Complexity of the Diagonal Problem for Recursion
Schemes
Pawel Parys

University of Warsaw, Poland

—— Abstract

We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite
words or finite trees. We establish the complexity of the diagonal problem for schemes: given a set
of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a
tree) in which every letter from A appears at least n times. We prove that this problem is (m—1)-
EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for
tree-recognizing schemes of order m.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases diagonal problem, higher-order recursion schemes, intersection types,
downward closure

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

The diagonal problem in its original formulation over finite words asks, for a set of letters A
and a language of words L, whether for every n € N there is a word in L where every letter
from A occurs at least n times. The same problem can be also considered for a language of
finite trees. In this paper, we study the complexity of the diagonal problem for languages of
finite words and finite trees recognized by nondeterministic higher-order recursion schemes.

Higher-order recursion schemes (schemes in short) are used to faithfully represent the
control flow of programs in languages with higher-order functions. This formalism is equivalent
via direct translations to simply-typed AY-calculus [27] and to higher-order OI grammars [8,
20]. Collapsible pushdown systems [11] and ordered tree-pushdown systems [5] are other
equivalent formalisms. Schemes cover some other models such as indexed grammars [1] and
ordered multi-pushdown automata [3].

The goal of this paper is to establish the complexity of the diagonal problem for higher-
order schemes. By a recent result by Clemente et al. [6] we know that this problem is
decidable. For schemes of order m their algorithm works in f(m)-fold exponential time
for some quadratic function f (although the complexity of the algorithm is not mentioned
explicitly in the paper, it can be easily estimated as being such). In the current work, we
tighten the upper bound: we prove that the diagonal problem for word-recognizing (tree-
recognizing) schemes of order m is (m — 1)-EXPTIME-complete (m-EXPTIME-complete,
respectively).

Let us recall from [6] that the decidability result for the diagonal problem entailed other
decidability results for recursion schemes, concerning in particular computability of the
downward closure of recognized languages [28], and the problem of separability by piecewise
testable languages [7]. Although our complexity result for the diagonal problem does not
influence directly our knowledge on the complexity of the other problems (the aforementioned
reductions preserve only decidability, but not complexity), it can be seen as the first step in
establishing the complexity of the other problems as well.

© Pawel Parys;
37 licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Complexity of the Diagonal Problem for Recursion Schemes

Our solution is based on an appropriate system of intersection types. Intersection types
were intensively used in the context of schemes, for several purposes like model-checking
[15, 18, 4, 26], pumping [16], transformations of schemes [17, 6], etc. Among such type
systems we have to distinguish those [25, 22], in which the (appropriately defined) size of a
type derivation for a term approximates some quantity visible in the B6hm tree of that term.
In particular, in our recent work [22] we have developed a type system that allows to solve
the diagonal problem for a special case of a single-letter alphabet.

Here, we generalize the last type system mentioned above to multiple letters. In result, a
type derivation in this system is labeled by flags of different kinds. The key property lies in
some (quite rough) correspondence between words (trees) that can be generated from a term
and type derivations for the term, where, for every letter a, the number of appearances of a
in the generated word (tree) is approximated by the number of appearances of an appropriate
flag in the type derivation. In effect, the diagonal problem reduces to checking whether there
exist type derivations with arbitrarily many flags corresponding to every letter from the
input set A.

Some further work was needed to carefully optimize the developed type system in order
to obtain an algorithm achieving the optimal complexity.

Our paper is structured as follows. In Section 2 we introduce all necessary definitions.
In Section 3 we introduce the type system, and we show how to use it for deciding the
diagonal problem for word-recognizing schemes. Finally, Section 4 presents extensions of the
algorithm, in particular to tree-recognizing schemes.

2 Preliminaries

Infinitary A-calculus. The set of sorts (a/k/a simple types), constructed from a unique
basic sort o using a binary operation —, is defined as usual. We omit brackets on the right
of an arrow, so e.g. o—(0—0) is abbreviated to o—o0—0. The order of a sort is defined by
induction: ord(o) =0, and ord(ay— ... —was;—0) = 1 +max(ord(ay), ..., ord(as)) for s > 1.

A sort ag— ... —as—o0 is homogeneous if ord(ay) > -+ > ord(as) and all o, ..., a4 are
homogeneous. In the sequel we restrict ourselves to homogeneous sorts (even if not always
this is written explicitly).

Let ¥ be an infinite set of symbols (alphabet). To denote nondeterministic choices we use
a symbol nd. Assuming that nd ¢ ¥, we denote ¥"¢ = L U{nd}. Let also V = {z%,y”,27,...}
be a set of variables, containing infinitely many variables of every homogeneous sort (sort of
a variable is written in superscript).

We consider infinitary, sorted A-calculus. Infinitary A-terms (or just A-terms) are defined
by coinduction, according to the following rules:

node constructor—if a € X" and Py, ..., P° are A-terms, then (a(Pf,...,P°))° is a

A-term,!

variable—every variable z® € V is a A-term,

application—if P*7# and Q® are A-terms, then (P®7% Q®)” is a A-term, and

A-binder—if P? is a A-term and 2 is a variable, then (Az®.P?)*># is a A-term;

L Our node constructor differs from the standard definition in two aspects. First, one usually assumes
that symbols are ranked, i.e., that the number r is determined by the choice of a. Second, typically
a symbol a is considered itself as a A-term of sort o— ...—0 —0, which after applying Py,..., P’ as

T
arguments is equivalent to our (a(Py,..., P?))°. These are, though, only superficial differences.

P. Parys

in the above, «, 3, and a—f are homogeneous sorts. We naturally identify A-terms differing
only in names of bound variables. We often omit the sort annotations of A-terms, but we
keep in mind that every A-term (and every variable) has a particular sort. Free variables of
a A-term are defined as usual. A M-term P is closed if it has no free variables.

For a A-term P, the order of P is just the order of its sort, while the complexity of P is
the smallest number m such that the order of all subterms of P is at most m. We restrict
ourselves to A-terms that have finite complexity. We also define the order of a S-reduction as
the order of the involved variable. More precisely, for a number k € N, we say that there is a
B-reduction of order k£ from a A-term P to a A-term Q, written P — ;) @, if Q is obtainable
from P by replacing a redex (Ax.R) S where ord(x) = k with R[S/x].

Trees. A tree is defined as a A-term that is built using only node constructors, i.e., not
using variables, applications, nor A-binders. A tree is I'-labeled if only symbols from I" appear
in it.

Let us now define how we resolve nondeterministic choices. Although this is mainly
used for trees, we define it for arbitrary A-terms. We write P —,4 @ if Q) is obtained from
P by choosing some appearance of the nd symbol surrounded only by symbols from X,
and removing this nd symbol together with all but one of its arguments. Formally, we let
—nd to be the smallest relation such that nd(Py,..., P.) = P; for i € {1,...,r}, and if
a €Y, and P; —ng P/ for some i € {1,...,r}, and P; = P] for all j € {1,...,7}\ {i}, then
a(Py,...,P.) =ng a(P{,..., Pl). For a relation 00, by [0* we denote the reflexive transitive
closure of (0. For a A\-term P (which is usually a ¥"-labeled, potentially infinite tree), by
L(P) we denote the set of all finite, X-labeled trees T such that P —*, T

Bohm Trees. We consider Béhm trees only for closed A-terms of sort o. For such a
term P, its Bohm tree BT(P) is constructed by coinduction, as follows: if there is a
sequence of B-reductions from P to a A-term of the form a(P;, ..., P,) (where a € ¥"), then
BT(P) = a(BT(P),..., BT(P,)); otherwise BT(P) = nd().

Higher-Order Recursion Schemes. We use a very loose definition of schemes. A higher-
order recursion scheme (or just a scheme) is a triple G = (N, R, N§), where N/ C V is a
finite set of nonterminals, R is a function that maps every nonterminal N € N to a finite
A-term whose all free variables are contained in N and whose sort equals the sort of N, and
N§ € N is a starting nonterminal, being of sort 0. We assume that elements of A are not
used as bound variables, and that R(N) is not a nonterminal. The order of the scheme is
defined as the maximum of complexities of R(N) over all its nonterminals N.

The infinitary A-term generated by a scheme G = (M, R, N§), denoted A(G), is defined
as the limit of the following process starting from N§: take any nonterminal N appearing
in the current term, and replace it by R(N). Observe that in the limit we obtain a closed
A-term of sort o and of complexity not greater than the order of the scheme. The language
of G is defined as L(G) = L(BT(A(G))).

We remark that according to our definition all subterms of all Ad-terms (and all nonterminals
as well) have homogeneous sorts; usually it is not assumed that sorts used in a scheme are
homogeneous. It is, however, a folklore that any scheme using also non-homogeneous sorts
can be converted into one in which all sorts are homogeneous, and that this can be done
in logarithmic space (see also Appendix C.4). We make the homogeneity assumption for
technical convenience.

XX:3

XX:4

Complexity of the Diagonal Problem for Recursion Schemes

A word is defined as a tree in which every node has at most one child (such a tree
can be identified with a word understood in the classic sense). We say that a A-term P
is word-recognizing if for every its subterm of the form a(Py,..., P.) with a € ¥ it holds
r < 1; a scheme G is word-recognizing if A(G) is word-recognizing. In this case, all elements
of L(BT(P)) or L(G), respectively, are words.

» Example 1. Consider the higher-order recursion scheme G; with two nonterminals, M?
(taken as the starting nonterminal) and N(°~°)=° and with rules

R(M) = N (Ax.nd(a(x), b(x))), R(N) = M.nd(f (), N (Ay.f (Fy))) .

We obtain A(G1) = R; (Ax.nd(a(x), b(x))), where R; is the unique A-term such that R; =
M.nd(f (c()), R1 (A\y.f(fy))). We have BT(A(G1)) = nd(Tyo,nd(To1,nd(Ts2,...))), where
To = c{) and T;41 = nd(a(T;),b(T;)). In L(G;) we have words of length 2¢ + 1 for all i € N,
where first 2! letters are chosen from {a, b} arbitrarily, and the last letter is c. In the following
examples we will continue to consider this scheme, together with the set A = {a, b}.

3 Type System for the Diagonal Problem

In this section we introduce a type system that allows to solve the diagonal problem for
schemes.

» Definition 1. For a set of trees L and a set of symbols A, the predicate Diag 4 (L) holds if
for every n € N there is some T' € L with at least n occurrences of every symbol from A. The
diagonal problem for tree-recognizing order-m schemes is to decide whether Diag 4 (£(G)) holds,
given a scheme G of order at most m and a set A. The diagonal problem for word-recognizing
order-m schemes is as the above, but with the restriction that G is word-recognizing.

» Theorem 2. For m > 1, the diagonal problem for word-recognizing order-(m + 1) schemes
is m-EXPTIME-complete. For m € {—1,0} it is NP-complete.

Throughout the rest of this section we solve the diagonal problem for word-recognizing
schemes, and thus all schemes considered here are assumed to be word-recognizing. Moreover,
we fix a set of symbols A, for which we want to solve the diagonal problem.

Intuitions. The main novelty of our type system lies in labeling nodes of type derivations
by two kinds of labels called flags and markers. To each marker we assign a number, called
an order. Flags, beside of their order, are also identified by a symbol from A; thus we have
(k,a)-flags for k € N and a € A. While deriving a type for a A-term of complexity at most
m + 1, we use markers of order from the range 0, ..., m, and flags of order from the range
1,...,m+ 1.

Let P,,+1 be a A-term of complexity at most m 4 1. Recall that our goal is to describe a
word T € L(BT(Py,+1)) using a type derivation for P,,; itself. While doing that, we want
to preserve the information that 7" has many appearances of every symbol from A.

Since T can be found in some finite prefix of BT (P, +1), in order to find T it is enough
to perform finitely many [-reductions from P,,41. Moreover, thanks to the fact that all
sorts are homogeneous, the S-reductions can be rearranged so that those of higher order are
performed first. Namely, we can find A-terms Py, ..., P,, such that

Perl —>;§(m) Pm —>E(m71) N _>E(O) P() and P() _>:d T.

P. Parys

Some prefix of Py can be seen as a tree, in which we can find a path on which there are all
symbols of T', and some additional nd symbols. Let us place an order-0 marker in the leaf
ending this path. Additionally, for every symbol a € A, we place (1, a)-flags in all a-labeled
nodes of the considered path.

Next, we proceed back to P;. The leaf constructor of Py containing our order-0 marker
was created out of some particular appearance of such constructor in P;; let us put there
as well the order-0 marker. Similarly, we find node constructors in P; out of which in P,
we obtain node constructors with flags, and we transfer the flags back to P;. The crucial
observation is that no two flagged node constructors of Py could come out of a single node

constructor of P;. Indeed, recall that all the S-reductions between P; and Py are of order 0.

This means that in every such S-reduction we take a whole subtree (i.e., a A-term of sort o)
of Pi, and we replace it somewhere, possibly replicating it. But since all flags lie in Py on a
single path, they may lie only in at most one copy of the replicated subtree. In effect, the
number of appearances of order-1 flags of every kind is the same in P; as in FP.

We cannot directly repeat the same reasoning to move flags from P; back to P, since now
there is a problem: a single node constructor in P may result in multiple (uncontrollably
many) node constructors with a flag in P;. We rescue ourselves by considering only |A| paths
in P;. Namely, for every symbol a € A we place in P; a marker of order 1, choosing in this
way the path from the root to the position of this marker. Then, for every node labeled by a
(1, a)-flag we place a (2, a)-flag in the closest ancestor that lies on the chosen path. Although
the number of (2, a)-flags may be smaller than the number of (1, a)-flags (the closest ancestor
on the path may be the same for multiple (1, a)-flags), we can ensure that it is smaller only
logarithmically; in effect, if the number of (1, a)-flags was “vary large”, then also the number
of (2,a)-flags will be “very large”. To do so, we choose the marked node in a clever way:
staring from the root, we always proceed to this subtree in which the number of (1, a)-flags
is the largest.

Once for every a € A all (2,a)-flags lie on a single path of P;, we can transfer them
back to P, without changing their number. Then in P, we again reduce to |A| paths by
introducing markers of order 2, and so on. At the end we obtain some labeling of P,,;1
by several kinds of flags and markers. The goal of the type system we develop is, roughly
speaking, to ensure that a labeling of P, actually is obtainable in the process as above (in
fact, we will not be labeling nodes of P, itself, but rather nodes of a type derivation for

Pm-i-l)'

Type Judgments. Recall that A is the set of symbols for which we want to solve the
diagonal problem. For storing the information about flags and markers used in a derivation
of a type we use flag sets and marker multisets. Recall that a flag is parameterized by a
pair (k,a), where k € N is called an order, and a € A is called a symbol. For flags it is
enough to remember for every order whether at least one flag of this order was used, and
if so, then also a symbol of this flag (if flags with multiple symbols were used, it is enough
for us to remember just one of these symbols). Thus for m € N we define F,, to contain
sets FF C {1,...,m} x A such that (k,a), (k,b) € F implies a = b. Such sets F are called
m-bounded flag sets. For markers the situation is slightly different, as we want to remember
precisely how many markers were used. Moreover, markers do not have a symbol, only an
order. We thus define M,, to contain functions M: N — {0,...,|A|} such that M(0) <1
and M (k) = 0 for all &k > m. Such functions M are called m-bounded marker multisets.

By M + M’ and M — M’ we mean the coordinatewise sum or difference, respectively. We
use 0 to denote a function that maps every element of its domain to 0 (where the domain

XX:5

XX:6

Complexity of the Diagonal Problem for Recursion Schemes

should be always clear from the context). By {k1,...,k,[} we mean the multiset M such
that M(k) =|{i € {1,...,n} | ki =k}| for all k € N. When F € F,,,, M € M,,, n € N, and
O is one of <, >, we write F[g,, for {(k,a) € F | kOn}, and Mg, for the function that
maps every k to M (k) if kOn, and to 0 if =(kOn).

Next, for every sort a and for m € N we define three sets: the set 7% of types of sort «,
the set 7T, of m-bounded type triples of sort a, and the set TC® of triple containers of sort
a. They are defined by mutual induction on the structure of a.

If a = a1— ... 2as—o0, the set T contains types that are of the form C;— ... =>Cs—o,
where C; € TC* fori € {1,...,s}.

Type triples in T 7T, are just triples (F, M,Ci— ... >Cs—0) € Fp, X My, x T, where
M (k) =0 for all (k,a) € F, and where M (0) + >_;_, Mk(C;)(0) = 1 (we will define Mk(C;)
soon). These triples store a type, together with the information about flags and markers
used while deriving this type. In order to distinguish type triples from types, the former
are denoted by letters with a hat, like 7. We also define a function Mk that extracts the
marker multiset out of a type triple: Mk(7) = M for 7 = (F, M, 7). A type triple is balanced
if Mk(7) = 0; otherwise it is unbalanced.

Triple containers are used to store (multi)sets of type triples that have to be derived for
an argument of a A\-term, or for a A-term substituted for a free variable. For balanced type
triples, triple containers behave like sets, that is, they remember only whether every balanced
type triple is required or not. Conversely, for unbalanced type triples, triple containers behave
like multisets, that is, they remember precisely how many times every unbalanced type triple
is required. Thus, formally, in 7C we have functions C': TT5,4(0) = {0,...,|A[} such that

C(7) < 1if Mk(7) = 0. For C'€ TC* we define MK(C) = Srerpa S0 MK(7). Tor two

triple containers C, D € TC* we define their sum C'UD: TT7g 4 — N so that for every
TE TTgrd(a)v

(CUD)7) = { max(C(#), D(7)) if Mk(7) = 0.

We also say that C' T D if C(7) = D(7) for every unbalanced 7 € TT 3,44, and C(7) < D(7)
for every balanced 7 € TT7,4). We sometimes write {|71,..., 7.} or {7 |i € {1,...,n}}
to denote the triple container C such that C(6) = |[{i € {1,...,n} | 7 = 6}| for every
unbalanced type triple 6, and C(6) = 1< 3i € {1,...,n}.7; = & for every balanced type
triple &.

A type environment is a function I" that maps every variable x® to a triple container from
TC(O,‘Td(a). We use ¢ to denote the type environment mapping every variable to 0. When
I'(xz) =0, by T'[z — C] we denote the type environment that maps z to C, and every other
variable y to I'(y) (whenever we write I'[x — C], we implicitly require that I'(z) = 0). For
two type environments I', I we define their sum I' UT” so that (I'UT")(z) = I'(z) UT(z) for
every variable x.

A type judgment is of the form I' -, P : 7> ¢, where I is a type environment, m € N is
called the order of the type judgment, P is a A-term, 7 is an m-bounded type triple of the
same sort as P (i.e. ¥ € TT., when P is of sort a), and ¢ is a function A — N called a flag
counter.

As usually for intersection types, the intuitive meaning of a type C—7 is that a A-term
having this type can return a A-term having type 7, while taking an argument for which
we can derive all type triples from C. Let us now explain the meaning of a type judgment
'ty P (F,M,7)>c. Obviously 7 is the type derived for P, and T' contains type triples
that could be used for free variables of P in the derivation. As explained above for triple

P. Parys

containers, balanced and unbalanced type triples behave differently: all unbalanced type
triples assigned to variables by I' have to be used exactly once in the derivation; conversely,
balanced type triples may be used any number of times. Going further, the order m of the
type judgment bounds the order of flags and markers that can be used in the derivation:
flags can be of order at most m + 1, and markers of order at most m. The multiset M
counts markers used in the derivation, together with those provided by free variables (i.e., we
imagine that some derivations, specified by the type environment, are already substituted in
our derivation for free variables); we, however, do not include markers provided by arguments
of the A-term (i.e. coming from the triple containers C; when 7 = C1— ... —2Cs—0). The
set F' contains an information about flags of order at most m used in the derivation. A pair
(k,a) can be contained in F if a (k,a)-flag is placed in the derivation itself, or provided by
a free variable, or provided by an argument. We do not have to keep in F' all such pairs,
i.e., if we can derive a type triple with some flag set F', then we can derive it also with every

subset of F' as the flag set. In fact, we cannot keep in F' all such pairs due to two restrictions.
First, the definition of a flag set allows to have in F' at most one pair (k, a) for every order k.

Second, we intentionally remove from F all pairs (k,a) for which M (k) > 0. Finally, in a
type judgment we have a function ¢, called a flag counter, that for each symbol a counts the
number of (m + 1, a)-flags present in the derivation.

Type System. Before giving rules of the type system, let us state two general facts. First,
all type derivations are assumed to be finite—although we derive types mostly for infinite
A-terms, each type derivation analyzes only a finite part of a term. Second, we require that
premisses and conclusions of all rules are valid type judgments. For example, when the type
environment appearing in the conclusion of a rule is I' LI TV, this implies that for all z and all
unbalanced type triples 7 it holds I'(z)(7) + I (z)(7) < |A| (so that (T UTY)(x) is indeed a
valid triple container). Let us also remark that rules of the type system will guarantee that
the order m of all type judgments used in a derivation will be the same.

