A from (p, s), by coinduction:

– if (p, s) →∗A (q, t), and δ(q, top(t)) = (a, q1, . . . , qk) ∈ Σ × Q∗, and trees
T1, . . . , Tk are generated by A from (q1, t), . . . , (qk, t), respectively, then the
tree a〈T1, . . . , Tk〉 is generated by A from (p, s),

– if there is no (q, t) such that (p, s)→∗A (q, t) and δ(q, top(t)) ∈ Σ ×Q∗, then
ω〈〉 is generated by A from (p, s).

While talking about the tree generated byA, without referring to a configuration,
we mean generating from the initial configuration (qI ,⊥n).

3 Between Caucal Hierarchy and Safe Recursion Schemes

The Caucal hierarchy is closely related to safe recursion schemes. Indeed, we
have the following two results, from Carayol and Wöhrle [7, Theorem 3] and
Knapik et al. [19, Theorems 5.1 and 5.3].

Fact 1. For every n ∈ N, a graph G is generated by some edge-labeled pushdown
automaton of order n if and only if G ∈ Graph(n).

Fact 2. For every n ∈ N, a tree T is generated by some node-labeled pushdown
automaton of order n if and only if it is generated by some safe recursion scheme
of order n.
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It looks like the connection between the Caucal hierarchy and safe recursion
schemes is already established by these two facts, but the settings of edge-labeled
and node-labeled pushdown automata are not immediately compatible. Indeed,
beside of the superficial syntactical difference between edge-labeled graphs from
Fact 1 (and trees being their unfoldings) and node-labeled trees from Fact 2
we have two problems. First, node-labeled trees are only finitely branching (and
moreover deterministic), while edge-labeled trees may have infinite branching.
To deal with this, we use a fact from Carayol and Wöhrle [7, Theorem 2].

Fact 3. For every G ∈ Graph(n), where n ≥ 1, there exists a tree T that is
an unfolding of a deterministic graph Gn−1 ∈ Graph(n − 1), and an MSO-
interpretation1 I such that G = I(T ).

A second problem is that an edge-labeled pushdown automaton of order n
generating a deterministic graph need not to be deterministic itself (and only
deterministic edge-labeled automata can be easily turned into node-labeled au-
tomata). We thus need a fact from Parys [21, Theorem 1.1] (proved also in the
Carayol’s PhD thesis [6, Corollary 3.5.3]).

Fact 4. If a deterministic graph is generated by some edge-labeled pushdown
automaton of order n, then it is also generated by some deterministic edge-labeled
pushdown automaton of order n.

Having all the recalled facts, it is now easy to prove the following lemma.

Lemma 5. For every n ≥ 1, a graph G is in Graph(n) if and only if it can
be obtained by applying an MSO-interpretation to a tree generated by a safe
recursion scheme of order n− 1.

Proof (sketch). Suppose first that G = I(T ) for some MSO-interpretation I and
for some safe recursion scheme G of order n− 1 generating a tree T . By Fact 2,
T is generated by a node-labeled pushdown automaton A of order n− 1. It is a
routine to switch to the formalism of edge-labeled pushdown automata, that is,

– change the node-labeled tree T (which is a structure over the signature Ξnlt
Σ,r)

to a “similar” edge-labeled tree T ′ (which is a structure over the signature
ΞΣ∪{1,...,r}), where every edge of T from a vertex to its i-th child becomes
an i-labeled edge, and where below every a-labeled vertex u we create a fresh
vertex vu with an a-labeled edge from u to vu;

– change the node-labeled pushdown automaton A to an edge-labeled push-
down automaton A′ of the same order n− 1 such that T ′ is the unfolding of
the graph generated by A′;

– change the MSO-interpretation I evaluated in T to an MSO-interpretation
I ′ evaluated in T ′, such that I ′(T ′) = I(T ).