Rules of the type system correspond to particular constructs of A-calculus. We start by
giving the first three rules:

M[Sm.d(w):M' 'k, P:7>c ied{l,...,r}

(VAR) - (ND)
elr = J(F,M 7)) b2z (F,M,7)>0 I'pnd(Pr,..., P 7pec

lz—CMky P (F,M,)b C'CC
T o AP < (F, M — MK(C),C—7) b ¢

The (Var) rule allows to have in the resulting marker multiset M some numbers that do
not come from the multiset assigned to x by the type environment; these are the orders of
markers placed in the leaf using this rule. Notice, however, that we allow here only orders
greater than ord(z). This is consistent with the intuitive description of the type system
(page 4), which says that a marker of order k can be put in a place that will be a leaf after
performing all S-reductions of order at least k. Indeed, the variable x remains a leaf after
performing S-reductions of orders greater than ord(z), but while performing S-reductions of
order ord(x) this leaf will be replaced by a subterm substituted for z. Recall also that, by
definition of a type judgment, we require that (F, M’,7) € TT ., and (F,M,7) € TTy,,

ord(x

for appropriate sort «; this introduces a bound on maximal numbers that may appear in F’
and M.
» Example 2. Denoting pg = (0, {0[}, 0) we can derive:

o ol 008050 ™ S el x 00 L1 o)s0)

XX:7

XX:8

Complexity of the Diagonal Problem for Recursion Schemes

In the derivation on the right, two markers of order 1 are placed in the conclusion of the rule.

We see that to derive a type for the nondeterministic choice nd(Py, ..., P.), we need to
derive it for one of the subterms Py, ..., P,.

For the (\) rule, recall that C' C C means that in C” we have all unbalanced type triples
from C, and some subset of balanced type triples from C'. Thus in a subderivation concerning
the A-term P, we need to use all unbalanced type triples provided by an argument of Az.P,
while balanced type triples may be used or not. Recall also that we intend to store in the
marker multiset the markers contained in the derivation itself and those provided by free
variables, but not those provided by arguments. Because of this, in the conclusion of the
rule we remove from M the markers provided by x. It is required, implicitly, that the result
remains nonnegative. The set I, unlike M, stores also flags provided by arguments, so we
do not need to remove anything from F'.

» Example 3. In this example we show how the (ND) and (\) rules can be used. Notice that
in the conclusion of the (\) rule, in both derivations, we remove 0 from the marker multiset,
because an order-0 marker is provided by x.

elx = {aol] Fralx) : ({(1,2)},{0f,0) >0 N
elx = {polt] F1 nd(a(x), b(x)) : ({(1,2)}, {0}, 0) >0
e b1 Ax.nd(a(x), b{x}) : ({(1,a)},0,{po}}—0) >0

g[x = {]ﬁOI}] F1 3<X> : (®7 {]07 17]-B’v O) > {(av 1)v (ba O)}
E[X = ﬂﬁom F1 nd<a<x>7 b<X>> : ((Z)’ ﬂO, 1, 1B’ O) > {(av 1)’ (b’ 0)}
g k1 Ax.nd(a{x), b{x)) : (0, {1, 1}, {pot—0) > {(a,1),(b,0)}

The next three rules use a predicate Comp,,,, saying how flags and markers from premisses

ND)
(N)

contribute to the conclusion. It takes “as input” pairs (F;, ¢;) for i € I, consisting of a flag set
F; and a flag counter ¢; from some premiss. Moreover, the predicate takes a marker multiset
M that will appear in the conclusion of the rule. The goal is to compute a flag set F' and a
flag counter ¢ that should be placed in the conclusion. First, for each k € {1,...,m + 1}
consecutively, we decide which flags of order k& should be placed in the considered node of a
type derivation. We follow here the rules mentioned in the intuitive description. Namely, we
place a (k, a)-flag if we are on the path leading to a marker of order k—1 (i.e., if M(k—1) > 0),
and simultaneously we receive an information about a (k — 1,a)-flag. By receiving this
information we mean that either a (k — 1, a)-flag was placed in the current node, or (k —1,a)
belongs to some set F;. Actually, we place multiple (k, a)-flags: one per each (k — 1, a)-flag
placed in the current node, and one per each set F; containing (k — 1,a). Then, we compute
F and c. In ¢(a), for every a € A, we store the number of (m + 1, a)-flags: we sum all the
flag counters ¢;, and we add the number of (m + 1, a)-flags placed in the current node. In
F, we allow to keep elements of all F;, and we allow to add pairs (k,a) for flags that were
placed in the current node, but it can be chosen “nondeterministically” which of them are
actually taken to F', and which are dropped. It is often necessary to drop some elements,
since when the set F' is used in a type triple, the definitions of a flag set and of a type triple
put additional requirements on this set.

Below we give a formal definition, in which f,’m contains the number of (k,a)-flags
placed in the current node, while f , additionally counts the number of premisses for which
(k,a) € F;. We say that (F,c) € Comp,,,(M; ((F;,c;))ier) when

F C{(k,a)| fx,a >0}, and cla) = fomti,a + Zci(a) for all a € A,
iel

P. Parys

where, for k € {0,...,m + 1} and a € A,

fk,a = fllc,a +Z|Fz N {(k7a)}‘7

, 0 ifk=0or M(k—1)=0,
fk-,a:
iel

fi—1,0 otherwise.

We now present rules for node constructors using symbols other than nd:

(F,e) € Comp,,(M; ({(0,0)},0) a+#nd
ebmal): (F,M,0)>c

(Con0)

Db P (F Mo)od (F.e) € Compy(M: ({(0,0)},0), (F',¢)) a#nd
'k, a{P): (F,M,0)>c

(Con1)

In these rules we do not claim that the set {(0,a)} passed to Comp,, is an element of
Fm (and in fact it is not, because the order is 0, which is forbidden for flags; we also do
not necessarily have that a € A). The effect of passing this set is that if M(0) > 0 (i.e., we
are on the path to the order-0 marker) and a € A, then Comp,, places a (1,a)-flag in the
current node, and maybe also some (k,a)-flags for higher k. In the (Con0) rule, i.e., if we
are in a leaf, we are allowed to place markers of arbitrary order: the marker multiset M may
be arbitrary.

» Example 4. The (Con1) rule may be instantiated in the following ways:

ex = {polt] F1 x: (0,{0]},0)>0
elx = {polt] b1 a(x) : ({(1,2)},{0f,0) >0

ex = {pol] F1x: (0,{0,1,1},0) >0
E[x = {]ﬁOI}] F1 a(x) : (®7 {]07 17 1B’a 0) > {(av 1)v (ba O)}

In the first example, a (1, a)-flag is placed in the conclusion of the rule (because the marker
multiset contains 0, the pair (0,a) passed to the Comp, predicate results in the (1,a) pair in
the flag set). In the second example, (1,a)- and (2,a)-flags are placed in the conclusion of
the (Con1) rule: since order-1 markers are visible, we do not put (1, a) to the flag set, but
instead we create a (2, a)-flag, which results in increasing the flag counter.

(Con1)

(Con1)

The last rule describes application:
F/ |_m P (F/,M/, {](Frl rSOTd(Q)’MZ rSOTd(Q)’Ti) | i€ I&%T) DC/
Fi "in(Fi,Mi,Ti)DCi for each i€ [M:M/—i_Z‘e]Mi OT'd(Q)Sm
(F7 C) € Compm(M7 (F/vcl)7 ((FZ r>ord(Q)7Ci))i€I) {(k,a) €F | M(k) = 0} CF @
!/ . .
r “LLGIFZ o PQ: (F,M,7T)>c

In this rule, it is allowed (and potentially useful) that for two different i € I the type
triples (F}, M;,7;) are equal. It is also allowed that I = (), in which case no type needs to
be derived for Q). Observe how flags and markers coming from premisses concerning @) are
propagated: only flags and markers of order k < ord(Q) are visible to P, while only flags
of order k > ord(Q) are passed to the Comp,, predicate. This can be justified if we recall
the intuitions staying behind the type system (see page 4). Indeed, while considering flags
and markers of order k, we should imagine the A-term obtained from the current A-term by
performing all S-reductions of order at least k; the distribution of flags and markers of order

XX:9

XX:10

Complexity of the Diagonal Problem for Recursion Schemes

k in the current A-term actually simulates their distribution in this imaginary A-term. Thus,
if k < ord(Q), then our application will disappear in this imaginary A-term (thanks to the
homogenity assumption), and @ will be already substituted somewhere in P; for this reason
we need to pass the information about flags and markers of order k from @ to P. Conversely,
if k> ord(Q), then in the imaginary A-term the considered application will be still present,
and in consequence the subterm corresponding to P will not see flags and markers of order
k placed in the subterm corresponding to (). The condition {(k,a) € F' | M(k) =0} C F
(saying that some flags from F’ cannot disappear) is useful for proofs in the appendix.

» Example 5. Recalling that po = (0, {0[}, 0), denote by 7, and #, the type triples derived
in Example 3: 7, = ({(1,a)},0,{po[}—0) and 71, = (0, {1, 1]}, {po} —0). We can derive:

€[fHﬂ%ml}]F1f1%m>O 5[y*—){]ﬁ0m hy:ﬁol>0
eff = Rl F1f: 70 elf = {#mb,y — {pol] F1 fy: (0,{0,1,1},0) >0
€[f = {I%a77A-m|}7y = {IﬁOI}] l_l f(fY) : (@, {]07 17 1|}7 0) > {(a7 1)v (bv 0)}
elf = {7a, Tl P2 Ayf (fy) s Tm > {(a, 1), (b, 0)}
Below the lower (@) rule the information about a (1,a)-flag (from the first premiss) meets
the information about a marker of order 1 (from the second premiss), and thus a (2, a)-flag
is placed, which increases the flag counter.
Denote p,, = (0, M2, 0), where M2 € M,, is such that M3 (0) = 1 and M2 (k) = |A|

for all k € {1,...,m}. The key property of the type system is described by the following
theorem.

@

» Theorem 3. Let m € N, and let P be a closed word-recognizing A-term of sort o and
complezity at most m + 1. Then Diag 4,(L(BT(P))) holds if and only if for every n € N we
can derive € by, P2 pp > ¢, with some ¢, such that c,(a) > n for all a € A.

We omit the proof of this theorem. The overall idea is to follow the intuitions described
on page 4, and consider only such sequences of g-reductions in which reductions of higher
orders are performed before S-reductions of lower orders. The details are tedious, but rather
standard. Actually, a quite similar proof was performed in our recent work [22] concerning
the single-letter case. See the appendix for more details.

» Example 6. Denote 6r = (0, {0}, {72, b, Tm[t—0), where 7, = ({(1,b)}, 0, {po}—0). We
can derive € 1 Ry : 6 >0 by descending to the first child of the outermost nd(:,-) in
Ry = M.nd(f (c()), Ry (A\y.f (fy))). Then, basing on a type judgment € 1 Ry : 6> c we
can derive € b1 Ry : 6r > {(a,c(a) + 1), (b, c(b))} using in particular the derivation fragment
from Example 5, and similarly € b1 Ry : 6> {(a,¢(a)), (b,c(b) + 1)}. By composing the
above derivation fragments, we can derive € -1 Ry : 6g > ¢ for ¢ that is arbitrarily large on
both coordinates. Examples 2-4 contain derivations of type triples 7, and 7, for the A-term
Ax.nd(a(x), b(x)); similarly we can derive the type triple 7,. Using the (@) rule one more time,
we can derive € b1 A(Gy) : p1 > ¢ for ¢ that is arbitrarily large on both coordinates.

» Example 7. Consider the scheme Gy obtained from G; by changing the rule R(N) to
Af.nd{f (c{)), N (Ay.fy)). Then while deriving a type for Ay.fy we can use only one type triple:
either 7,, or 7, or 7, which causes that the flag counter is not increased. Thus, by adopting
the derivation fragment considered in the previous example, out of € -1 Ry : 6 g > ¢ we can
only derive € 1 Ry : 6 > ¢, with the same flag counter (where Ry is defined analogously
to Ry). Altogether, we can derive € b1 A(Gs) : p1 > ¢ only for ¢ with ¢(a) 4+ ¢(b) < 1. This
corresponds to the fact that £(G3) contains only words with at most one letter from {a, b}.

P. Parys

» Example 8. In the derivation from Example 6 both order-1 markers were placed in the same
leaf, corresponding to the subterm x. Consider, however, a scheme G3, where additionally to
M and N we have a nonterminal My, of sort o, and the rules are changed to:

R(M) =N (Ax.a(x)), R(Ms) = nd(c(), b(Mp)) ,
R(N) = Af.nd(f M, N (\y.f (Fy))) .

Here we need to place one order-1 marker (responsible for counting appearances of the a
symbol) in a leaf corresponding to x, and another order-1 marker (responsible for counting
appearances of the b symbol) in a leaf corresponding to c().

Effectiveness. We now justify how Theorem 2 follows from Theorem 3, i.e., how given a
word-recognizing scheme G of order at most m 4+ 1 and a set of symbols A, one can check
in m-EXPTIME whether ¢ ., A(G) : pm > ¢ can be derived for flag counters ¢ that are
arbitrarily large on every coordinate. Let us say that two type judgments are equivalent if
they differ only in values of the flag counter. One can see that if ¢ is required to be large
enough on every coordinate, then in the derivation of & b, A(G) : pm > ¢, for every symbol
a € A, there are two equivalent type judgments lying on the same path (the path may depend
on a) and such that the a-coordinate of their flag counter differs. A derivation having this
property will be called pumpable. This name is justified, because the opposite implication
also holds: if we have a pumpable type derivation, then we can repeat (as many times as we
want) its fragment between all these pairs of equivalent type judgments, increasing arbitrarily
all coordinates of the flag counter in the resulting type judgment. This holds thanks to the
following additivity property of our type system: if out of I' ,, P : 71> ¢ we can derive
I+, P':#>c, thenout of 'k, P:7>d we can derive I'' -, P/ : 7/ > +d —c.

We exploit the above equivalence, and we also observe that while deriving ¢ b, A(G) :
Pm > ¢ we may only use type judgments ' -, @ : 7> d (call them useful) in which @ is a
subterm of A(G) and I'(x) # 0 only for variables x that are free in Q. It is not difficult to
give an algorithm that checks whether there is a pumpable derivation of € -, A(G) : p,, > ¢
(for some ¢), and works in time polynomial in the number of equivalence classes of useful
type judgments (and exponential in |A]).

It remains to bound the number of these equivalence classes. We first bound the number
of type triples. Essentially, type triples in 775 with @« = a1 — ... —as—0 store “sets” of
type triples from 77! d(as)? and thus their number grows exponentially when we increase
the order of o by one. There is a slight exception for « of order 1: the number of type
triples in 77 for such « is polynomial, not exponential. The reason is that, for a type
(Ci—...=Cs—0) € T2 with ord(a) = 1, the triple containers Ci,...,Cs can contain
altogether only at most one type triple (by definition it is required that Y ;_, Mk(C;)(0) < 1
while, on the other hand, for type triples 6 € 7T it is required that Mk(6)(0) = 1). In
effect, |TT4,| for ord(a)) < m+ 1 is m-fold exponential in the size of G. It easily follows that
the number of equivalence classes of useful type judgments is also m-fold exponential in the
size of G, because all variables appearing in A(G) are of order strictly smaller than m + 1.

A trivial reduction from the problem of emptiness of £(G) shows that our problem is
indeed m-EXPTIME-hard [19]. NP-completeness for m € {—1,0} is proven in Appendix J.

4 Extensions

Downward Closure. The downward closure of a language of words L, denoted L/, is the set
of all scattered subwords (subsequences) of words from L. Recall that the downward closure

XX:11

XX:12

Complexity of the Diagonal Problem for Recursion Schemes

of any set is always a regular language; moreover, it is a finite union of ideals, i.e., languages
of the form Y {x1,e}Y7" ... {x,,e}Y, where x1,..., 2, are letters, and Yy, ...,Y,, are sets
of letters. The main interest on the diagonal problem comes from the fact that this problem
is closely related to computability of the downward closure of a language of words (where we
aim in presenting the results by a list of ideals, or by a finite automaton). Indeed, having a
word-recognizing scheme G, it is not difficult to compute £(G)| by performing multiple calls
to a procedure solving the diagonal problem (for products of G and some finite automata).
The complexity of this algorithm is directly related to the size of its output. We, however, do
not know any upper bound on the size of (a representation of) £(G)J. A recently developed
pumping lemma for nondeterministic schemes [2] may shed some new light on this subject
(while pumping lemmata for deterministic schemes [13, 16] seem irrelevant here).

Instead of actually computing the downward closure, Zetzsche [29] proposed to consider
the following decision problem of downward-closure inclusion: given two word-recognizing
schemes G, H of order at most m, check whether £(G)] C L(H)}; he proved that this
problem is co-m-NEXPTIME-hard. It would be interesting to give some upper bound on
the complexity of this problem. Although, again, we do know how to do this, we can at least
give a partial result.

» Theorem 4. Let m > 1. Given a word-recognizing scheme H of order at most m + 1, and
an ideal I, the problem of deciding whether I C L(H)] is m-EXPTIME-complete.

This is an easy consequence of Theorem 2: it is enough to appropriately combine H with
I, and then solve the diagonal problem.

Tree-Generating Schemes. Although the main interest on the diagonal problem is for
word-recognizing schemes, the problem can be also considered for tree-recognizing schemes.
Let us see how our methods can be adopted to this more general case. Consider a tree
T € L(G), and a term Py such that A(G) —% Po and Py —4 1), i.e., that T’ can be found in
a prefix of Py. In the word case, we were placing order-1 flags in node constructors of T,
and then we continued using the fact that they are all aligned along one path (as actually T
consisted of a single path). This is no longer possible in the tree case. In order to resolve
this issue, we additionally use flags of order 0, and we place them in node constructors of T’
(dispersed on multiple paths). Then, we choose only |A| paths, by placing order-1 markers
in |A] leaves of Py, and for every node labeled by a (0, a)-flag we place a (1,a)-flag in the
closest ancestor that lies on a chosen path. In effect all order-1 flags are concentrated on
only |A| paths, and we can continue as in the word case. The described modification causes
an exponential growth of the number of types, which results in the following theorem.

» Theorem 5. For m > 1, the diagonal problem for tree-recognizing order-m schemes is
m-EXPTIME-complete. For m =0 it is NP-complete.

Downward Closure for Trees. One can also consider the downward closure of a language
of trees, defined as a set of all trees that can be homeomorphically embedded in trees from
the language. By Kruskal’s tree theorem [21] downward closures of tree languages are regular
languages of trees. We notice, however, that (unlike for words) an algorithm solving the
diagonal problem is highly insufficient for the purpose of computing the downward closure.
Even in the single-letter case, in order to compute L/, one has to check, in particular, whether
for every n € N, a full binary tree of depth n can be embedded in some tree from L; using
the diagonal problem, we can only determine whether L contains arbitrarily large trees.
Extending our techniques to this kind of problems is an interesting direction for further work.

P. Parys

—— References

1

10

11

12

13

Alfred V. Aho. Indexed grammars - an extension of context-free grammars. J. ACM,
15(4):647-671, 1968. doi:10.1145/321479.321488.

Kazuyuki Asada and Naoki Kobayashi. Pumping lemma for higher-order languages. Sub-
mitted, 2017.

Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi.
Multi-push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253-292,
1996. doi:10.1142/S0129054196000191.

Christopher H. Broadbent and Naoki Kobayashi. Saturation-based model checking of
higher-order recursion schemes. In Simona Ronchi Della Rocca, editor, Computer Sci-
ence Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013, Torino, Italy, volume 23
of LIPIcs, pages 129-148. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.
d0i:10.4230/LIPIcs.CSL.2013.129.

Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. Ordered tree-
pushdown systems. In Prahladh Harsha and G. Ramalingam, editors, 85th IARCS An-
nual Conference on Foundation of Software Technology and Theoretical Computer Science,
FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 163—
177. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
FSTTCS.2015.163.

Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal
problem for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen,
and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 96-105.
ACM, 2016. doi:10.1145/2933575.2934527.

Wojciech Czerwiniski, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on decid-
able separability by piecewise testable languages. In Adrian Kosowski and Igor Walukiewicz,
editors, Fundamentals of Computation Theory - 20th International Symposium, FCT 2015,
Gdansk, Poland, August 17-19, 2015, Proceedings, volume 9210 of Lecture Notes in Com-
puter Science, pages 173—185. Springer, 2015. doi:10.1007/978-3-319-22177-9_14.
Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95-207, 1982. doi:
10.1016/0304-3975(82)90009-3.

Joost Engelfriet. Iterated stack automata and complexity classes. Inf. Comput., 95(1):21—
75, 1991. doi:10.1016/0890-5401(91)90015-T.

Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In Rastislav Bodik and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 151-163. ACM, 2016. doi:10.1145/2837614.2837627.

Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of the Twenty-Third Annual
IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh,
PA, USA, pages 452-461. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.34.
Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complezity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York., The IBM Research Symposia Series, pages 85-103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

Alexander Kartzow and Pawetl Parys. Strictness of the collapsible pushdown hierarchy. In
Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors, Mathematical Founda-
tions of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava,

XX:13

http://dx.doi.org/10.1145/321479.321488
http://dx.doi.org/10.1142/S0129054196000191
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.129
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.163
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.163
http://dx.doi.org/10.1145/2933575.2934527
http://dx.doi.org/10.1007/978-3-319-22177-9_14
http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://dx.doi.org/10.1016/0890-5401(91)90015-T
http://dx.doi.org/10.1145/2837614.2837627
http://dx.doi.org/10.1109/LICS.2008.34
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

XX:14

Complexity of the Diagonal Problem for Recursion Schemes

14

15

16

17

18

19

20

21

22

23

24

25

26

Slovakia, August 27-81, 2012. Proceedings, volume 7464 of Lecture Notes in Computer Sci-
ence, pages 566-577. Springer, 2012. doi:10.1007/978-3-642-32589-2_50.

Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are
easy. In Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, 5th International Conference, FOSSACS 2002. Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble,
France, April 8-12, 2002, Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 205-222. Springer, 2002. doi:10.1007/3-540-45931-6_15.

Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009, pages 416-428. ACM, 2009. doi:10.1145/
1480881 .1480933.

Naoki Kobayashi. Pumping by typing. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 398-407.
IEEE Computer Society, 2013. doi:10.1109/LICS.2013.46.

Naoki Kobayashi, Kazuhiro Inaba, and Takeshi Tsukada. Unsafe order-2 tree languages
are context-sensitive. In Anca Muscholl, editor, Foundations of Software Science and Com-
putation Structures - 17th International Conference, FOSSACS 201/, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings, volume 8412 of Lecture Notes in Computer Science,
pages 149-163. Springer, 2014. doi:10.1007/978-3-642-54830-7_10.

Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of the 24th Annual IEEE
Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles,
CA, USA, pages 179-188. IEEE Computer Society, 2009. doi:10.1109/LICS.2009.29.
Naoki Kobayashi and C.-H. Luke Ong. Complexity of model checking recursion schemes
for fragments of the modal mu-calculus. Logical Methods in Computer Science, 7(4), 2011.
doi:10.2168/LMCS-7(4:9)2011.

Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Inf. Comput.,
243:205-221, 2015. doi:10.1016/j.ic.2014.12.015.

Joseph. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95(2):210-225, 1960. doi:10.2307/
1993287.

Pawetl Parys. Intersection types and counting. In Naoki Kobayashi, editor, Proceedings
Eighth Workshop on Intersection Types and Related Systems, Porto, Portugal, 26th June
2016, volume 242 of Electronic Proceedings in Theoretical Computer Science, pages 48-63.
Open Publishing Association, 2017. doi:10.4204/EPTCS.242.6.

Pawel Parys. On the significance of the collapse operation. In Proceedings of the 27th
Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia,
June 25-28, 2012, pages 521-530. IEEE Computer Society, 2012. doi:10.1109/LICS.2012.
62.

Pawet Parys. How many numbers can a lambda-term contain? In Michael Codish and Eijiro
Sumii, editors, Functional and Logic Programming - 12th International Symposium, FLOPS
2014, Kanazawa, Japan, June 4-6, 2014. Proceedings, volume 8475 of Lecture Notes in
Computer Science, pages 302-318. Springer, 2014. doi:10.1007/978-3-319-07151-0_19.
Pawel Parys. A characterization of lambda-terms transforming numerals. Journal of Func-
tional Programming, 26(e12), 2016. doi:10.1017/30956796816000113.

Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong. A type-directed abstraction
refinement approach to higher-order model checking. In Suresh Jagannathan and Peter

http://dx.doi.org/10.1007/978-3-642-32589-2_50
http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1145/1480881.1480933
http://dx.doi.org/10.1145/1480881.1480933
http://dx.doi.org/10.1109/LICS.2013.46
http://dx.doi.org/10.1007/978-3-642-54830-7_10
http://dx.doi.org/10.1109/LICS.2009.29
http://dx.doi.org/10.2168/LMCS-7(4:9)2011
http://dx.doi.org/10.1016/j.ic.2014.12.015
http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.4204/EPTCS.242.6
http://dx.doi.org/10.1109/LICS.2012.62
http://dx.doi.org/10.1109/LICS.2012.62
http://dx.doi.org/10.1007/978-3-319-07151-0_19
http://dx.doi.org/10.1017/S0956796816000113

P. Parys

27

28

29

Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages
61-72. ACM, 2014. doi:10.1145/2535838.2535873.

Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible push-
down automata. Mathematical Structures in Computer Science, 26(7):1304-1350, 2016.
doi:10.1017/50960129514000590.

Georg Zetzsche. An approach to computing downward closures. In Magnts M. Halldérsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages
440-451. Springer, 2015. doi:10.1007/978-3-662-47666-6_35.

Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigian-
nakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, volume 55 of LIPIcs, pages 123:1-123:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.123.

http://dx.doi.org/10.1145/2535838.2535873
http://dx.doi.org/10.1017/S0960129514000590
http://dx.doi.org/10.1007/978-3-662-47666-6_35
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.123

XX:16

Complexity of the Diagonal Problem for Recursion Schemes

A Related work

Our Property Is Not Regular. We remark the language of infinite trees T' for which
Diag 4(L(T)) holds is not regular (due to a simple pumping argument)—the diagonal problem
talks about unboundedness of some quantities. This makes the problem inaccessible for
standard methods used for analyzing schemes, as they usually concern only regular properties
of the Béhm tree; it was necessary to develop methods accessing some quantities visible in
the Bohm tree.

Other Type Systems. The idea of using intersection types for counting is not completely
new. In [24] there is a type system that, essentially, allows to estimate the size of the S-normal
form of a (finite) A-term just by looking at (the number of some flags in) a derivation of a
type for this term. A similar idea, but for higher-order pushdown automata, is present in [23],
where we can estimate the number # symbols appearing on a particular, deterministically
chosen branch of the generated tree. This previous approach also uses intersection types,
where the derivations are marked with just one kind of flags, denoting “productive” places of
a term (oppositely to our approach, where we have different flags for different orders, and we
also have markers). The trouble with the “one-flag” approach is that it works well only in
a completely deterministic setting, where looking independently at each node of the B6hm
tree we know how it contributes to the result; the method stops working (or at least we do
not know how to prove that it works) in our situation, where we first nondeterministically
perform some guesses in the Bohm tree, and only after that we want to count something
that depends on the chosen values.

Relation to [6]. Our type system and the type system from [22] are, to some extent,
motivated by the algorithm of [6] solving the diagonal problem. This algorithm works by
repeating two kinds of transformations of schemes. The first of them turns the scheme into a
scheme generating trees having only a fixed number of branches, one per each letter from
A. The branches are chosen nondeterministically out of some tree generated by the original
scheme; for every a € A there is a choice witnessing that a appeared many times in the
original tree. Then such a scheme of the special form is turned into a scheme that is of order
lower by one, and generates trees having the same nodes as trees generated by the original
scheme, but arranged differently (in particular, the new trees may have again arbitrarily
many branches). After finitely many repetitions of this procedure, a scheme of order 0 is
obtained, and the diagonal problem becomes easily decidable. In some sense we do the
same, but instead of applying all these transformations one by one, we simulate all of them
simultaneously in a single type derivation. In this derivation, for each order k, we allow to
place arbitrarily |A| markers “of order k”, which corresponds to the nondeterministic choice
of |A| branches in the k-th step of the previous algorithm. We also place some (k, a)-flags,
in places that correspond to a-labeled nodes remaining after the k-th step of the previous
algorithm.

Relation to [22]. Let us compare our type system with the type system introduced in [22]
in order to solve the diagonal problem in the case of |A| = 1. The first difference is that we
solve the case of multiple symbols in A. This is done by replacing a single marker and a
single kind of flags of every order by |A| markers and |A| kinds of flags, one per each symbol
of A. This makes the proofs slightly more complex, but seeing [6] and [10] it was quite
natural that every symbol from A requires separate markers and flags.

P. Parys

Conceptually, it was more difficult to establish the optimal complexity. In [22] no explicit
complexity bound is given, but we can observe that for schemes of order m a direct adaptation
of their algorithm to the multiple-letters case works in (m + 3)-EXPTIME (which drops
down to (m + 2)-EXPTIME for |A| = 1 or, more generally, for fixed A); we thus had to
save four exponentiations. The previous paper proposed a very naive algorithm for checking
whether there exists a pumpable type derivation: list all type derivations of height smaller
than some number, and search among them for a pumpable derivation. This algorithm is
doubly exponential in the number of type triples, but it is not difficult to replace it by an

algorithm that is polynomial in the number of type triples. This saves two exponentiations.

Another exponentiation is saved by making the number of order-0 type triples polynomial
in |AJ; this is obtained by making all markers of a fixed order identical (not labeled by a
symbol, like flags), and by storing the information only about one, nondeterministically
chosen, flag of every order in flag sets, instead of the information about all kinds of flags seen
so far. Finally, one exponentiation is saved by observing that in the case of word-recognizing
schemes, the number of order-1 types can be also made polynomial. This is the case because
in the word case there is a unique leaf in which an order-0 marker may be placed.

B Additional Definitions

In this section we introduce a few new definitions, which will be used throughout the appendix.

Having two functions with values in natural numbers, f,g: X — N, we write f < g when

f(x) < g(z) for every x € X; this relation will be used to compare, e.g., flag counters. For

two type environments, I and I, we say that I' C I” if I'(z) C I''(z) for every variable z.
Let us also define formally the size of a higher-order recursion scheme. The size of a sort «,

denoted |, is defined by induction on the structure of a: |o| =1 and |a—8| =1+ |a| + |8].

The size of a finite A\-term P, denoted |P|, is also defined by induction on its structure, as
follows:

|a{Pr,...)| =1+ [P+ + | P [PQI=1+P|+@Ql,
2% =1, Az P| =1+ |a| +|P].

Finally, the size of a scheme G = (N, R, Ny), denoted |G|, is defined as

Gl=>_ (ol +[R(N)]).

NeeN

» Remark. We notice that to the size of a scheme we include sizes of sorts of all bound
variables and all nonterminals. Although in “reasonable cases” A-terms using large sorts
are large anyway, this is sometimes important. For example, to the size of the A-term
(Ax*7°.a()) (A\y®.a()) we prefer to include the size of a, as otherwise the size of this A-term
would be small even for very large . Similarly, in G we can have a nonterminal N of sort
a—o, with rule R(N) = (Ax°.N) (a()); in such a case we also prefer to include the size of o
to the size of G.

C Our Definition of Schemes

In this section we comment on differences between definitions contained in our paper and
those that appear usually.

XX:17

XX:18

Complexity of the Diagonal Problem for Recursion Schemes

C.1 Symbols Are Unranked

In the context of higher-order recursion schemes one usually considers alphabets that are
ranked. This means that every symbol a € ¥ has assigned a number rank(a), so that every
a-labeled node has rank(a) children. Since our definition is less restrictive, our algorithm
carries over to the situation of a ranked alphabet. On the other hand, reductions of our
hardness proofs (Appendix J.4) can be easily adopted to produce schemes using a ranked
alphabet.

C.2 Node Constructors

The usual definition of A-terms does not include node constructors. Instead, for every symbol
a of rank r one has a A-term a of sort o— ... —0—0; after applying r arguments P, ..., P,
—_——

we obtain a A-term equivalent to our a(Plr ,..., P.). There are easy translations between
A-terms in these formalisms: a(P,...,P,) can be replaced by a Py ... P, and a can be
replaced by Azj.---.Azx,.a{zy,...,z,); these translations preserve Bohm trees, and can be
performed in logarithmic space.

C.3 Looser Definition of Schemes

Let us recall the classic definition of a nondeterministic recursion scheme, and of a language
recognized by such a scheme. In this definition, instead of a function R, we have a set R.; of
rules of the form N®17--7as=o M g% 5 PO where N € A is a nonterminal, and P is
a finite applicative term whose all free variables are contained N'U {z{*, ..., 2%}, and where
the nd symbol is not used. By an applicative term we understand a A-term which does not
contain A-binders. Having a scheme G.;, we define —¢,, as the smallest relation such that:
NPy ... Ps =g, Q[P/x1,...,Ps/xs] if (Ny ... 25 = Q) € Ry, and
a(Pr,...,Pp) =g, a(Pi,...,Py)if P; =g, P/ forsomei € {1,...,r} and P; = Pj for all
je{l,...,rp\ {i}.
The language generated by G, denoted L. (G.), contains all finite trees T such that
No —¢, T (where N is the starting nonterminal). The order of G, is defined as the
maximum of orders of its nonterminals.

» Proposition C.1. For every scheme G, understood in the classic sense one can construct
in logarithmic space a scheme G that sticks to our definition, is of the same order, and such

that E(g) = Ecl(gcl)'

Proof. Consider a scheme G, = (N, R, No) understood in the classic sense. Out of it,
we construct a scheme G = (N, R, Np) sticking to our definition: for every nonterminal
N we consider all rules (Nzq ... 25 = P1),...,(Nz1 ... zs = P,,) of G, concerning this
nonterminal, and we take R(N) = Azy.---.Axs.nd(Py,..., Py). Notice that R(N) never
equals a nonterminal, as required by our definition. Clearly this translation preserves the
order of the scheme and can be performed in logarithmic space. We will now show that
L(G) = La(Gar)-

To this end, for a A-term P let Ag(P) be the A-term obtained as a limit of applying
recursively the following operation to P: take an appearance of some nonterminal N,
and replace it by R(N). In particular Ag(Ng) = A(G). Moreover, denote by i>5 the
head B-reduction, i.e., P i)g Qif P=(\.R)SSy...Ss and Q = R[S/z]S; ... Ss. Tt
is a well-known fact that while generating the Bohm tree of a A-term it is enough to

P. Parys

consider outermost S-reductions only, that is, BT(P) = a(BT(P),...,BT(P.)) if P ﬂ)/’};
a{Py,...,P.), and BT(P) = nd() if there is no sequence of head S-reductions to a A-term of
the form a(Py,..., P.).

Consider a finite ¥-labeled tree T' = a(T7,...,T,), and a finite applicative term P with
free variables in A, and not using the nd symbol. We are going to prove by induction on
n+|T| that P —g T if and only if BT(Ag(P)) —py T This will imply that £(G) = La(Ger),
since by definition £(G) contains finite X-labeled trees T' such that BT(Ag(Ny)) —5y T
for some n € N, while £.(G.) contains finite trees T' such that N =g, T for some
n € N (all the latter trees are also 3-labeled since G.; does not use the nd symbol). There
are two possible shapes of P. Suppose first that P = NQ; ... Qs. Let (Nzy ... 25 —
Ri),...,(Nzy ... x5 — Ry,) be all rules of G.; concerning N. We have that P =g, Tif
andonly if P=NQ1 ... Qs —g, Ri[Q1/21,...,Qs/xs] —>g;1 T for some i € {1,...,m}.
On the other hand,

Ag(P) = ()\.%‘1. ce .)\xs.nd<Ag(R1), ceey Ag(Rm)>) Ag(Ql) ‘e Ag(QS)
52 nd{Ag(R1)[Q1/x1,...,Qs/xs])s .., Ag(R)[Q1/x1, ..., Qs/Ts])) .

Thus BT (Ag(P)) —7y T if and only if
BT(Ag(P)) —nd BT (Ag(R;i[Q1/21,...,Qs/xs])) —>:(;1 T for some i € {1,...,m}.

We have R;[Q1/z1,...,Qs/xs] —§ ' T if and only if BT(Ag(Ri[Q1/1,. .., Qs/4])) —ng |
T by the induction assumption.

The other possible case is that P = b(Py,..., P;), where b # nd. Then P —¢ T if and
only if b=a, k =r, and P; —>gil T; for all i € {1,...,r}, where n =n; +---+ n,. On the
other hand, BT (Ag(P)) —7y T if and only if b = a, k = r, and BT (Ag(P;)) —4 T; for all
i€{l,...,r}, where n = ny+---+n,. We have P; —¢' T; if and only if BT (Ag(F;)) =3 T;
by the induction assumption. This finishes the proof of the equality £(G) = L.(Ga). <

Due to the above translation, our algorithm can be applied to schemes conforming to the
classic definition. On the other hand, it is easy to modify the hardness proof so that the
reductions used there will produce schemes conforming to the classic definition, which will
show hardness also for such schemes.?

C.4 Ensuring Homogeneity

The most important non-standard assumption done in our paper is that all sorts are homo-
geneous. In this subsection we argue that the homogeneity assumption may be introduced
without loss of generality. For purposes of this subsection, we use the name general sort for
a sort that need not to be homogeneous. General A-terms and general schemes are defined
like A-term and schemes, but allowing general sorts in place of homogeneous sorts; A-terms
and schemes defined previously are called homogeneous A-terms and homogeneous schemes.

» Proposition C.2. For every general scheme G = (N, R, N§) one can construct in logarith-
mic space a homogeneous scheme H that is of the same order and such that BT (A(G)) =
BT(A(H)).

2 A translation in the opposite direction is also possible, but we do not give it here, as it is more technical.

XX:19

XX:20

Complexity of the Diagonal Problem for Recursion Schemes

Proof. The idea is to raise the order of some sorts. For example, when we have a sort
a—f—o, and ord(a) < ord(8), then we replace the sort a by a new sort o’ that is of the
same order as (; this ensures the homogeneity condition ord(a’) > ord(3) without raising
the order of the whole sort o/ —5—0. The raising of the order of « is achieved by adding to
it an additional parameter of an appropriate order; on the side of A-terms this parameter
will be simply ignored.

We now give more details. Let us define by induction:

Yo = o, Yk = Vk—1—0 for k > 1.
We see that ord(v) = k for all k € N. Next, for every sort o and every k > ord(«) we define:

Ry(a) = { o if k = ord(a) =0,

Yg—1—« otherwise.
We see that ord(Rg(a)) = k. Basing on Ry, we define, by induction, a transformation
changing a general sort into a homogeneous one:

H(o) = o, H(a—f) = Rord(a—p)—1 (H(a))—H(3).

Next, we come to transforming terms. For every k € N, let z7* be a fresh variable (not
appearing in the scheme that is transformed). For some fixed symbol e € X" we take:

Uo =e(), Up = A2 1.e() for k > 1.
Clearly Uy has sort vy, for all k& € N. The sort of a A-term may be changed from « to Ry («)
by applying the following transformation, also called Ry:

{ pe if k = ord(a) =0,

P =
R (P?) AZVk=1 P otherwise.

Conversely, L(P?) lowers the sort of a A-term from 3 = Ry () back to a:
8 ~ _
L(P?) = P if ord(ﬁ.) 0,
ps Uora(g)—1 otherwise.

We also define a set M(P?) containing all A-terms obtained from P® by alternately applying
the operations of raising and lowering the order:

M(P?) = {L(Rk, (L(Rp, (- . . (L(Ry,,, (P*))) .-)N | K1y -y ko > ord() }.

In particular we always have P* € M(P%), obtained by taking m = 0.

A raise environment is a function €2 mapping some variable names to sorts. Intuitively,
Q(z®) is a new sort that the variable gets after the translation. Then, by coinduction we
define a relation ~»q between general A-terms and corresponding homogeneous A-terms,
parameterized by a raise environment:

a(P?,... P% ~q Q° if Q° € M(a(QS, ..., Q%))

and P ~q QF for all i € {1,...,7},

2 g QE() if Q) e M(L(z*=")) for 2% € V\ N,

N ~sg QH@) if Q7 ¢ M(NH(®) for N® e WV,

PP Pg g QB i QRO € M(QY T Roraasiy—1 (@5),
and P27 g QEOP) and PP s QE@)
Az® PP g QU8 i QHO=D e M(Az® . Q) and P ey Q0

and o = Rpa(a—p)—1(H(@)).

P. Parys

We notice that the relation ~+p can translate every closed A-term P® to a homogeneous
A-term of sort H(a).

In other words, the translation works as follows. We first change the sort of every subterm
from « to H(a). This causes a problem on applications, since to a function of sort H(a—3) =
R ora(a—p)—1(H(a))—H(B) we apply an argument of sort H(cr). We thus repair the argument

by applying R,pq(a—p)—1(+) to it. This also causes a problem on A-binders and on variables:

the new sort of a A-binder)\xa.PIB should be H(a—f) = R,pqa—p)—1(H(a))—H(3), so the
sort of the variable should be R,q(a—p)—1(H(a)); however, while using this variable, we
expect that it will have sort H(«). We thus apply L(-) to every place where the variable
is used. The raise environment is used to pass the new sort of a variable from the place
where it is bound to places where it is used. There is no problem with nonterminals: every
nonterminal simply changes its sort from « to H(«). When the above is done (in a completely
deterministic way), we allow to put in every place of the whole term some spare applications
of Ry(+) followed immediately by applications of L(-).3 This is realized by going through the
set M(+) at every step of the definition.

As the new scheme we take H = (N, R’,N§), where N’ = {NH(®) | N® ¢ A/} and
R/ (NH(@) = QH() for the smallest A-term QF(®) such that R(N®) ~»g QH(®) (the smallest
such A-term is obtained by choosing at each step the smallest element of the set M(+)). It is
easy to see A(G) ~»y A(H), and that H can be computed in logarithmic space (in particular
its size is polynomial in the size of G).

We also notice that the order of the scheme (defined as the maximum of complexities of
right sides of rules) remains unchanged. This is the case because ord(H(«)) = ord(«) for
every sort a. Although for every application P;" —h Ps* we raise the order of the argument, it
is raised only to ord(a—) — 1, which is anyway smaller than the order of P;.

It remains to prove that BT (P°) = BT(Q°) for all closed A-terms P°, Q° such that
P° ~y Q°. This follows immediately (by coinduction) from the next lemma. <

» Lemma C.3. Let P°, Q° be A-terms such that P° ~y Q°.

1 If P° =% a(Py,..., P?), then Q° =% a{@Q3,...,Q7) for some A-terms QF,..., Q7 such
that P? ~>g Q9 for all i€ {1,...,r}.

2. IfQ° =5 alQF, ..., Q7), then P° =% a(Py, ..., P?) for some A-terms Py, ..., P? such
that P? ~»g Q9 for all i€ {1,...,r}.