1 Carayol and Wöhrle say about an inverse rational mapping, which is a special case
of an MSO-interpretation.
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Finally, we use Fact 1 to say that the graph generated byA′ belongs to Graph(n−
1). In effect its unfolding T ′ belongs to Tree(n), and hence G = I ′(T ′) belongs
to Graph(n).

For the opposite direction, consider some graph G ∈ Graph(n). We first use
Fact 3 to say that there exists a tree T that is an unfolding of a deterministic
graph Gn−1 ∈ Graph(n− 1), and an MSO-interpretation I such that G = I(T ).
By Fact 1 we obtain that Gn−1 is generated by some edge-labeled pushdown
automaton A of order n − 1. Because of Fact 4 we can assume that A is de-
terministic. By definition, the vertex r such that T = Unf (Gn−1, r) can be
arbitrary; let A′ be a modification of A that first reaches configuration r using
ε-transitions, and then operates as A from r.

We now change A′ into a node-labeled pushdown automaton A′′. To this
end, we fix some order on the letters in Σ: let Σ = {a1, . . . , ak}. Moreover,
without loss of generality we assume that for all transitions (q, γ, a, q′, op) of A
with a 6= ε, the operation op is id . Then, if from a pair (q, γ) we have transitions
(q, γ, a1, q1, id), . . . , (q, γ, ak, qk, id), we define δ(q, γ) = (�, q1, . . . , qk), and for
pairs (q, γ) being a source of ε-transitions (q, γ, ε, q′, op) we define δ(q, γ) =
(q′, op). The {�, ω}-node-labeled tree T ′ generated by A′, after removing all
ω-labeled vertices, and while treating an edge leading to the i-th child as ai-
labeled, equals T . It is easy to modify the interpretation I into I ′ such that
I ′(T ′) = I(T ) = G. Finally, we use Fact 2 to say that T ′ is generated by a safe
recursion scheme of order n− 1. ut

4 Closure under MSO+Ufin-interpretations

We now present the main theorem of this paper.

Theorem 6. For every n ∈ N, if G ∈ Graph(n) and if I is an MSO+Ufin-
interpretation, then I(G) ∈ Graph(n).

This theorem can be deduced from our previous result, which we recall now.
We say that a Σ × Γ -node-labeled tree T ′ enriches a Σ-node-labeled tree T , if
it has the same vertices, and every vertex u labeled in T by some a is labeled in
T ′ by a pair in {a} × Γ .

Lemma 7. Let n ∈ N. For every MSO+Ufin formula ϕ and every safe recursion
scheme G of order n generating a tree T there exists a safe recursion scheme
G+ of order n that generates a tree T ′ enriching T , and an MSO formula ϕMSO

such that for every valuation ν in T (defined at least for all free variables of ϕ)
it holds that T ′, ν |= ϕMSO if and only if T, ν |= ϕ.

Proof. This result was shown in Parys [22, Lemma 5.4], without observing that
the resulting recursion scheme G+ is of the same order as G, and that it is safe
when G is safe. We thus need to inspect the proof, to see this. Although the
proof is not so simple, it applies only two basic kinds of modifications to the
recursion scheme G, in order to obtain G+.
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First, it uses a construction of Haddad [16, Section 4.2] (described also in
Parys [23, Section B.1]) to compose a recursion scheme with a morphism into a
finitary applicative structure. It is already observed in Parys [23, Lemma 10.2]
that this construction preserves the order. It is not difficult to see that it preserves
safety as well: when a subterm K is transformed into a subterm M , then their
order is the same, and their sets of free variables are essentially also the same,
up to the fact that every single free variable of K corresponds to multiple free
variables of M , all being of the same order as the free variable of K.