Proof. Let us concentrate on point 1. We proceed by induction on the length of some fixed
sequence of 3-reductions witnessing P —75 a(Py, ..., P?). Consider first the base case, when
P° = a(P?,...,P°%. Then, by definition of ~»y, we have that Q° € M(a(Q9,...,Q2)) for
some A-terms @9, ..., Q2 such that PP ~»y Q¢ for all ¢ € {1,...,r}. Thus Q° is of the form
LR, (... (L(Rg,, (a(Q3,...,Q2%))))...)). If ky, = 0, then simply L(Ry,, (a(QF,...,Q2))) =
a{Qy,...,Q2). Otherwise

L(Ry,, (a(QF, ..., Q7)) = (A2 1.a(QF, ..., Q7)) Uk,, -1 = a{QF, ..., Q7)

(recall that z?m-1 is a fresh variable, not appearing free in Q?). In the same way, we
eliminate further L(Ry, (-)), obtaining Q? —7 a(Q9, ..., Q7).

In the induction step consider the first S-reduction from P°. Since the definition of ~>q
is completely structural, it is enough to concentrate on the redex involved in the S-reduction,

3 This is not needed while defining the new scheme 7, but is necessary in the correctness proof (Lemma C.3),
since such spare applications of L(R(-)) may appear during S-reductions.

XX:21

XX:22

Complexity of the Diagonal Problem for Recursion Schemes

and to prove that if (Az®.RY) Ry ~»q SB®) then RY[RY/2%] ~q TH®) for some A-term
TH®) such that SH®) —% TH®) . By definition of ~»q we have that

SHE) € M(L(Ry, (... (L(Rs, 0257))) Ropaansiy-1(S3)

with Rf Qe al] SfI(B), and RS ~q SQH(O‘), and o = Rrg(a—p)—1(H(a)). As previously,
by performing some [S-reductions we can eliminate the prefix of L(Ry,(+)), as well as the
other such prefix hidden in the definition of M, obtaining

SO 5 (A ST) Roraianss)-1(S5- ™) =5 ST Rora(assy—1 (S5) /2]

In order to see that Rf [RS /2] ~~q SlH(’B) [Rm.d(a_)ﬁ)_l(SQH((X))/xa'], consider now some
place where x® is used inside R? . The corresponding subterm of SF ® s from M(L(z'));
after substituting, it is some UH(®) ¢ M(L(Rord(aﬁﬁ)_l(S?(a)))) C M(S;I(a)). Because
RS ~~q S;{(a), we also have RS ~~q UH(@) since the definition of ~q allows appending any
sequence of L(R;(+)) in the front. We also have R§ ~q UH(®) for appropriate ' needed in
this place, since by definition we perform the substitution so that names of bound variables
in Rf do not overlap with names of free variables of R§ (thus €' equals € on all free variables

of RY).
Point 2 is analogous. Every S-reduction in Q° either has a corresponding [S-reduction in
P°, or it amounts to eliminating a pair L(R;(-)) somewhere in Q°. <

D Tree-Generating Schemes

In this section we define a variant of our type system that works for tree-recognizing schemes.
We start by defining flag sets and marker multisets. For m > —1, an m-bounded flag A-set is
defined as a set F C {0,...,m} x A such that (k,a), (k,b) € F implies a = b; an m-bounded
marker A-multiset is defined as a function M: N — {0,...,|A|} such that M(k) = 0 for
all & > m. Let F2 and M5, contain all m-bounded flag A-sets and m-bounded marker
A-multisets, respectively. The difference with respect to the previous definition is that flag
A-sets, unlike flag sets, may contain pairs (0, a), and that M (0) < |A| for marker A-multisets,
while M (0) <1 for marker multisets.

Next, by mutual induction on the sort «, we define the set T2 of A-types of sort «, the
set TT5Y of m-bounded type A-triples of sort a, and the set TC** of triple A-containers of
sort «, and basing on that we define type A-environments and type A-judgments. They are
defined exactly as in the word case, with the exception that:

we allow m > —1 instead of m > 0,

we use F5> and M5, instead of F,, and M,,, respectively,

TT5Y contains all elements (F, M,C1—...—Cs—0) of Fb x M2 x T,2® such that

M (k) =0 for all (k,a) € F (we drop the requirement that M (0) + >_7_; Mk(C;)(0) = 1),

and

in type A-judgments we write 2, instead of F,.

We now come to the type system. Its rules (Var), (ND), (), (ConN0O), and (@) are as
previously, with the only difference that we use 2, instead of F,,. Instead of the (Con1)
rule we have the following (Con>1) rule, which talks about node constructors of an arbitrary
positive rank:

L, B8 P i (Fy, M;,0)>c; for each i € {1,...,7} M=DM +---+ M,
(F7C) € Compm(Ma ({(Ova)}70)>(F17cl)7"‘7(FT7CT)) r=>1 a# nd
U Ul k5 alPy,. .. P (F,M,0)>c

m

(Con>1)

P. Parys

We notice that the previous (Con1) rule can be obtained from the (Con>1) rule by adding
the requirement that r = 1, and replacing 5, by .

Denote pa, = (0, M4 0), where M2 € M2, is such that M2 (k) = |A| for all
k € {0,...,m}. The following theorem is an analogue of Theorem 3 for tree-recognizing
schemes.

» Theorem D.1. Let m > —1, and let P be a closed A-term of sort o and complexity at
most m + 1. Then Diag,(L(BT(P))) holds if and only if for every n € N we can derive
e kb P ph ey, with some ¢, such that cp,(a) > n for all a € A.

We prove this theorem in Appendices F-I, together with Theorem 3.
In the sequel, we use the symbol x to denote either A or € (i.e., nothing). Thus we write
F= in statements that are true both for b, and F5,; similarly p% , etc.

E Examples

Example 6 Expanded. Let us give more details concerning Example 6. Recall the type
triples that were already defined:

po = ((Z)v {]0[}70)7 Ta = ({(L a)},O, {]ﬁol}_)O)a Tm = ((Z)v ﬂlv 1B’a ﬂﬁol}_}O)a
p = (@,{IO,I,H},O), T = ({(lab)}v07{]ﬁ0ﬂ’_>0)7 ORr = (®7{|0B’,{|7ﬁa;7ﬁb,7¢m|}—>0)~

The type judgment € b1 Ry : 6z >0 can be derived as follows:

- - (VAR) —— (Con)
E[fHﬂTm[Hl_leTmDO 5|—1c<>;p0|>0 (@)

elf = {7fml F1f(c()) : p1>0 (ND)
elf = {Fml] F1 nd(F (c()), Ry O\y-f (Fy))) : pr 5> 0
3 Fl R1 : 63 >0

Notice that the type triples 7, and 7, required for the argument by 6z are not used here;
recall that the (\) rule allows to discard them, since they are balanced. On the other hand,
the type triple 7, is unbalanced, so it could not be discarded, and has to be used exactly
once in the derivation.

Next, we derive the same type triple for Ry, but using the second argument of the nd
symbol; this results in greater values of the flag counter. In Example 5 we have derived
the type judgment e[f — {72, Tm[t] F1 Ay.f (fy) : 7 > {(a, 1), (b,0)}. Similarly we can derive
e[f = {7b, Tm}] F1 Ay.f (fy) : 7m > {(a,0), (b,1)}. We continue by deriving the type triple 7,
for the subterm Ay.f (fy):

elf = {7l Fif: 70 ely—={polll F1y:po>0
eff = {7l F1f:7a>0 elf = {7,y ool F1 fy: {(1,a)}, {0}, 0)>0
elf = {7l y = {pol] F1 f(fy) : ({(1,2)}, {0}, 0) >0 N
e[f = {7alt] F1 Ay.f(fy) : a0

(
(

=

&

In the above derivation there are no flags nor markers. Similarly we can derive e[f — {7[}] F1

XX:23

XX:24

Complexity of the Diagonal Problem for Recursion Schemes

Ay.f(fy) : 7, > 0. We continue with the A-term R;, where we denote ¢, = {(a, 1), (b,0)}:

eb1 Ry :6Rrp>e elf = {7alt] F1 Ay.f(fy) : 720
eff = {7l F1 Ayf(fy): 7> 0 e[f = {72, Tml F1 Ay f (fy) : T > ca
e[f = {7a, 7o, TmlH] F1 R1 (Ay.f(fy)) : pr>c+ca
e[f = {72, 7o, Tm[t] F1 nd{f (c()), R1 (A\y.f (fy))) : p1>c+ca

e Ry :0rD>CH+ ¢y

@

(ND)
(N

In this fragment of a derivation no flag nor counter is placed. In particular, there is no
order-2 flag in conclusion of the (@) rule, although its second and third premisses provide
(1,a)- and (1,b)-flags while the last premiss provides markers of order 1. We recall from
the definition of the (@) rule that the information about flags and markers coming from the
arguments is divided into two parts. Numbers not greater than the order of the argument
(which is 1 in our case) are passed to the operator, while only greater numbers (in our case:
greater than 1) contribute in creating new flags via the Comp predicate.

Similarly, out of ¢ F; Ry : 6z > ¢ we can derive € -1 Ry : 6g > ¢ + ¢,, where ¢, =
{(a,0), (b,1)}. By composing these two derivation fragments, we can derive e -1 Ry : Grb ¢
for every c. Finally, we apply the argument S = Ax.nd(a(x), b(x)), and we derive for A(G;)
the type triple ps, appearing in Theorem 3.

E"lRlia'RDC €|_151’7A'al>0 €|_151’7A'b>0 5}—15:?ml>ca
6}_1 A(g1)1ﬁ1l>C+Ca

@

Recall that from Examples 2-4 we already know how to derive the three premisses concerning
S. There is a lack of symmetry here with respect to letters a and b, but instead of the
last premiss we could equally well use € -1 S : 7, > ¢, obtaining flag counter ¢ + ¢, at the
end. We can notice that there is a correspondence between a derivation with flag counter
¢+ ¢, and some tree in £(P) having 2¢2)+¢(®) nodes. We remark that in every of the above
derivations only three flags of order 1 are present (two (1, a)-flags and one (1, b)-flag), in the
three nodes using the (Con1) rule.

Example 7 Expanded. The A-term Rs is obtained from R; by replacing all appearances of
the subterm f (fy) with fy. Let us see how the type derivations have to be changed. The type
judgment € -1 Ry : 6r >0 can be obtained without any change, as its derivation descends to
the first child of the outermost nd(-,-) in Ry = Af.nd(f (c(}), Ry (Ay.fy)). The type judgment
e[f = {7a[l] F1 Ay.fy: 72> 0, and a similar one for 7}, can be obtained without any problem,
as the type judgments concerning the subterms fy and f (fy) were the same. Let us now see
what happens to the derivation of the type triple 7m:

E[f'—>{]7ﬁml}]|_1f27/\'m>0 €[yl—){|ﬁ0m I—ly;ﬁ0|>0
elf = {Tml,y = {polt] F1 fy: (0,40, 1,1}, 0)>0
elf = {fml] F1 Ayfy: Fm>0

C)

In the subterm fy we have only one appearance of f, so we cannot use simultaneously both 7,
and 7, (as we did for f (fy)); in effect no order-2 flag is placed. Thus if we create a derivation
for Ry that descends to the second child of the outermost nd(-,-), out of e -1 Ry : 6r >0 we
derive again € 1 Ro : 6 > 0, without any change to the flag counter. In effect, the type
triple p; will be derived for A(Gs) with flag counter ¢, (or ¢, if one prefers).

P. Parys

Example 7 Modified. Consider now the A-term P, = (Ag.A(Gs)) (Az.P,), where P, is the
unique A-term such that P, = nd(z,a(P,)) (by the way, notice that P, is a A-term that cannot
be described by any scheme). We see that P, S-reduces to A(Gsy), hence the recognized
language remains unchanged. Let us see what happens on the side of type derivations. Notice
that we can create the following derivation:

~ ~ (VAR)
elz—={polt] F1z: po>0 (ND)
6[2'—) ﬂﬁol}] 1 P, ﬁ0l>0
- (Conl)
“fe = Qo 1 2Py < (01,20}, 100,020
elz—= {poll 1 Pa: ({(1,2)}, {0f, 0) >0
We notice that the last two lines can be repeated arbitrarily many times. Then, in the
conclusion of every (Conl) rule, a (1,a)-flag is placed (there are no (2, a)-flags, though).
Such a derivation can be used as a part of a derivation for Ps:
g1 A(G2) : p1oca \ &z Aol P Pa - (11, 2)4, {0F, 0) - 0
g1 Ag.A(G2) : (0,{0,1,1}, {7al—0) > ca ek Az.Py i 7,0 ©
IS |_1 PQ : ﬁl > c,

(A)

Because 7, is balanced, it can be discarded in the (\) rule, and need not be used in the
derivation for A(Gy). We thus obtain a derivation for P, in which there are many (1, a)-flags
(but only one (2, a)-flag). This shows that in the flag counter we indeed need to count only
the number of flags of the maximal order (not, say, the total number of flags of all orders).

Example 8 Expanded. Since this time we want to place only one order-1 marker in a leaf
corresponding to x, we consider the type triple 7, = (0, {1}, {po}}—0). We can derive 7/,
and 7, = ({(1,a)}, 0, {po[t—0) for Ax.a(x):

elx = {polt] F1x: (0,{0,1]},0)>0 ex = {pol] F1x: po>0
ex = {polt] F1 a(x) : (0,{0,1]},0) > ¢, elx = {pol] F1 alx) : ({(1,a)},{0[,0)>0
ety Mxalx) 7 >, eh1 Axalx) : 72 >0

Denote by P, the A-term corresponding to My, i.e., B, = nd{c(), b(P,)). We can derive:
ek B2 (0,{0,1f, 0) > {(a,0), (b, k)}
ebk1c(): (0,{0,1[,0)>0 ek1b(B) : (0,{0,1},0)>{(a,0), (b, k+ 1)}
eby Py: (0,{0,1},0)>0 ek1 Py:(0,{0,1},0)>{(a,0), (b, k+ 1)}

Starting with the derivation fragment on the left, and then appending the fragment on the
right an appropriate number of times, we can derive € 1 B, : (0, {0, 1[},0) > {(a,0), (b, k)}
for every k € N.

We can derive ¢[f — {7,[}] F1 Ay.f (fy) : 720 and e[f — {7, 7} F1 Ay.f (fy) : 7, > ca,
exactly as in Example 6. Let us take 6%, = (0, {0, 1]}, {|7a, 7 [t—0). Consider the A-term Rg
corresponding to N, namely the unique A-term such that R = Af.nd(f P, R3 (\y.f (fy))). By
continuing the above derivation concerning F, we obtain:

(VAR)
elff = {7} F1f: 7. >0 ek Py (0,{0,1},0)>c

eff = {7 b FifP:pribc (ND)
D
e[f = {70} F1 nd{f Py, Rs (\y.f (fy))) : p1>c o

ebq Rglé'g%bc

@

XX:25

XX:26

Complexity of the Diagonal Problem for Recursion Schemes

We also have a derivation fragment that increases the flag counter on the first coordinate:
S Fl R3 : 5’3_3 >c
elf = {7l F1 Ay.f(fy) : 720 elf = {7, 7o B Ay.f(fy) : 72 >ca
elf = {7a, T}l F1 Rs (A\y.f(fy)) : pr>c+ca (ND)
elf = {72, 701 F1 nd{f (c()), Rs (\y.f(fy))) : p1>c+ca 0

ebq R3I&EDC+CQ

@

Notice that, in the last two derivation fragments, the final (\) rule removes one order-1
marker from the marker multiset of p1, so that the marker multiset of 6, contains one order-1
marker. This is because 7/, provides one order-1 marker. In Example 6 7, provided two
order-1 markers, and in effect 6 had no order-1 markers.

By repeating the last derivation fragment, we can derive € 1 R3 : 6, > ¢ for every c¢. We
end the derivation as in Example 6:

eb1 R3:6h>e ebpMxalx) />0 eby Axalx): 7>,
ek A(g3) : ﬁ1|>C+Ca

@

A Tree-Generating Scheme. In the final example we consider a tree-recognizing scheme
G4 with the following rules:

R(M) = N (AxAy.c(x,y)
R(N) = Af.nd(f (a(}) (b()), N (Ax.Ay.f (c(x,x)) (c{y, ¥)))) -
In £(G4) we have full binary trees of height k for every k& > 1, where internal nodes are

labeled by c, first 2#~1 leaves are labeled by a, and remaining 2~ leaves are labeled by b.
In this example we are going to derive the following types:

&a:({(ova)}aovo)’ ﬁ? :(wa{]ovovlvlﬂ”o)v
op = ({<0’ b)}70’0>) Tr = ((Z)a {|1’ 1|}7 {I&av&m[}%{lﬁbaa'm[}_ﬂ)%
6m = (0, {0}, 0), o5 = (0,0,00, {7}—o).

Denote subterms of A(Gy4) as follows:
S =f(a()) (b()), T = M. Ay.f(c{x,x)) (c{y,y)), Ry = XM.nd(S;R,T).
We first derive the type triple 6% for R4 with empty flag counter:
elf = %[} F f: %> 0
eFfa(): 6,00 ebFfal):6m>0 eF{b():6,>0 al—fb():&mbo(@
elf = {#H}HFT S:pi>0
elf = %[} FL nd(S,R4T) : p% >0
3 FlA R4 : 5’1% >0

(ND)
(A)

Here the first premiss of the (@) rule can be derived by the (VAR) rule, and the other premisses
by the (Con0) rule. Notice that while deriving € F£ a() : 6 >0 a (1,a)-flag is created by
the Comp predicate; we are, however, not obliged to store the information about it in the
flag set, and thus we can derive the type triple 6, instead of ({(1,a)}, {0}, 0). Notice also
that the (@) rule have premisses with (0,a) in the flag set, and with 0 and 1 in the marker

P. Parys

multiset. Passing them all to the Comp predicate would result in creating a (2, a)-flag and
increasing the flag counter. This is not the case, because the (@) rule does not pass (0,a) to
Comp, because 0 is not greater than ord(a()) = 0.

Next, we would like to increase the flag counter, by using the second child of the nd(-,)
node constructor. We start as follows:

~ ~ (VAR) — ~ (VAR)
ex = {6al] FE x: 6.0 ex = {oal] FE x: 6.0
(Con>1)
elx = {6alH] FT c(x,x) : 6.0
(VAR) (VAR)

elx = {Gaf] F{ x: 6.0 ex = {oml] FE x: 6m>0
e[x = {6a,6mlt] F{ clx,x) : ({(1,a)},{0},0)>0

In the latter derivation, the (Con>1) rule created a (1,a)-flag because the information

(Con>1)

about a (0, a)-flag from the first premiss has met the information about an order-0 marker
from the second premiss. Let us denote the conclusions of the above derivations by Jx ,
and Jy m, respectively. Similarly we can derive ey — {6u}] F{ c(y,y) : 6 > 0, denoted
Jyb, and ely — {6p,0ml[] FL c(y,y) : ({(1,b)},{0[},0) > 0, denoted J, m. Denote also
c1 ={(a,1),(b,1)}. We continue as follows:

— = ~ (VAR)
elf = {7} FL f: >0 Jx.a Jxm

elf = {%}, x = {62, 0ml] FL f(c(x,x)) : (0,40, 1,1[}, {6b, Gm[}—0) > ca (@) Jyb Jym
elf = {7l x = {63, 6mlb,y = {66, GmlH] F1 f (e, %)) (cly,y)) : (0,{0,0,1, 1}, 0) > 1
elf = {7, x = {62, 6ml[] F& Ay.f(c(x,x)) (cly,y)) : (0,{0,1,1[},{6p,6m}—0) > cy
ef = &%} FE T : 7>y

(@)
(@)
(A)

In the (@) rules, the information about order-1 flags from Jy , and Jy , meets the information
about order-1 markers, and thus order-2 flags are created, which results in increasing the
flag counter. Finally, we can derive:
eFY Ry:65>c ef = &} FT T: F >
elff = R} FL RaT: pi>c+ar
elf = &} FE nd(S, Ry T) : pL >+ ey

eFP Ry:6p>c+ar

(ND)

(A)

By repeating this derivation fragment some number of times, we can derive 6% for Ry with
arbitrarily large flag counter ¢ (satisfying c(a) = ¢(b)).

We also need to derive the type triple 7 for the subterm Ax.\y.c{x,y). This is done as
follows:

o nll e X (0. 110y 0 ()

elx = {omb,y = {oml] FT cx,y) : p7 >0
elx = {omb] 1 Ay-clx,y) : (0,40, 1,1}, {6b, 6mft—0) > 0
e FP AxAy.c{x,y) : 7 >0

(VAR)

ely = {6MF2y : 6> 0
ly = {oml] FTy (Cox31)

(A)
(N

Above, we have put two order-1 markers in the leaf describing the subterm x. We could
equally well put them in the leaf corresponding to y, or one marker here and one there.
This allows us to finish by applying the (@) rule:

e Ry:op>pc ebFf MAxAy.clx,y) : 7 >0
eFP A(Gy): pibe

XX:27

XX:28

Complexity of the Diagonal Problem for Recursion Schemes

F Finite Prefixes of Infinite \-terms

Theorems 3 and D.1 talk about infinite A-terms, but the properties described by these
theorems concern actually only finite prefixes of these A-terms. Moreover, while proving
these two theorems it is easier to concentrate on finite A-terms. For this reason we now
formalize the concept of taking a finite prefix of a A-term.

We first say what does it mean that one A-term is a prefix of another A-term. This is
described by the relation < defined as the smallest reflexive relation such that:

AzTt.- - Ax2s.nd() < @ whenever @ is of sort oy — ... sas—o0,

a(Py,...,P.) g a(P],...,P)it P,x P/ foralli e {1,...,1},

PQ<xPQ if PP and Q<(Q, and

Ax.P 5 Ax.P if P P.
In other words, we allow to replace some subterms @ by A-terms of the form Azq. - . Azs.nd()
(where the quantity of variables x1,...,zs and their sorts are chosen so that the sort of the
A-term remains unchanged).

The fact that in Theorems 3 and D.1 it is enough to consider finite prefixes of A-terms is
given by the following two lemmata.

» Lemma F.1. We can derive a type judgment I' =, P : 7> c if and only if for some finite
A-term P’ such that P' < P we can derive I' F5 P’ : 7> c.

Proof. For the left-to-right implication we recall that type derivations are finite by assumption.
We can thus cut off (i.e., replace by Azy.---.\xs.nd()) those subterms of P to which we do
not descend while deriving I' F¥ P : 7> ¢. For the opposite implication we observe that it is
impossible to derive any type judgment for a A-term of the form Axzj.---.Az,.nd(), because
we cannot apply the (ND) rule to a node constructor without any child. We can thus replace
subterms of these form by the actual subterms of P, without altering the type derivation.
Details, being easy, are left to the reader. <

» Lemma F.2. Let P be a closed A-term of sort o. For every tree T it holds that T €
L(BT(P)) if and only if there exists a finite A-term P’ such that P < P and T € L(BT(P’)).

The remaining part of this section is devoted to a formal proof of the above lemma. The
first three lemmata are useful while showing its right-to-left implication.

» Lemma F.3. Suppose that R’ < R and S’ < S, where R’ is finite* Then R'[S'/x] <
R[S/ x].

Proof. A trivial induction on the size of R'. <

» Lemma F.4. Suppose that P' < P and P" —} Q', where P' is finite. Then there exists a
A-term @ such that Q' < Q and P —% Q.

Proof. We proceed by induction on the length of the shortest reduction sequence witnessing
P" —7% Q'; only the base case of a single -reduction is interesting, thus assume that P' —5 Q.
Internally, we proceed by induction on the depth of the S-reduction P’ —5 @Q'. Again, only
the base case is interesting, thus assume that P’ = (Az.R') S" and Q' = R'[S"/x].

We have two cases. One possibility is that P = (Az.R) S, where R’ < Rand S’ < S. In
this case, taking @ = R[S/x] we have that Q' < @, and, by Lemma F.3, Q' < Q.

4 Tt is convenient to proceed by induction on the size of R’, and thus we assume that it is finite, but
equally well the lemma could be shown without this assumption.

P. Parys

Tt is also possible that R’ = Axy.---.Azs.nd(). In this case we simply take Q = P, and
we observe that Q' = R < Q.5 <

» Lemma F.5. Let Q' and Q be closed A-terms of sort o such that Q' < Q, and let T be a
finite X-labeled tree such that Q" =0, T. Then BT(Q) =i, T.

Proof. The proof is by induction on |T'|+n. Since Q" —7 T', necessarily Q' = a(Q1, ..., Q")
for some a € X", Since Q' < Q, we also have that Q = a(Q1,...,Q,), and thus BT(Q) =
a{(BT(Q1),...,BT(Q.)), where Q} < Q; for all i € {1,...,r}. We have two cases.

Suppose first that a # nd. Then T' = a(T1,...,T;), and for all ¢ € {1,...,r} it holds that
|T;| < |T'| and Q; =4 T; for some n; < n. For every ¢ € {1,...,r} the induction assumption
implies that BT(Q;) —4 T3, and thus BT(Q) —, T, as required.

Next, suppose that a = nd. In this case we have Q' —n4 Q) —>:§1 T for some i €
{1,...,r}. Then BT(Q;) —;4 T by the induction assumption (used for one fixed ¢ only),
and we can conclude observing that BT(Q) —n¢ BT(Q;). <

The first step needed while proving the left-to-right implication of Lemma F.2 is to
show that every tree from L(BT(P)) can be seen already after performing finitely many
B-reductions from P.

» Lemma F.6. Let P be a closed A\-term of sort o, and let T be a finite 3-labeled tree such
that BT(P) —}y T. Then there exists a A-term Q such that P —75 Q —54 T

Proof. The proof is by induction on |T'|+n. Since BT (P) —7, T, necessarily BT (P) # nd(),
and thus P —7 a(Py,...,P,) for some a € ¥" and some A\-terms Pi,..., P, such that
BT(P) =a(BT(P1),...,BT(P,)). We have two cases.

Suppose first that a # nd. Then T = a(Ty,...,T}), and for all ¢ € {1,...,r} it holds
that |T;| < |T'| and BT(P;) —i T; for some n; < n. For every i € {1,...,r} the induction
assumption gives us a A-term @; such that P; =7 Q; —y T;. Taking Q) = a{@Q1,...,Q.,) we
obtain P —7% @ —4 T', as required.

Next, suppose that a = nd. In this case we have BT(P) —nq BT(P;) =, ' T for some
1€ {l,...,7}. Then P —5 Qi —pg T for some A-term @Q;, by the induction assumption
(used for one fixed i only). Taking Q; = P; for j € {1,...,7}\ {i} and Q = nd(Q1,...,Q,)
we obtain P —% @ —ng Qi =54 T, as required. |

It is convenient to introduce one more relation: we write P ~; P’ if the A-terms P and P’
agree up to depth [€ N. Formally, = is defined by induction on [as the smallest equivalence
relation such that:

if | =0, then P ~; @ for all A-terms P,) of the same sort,

a(Py,...,P.)~;a(P],...,P)yifl>0and P, =)y P/ forallie {1,...,r},

PQ=~ P Q ifl>0,and P~;_1 P', and Q ~;_1 Q', and

M. P~y AP ifl >0and P~;_{ P.

Observe that P ~; P’ implies P =, P’ for k < I. Next, we observe that only a finite prefix
of the A-term @) obtained in Lemma F.6 is important.

» Lemma F.7. Let Q be a closed A-term of sort o, and let T be a finite X-labeled tree such
that Q@ =7y T. Then Q" — 'y T for all X-terms Q' such that Q =p|+, Q'

5 In the latter case we only know that R is of the form T S, but not necessarily (Az.R) S, so we cannot
proceed as in the former case.

XX:29

XX:30

Complexity of the Diagonal Problem for Recursion Schemes

Proof. Again, the proof is by induction on |T'| 4+ n. Since Q —7y T and |T|+n > 1,
necessarily @ and @’ are of the form a(Q1,...,Q,) and a(Q},...,Q.), respectively, where
Qi Rj7|4n—1 Qf for alli e {1,...,7}. We have two cases.

Suppose first that @ # nd. Then T = a(T},...,T,), and for all ¢ € {1,...,r} it holds
that |T;| < |T'| and Q; —,4 T; for some n; < n. Since |T;| +n; < |T| 4+ n — 1, we have that
Qi =|17,|4n, @}, hence Q] =74 T; by the induction assumption (for all i € {1,...,7}). In
consequence Q" —*, T.

Next, suppose that @ = nd. Then Q —nq Q; —"5 ' T for some i € {1,...,7}. Since
Qi ~|7|+n—1 Qj, by the induction assumption we obtain that Q; —4 7', which together with
Q' —nd Q} gives us that Q' —*, T, as required. <

The next two lemmata describe what happens during a S-reduction.
» Lemma F.8. If P ~; P’ and Q ~; Q' for some | € N, then also P[Q/x] =, P'|Q’/x].

Proof. Induction on [. For [= 0 the lemma is obvious: = always holds. When [> 0 and
P=RS, then P'=R'S" with R~;_1 R and S =;_1 S’. By the induction assumption we
have R[Q/x] ~;—1 R'[Q'/x] and S[Q/x] ~;_1 S'[Q’/z], and thus P[Q/x] ~; P'[Q’/x]. The
cases when P = a(Py,..., P.) or P = \y.Q are similar. Finally, when P = P’ is a variable,
the thesis follows immediately from Q ~; Q. <

» Lemma F.9. If P~y o P' and P —3 Q, then for some Q' we have that P' —% Q' and
Qr~ Q.

Proof. Induction on I. If [= 0, the thesis holds for Q' = P’. Next, suppose that [> 0
and P = (Az.R) S and @ = R[S/z]. Then P/ = (A\z.R’)S’, where R ~; R’ and S ~;41 5.
Taking Q' = R'[S’/x] we have P’ —3 @', and, by Lemma F.8, Q ~; Q’. The remaining
case is that [> 0 and the redex involved in the S-reduction P —3 @ is not located on the
front of P. Then the thesis follows from the induction assumption. Let us consider only a
representative example: suppose that P = RS, and Q =TS, and R —3 T. In this case
P'=R'S" with R~y R and S =41 S’. The induction assumption gives us 7" such that
R —% T"and T =1 T". Thus for Q" =T"S" we have P’ —% Q" and Q ~; Q' <

We can now conclude the proof of Lemma F.2.

Proof of Lemma F.2. Let us first establish the right-to-left implication. We assume here that
P'x Pand T € L(BT(P'")) for a finite A\-term P’, and we need to prove that T € L(BT(P)).
Denote Q" = BT (P'). Since P’ is finite, we have P’ —7% Q' (the B6hm tree of a finite A-term
is just its S-normal form). Lemma F.4 gives us a A-term @ such that Q' < @ and P —7% Q.
Since T' € L(BT(P")), by definition of L(-), we have that Q" —7; T for some n € N, and that
T is a finite X-labeled tree. In such a situation Lemma F.5 implies BT(Q) —, T. Since
BT(P) = BT(Q), we obtain T € L(BT(P)), as required.

Let us now prove the opposite implication. We know that T' € L(BT(P)), i.e., that T is
a finite 3-labeled tree and BT (P) —7, T for some n € N. Then, by Lemma F.6, there exists
a A-term @ such that P —>’§ Q — T for some k,m € N. We now take a finite A-term P’
such that P’ 5 P and P R4 |7 P'; it is easy to obtain such P": we simply need to cut
off P at depth 2k +m + |T'|. By applying Lemma F.9 consecutively to every S-reduction in
the reduction sequence witnessing P —>’§ @ we obtain a A-term @’ such that P’ —7% Q" and
Q ~m4ir Q- Next, Lemma F.7 implies that Q" —, T'. Finally, we use Lemma F.5, where
we set both @ and Q' to Q’; it gives us that BT(Q') —*, T. Since BT(P’) = BT(Q’), we
obtain T' € L(BT(P")), as required. |

P. Parys

G Properties of Type Judgments

Before actually proving Theorems 3 and D.1 in the next two sections, we state here some
properties of those type judgments that can be derived in our type system.

We start by a simple observation, that follows directly from rules of the type system.

This observation will be used implicitly later.
» Observation. If we can derive T'FE R : 7> ¢, and © is not free in R, then I'(z) = 0.

Next, in Lemma G.1, we formalize the intuition that the marker multiset of a type
judgment includes all markers provided by free variables (which are described in the type
environment).

» Lemma G.1. Suppose that we can derive ' F5 R : 71> c. Then Mk(T') < Mk(7).

Proof. Fix some derivation of I' Ff R : 7> ¢; the proof is by induction on the structure of
this derivation. We analyze the shape of R.

Suppose first that R = z. The (VaRr) rule says that T' = e[z — {#'[}] for #/ such that
Mk(7') < Mk(7), which implies that Mk(T") < Mk(7).

In the case when R = a() for a # nd, the (Con0) rule implies that I' = &, hence
Mk(T) < Mk(7).

Next, suppose that R = A\x.P. Let I'[x — C'] F%, P : 7' ¢ be the premiss of the final (A)
rule, and let C—7 be the type appearing in the type triple 7. By conditions of the rule we
have C' C C and Mk(7) = Mk(7') — Mk(C'). While writing I'[x +— C’] we mean that I'(x) = 0,
so Mk(T') = Mk(T'[z — C']) — Mk(C"). The condition C’ C C implies that Mk(C') = Mk(C"),
and the induction assumption ensures that Mk(I'[z — C’]) < Mk(#'). Putting this together
we obtain Mk(T") < Mk(%).

Finally, suppose that R = a{(Py,...,P,) where r > 1 or a = nd, or R = P(Q. Let
71,...,7s be the type triples derived in premisses of the final rule (which is either (Con1), or
(Con>1), or (ND), or (@), and let I'q, ..., be the type environments used there. Each of

the four possible rules ensures that Mk(7) = Mk(71) +--- + Mk(7s) and T =Ty U --- U T.

The induction assumption gives us inequalities Mk(T;) < Mk(#;) for all ¢ € {1,...,s}. It
follows that Mk(I") < Mk(7). <

The next important property of our type system is given in Lemma G.2.

» Lemma G.2. If a type judgment A FF R :61>d is used in a derivation of ' -5 S : 7>,
where Mk(7)(m) = 0 and ord(S) < m, then Mk(6)(m) = 0.

Proof. We say that a type triple 6 = (F, M,C;— ... —>Cs—0) is m-clear if it holds that
(M + 37, Mk(C;))(m) = 0. It is enough to prove that, in the considered derivation, there
are only type judgments with m-clear type triples; then the statement of the lemma follows
immediately.

We first notice that if ¢ is derived for a A-term having sort « of order at most m, and
Mk(6)(m) = 0, then 6 is m-clear. Indeed, let us write 6 = (F, M,C1— ... —Cs—0). For
i € {1,...,s} by definition we have C; C TTZ‘;',d(ai), where o = a1— ... —a,—0; thus
Mk(C;) is ord(a;)-bounded, and because ord(a;) < ord(a) < m, we obtain Mk(C;)(m) =0
as needed. In particular it follows that the type triple 7 derived at the end is m-clear.

It remains to prove that if a conclusion of some rule derives an m-clear type triple, then
all its premisses as well. Let A FF R : (F,M,o)>d be the considered conclusion, where

o =C1—...>Cs—0. We have several cases depending on the shape of R.

XX:31

XX:32

Complexity of the Diagonal Problem for Recursion Schemes

If R =2 or R = a(), the thesis is immediate, as there are no premisses. If R =
nd(P,..., P.), then the (ND) rule is used, so the type triple derived in the premiss is the
same as in the conclusion.

Suppose that R = Az.P. Then the (\) rule is used, and it has a premiss A’ %
P: (F,M' o")>d, where ¢/ = Cy—...—5Cs—0 and M’ = M + Mk(C}). We thus have
(M + 570, MK(C)(m) = (M + 32, MK(C:))(m) = 0.

Next, suppose that R = a(Py, ..., P,), where a # nd and r > 1. Then the premisses are
A; FE Py (Fy, My, 0)>d; for i € {1,...,r}, where the rule, being either (Con1) or (Con>1),
ensures that M = My + - -- + M,.. We thus immediately have M;(m) < M(m) = 0 for all
ie{l,...,r}

Finally, suppose that R = PQ. Let A’ +5 P : (F/,M',Co—o)>d and A; FE Q :
(Fy, M;,0;) > d; for i € I be the premisses of the considered rule, which is @. The rule
implies that M = M'+ .., M;, so M'(m) = 0 and M;(m) = 0 for all i € I. It also implies
that ord(Q) < m, so the type triples (F;, M;, 0;) derived for @ are m-clear (as observed at
the beginning). Moreover, the marker multisets in type triples in Cy are M; [<ora(Q)» SO
Mk(Cp)(m) = 0, and thus also (F’', M’, Co—0c) is m-clear. <

Out of Lemma G.2 we easily deduce the following lemma.

» Lemma G.3. Suppose that we can derive T' FE S : 7> ¢, where Mk(7)(m) = 0 and
ord(S) <m. Then c=0.

Proof. Suppose to the contrary that ¢ # 0. Then for some rule used in the derivation, its
conclusion A & R : (F,M,c)>d has a nonzero flag counter d, but flag counters in all
premisses are 0. This is possible only in the following rules: (Con0), (Con1), (Con>1), or (@).
In these rules we have (F,d) € Comp,,(M;---), where by Lemma G.2 we have M (m) = 0.
Moreover, in all pairs (F;, ¢;) passed to this Comp,, predicate we have that ¢; = 0 and that
F; is m-bounded (this is also the case for F; = {(0,a)} since m > ord(S) > 0). We see
that the numbers f/, 41,0 and fy41,4 appearing in the definition of Comp,,, are 0, and thus
necessarily d = 0, contrary to our assumption. <

One may suspect that Lemma G.3 can be generalized to lower orders, i.e., that whenever
we can derive I' =5 St (F, M, 7) > ¢ with M (k) = 0 for all k > ord(S), then F[. 45 = 0.
The justification of such a statement would be as those of Lemma G.3: flags of order
k+1 > ord(S) are created only when a marker of order k > ord(S) is visible, while such
markers are not provided neither in the derivation itself (since M (k) = 0) nor in the the
arguments of the A-term. Live is not so simple, however: it may be the case that I" simply
provides some flag of order greater than ord(S). This is illustrated by the following example.

» Example G.1. In this example we suppose that A = {a}; then p; = (0, {0, 1]}, 0). Denote
% = ({(1.2)},0,00) and 5= ({(1,2)1,0, {3} —0-0),

and consider the following type derivation, in which x is of sort o, y is of sort o—o, and z is
of sort (0—0)—o0—o.

(VAR)
ey {7 F1y:74>0

@
b Al yx ([(1L2)]1,0,050)
- (VAR) - N (M)
ekya):pi>{(a, 1)} N ely = {7} F1 Axyx: 7y >0)
e by Aza() : (0,40, 1}, {6[}—o0) > {(a, 1)} g1 Ay Axyx:6>0 @)

e by (Az.a()) Ay Axyx) : pr>{(a, 1)}

P. Parys

The type judgment concerning the subterm yx is of the considered “illegal” form: it provides
a flag of order 1, but does not use any markers. This means two things: first, that such a
type judgment can be derived, and second, that it can be used in a derivation concerning a
closed A-term of sort o. We notice, however, that this type judgment could appear in the
whole derivation only because it is actually ignored (Az.a() ignores its argument z); otherwise,
it would be necessary to derive 7, for some subterm that would be given as y to Ay.Ax.y x,
and this would be impossible, since we cannot create a flag of order 1 without using markers.

We thus have to generalize Lemma G.3 in a more subtle way, having in mind the above
issues. To this end, we proceed in a minimalistic way: in Lemma G.4 we prove what will be
really useful for us, although it might be effortless to prove a slightly stronger result. While
formulating this lemma we need the following definition. Consider a use of the (@) rule that
derives a type judgment I' H' PQ : 7> c. We say that this use of the (@) rule is wild if
it has a premiss I 7, @ : (F,0,0) > ¢ such that for some (k,a) € F[,,4(g) it holds that
Mk(7)(1) > 0 for all I € {k,k+1,...,m}. A type derivation is wild if, at some moment, it
uses the (@ rule in a wild way.

» Lemma G.4. There is no wild derivation of I' 5, P : plk > ¢, where P is a closed A\-term
of sort o and complexity at most m + 1.

This lemma will be proven in Appendix I. We remark that we do not use this lemma in
Appendices H and I, only in Appendix J. Right now we only prove the following auxiliary
lemma.

» Lemma G.5. There is no wild derivation of T' 5 S : 7 c if Mk(F)(m) = 0 and
ord(S) < m.

Proof. Suppose that some use of the (@) rule is wild in a derivation of this type judgment.
Let A FF, P@Q : 6>d be the conclusion of this rule. The wildness condition requires in
particular that Mk(é)(m) > 0, but by Lemma G.2 we have Mk(6)(m) = 0, so all this could
not happen. <

H Completeness

In this section we prove the left-to-right implication of Theorems 3 and D.1. We divide the
proof into the following four lemmata. Recall that P — ;) @ denotes a S-reduction of order
k, i.e., concerning a redex (Az.R) S with ord(z) = k.

» Lemma H.1. Let P be a finite closed A\-term of sort o and complexity at most n. Then
there exist A-terms Qpn, Qn—1,-..,Qo such that P = Q,, and for every k € {0,...,n — 1},
Q. is of complexity at most k and Q41 —>/*3(k) Qr, and Qo = BT(P).

» Lemma H.2. Suppose that T € L(P), and that c: A — N is such that for every a € A,
c(a) is the number of appearances of a in T. Then we can derive € 2, P : p2,>c. Moreover,
if T is a word, then we can derive e g P : pgbc.

» Lemma H.3. Suppose that P — gy Q, where m > 0. If we can derive I' =5, Q : T ¢,
then we can also derive I') P : T c.

» Lemma H.4. If we can derivee b, P : pf >e (wherem > 0 if k =€, andm > —1 if K =A),
then we can also derive € &5 1 P : pli, i >c for some ¢ such that ¢'(a) > {ﬁ log, c(a)J

for alla € A.

XX:33

XX:34

Complexity of the Diagonal Problem for Recursion Schemes

Now the left-to-right implication of Theorem 3 easily follows. Indeed, take a closed word-
recognizing A-term P of sort o and complexity at most m + 1 such that Diag(L(BT(P)))
holds, and take any n € N. Let us denote fo(l) =1 and fr11() = {ﬁ log, fk(l)J We can
find a number n’ such that f,,(n’) > n, as well as a tree T € L(BT(P)) such that every
symbol from A appears in T at least n’ times. We first apply Lemma F.2, obtaining a finite
A-term P’ such that P < P and T € L(BT(P’)). Clearly the complexity of P’ remains
at most m + 1. Then we apply Lemma H.1 to P’, obtaining A-terms Q.+1, @m, - - -, Qo
with T € £(Qo) = L(BT(P’)). Since T is actually a word, by Lemma H.2 we can derive
e ko Qo : po>co with co(a) > n' = fo(n') for all a € A. Then for every k € {0,...,m} we
perform two steps. First, we repeatedly apply Lemma H.3 to every S-reduction (of order
k) between Qr+1 and Qy, obtaining a derivation of € ki Q41 : pr > . Then, if k < m,
we apply Lemma H.4, obtaining a derivation of € Fry11 Q41 @ Pr+1 > cx+1 for some cpyq
such that cxy1(a) > fi(fe(n')) = fes1(n’) for all a € A. We end up with a derivation of
€ bm P’ i pm > cm, where ¢py(a) > fin(n') > n for all @ € A. Using Lemma F.1 we can
convert it into a derivation of € b, P : py, > ¢y, as needed.