The second basic kind of modifications applied to the recursion scheme is the
composition with finite tree transducers. This is realized by converting the recur-
sion scheme to a collapsible pushdown automaton generating the same tree [17],
composing the automaton with the transducer, and then converting it back to a
recursion scheme. When the original recursion scheme is safe, we can convert it
to a higher-order pushdown automaton, which can be converted back to a safe
recursion scheme; as stated in Fact 2, this preserves the order. Moreover com-
posing a higher-order pushdown automaton with a finite tree transducer is as
easy as for collapsible pushdown automata, and clearly preserves the order. ut

Corollary 8. Let n ∈ N. For every safe recursion scheme G of order n gen-
erating a tree T , and every MSO+Ufin-interpretation I evaluated in T , there
exists a safe recursion scheme G+ of order n generating a tree T+, and an MSO-
interpretation IMSO such that IMSO(T+) = I(T ).

Proof. Suppose that I = (ϕi)i∈{1,...,k}. Basically, we apply Lemma 7 consec-
utively for all the formulae of I. More precisely, after i − 1 steps (where i ∈
{1, . . . , k}) we have a recursion scheme Gi−1 (assuming G0 = G) that generates a
tree Ti−1 enriching T . We modify ϕi to ϕ′i that evaluated in Ti−1 behaves like ϕi
evaluated in T , that is, ignores the part of labels of Ti−1 that was not present in
T . Using Lemma 7 for the recursion scheme Gi−1 and for the formula ϕ′i we obtain
a recursion scheme Gi that generates a tree Ti enriching Ti−1 (hence enriching T ),
and an MSO formula ϕ′MSO,i such that for every valuation ν in T (defined at least
for free variables of ϕi) it holds that Ti, ν |= ϕ′MSO,i if and only if Ti−1, ν |= ϕ′i,
that is, if and only if T, ν |= ϕi. At the very end, for every i ∈ {1, . . . , k} we
modify ϕ′MSO,i into ϕMSO,i that ignores the part of Tk appended after step i;
we then have Tk, ν |= ϕMSO,i if and only if Ti, ν |= ϕ′MSO,i, that is, if and only
if T, ν |= ϕi. Taking G+ = Gk, T+ = Tk, and IMSO = (ϕMSO,i)i∈{1,...,k} we have
IMSO(T+) = I(T ), as required. All the created recursion schemes are safe and
of order n. ut

Proof (Thorem 6). The class Graph(0) contains exactly all finite graphs, and
while interpreting in a finite graph we can only obtain a finite graph; this es-
tablishes the theorem for n = 0. We thus assume below that n ≥ 1. In this case
Lemma 5 gives us a safe recursion scheme G of order n− 1 generating a tree T ,
and an MSO-interpretation I2 such that I2(T ) = G.

Suppose that I2 = (ϕa(x1, x2))a∈Λ and I = (ψα(x1, x2))α∈Σ We create an
MSO-interpretation I3 such that I3(T ) = I(I2(T )) = I(G). To this end, in every
formula ψα of I we replace every atomic formula a(y, z) by the corresponding
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formula ϕa(y, z) of I2. Moreover, quantification in ψα should be restricted to
those vertices of T that are actually taken to G, that is, to vertices y satisfying
ϕa(y, z) or ϕa(z, y) for some a ∈ Λ and some vertex z of T .

Corollary 8 gives us then a safe recursion scheme G+ of order n−1 generating a
tree T+, and an MSO-interpretation IMSO such that IMSO(T+) = I3(T ) = I(G).
We conclude that I(G) ∈ Graph(n) by Lemma 5. ut

5 MSO+U-Interpretations Lead to Difficult Graphs

In this section we consider the full MSO+U logic, for which we prove the following
theorem.

Theorem 9. There is a tree T ∈ Tree(2) and an MSO+U-interpretation I such
that I(T ) is a graph with undecidable MSO theory; in effect, I(G) 6∈ Graph(n)
for any n ∈ N.