Similarly we prove the left-to-right implication of Theorem D.1, where the A-term P
need not to be word-recognizing. We start as previously, but this time we take n’ such that
fm+1(n') > n. The proofs start to diverge when we use Lemma H.2: this time T is not
necessarily a tree, thus we obtain a derivation of ¢ F2, Qg : p21 > c_1 with c_1(a) > n’ for
all a € A. We then apply Lemma H.4, obtaining a derivation of ¢ F§ Qg : p§ > ¢o for some
¢ such that cg(a) > fi(n') for all a € A. We continue as for words, alternatingly applying
Lemmata H.3 and H.4, so that we end up with a derivation of ¢ 5, P : p5, > ¢, where
em(a) > fm(fi(n')) > n for all a € A, as needed.

In the remaining part of this section we prove the four lemmata.

H.1 Proof of Lemma H.1

Lemma H.1 is a consequence of the following lemma.

» Lemma H.5. Let P be a finite closed A\-term of sort o and complexity n > 0. Then
P —3(m—1) Q for some A-term Q.

Proof. Let Ry be a minimal subterm of P that is of order smaller than n, but has complexity
n (i.e., has subterms of order n). This minimality implies that some “direct subterm” of Ry
has order n. This is possible only when Ry = R; S is an application, where ord(Ry) = n.
Because of the order, R; cannot be a node constructor. Moreover, R; cannot be a variable
as well: since P is closed, this variable has to be bound by some lambda in P; but then
the subterm starting by this lambda would be of order at least » + 1 contradicting the fact
that P has complexity n. Thus R; is a A-binder or an application. If Ry = Ry S5 is an
application, then ord(Rs) = n, and the same argument shows that Ry is a A-binder or an
application. Continuing this way, we obtain that Ry = (Az.R’) Ss ... S1 for some s > 1.
Then, by homogeneity of the sort of Az.R’, we have that ord(x) =n — 1 (the first argument
cannot be of smaller order than any of the next arguments). Thus the S-reduction that
replaces in P the subterm (Az.R’) S5 by R'[Ss/z] is of order n — 1. <

Proof of Lemma H.1. Recall that we are given a closed A-term P of sort o and complexity
at most n. We take @), = P. Then, for every £k = n,n — 1,...,1, we start performing
[B-reductions of order k — 1 from Q, and as QQx_1 we take the obtained A-term from which no
more (-reductions of order £ — 1 can be performed. Since @y is finite, the process necessarily
stops. The complexity of a A-term does not grow during S-reductions, thus by Lemma H.5,

P. Parys

the complexity of Qr_1 is at most k — 1. In particular the complexity of Q¢ is 0, and thus
Qo = BT(P). <

» Remark. We notice that Lemma H.1 would be false if we have allowed A-terms involving
non-homogeneous sorts. For example, in a A-term of the form (Az.\y.P) Q R with ord(z) =0
and ord(y) = 1 we have to perform a S-reduction of order 0 concerning x before a S-reduction
of order 1 concerning y. Homogeneity of sorts should not be seen, however, as a miracle
that is necessary to construct the whole type system considered in the paper; it is rather
an assumption made for technical convenience. Indeed, Lemma H.1 would work also for
A-terms involving non-homogeneous sorts if we have defined the order of a S-reduction
(Ax.R) S —p R[S/z] as ord(Ax.R) — 1, not as ord(z) (notice that these two numbers coincide
for homogeneous sorts). However then it would be necessary to alter the definition of a type
environment (and similarly the (Var) rule): I'(x) should not be ord(z)-bounded, but rather
(ord(Az.R) — 1)-bounded, where Az.R is the superterm binding the variable x. This would

be uncomfortable, as ord(Az.R) — 1 is a contextual information, not determined by x itself.

For this reason we prefer to restrict ourselves to homogeneous sorts.

H.2 Proof of Lemma H.2

Basically, we just apply the rules of our type system, namely the rules (Con0), (Con1) (or
(Con>1) in the tree case), and (ND), in every nd-labeled node choosing the subtree in which
T continues; then the flag counter will compute exactly the number of appearances of every
symbol from A in T'.

Formally, we proceed by induction on T+ n, where n is the smallest number such that
P —7 T (recall that T € L(P) by definition means that P —7, T for some n € N). Take
K =A and m = —1 while proving the first statement, and x = ¢, m = 0 in the case of T
being a word. In both cases, we intend to derive € -}, P : o, > c.

We have two possibilities. One possibility is that P = nd(Py, ..., P.). In this case, the
reduction sequence witnessing P —7, T starts with P —,q P; for some ¢ € {1,...,r}, and
then we have a reduction sequence witnessing P; —>n"d_1 T. The induction assumption gives
us a derivation of € F, P; : p% ¢, where, for all a € A, c¢(a) is the number of appearances of
a in T'. To this type judgment we apply the (ND) rule, deriving € -}, P : o}, > ¢, as needed.

Because P —*, T, and T is a tree, the only remaining case is that P = b(Py,..., P,)
for some b € 3. Then necessarily T = b(Ty,...,T,), and out of the reduction sequence
witnessing P —7y T' we can extract a reduction sequences witnessing P; —/ T; for every
i€{l,...,r}, where n; <n. For ¢ € {1,...,r}, by the induction assumption we know that
we can derive € F¥ P; : pf > ¢;, where ¢;: A — N is such that, for all a € A, ¢;(a) is the
number of appearances of a in T;. Obviously, ¢(a) = ¢1(a) + -+ + ¢.(a) for a € A\ {b}, and
cla) =1+4ci(a)+---+cq(a) if a=b € A. Directly from the definition of the Comp predicate
it follows that

(@,¢) € Comp_(0; ({(0,0)},0),(D,c1),...,(0,¢c)) and
(@, c) € Compy({0]}; ({(0,5)},0), (D, ¢1),- .., (D, ¢r)), hence more generally
(0,¢) € Comp,,,(Mk(py,); ({(0,0)},0), (0, ¢1),.... (0, ¢)).

We recall here that Mk(p2,) = 0 and Mk(pg) = {0[}; in both cases the flag set in p%, is 0.
If » = 0, we simply apply the (Con0) rule. If r = 1 and k = ¢, we apply the (Con1)

rule. Recall that for k = ¢ we assume that T is a tree, which means that » < 1. Thus the

remaining case is that r > 1 and x =A. In this case we apply the (Con>1) rule, where we

XX:35

XX:36

Complexity of the Diagonal Problem for Recursion Schemes

need to notice that Mk(p2,) 4+ --- + Mk(p2;) = 0 = Mk(p2,). In all cases, the derived type
judgment is € i P : pf, > c, as needed.

H.3 Proof of Lemma H.3

Before going into details, let us sketch the proof. Knowing that we can derive I' 5, Q : 7> ¢,
we want to derive the same for a given A-term P such that P —g3(,,) Q. Let us consider
the base case when P = (Az.R)S and Q = R[S/z]; the general situation (redex being
deeper in P) is easily reduced to this one. In the derivation of I' F% Q : 7> ¢ we identify
the set I of places (nodes) where we derive a type for S substituted for z. For i € I, let
A; FE S 6> d; be the type judgment in i. We change the nodes in I into leaves, where we
instead derive e[x — {6;[}] F£, : ;>0 (here we need to know that ord(z) = m, since a type
environment should map x into an ord(x)-bounded triple container, while &; is m-bounded).
It is tedious but straightforward to repair the rest of the derivation, by changing type
environments, replacing S by x in A-terms, and decreasing flag counters. In this way we
obtain derivations of A; Ff, S : &;>d; for every i € I, and a derivation of Y* Ff R : 7 e,
where® Y7 = Y[z {6; |i € I}],and I = T U|],c; A;, and c = e+ >_,.; d;. To the latter
type judgment we apply the () rule, and then we merge it with the type judgments for
S using the (@) rule, which results in a derivation of I' F% P : 7> ¢ (where again we use
the fact that ord(S) = ord(z) = m). We remark that different ¢ € I may give identical
type judgments for S; this is absolutely allowed in the (@) rule. We also need to know that
{6; | i € I} is indeed a triple container, i.e., that every unbalanced type triple appears as &;
for at most |A| indices ¢ € I; this is a consequence of Lemma G.1.

We now come to a lemma that splits a type derivation concerning R[S/z] into parts
concerning R and concerning S.

» Lemma H.6. Suppose that we can derive T' 5 R[S/x] : 7> ¢, where ord(x) = m. Then,
for some finite set I, we can derive A; =5, S :6;>d; for everyi € I, and T* Ff R:7p>e,
where Y* = Y[z — {6; |i € I}], and T =Y U| |;c; Ai, and c=e+ >, d;.

Proof. One possibility is that « is not free in R. Then R[S/x] = R, and I'(x) = 0. We can
take I =0, and T* =Y =T, and e = ¢. We need to derive the type judgment Y* F7 R : #ie,
but it actually equals the type judgment that we can derive by assumption.

In the sequel we assume that z is free in R. We have several cases depending on the
shape of R.

Suppose first that R = x is a variable. Then we take I = {1}, and (A4,61,dy) = (T, 7, ¢),
and T = ¢, and e = 0. Obviously I' = YU A; and ¢ = e+ d;. Because 61 is m-bounded, and
ord(xz) = m, we have that Y% = Y[z — {51]}] is a valid type environment. We can derive
Ay FE S :61>dy by assumption, and Y® FF R : 7> e using the (VaR) rule.

Next, suppose that R = nd(Py, ..., P.). The original derivation ends with the (ND) rule
whose premiss is I F, P[S/xz] : 7> c for some k € {1,...,r}. By applying the induction
assumption for this premiss, we obtain derivations almost as required; we only need to apply
again the (ND) rule to the obtained derivation Y% 5 P, :7pe

Next, suppose that R = A\y.P. We have y # z, and, as always during a substitution,
we assume (by performing a-conversion) that y is not free in S. The original derivation
ends with the (A\) rule, whose premiss is I'ly — C’] Ff, P[S/xz] : 7/ >c. We apply the
induction assumption to this premiss, and we obtain a derivation of A; ¥ S : &, > d; for

5 Recall that whenever we write Y[z + ...], we implicitly assume that T(z) = 0.

P. Parys

every i € I, and of Y[y — C”] FE P : 7' >e, where T% = Y[z — {6; | ¢ € I}, and
Ty— CN=Yy— C"MU|].;Ai and ¢ = e+ >, d;. Notice that A;(y) = 0 for all

icl iel
i € I, because y is not free in S; it follows that C"” = C" and T =T U | |,.; A;. To the type

icl

judgment Y*[y — C'| FE P : 7' >e we apply again the (A\) rule, which gives T* F£ R: 7 >e.

Another possibility is that R = a(P},..., P.), where a # nd. Then the original derivation
ends with the (Con>1) rule (or with the (Con1) rule which is a special case of the (Con>1)
rule), whose premisses are I'; & P;[S/x] : 7; > ¢; for j € {1,...,r}. We apply the induction
assumption to these premisses. Assuming w.l.o.g. that the resulting sets I; are disjoint,
and taking I = U;Zl I;, we obtain a derivation of A; FF S : 6; > d; for every i € I,
and of Y§ 5 Pj : 75> e; for every j € {1,...,7}, where, for every j € {1,...,7}, we
have T = Yjlz — {6; | i € L}t], and [; = T; U], A, and ¢; = ¢ + 3¢, d
For j € {1,...,r} we have by Lemma G.1 that Mk(Tz) < Mk(7;), hence in particular
Zielj Mk(6;) < Mk(7;). Since Mk(7) = Z;:l Mk(7) (Which follows from the (Con>1)
rule) we obtain that), ; Mk(d;) < Mk(7). As Mk(7) is a marker multiset (i.e., contains
every marker at most |A| times), we can deduce that every unbalanced type triple appears
as &; for at most |A| indices ¢ € I, and thus {§; | ¢ € I} is a valid triple container
and Y* = Y[z — {6; | ¢ € I[}] is a valid type environment. Another side condition
of the (Con>1) rule says that (F,c) € Comp,,(M;({(0,a)},0),(F1,c1),...,(Fr,c)) for
appropriate arguments M, F, Fj. Taking e = ¢ + ijl(; — ¢j) we also have that (Fe) €
Comp,,, (M;({(0,a)},0), (F1,e1),...,(Fr,e)). Having all this, we can apply the (CONzl)
rule again, deriving T* k7, R : 7> e. Simultaneously we observe that c=e+ 3., d

Finally, suppose that R = P Q. This case is very similar to the previous one. The
original derivation ends with the (@ rule, whose premisses are I'g F%, P[S/x] : 7o > ¢o and
L Fr Q[S/x] : 75> ¢ for j € J, where we assume that 0 ¢ J. We apply the induction
assumption to all these premisses. Assuming w.l.o.g. that the resulting sets I; are disjoint,
and taking I = UJG{O}UJ I, we obtain a derivation of A; -y S : &;>d; for every i € I, and
of YE 5 P :7y> e, and of Y7, Q7> ej for every j € J, where, for every j € {0} U J,

we have Y7 =Tl — {6; | i € L;}f], and T'; = T U];c;, A, and ¢j =€ + > _,cp di- As

previously, using Lemma G.1 we deduce that TI = T[aj — {]0Z | i € I}] is a type environment.
By applying the (@) rule again we derive T* 5 R :7>e, where e = ¢+ ZjE{O}UJ(eJ).

It holds that c=e + > <

ZGI

» Lemma H.7. If F € F£f, and M € M, and M(k) = 0 for all (k, a) € F then

(F',c) € Comp,,(M;(F,e),((0,d;))icr) if and only if F' CF and c =e+), d;

Proof. Consider the numbers f; , and f,’C . appearing in the definition of the Comp,,
predicate. Looking at them consecutively for k¥ = 0,...,m + 1 we notice that fl/c,a =0
and fra = [F'N{(k,a)}|. Indeed, f; , = 0 implies fy o, = [F N {(k,a)}|, and if k = 0 or
M(k —1) =0, we have f; , =0, while if £ >0 and M(k — 1) > 0, we have f; , = fr—1., =
|[FN{(k—1,a)}| =0, because (k—1,a) € F implies M (k — 1) = 0 by assumption. It follows
that F = {(k,a) | fx,« > 0}, and that fi,41.4 = |F N {(m—|— 1,a)}| =0 for all a € A (since
F is m-bounded). Finally, recall that (F”,c) € Comp,,(M;(F,e),((0,d;))ier) if and only if
F' C{(k,a) | fra >0} (ie.,, FF C F) and ¢(a) = fin+1,a —|—e()+ icrdi(a) for alla € A
(e, c=e+ D e di). <

Proof of Lemma H.3. Recall that we are given a derivation of I' F}, @ : 7> ¢, and a
B-reduction P — @ that is of order m, and our goal is to derive I' -}, P : 7> c.

Suppose first that P = (Az.R) S and @ = R[S/x], where ord(z) = m. From Lemma H.6
we obtain a derivation of A; 5 S : ;> d; for every i € I (for some set I), and a

derivation of Y[z — C] Fy, R: 7re, where C = {6; | i € I}, and I' = YT U |];c; Ay,

XX:37

XX:38

Complexity of the Diagonal Problem for Recursion Schemes

and ¢ = e+ >, ;d;. Let us write 7 = (F,M,7), and 6; = (F;, M;,0;) for i € I. To
the type judgment Y[z — C] F5 R : 7>e we apply the ()) rule, deriving T F% Az.R :
(F, M — Mk(C),C—71)>e. Notice that Mk(C) < Mk(Y[z — C]) < M by Lemma G.1, so it
makes sense to use M — Mk(C). When £ = ¢ and 7 = C;— ... »Cs—0, we also need to
know that (M — Mk(C) + Mk(C) + >=7_; Mk(C;))(0) = 1 (see the definition of a type triple),
but it follows immediately from (M + Y_7_, Mk(C;))(0) = 1.

To this type judgment, and to A; ¥ S : §;>d; for i € I, we want to apply the (@) rule. By
definition of a type judgment, the type triples &;, hence also the sets F; and M;, are m-bounded.
Recalling that ord(S) = ord(x) = m we have that the type {|(Fi[<orq(s), Mil<ora(s), o) | i €
I}—7 that we have to derive for Az.R is indeed C—7, and the side condition ord(S) < m is
satisfied. The resulting marker multiset is (M — Mk(C)) + >_,.; M; = M, and the resulting
type environment is T U| |;.; A; = I'. Notice that the sets F; [>ord(s) are empty, and that
M (k) = 0 for all (k,a) € F by definition of a type triple (7 = (F, M,) is a type triple),
and hence (F,c) € Comp,,(M; (F,e), (Fils ora(s): di))icr) by Lemma H.7. The condition
{(k,a) € F | M(k) = 0} C F is clearly satisfied. Thus the (@ rule can be applied, and it
derives I' F: P : 7> c.

It remains to consider the general situation: the redex involved in the S-reduction P —3 @
is located somewhere deeper in P. Then the proof is by a trivial induction on the depth of
this redex. Formally, we have several cases depending on the shape of P, but let us consider
only a representative example: suppose that P =T U and Q =TV with U —3 V. In the
derivation of I' Hf, @ : 7> ¢ we apply the induction assumption to those premisses of the final
(@) rule that concern the subterm V', and we obtain type judgments in which V is replaced
by U. We can apply the (@) rule to them, and to the premiss talking about 7', and derive
e P:7ve <

H.4 Proof of Lemma H.4

Recall that in Lemma H.4 we are given a type derivation of order m, and we want to convert
it into a type derivation of order m + 1, without decreasing the flag counter too much. The
order of the derivation can be raised without any problem, we only need to additionally place
|A| markers of order m + 1 in some leaves of the derivation. We notice, however, that in the
original derivation the flag counter computed the number of order-(m + 1) flags, while in the
new derivation it computes the number of order-(m + 2) flags. We thus have to ensure that
many order-(m + 2) flags are created in the new derivation. To this end, we appropriately
choose where the order-(m + 1) markers are placed. Let us now give more details.

For the rest of the subsection fix the order m. While thinking about the word variant
of the type system, we assume that m > 0, and while thinking about the tree variant, we
assume that m > —1. We shall see derivations as trees. A derivation tree is a finite tree with
nodes labeled by type judgments, such that for every node, the label of this node can be
obtained by applying some rule of the type system to labels of children of this node. We
consider derivation trees only for type judgments of order m (that is, only the derivation
that we receive as the input to the lemma is seen as a tree, not the one that we produce).
For a derivation tree ¢ and for its node v, by ¢, we denote the subtree of ¢ starting at v, and
by ¢, we denote the flag counter being part of the type judgment written in v.

The proof is done in two steps: we first label the derivation tree by some additional flags
and markers, and then basing on such a labeling we construct a derivation of order m + 1.
Recall that A is the fixed set of symbols for which we solve the diagonal problem. For B C A,
and for a derivation tree t, a B-labeling of t assigns some number of order-(m + 1) markers
to every leaf of ¢, and for every a € B, some number of (m + 1, a)-flags to every node of ¢. In

P. Parys

the sequel, we simply talk about assigning markers and a-flags, having implicitly in mind
that they are of order m + 1. A B-labeling p of ¢ is consistent, if:
for every node v of t having children vq, ..., v, and for every a € B, p assigns at most
ey(a) — ¢y, (a) — -+ — ¢y, (a) a-flags to v, and
in every subtree of ¢ in which p assigns no markers, p assigns at most one flag.
Observe that our type system ensures that the number ¢, (a) — ¢y, (a) — - - - — ¢y, (a) appearing
above is always nonnegative: the flag counter in every node is not smaller than the sum of
flag counters coming from the premisses.

» Lemma H.8. Let t be a derivation tree with root r, and let a € A. Then there exists a
consistent {a}-labeling p, of t that assigns in total exactly one marker and at least log, c¢,.(a)

a-flags.

Proof. Induction on the size of ¢. If ¢ consists of a single node, then to this node we assign

one marker, and ¢,(a) a-flags. Such a labeling is consistent, and we have ¢,.(a) > log, ¢, (a).

Suppose now that r has some children vy, ..., v, with k& > 1. Fix some s for which ¢,_(a)
is maximal, i.e., such that ¢, (a) > ¢, (a) for all i € {1,...,k}. We apply the induction
assumption to the subtree t,_; it gives us a consistent {a}-labeling of this subtree, which
assigns in total exactly one marker and at least log, ¢, (a) a-flags. Moreover, for every
i€{1,...,k}\ {s} such that ¢,,(a) > 0, we choose some node w; in the subtree t,, so that
Cw; (@) > 0 but ¢, (a) = 0 for every child u of w; (clearly such a node exists), and we assign an
a-flag to the chosen node w;. Finally, we denote | = ¢,(a) — ¢y, (a) — -+ — ¢y, (@), and to the
root of ¢ we assign [a-flags. It should be clear that the obtained {a}-labeling is consistent.

It remains to observe that the number f of assigned a-flags is at least log, ¢,.(a). In
the degenerate case of ¢, (a) = 0 we have ¢,,(a) = 0 for all ¢ € {1,...,k}, and thus
f=1=c.(a) >log,yc.(a). Suppose now that ¢, (a) > 0, and denote I’ = |{i € {1,...,k} |
¢y;(a) > 0}]. Then by construction we have f > [+ (I’ — 1) + log, ¢,_(a). Recalling that
¢y, (a) >0 and ¢y, (a) > ¢y, (a) for all i € {1,...,k}, we obtain

f21+1 —1+1ogy ey, (a) > log,
= log,
> log,

I+1) +1logy ¢y, (a)

(I +1) o, (a))

L+ ¢y (a))

I+ ¢y (a) + -+ ey (a) =logy cr(a) . <

—~ o~~~

> logy

» Lemma H.9. Lett be a derivation tree with root r. Then there exists a consistent A-labeling

of t that assigns exactly |A| markers and at least b%l log, CT(CL)J a-flags, for every a € A.

Proof. We start by applying Lemma H.8 for every symbol a € A, which results in a consistent
a-labeling p, of t. Basing on these labelings we construct the resulting labeling p. For every

node v of ¢, if kK among labelings p, assign a marker to v, then in p we assign k& markers to v.

This assigns |A| markers in total. For every node v of ¢ such that p assigns some markers in
ty, and for every a € A, if p, assigns k a-flags to v, then in p we also assign k a-flags to v.

Let now V be the set of all nodes v such that p assigns no markers in ¢, but it assigns
some markers in the subtree starting in the parent of v. In subtrees starting in v € V' there
may be plenty of flags assigned by the labelings p,, and we have not yet taken these flags to
p. We do this now, using the following algorithm: we repeat the big step as long as it gives
something new. In a big step, we execute the small step for every symbol a € A. In a small
step concerning some symbol a, we choose some v € V such that p, assigns an a-flag to some
node w in the subtree t,, but p does not assign any flag in this subtree yet; if such nodes
v, w exist, then in p we assign an a-flag to w.

XX:39

XX:40

Complexity of the Diagonal Problem for Recursion Schemes

We notice that p assigns in every node of ¢ at most as many a-flags as p, did. Moreover,
in every subtree starting in a node of V' (and thus in every subtree of ¢ in which p assigns no
markers), p assigns at most one flag. This means that p is consistent.

It remains to observe that the number of assigned flags is large enough. Fix some a € A.
Let f, be the total number of a-flags assigned by p,; by Lemma H.8 we have f, > log, c¢,.(a).
These flags are of two kinds: we have f, = g, + ha, where g, is the total number of a-flags
assigned by p, to nodes w such that p assigns some marker in ¢,,, and h, is the number of
a-flags assigned by p, to remaining nodes. The g, flags of the first kind are simply copied to
p. Let us now look closer on the flags of the second kind. Every node w such that p assigns
no markers in t,,, belongs to t, for some v € V. Moreover, for every v € V, p, assigns at
most one a-flag in t,. It follows that h, equals the number of nodes v € V such that p,
assigns some a-flag in ¢,. In every small step we assign a flag in the subtree ¢, for at most
one node v € V', and thus in every big step we assign a flag in the subtrees ¢, for at most | A|
nodes v € V. This means that during the first {%J big steps there still exists a node v € V'
such that p, assigns an a-flag in t,, but p does not assign any flag in this subtree yet, and
thus a new a-flag will be assigned by p. In consequence, the number of a-flags assigned by p

is at least g, + L%J > L\%J > {ﬁ log, c,(a)J. <

Next, we show how to raise the order of a type derivation basing on a consistent labeling.
In this part, it is convenient to assume that the labeling is maximal, in the following sense:
a consistent A-labeling p of a derivation tree ¢ is called maximal if for every a € A and for
every node v of ¢ having children vy, ..., v, if p assigns some marker in ¢,, then p assigns
exactly ¢,(a) — ¢y, (@) —- - - — ¢y, (a) a-flags to v. Notice that in such nodes this is the maximal
number of flags allowed by the first point in the definition of consistency. We cannot require
anything similar from nodes v such that no marker is assigned in t,,, as the number of flags
in those nodes is strongly restricted by the second point of the definition.

We now define functions Newy and Newg:: we say that Neww(M,u) = M’ and
Newec(F,p, f) = (F',) if

M'(k) = M(k) for k #m+1, and M'(m + 1) = u,

if w >0, then F/ = F and ¢ = f, and

if =0, then F/ =FU{(m+1,a)| f(a) >0} and ¢/ = 0.
The intended meaning is that if M and F are a marker multiset and a flag set derived in
some node v of a derivation tree, and in ¢, a labeling assigns u markers and f(a) a-flags for
every a € A, then in the new derivation that we construct, we will use M’ as the marker
multiset, F’ as the flag set, and ¢’ as the flag counter. Notice that the previous value of
the flag counter is not taken into account. We now have a lemma saying that the Comp
predicate remains satisfied after applying the transformation.

» Lemma H.10. Suppose that (F,c) € Comp,,(M; ((F;,¢;))icr), where F € FF, and m > 0

ifk =€, andm > —1if k =A. Fori eI let uy; € N and f;: A — N. Suppose also that
> ety and f <Y fite—=3 ¢, andif p >0 then f=3, ; fi+c—> . ¢.
Finally, for every i € I suppose that if p; =0 then f;(a) <1 for all a € A, and that either
F, e Fr, or
fi=0and F; = {(0,a)} for some a € X.
In such a situation, Newgc(F, i, f) € Comp,, 1 (Newm (M, p); (Newre(Fi, s, fi))icr)-

Proof. Denote M’ = Newm(M,), (F',c') = Newgc(F, u, f), and (F},c}) = Newgc(F;, pi, fi)
for i € I. We consider the numbers f; , and f,’c,a appearing in the definition of the predicate
Comp,,,(M; ((F;,¢;))icr). We also consider analogous numbers defined by the predicate

P. Parys

Comp,, 1 (M'; ((F}, ¢;))ier), and we call them gy, and g} ,. Since M'|,, = M|, and
Fll<n = Fil<, for i € I, for every a € A we clearly have that g, = fkja for k < m, and
Ira = frq for k <m+ 1. Moreover gmi2.4 = Gpioa + 2icr [Fi N{(m +2,0)} = g1, 40.4
since the sets F] are (m + 1)-bounded (notice that F; = {(0,a)} need not to be m-bounded,
but surely is (m + 1)-bounded).

Let us now see that for all 4 € I and a € A it holds that
|0 {(m+1,a)} + fi(a) = |[F; n{(m+1,a)}| + ci(a). (1)

Indeed:
if p; > 0, then F} = F; and ¢} = f;;
if u; =0 and f;(a) = 0, then cj(a) = 0 and F} = F};
if u; = 0 and f;(a) > 0, then c}(a) = 0, and (m + 1,a) € F; (since F; € Ff), and F!

contains (m + 1, a) (by definition of F}), and f;(a) <1 (by assumption), which gives (1).

Using (1) we observe that for every a € A,

> fila) +ela) = > cila) =Y fila) + fmita

il il i€l
= frrra+ D IFN{m+ L)} +) fi(a)
i€l il
= Grrra+ Y N {(m+1La)}| +) ci(a)
i€l i€l
= gm+1.a +) cila). (2)
il

In order to obtain the conclusion of the lemma, we need to prove two facts: that F’ C
{(k,a) | gr,a > 0}, and that ¢'(a) = gmy2,a + > _;c;Ci(a) for all a € A. We first concentrate
on the part F' C {(k,a) | gx,o > 0}. By assumption we have that F' C {(k,a) | fx,. > 0},

and thus also F' C {(k,a) | gk,q > 0} since F is m-bounded, and since gi o = fi,q for £ < m.

When g > 0, we have F’ = F, and we are done. Suppose thus that = 0. Then F’ contains
also elements (m + 1,a) for all @ € A such that f(a) > 0. Concentrate on one such a. By
assumption and by (2) we obtain

0< f(a) < Z fila) + c(a) — Zci(a) = Ym+1,a + ch(a) .
iel iel i€l
Since 0 = p > >, o ps, for every i € I we have p; = 0 = ¢j(a), and thus gmy1,, > 0. We
thus have (m +1,a) € {(k,a) | gr,o > 0}, as required.

Next, we fix some a € A, and we prove that ¢/(a) = g;,,1 2., + >_;c; ¢i(a), which is what
we need since gmi2,a = gp42.q- Suppose first that 4 = 0. Then ¢/(a) = 0 and ¢j(a) = 0 for
all i € I, since pu = 0 implies y1; = 0. We also have M'(m + 1) = p = 0, and thus g;,,,» , =0,
which gives the thesis. Next, suppose that p > 0. In such a case, using (2), we obtain that

d(a)=fa) =) fila) +cla) = Y _€i(@) = gmira+) ci@) = gryoa + Y _cila).
i€l i€l i€l il
|

» Lemma H.11. Let t be a derivation tree deriving I' F5 R : (F,M,7)>c (where m > 0
if k = ¢, and m > —1 if kK =A) such that ord(R) < m + 1, and T'(x) # 0 only for
variables x© of order at most m. Let also p be a mazximal consistent A-labeling of t, which

assigns (in total) u < |A| markers and f(a) a-flags, for every a € A. Then we can derive
CEp g R (F, M,)¢, where M’ = Neww (M, i) and (F',c") = Newgc(F, 1, f).

XX:41

XX:42

Complexity of the Diagonal Problem for Recursion Schemes

Proof. Denote 7+ = (F,M,7) and 7/ = (F',M’,7). We first prove that 7' is indeed an
(m+1)-bounded type k-triple. By assumption 7 is an m-bounded type k-triple, so M € Mk .
Since M’ differs from M only on order m + 1, and M'(m 4+ 1) = p < |A|, we obtain
that M' € My, | (if K = ¢, from M(0) < 1 we additionally deduce M’(0) < 1 since
then m + 1 > 1). We also have F € Ff C Frii1- The set F' differs from F only when
w = 0, and then it additionally contains those pairs (m + 1,a) for which f(a) > 0. By
consistency of p we know that if 4 = 0 (i.e., if p assigns no markers) then) _, f(a) < 1.
Thus (m + 1,a),(m + 1,b) € F' implies a = b, which establishes that ' € F}, ;. We
also need to know that M'(k) = 0 for all (k,a) € F'. For k < m this is the case because
M'<,, =M and F'[.,, = F, and by definition of F’ we have (m + 1,a) € F’ only when
M'(m+1) = = 0. If s = £, we additionally need to know that M'(0)+>7_, Mk(C;)(0) =1,
where 7 = C;— ... —»Cy—o; this is the case because then M(0) + > ;_, Mk(C;)(0) =1 and
M’'(0) = M(0) due to m+1 > 1.

The rest of the proof is by induction on the size of t. We have several cases depending on
the shape of R.

Suppose first that R = x is a variable. Then the (Var) rule used in the only node of ¢
ensures that ¢ = 0 and that I' = [z — {(F, M| <42, 7)}]. By assumptions of the lemma
ord(z) < m, so M'[4y = M <org(z)- Moreover F' = F and ¢/ = 0 since f < ¢ =0 by
consistency of p. Thus the (VAR) rule can equally well derive I' -7 | R: 7' > ¢ (notice that
¢ =0).

Next, suppose that R = nd(Py,...,P.). Then the root of ¢t has exactly one child v,
labeled by the premiss of the (Np) rule, I' F% P; : 7> ¢ for some ¢ € {1,...,r}. Since the
flag counter is the same as in the root, p assigns no flags to the root of ¢ (by consistency of
p). Thus the induction assumption applied to ¢, gives us a derivation of I' % | P; : 7/ > ¢/,

/

Applying back the (ND) rule we derive " Foar P 7.

Suppose now that R = Az.P. Then the root of ¢t has exactly one child v, labeled by
the premiss of the (A\) rule, I'[x — C’] i P : (F, My, 7)) > ¢, where 7 = C—7y, and
M = My — Mk(C), and ¢’ C C. As in the previous case, no flags are assigned to the root of
t. Because ord(R) < m+ 1, we have ord(P) < m+1 and ord(z) < m, so assumptions of the
lemma are satisfied for ¢,; the induction assumption gives us a derivation of I'|z — C'] k- |
P (F',M;,7>)>c, where M| = Newm(May, it). The triple container C' is ord(x)-bounded,
thus since ord(z) < m we have M'(m+1) = p = M{(m+1) = M{(m+1) — Mk(C)(m + 1),
and hence M’ = M} — Mk(C'). Thus after applying back the () rule we obtain a derivation
of PHr R:7>c.

Next, suppose that R = a(Py,...,P.), where a # nd and r > 0. The root of ¢ has
exactly r children vy, ..., v, labeled by T'; F5 P, : (F;, M;,0)>¢; for i € {1,...,r}. Take
I={0,1,...,r}, up=0, fo =0, Fy = {(0,a)}, coc = 0. For i € {1,...,r} denote by u; the
number of markers assigned by p in t,,, and by f;(a) the number of a-flags assigned by p
in ¢,,, for every a € A. By the induction assumption, for every i € {1,...,7} we can derive
Ui By Bioc (Ff, M, 0) > c;, where M| = Neww(M;, p;) and (F},c;) = Newgc(F, pi, fi)-
The rule used in the root of ¢ (which is either (Con0), or (Con1), or (Con>1)) ensures
that T' = ||/, I, and 7 = o, and (F,c) € Comp,,(M;(Fo,co), (Fi,c1),...,(Fp,¢)); if
r > 0 we also have M = ' | M;. We want to apply Lemma H.10; let us check its
assumptions. Clearly pu > >, pu;. By consistency of p, and because fo = c¢o = 0, we
have that f < > . ; fi +¢— > ,c;ci, and that for every i € I, if y; = 0 then fi(a) < 1
for all @ € A. By maximality of p we have that if u > 0 then f =3 ., fi+c—> ;¢
Moreover Newgc(Fo, o, fo) = (Fp,0). Thus by Lemma H.10 we obtain that (F’,¢') €
Comp,, 1 (M'; (Fy,0), (F{,c}),...,(F/,c.)). Applying back the appropriate rule (namely

P. Parys

(Con0) if r = 0, and (Con1) if r > 0 and k = ¢, and (Con>1) if r > 0 and kK =A) we can
derive 'y R: 7> .

Finally, suppose that R = PQ. Let I'g 5 P : (Fo, My,C—71)>co and T'; FE Q :
(Fy, M;, ;) > ¢; for each i € I be the premisses of the (@) rule used in the root of ¢, where
C = {(Fil<ora0)s Mil <ora(q):7i) | i € I[, and w.lo.g. we assume that 0 ¢ I. Denote
the children of the root of ¢ having these type judgments as labels by v; for i € {0} U I,
respectively. For ¢ € {0} U I denote by p; the number of markers assigned by p in ¢,,, and
by fi(a) the number of a-flags assigned by p in ¢,,, for every a € A. The (@) rule ensures
that I' = Llie{O}UI I'; and ord(Q) < m, and by homogeneity of the sort of P we obtain that
ord(P) < ord(Q) +1 < m+ 1. This allows us to apply the induction assumption, which gives
us derivations of T'g 0 | P (Fy, My, C—7) ey and Ty i Q : (Ff, M/, ;) > ¢ for each
i € I, where M| = Newm(M;, ;) and (F}, c¢;) = Newpc(F;, pg, f;) for all ¢ € {0} UI. To these
type judgments we would like to apply the (@) rule, but we need to check its conditions.

Since F!l<,, = Fil<,, and M![,, = M;|<,, for all i € I, and ord(Q) < m, we have that

C=A{(F{I<ora@) Mil<oraq),7i) | 1 € I]}.

From the original use of the (@) rule we know that M = 3, ; M;, and (Fic) €

Comp,, (M; (Fo, o), ((Fils ora(q)s €i))icr). Assumptions of Lemma H.10 are satisfied:

> ZiE{O}UI i by definition; f < Zie{O}UI fi+c— Zie{o}ul ¢; by consistency of p;

for every ¢« € {0} U I, if u; = 0 then f;(a) < 1 for all a € A, again by consistency

of p; finally, if 4 > 0 then f = Zie{o}ul fi+c— Zie{o}ul ¢; by maximality of p.

Moreover, since the Newg. function modifies only order m + 1, and ord(Q) < m, we

have Newee(F;[5 ora(q)s s [i) = (FiI5ora(q), ¢;)- Thus by Lemma H.10 we obtain that

(F', ') € Compy (M5 (Fhy ¢h), (F! o ovaggys €)icr)-

We also need to prove that {(k,a) € F} | M'(k) = 0} C F’. We know that {(k,a) €

Fy | M(k) =0} C F, and since Fj, M’, F' differ from Fy, M, F only on order m + 1, we

only need to check for all a € A that if M'(m + 1) =0 and (m + 1,a) € F{ then also

(m+1,a) € F'. This is clear: (m+1,a) € Fj may only happen when fy(a) > 0, but then

f(a) > fo(a) > 0, which in the case of p = M’(m + 1) = 0 implies that (m + 1,a) € F".
All this allows us to apply back the (@) rule, and derive I' -5, | R: 7' > ¢ <

Proof of Lemma H.4. Consider a derivation tree ¢ that derives ¢ F, P : p% >c. Using
Lemma H.9 we construct a consistent A-labeling p of ¢ that assigns exactly |A| markers
and at least [ﬁlog2 c(a)J a-flags, for every a € A. W.lo.g. we can assume that p is
maximal: if not, we simply add more flags in some nodes, as required by the maximality
condition.” Then Lemma H.11 gives us a derivation of € -, P : pf ;> ¢ for some ¢’ such

that ¢/(a) > L—}‘l log, c(a)J for all a € A, as required. <

I Soundness

In this section we prove the right-to-left implication of Theorems 3 and D.1. As a side effect,
we also obtain a proof of Lemma G.4. We, basically, need to reverse the proof from the
previous section. We give the following three lemmata.

» Lemma I.1. Suppose that P — () Q, where m > 0. If we can derive I' 5, P : 7>c, then
we can also derive TV 1 Q : 71> ¢ for some TV T T'. Moreover, if the original derivation was
wild, then the resulting one is also wild.

7 We notice that usually the labeling constructed by Lemma H.9 is not maximal.

XX:43

XX:44

Complexity of the Diagonal Problem for Recursion Schemes

» Lemma L.2. Let P be a A-term of complexity at most m. If we can derive e Ff, P : pf >c,
where either k =A or m — 1 > 0, then we can also derive e F5 | P : pt _ > ¢ for some
' > c. Moreover, if the original derivation was wild, then the resulting one is also wild.

» Lemma 1.3. Suppose that we can derive e bg P: po>c ore 2, P: p2 >, where P is a
A-term of complexity 0. Then there exists a tree T € L(P) such that for every a € A, the
number of appearances of a in T is c¢(a).

Let us now see how the right-to-left implication of Theorem 3 follows from these lemmata.
Thus take a closed M\-term P of sort o and complexity at most m + 1, and suppose that for
every n € N we can derive € b, P : p, > ¢, for some ¢, such that ¢, (a) > n for all a € A.
We want to prove that for every n € N there is a tree T' € L(P) in which every symbol a € A
appears at least n times. To this end, take some n € N, and the type judgment corresponding
to this n. Using Lemma F.1 we can find a finite Ad-term P’ < P for which we can also derive
€bm P i pm > Cm. Then we apply Lemma H.1 to P’, obtaining A-terms Q.n11, @m, - - - Qo
such that, for every k € {0,...,m}, the complexity of Qj is at most k, and Q11 —>;‘3(k) Qr,
and @Q,,+1 = P’. Next, consecutively for kK =m,m —1,...,0 we perform two steps. First,
we repeatedly apply Lemma 1.1 to every S-reduction (of order k) between Q11 and Qg,
obtaining a derivation of € i Qg : px > cx. Then, if £ > 1, we apply Lemma 1.2, obtaining
a derivation of € Fp_1 Qp : pr—1 > cx—1 for some cx_1 > c. We end up with a derivation of
e bo Qo : po > co, where co(a) > ¢n(a) > n for all @ € A. By Lemma 1.3 we can find a tree
T € L(Qo) = L(BT(P')) such that for every a € A, the number of appearances of a in T as
at least n. Due to Lemma F.2, we also have T € L(BT(P)), as needed.

Similarly we prove the right-to-left implication of Theorem D.1. The only difference
is that when we end up with a the type judgment ¢ -5, Qo : p§ > co, we cannot directly
apply Lemma I1.3. But this time we should just apply Lemma 1.2 one more time, and apply
Lemma 1.3 to the type judgment e F2, Qg : p2, >c_1.

We also obtain a proof of Lemma G.4. Indeed, suppose that we have a wild derivation
of e FF P : pF ¢, for a closed A\-term P of sort o and complexity at most m + 1. Then,
by applying the same arguments as above, we obtain a derivation of € F§ Qo : pf > co
for some A-term Qg of complexity 0. Moreover, this derivation is wild, since Lemmata 1.1
and 1.2 preserve wildness. On the other hand, a A-term of complexity 0 does not contain
any applications, so our derivation does not use the (@ rule at all, and hence it cannot
be wild. This is a contradiction implying that there could not exist a wild derivation of
erFL P:pr >cm.

In the remaining part of this section we prove the three lemmata.