One can expect such a result, since the MSO+U logic is undecidable over
infinite words [3]. We remark, though, that undecidability of a logic does not
automatically imply that the logic can define some complicated (“undecidable”)
sets. For example, over rational numbers the MSO logic with quantification over
cuts (real numbers) defines the same sets as the standard MSO logic quantifying
only over rational numbers, but the latter logic is decidable while the former is
not [11]. However, using arguments from topological complexity one can easily
see that MSO+U is more expressible than MSO+Ufin: it is known that MSO+U
can define sets located arbitrarily high in the projective hierarchy [18], while the
topological complexity of MSO+Ufin can be bounded using the automaton model
given in Parys [22]. Nevertheless, expressivity of the logic itself does not imply
anything in the matter of interpretations: as we have seen in previous sections,
MSO+Ufin is more expressive than MSO, and MSO is more expressive than FO,
but interpretations in these logics define the same hierarchy of graphs.

Proof (Theorem 9, sketch). Because of Lemma 5, as the source of the interpreta-
tion I we can take a node-labeled tree T generated by a safe recursion scheme of
order 2. We define the depth-k comb as the tree Ck such that Ck = a〈Ck−1, Ck〉,
where C0 = a〈〉. We also consider a depth-2 comb with first i vertices marked by
b: C2,0 = C2 and C2,i = b〈C1, C2,i−1〉 for i ≥ 1; and a depth-k comb (where k ≥
3) with first i vertices of every depth-2 comb marked by b: Ck,i = a〈Ck−1,i, Ck,i〉.

We base on the undecidability proof from Bojańczyk, Parys, and Toruń-
czyk [3]. This proof, given a Minsky machine M constructs an MSO+U sentence
ϕM that is true in an infinite forest of finite trees of height 3 if and only if the
forest encodes a (finite) accepting run of M . Such a forest is then encoded in an
infinite word, but is even easier to encode it in the depth-4 comb: we just need
a set (a monadic variable) X saying which vertices of the comb appear in the
considered forest (where roots of depth-k combs attached below a depth-(k+ 1)
comb represent children of the root of the latter comb).
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Moreover, the recalled encoding of a run of M in the forest (checked by ϕM )
requires that the arity of the first child of all (except finitely many) trees in the
forest contains the initial value of the first counter, that is zero. We remove the
part of ϕM saying that the initial value of the first counter is zero, and instead
we add a part saying that from the first depth-2 comb in every depth-3 comb
we take to X exactly left children of all b-labeled vertices. This way we obtain a
sentence ϕ′M (of the form ∃X.ϕ′′M ) which, for every i ∈ N, is true in C4,i if and
only if M has an accepting run from the configuration ci with value i in the first
counter, value 0 in the second counter, and initial state.

We now consider the tree T0 consisting of an infinite branch, where below
the (i + 1)-th node of this branch we attach C4,i; formally, we define T0 by
coinduction: Ti = a〈C4,i, Ti+1〉 for i ∈ N. We also consider the interpretation IM
consisting of two formulae: ψa(x1, x2) that is true if x1 and x2 are consecutive
vertices on the main branch, and ψb(x1, x2) that is true if x2 is a root of a comb
C4,i in which ϕ′M is true, and x1 is its parent. The effect is that IM (T0) consists
of an infinite path with a-labeled edges, where for i ∈ N such that M accepts
from ci, we additionally have a b-labeled edge starting in the (i+ 1)-th vertex of
that path.

Take a Minsky machine M such that the problem “given i, does M accept
from ci?” is undecidable. For such a machine, the graph IM (T0) has undecidable
MSO theory. And such a machine clearly exists: one can take a Minsky machine
simulating a universal Turing machine, where the input to the latter is encoded
in the value of the first counter.

It remains to observe that T0 is generated by the safe recursion scheme of
order 2 with the following rules:

S → T C2 C4 x→ a〈C3 x,C4 x〉 C2 → a〈C1, C2〉
T x→ a〈C4 x, T b〈C1, x〉〉 C3 x→ a〈x,C3 x〉 C1 → a〈a〈〉, C1〉 ut
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