1.1 Proof of Lemma l.1

The overall idea of the proof is very simple: when P = (Az.R) S and QQ = R[S/z], we perform
a surgery on the derivation concerning P and we obtain a derivation concerning S. Namely,
whenever the subderivation concerning R uses the (VaRr) rule for the variable z, we should
insert there a subderivation that derives the same type triple for S. We need to notice that
every unbalanced type triple derived for S is used for exactly one appearance of x in the
derivation concerning R. Unbalanced type triples may be used many times, or not used at
all, but we can see that duplicating or removing the corresponding derivations for S is not
problematic; in particular it does not change the flag counter, as shown in Lemma G.3.

We start the proof by showing in Lemma 1.4 how type derivations may be composed
during a substitution. This lemma can be seen as a converse of Lemma H.6.

P. Parys

» Lemma L.4. Suppose that we can derive A; F, S :6;>d; fori €I, and Y*FE R:7pe,
where Y% = Y[z — {6; | i € I}] for a variable x of order m and of the same sort as S, and
I'=TU|l,c; Ai is a type environment. Then we can also derive I'" B R[S/x] : 7> ¢ for
c=e+) ;c;di and for some I'" T T'. Moreover, if some of the original derivations is wild,
then the resulting derivation is also wild.

Proof. The proof is by induction on the structure of some fixed derivation of Y# % R : Tre.
One possibility is that « is not free in R. In such a situation R[S/z] = R and T*(x) = 0,
sol=0,and =7 = T? and ¢ = ¢, thus we can derive I' % R[S/z] : 7> ¢ by assumption.

In the sequel we assume that z is free in R. We analyze the shape of R.

Suppose first that R = z is a variable. Then R[S/z] = S, and the derivation for R
consists of a single use of the (VAR) rule, thus e = 0 and Y% = e[z — {7[}] (since ord(x) = m,
no new markers could be added). It means that T = ¢, and {7} = {6; | i € I[}. We have
two subcases.

Suppose first that 7 is unbalanced. Then necessarily |I| =1, say I = {1}. It follows that

I' = Ay, and ¢ = dy, so we can derive I F5, R[S/z] : 7> ¢ by assumption.

The situation of an unbalanced 7 is slightly different. We only know that |I| > 1 and

7 =4, for all i € I. Then from Lemma G.1 we obtain that Mk(A;) < Mk(4;) = 0 for all

1 € I, i.e., that all type triples in all A; are balanced. In consequence A; C T (due to

I' = | J;c; A¢). Similarly, from Lemma G.3 we obtain that d; = 0 for all i € I, so ¢ = d;.

Thus as the resulting derivation we can take A; FF S : 6;>d; for any i € 1.

Next, suppose that R = nd(Py,..., P.). Then the derivation for R ends with the (ND)
rule, whose premiss is Y% % Py : 7> e for some k € {1,...,r}. The induction assumption
applied to this premiss gives us a derivation of IV F¥ P.[S/xz] : 7> ¢ for some I' C T'. By
applying back the (Np) rule we derive IV F£ R[S/z] : 7> ¢, as required.

Next, suppose that R = Ay.P. We have y # x, and, as always during a substitution, we
assume (by performing a-conversion) that y is not free in S. The derivation for R ends with
the (\) rule, whose premiss is T*[y — C'] ¥, P : 7' >e. While writing T*[y — C'] we mean
that T*(y) = 0, and since y is free in S, we have A;(y) = 0 for ¢ € I; thus we can write
Iy — C'] = Y%y — C'|U|];c; As. By applying the induction assumption to our premiss
we obtain a derivation of I[y — C"] 5, P[S/z] : 7' > ¢ for some IV C T" and some C” C C".
We then apply again the ()\) rule obtaining IV F, R[S/z] : 7 > ¢, as needed.

Another possibility is that R = a{P,..., P,), where a # nd. Then the derivation for
R ends with one of the rules (Conl) or (Con>1), whose premisses are Y7 b7, Pj : 7; > e;
for j € {1,...,r}. It holds that Y[z — {6; | i € I}] = T® = T{U---UTZ Let us see
that we can find sets I1,..., I, such that I = I U---U I, and {|&; | i € I;[} = Y (z) for all
j€{1,...,r}. Indeed, recall that triple containers behave like sets for balanced type triples,
and like multisets for unbalanced type triples. Thus if §; is balanced for some i € I, we can
simply add this 4 to [; for all these j € {1,...,r} for which Y¥(z)(6;) > 0. On the other
hand, for an unbalanced type triple &, there exist exactly Y% (z)(6) elements ¢ € I for which
6; = 6; simultaneously Y*(z)(6) = >_7_; TF(2)(6), so we can split these elements i into sets
Iy, ..., I so that exactly T%(x)(6) of them are taken to I; (for j € {1,...,7}).

Having these sets, for every j € {1,...,7r} we can write Y = Y[z — {&; | i € [;[}].
For these i € I for which the type triple &; is balanced, from Lemma G.1 we obtain that
all type triples in A; are balanced, and thus A; U A; = A;, and from Lemma G.3 we
obtain that d; = 0. These lemmata can be used, since ord(S) = ord(z) = m < m. If we
recall that every ¢ € I with unbalanced &; belongs to exactly one among the sets I;, and
every ¢ € I with balanced &; belongs to at least one among the sets I;, we can observe
that [|,y Ai = [j_; ey, Ai and 3o, di = 327 32, di In consequence, if we denote

XX:45

XX:46

Complexity of the Diagonal Problem for Recursion Schemes

=71, I_I|_|l€1 iand ¢j =ej+3 o, difor j € {1,...,r}, we have that ' =Ty U--- LT,
and c=ci+ -+ ¢ In particular I';(y) < T'(y) for every j € {1,...,r} and every variable
y, so I'; is a type environment (i.e., I';(x) contains every unbalanced type triple at most |A|
tlmes).

Now for every j € {1,...,r} we apply the induction assumption to the premiss Tf N S
7j>e; and to type judgments A; 7 S @ 6;>d; only for 7 € I; we obtain a derivation of I‘; Fr
Pj[S/a]: Fjpcjforcj =ej+3 ;. di and for some I'; © I';. To the obtained type judgments
we apply the appropriate rule, (Con1), or (Con>1), and we derive IV 5 R[S/x] : 71> ¢ for
I"=T7U---UT}. We need to notice here that c —e = >7%_, (e; — ¢;), and thus if (F,e) €
C’ompm(M ({(O a)},0),(F1,¢1),. .., (Fr, ¢)) for some arguments M, F, F; (as ensured by
the original use of the rule), then albo (F,c) € Comp,,(M;({(0,a)},0), (F1,c1),...,(Fr,c))
(as needed for the new use of the rule). We also notice that TV C T'.

Finally, suppose that R = P . This case is very similar to the previous one. The
derivation for R ends with the (@ rule, whose premisses are Y§ F5 P : 7y > ey and
Y75 Q:Fj>ej for j € J, where we assume that 0 ¢ J. As in the previous case we can
ﬁnd sets (I;)jefoyus such that I = U]E{O}UJI and {6, | i € I;[} = Y§(z) for all j € {0} U J.
Again we write Y7 = Y[z — {6 | i € ;|}], and I'; = T; U[|;c; Ai, and ¢; = €5+ 3¢ d
for j € {0} U J, and we have that T" = |—|je{0}UJ I' and c = Zje{O}UJ ¢;. We then apply the
induction assumption to all premisses, and we obtain derivations of I'{ F% P[S/x] : 7o > co
and of I'; =5, Q[S/x] : 7> ¢; for j € J, where I'; £ T'; for j € {0} U J. By applying the (@)
rule again, we derive I' -, R[S/z] : #>c for IV = | |;c 0y, I E T

We also need to see that if some of the original derivation is wild, then the resulting
derivation is wild as well. Indeed, suppose that in the derivation of Y* 5 R : 7> e there is a
wild use of the (@) rule. Then in the resulting derivation the (@) rule is used in a similar way,
only the type environments and the considered A-terms are changed, but this is still a wild
use of the (@) rule. Next, suppose that there is a wild use of the (@) rule in the derivation of
A; S 6;>d; for some ¢ € I. By Lemma G.5 this can happen only when &; is unbalanced
(recall that ord(S) = m, which allows us to use this lemma). This means that the derivation
is inserted somewhere in the resulting derivation (we discard only derivations for balanced
6;), and the wild use of the (@) rule remains present. <

Proof of Lemma I.1. Recall that we are given a derivation of I' Ff, P : 7> ¢, and a (-
reduction P —5 @ that is of order m, and our goal is to derive I F%, Q : 7> ¢ for some
I"CT.

Suppose first that P = (Az.R) S and Q = R[S/z], where ord(x) = m. Then the given
derivation ends with the (@) rule, whose premisses are Y F5% Az.R: fapeand A; FE S @ 6;0d;
for i € I. Let us write ¥ = (F, M,), and 7\ = (F/,M’,C—7), and 6; = (F;, M;,0;) for
1 € I. The type judgment for Az.R is in turn derived by the () rule, whose premiss is
T* e R:(F',M",7)>e, where Y% = Y[z — '] for some C' C C, and M' = M" — Mk(C).
Because all F; and M; are m-bounded, and ord(S) = ord(x) = m, for all ¢ € I we have that
Fil<oracs) = Fis and Mil< 05y = Mi, and Fil5 o,q(5) = 0. Conditions of the (@) rule imply
that:

1. = TLI|_|Z€IAZ-;

2. C=A{(Fil<ora(sy Mil<ora(sy> 0i) | i € I} = {63 | i € I[};

3. M =M+, M= M'=Mk(C)+ Y, My = M";

4. (F,c) € Compm(M (F',e), ((Filsoras)> di))ier), which by Lemma H.7 implies that

F CFandc=e+), ;d; (where M(k) = M"(k) = 0 for all (k,a) € F" because

(F',M" 1) is a type triple);

P. Parys

5. {(k,a) € F' | M(k) =0} C F, so F' = F, and thus the type triple derived for R is

actually 7.
Since ¢’ C C, we can find some I’ C I such that C' = {&; | ¢ € I'[}. Moreover, for
every ¢ € I\ I’ the type triple &; is necessarily balanced, so Mk(4A;) = 0 by Lemma G.1,
ser i ET (in particular Y U [J;o ;0 Ay
is a type environment) and ¢ = e + >, d;. We apply Lemma 1.4 to Y* k5 R: e
and to A; FF S ¢ 6, > d; for i € I'; we obtain a derivation of IV Ff, @ : 7> ¢ for some
YU ep

We also need to see that if the original derivation was wild, then the new one is also
wild. Notice that the final use of the (@ rule in the original derivation cannot be wild:
for its wildness we would need an element (k,a) € F/[. ,.4q) = 0. Moreover, the removed
subderivations ending with A; FE S : 6;>d; for i € I'\ I’ cannot be wild by Lemma G.5.
Thus the wild use of the (@) rule is located in some of the subderivations passed to Lemma 1.4,
and thus it is preserved.

It remains to consider the general situation: the redex involved in the S-reduction P —3 Q
is located somewhere deeper in P. Then the proof is by an easy induction on the depth of this

and d; = 0 by Lemma G.3. In consequence Y U] |

A; C T, as required.

redex. In the induction step we apply the induction assumption to appropriate premisses of
the final rule, and we observe that after applying it, the rule can still be used. For most rules,
we only need the trivial observation that if IV C I" and A’ C A then IYUA’ E TUA. We have
to be slightly more careful only for the () rule: if its premiss is I'[x — C'] i, R: (F, M, T)>c
and its conclusion is I' F% Az.R : (F, M — Mk(C),C—T) > ¢, by the induction assumption
we obtain a derivation of I'[z — C”| FE, S (F,M,7)>c with Y C T and C” C C' C C; we
can then apply the (A) rule and derive IV FE S : (F, M — Mk(C),C—T) > ec. <

» Remark. Recall that the (\) rule allows to forget about some balanced type triples provided
by an argument, i.e., we can have C’ C C. We notice, however, that in derivations constructed
in Section H we use the () rule only for C’ = C. This means that Theorem 3 holds also for
a more restrictive type system in which the condition C’ C C' in the ()) rule is replaced by
C’" = C. On the other hand, in Lemma 1.4 it is necessary to discard some type judgments for
S (cf. the case of a variable), so the type environment IV in the resulting type judgment only
satisfies IV C T', not IV = I". In consequence, in surrounding () rules it starts to hold C’ E C
instead of C' = C. Thus even if we start from a derivation in the more restrictive type
system (with C’ = (), in the soundness proof we pass through derivations in the original
type system (with C' C C).

1.2 Proof of Lemma 1.2

The proof is easy; we simply replace +,, by F,,_1 in all derived type judgments, and we
ignore flags of order m + 1 and markers of order m. To obtain the inequality ¢ > ¢ we
observe that when the complexity is at most m, the information about flags of order m goes
only from descendants to ancestors, and thus every flag of order m + 1 is created because of
a different flag of order m.

We now give more details. The first lemma describes the behaviour of the Comp,,
predicate.

» Lemma L.5. Suppose that (F,c) € Comp,,(M; ((F;,¢i))icr), andm > 0, and that M (k) =0
for all (k,a) € F. Suppose also that for every i € I either
F, e Fr, and F! = F;|<,,,_1, and ¢,: A — N is such that ¢;(a) > ¢;(a) + |F; N {(m,a)}|
foralla € A, or -
(Fy,ci) = (F!,c) = ({(0,a)},0) for some a € X.

[0t

XX:47

XX:48

Complexity of the Diagonal Problem for Recursion Schemes

Then (F'l<p,—1,¢") € Comp,, (M <p,_1; ((F}, ¢))ier) for some ¢+ A — N such that ¢'(a) >
c(a) + |Fn{(m,a)}| for all a € A.

Proof. We consider the numbers f; , and f,;’a appearing in the definition of the predicate
Comp,,,(M; ((F;,c;))icr). We also consider analogous numbers defined by the predicate
Comp,,,_1 (M <—1; ((F}, ¢;))ic1), and we call them g, , and g}, ,. Since the arguments are
the same up to order m — 1, for every a € A we have gi o = fr,o for k <m—1, and g;m = fl/c,a
for k < m. In consequence the requirements given by Comp,,_; on the set F (i.e., that
ke > 0 for all (k,a) € Fl.,,_;) follow directly from the requirements given by Comp,,
(saying that fi, > 0 for all (k,a) € F). We take ¢/(a) = gm.a + Yicrci(a) foralla € A, as
required by the definition of Comp,,_;.

It remains to prove that ¢(a) > c¢(a) + |F N {(m,a)}| for all a € A. For the rest of the
proof fix some a € A. We have that

(@) = gma + Y 6i(a) = g o+ D IF N {(ma)}[+) ci(a).

i€l iel icl

For every i € I we have one of two cases: either
ci(a) = ci(a) + |[F;n{(m, a)}], or
(Fi,ci) = (F, ;) = ({(0,b)},0) for some b € X.

In both cases we see that |[F) N {(m,a)}| + c}(a) > |F; N {(m,a)}| + ci(a). Recalling that

9m.a = fin.a We obtain
(@) 2 fra+ D IE0{m,a)} +) ci(a) = fra+ Y cila).
i€l i€l iel

Next, let us observe that fun.a > f/,11.4 + [F N {(m,a)}]. Indeed, if M(m) > 0, we
have fy, 11 4= fm.a and (m,a) ¢ F. Conversely, if M(m) = 0, we have f;, ., , =0, and if
fm,a = 0 then also (m,a) € F.

Moreover, because all F; are m-bounded (m > 0), it holds that fi11a = fl 114+
Yoicr [Fin{(m+1,a)}| = f;,41 .- We thus obtain:

(@) = fnsra+ Y cila) + [N {(m,a)}]
iel
= fotra +) ci(a) + [F N {(m,a)}] = e(a) +|F N {(m, a)}]. <
il

We now generalize Lemma 1.2 to arbitrary type judgments.

» Lemma 1.6. Let P be a A-term of complexity at most m, whose all free variables are of
order at most m— 1. If we can derive T' HE P : (F, M, T)>c, where either k =A orm—1 >0,
then we can also derive T +5_ P (Fle,_1, Ml<p_1,7)> ¢ for some ¢ : A — N such that
d(a) > c(a) + |F N {(m,a)}| for all a € A. Moreover, if the original derivation was wild,
then the resulting one is also wild.

Proof. Denote 7+ = (F,M,7) and 6 = (Fl.,,_1,M|<,,_1,7). The proof is by induction
on the structure of some fixed derivation of T' Fr P : #>c. We distinguish several cases
depending on the shape of P.

Suppose first that P is a variable, P = x. Then the (VAR) rule used in the derivation
implies that I' = e[z = (F, M[< (1), 7)]), and ¢ = 0. By assumption of the lemma we
have ord(z) <m —1, 80 (M[<,_1)<oraz) = Ml <ord) and Fl<,,_y = I (because F is
ord(z)-bounded). In consequence, we can use the (VAr) rule to derive ', _; P : 61> 0.

P. Parys

Next, suppose that P = nd(P,..., P.). Then the final (Np) rule has a premiss I' F% Py, :
7> c for some k € {1,...,r}. The induction assumption applied to this premiss gives us a
derivation of T' % _; Pk &> ¢ with ¢ such that ¢(a) > c(a) + |F N {(m,a)}| for all a € A.
We apply back the (Np) rule, obtaining ' H%,_; P: 6> c.

Next, suppose that P = Az.Q. Then the final (\) rule has a premiss I'lx — C'] F£ Q :
(F,M',7")> ¢, where 7 = C—7', and M = M’ — Mk(C'), and C’ C C. Using the induction
assumption for our premiss (which is allowed, because ord(z) < ord(P) —1 < m — 1) we
obtain a derivation of 'z — C'] Fr 1 Q 1 (Flepm_1, M [<p_1,7) > with ¢ such that
d(a) > c(a)+|FN{(m,a)}| for all a € A. Because C is ord(z)-bounded, and ord(z) < m—1,
we have that M'[_,,_; — Mk(C) = (M’ — Mk(C)) <1 = M <,,,_1, so by applying back
the (\) rule we derive I Fe L P:6>c. - -

Next, suppose that P = b(Py,...,P.) with b # nd. Then 7 = o, and the final rule
(being either (Con0), or (Conl), or (Con>1)) has premisses I'; % P; : (F;, M;,0) > ¢;
for i € {1,...,7}. By the induction assumption, for every ¢ € {1,...,r} we can de-
rive Iy FE o Pt (Filep_1, Mil<pp_1,0) > ¢ for some ¢ such that cj(a) > c¢;(a) +
|Fy N {(m,a)}| for all a € A. If r > 0, we have a side condition M = M; + --- + M,.,
which implies M[.,, 1 = Mi[<p,—1 + -+ + M;[<,,_1. Another side condition says that
(F,c) € Compm(; ({(0,0)},0), (Fl,cl)le{l T}),zlnd we need to see that (Fl,,_;,c) €
Comp,, (M| <,,—1;({(0,0)},0), (Fil<;n_1,¢})ieq1,...,ry) for some ¢’ such that d(a) > c(a) +
|F N {(m,a)}| for all a € A; this follows directly from Lemma I.5. Thus we can apply back
the appropriate rule, and derive T'FF | P: 6> ¢.

Finally, suppose that P = Q R. Then the final (@ rule has premisses IV % @Q :
(F',M',C—71)veand T; ¢ R : (F;,M;,7;)>d; for i € I, where we have that C =
1(Fil<ora(rys Mil<orary>7i) | @ € I[}. The induction assumption applied to all premisses
gives us a derivation of TV F5 1 Q : (F'l<p_1, M <1, C—7) > €' with €' such that
¢(a) > e(a) + |F' N {(m,a)}| for all a € A, and, for all i € I, a derivation of T'; F%,_| R :
(Fil<pne1s Mil <1, Ti)>d; with d} such that d}(a) > d;(a)+|F;N{(m, a)}| for alla € A. The
side condition M = M’ + > ier Mi implies M., 1 =M, 1+ c; Mil<,,_1. Another
side condition says that (F,c) € Comp,, (M; (F',e), (Fils sra(r) di)ic1)- Because the complex-
ity of P is at most m, we have ord(R) < ord(Q) —1 < m — 1. In consequence d;(a) > d;(a) +
|Fi N {(m,a)}| = di(a) + | Fil s ora(ry N {(m,a)}| for all i € I and a € A, thus by Lemma 1.5
we obtain (F[<,,_1,¢') € Compp, 1 (M| <p_1; (F'T<pno1,€), (Fils ora(r)) [<m—1, di)ier) for
some ¢’ such that ¢'(a) > c(a) + |F' N {(m, a)}\ for all a € A. Trivially (Fil rar)) [<m—1 =
(Fil<m-1)1>ora(r)- Moreover, C' = {(Fil<pm_1)l<orary: (Mil<m-1)T<orar) 7i) | @ € I},
again because ord(R) < m — 1. Having all this, we can apply back the (@) rule, and derive
ke [P:é>C.

Still staying in the case of P = @ R, suppose now that the original derivation ends with a
wild use of the (@) rule. This means that for some i € I and for some (k,a) € Fil. ,,q(r) We
have M; =0 and M(l) >0 foralll € {k,k+1,...,m}. If kK = m, the type judgment derived
by the induction assumption, I'; 5 _ 1 R : (Fil<p_1, Mil <1, Ti)>d}, satisfies M;[<,,,_; =0
and d}(a) > di(a) + |F; N {(m,a)}| > 1, which is impossible by Lemma G.3 (we use here the
fact that ord(R) < m —1). Thus k < m, so we have as well (k,a) € (Fil<,,—1)[ora(r)- It is
also true that M;l.,,_; =0and M|.,,_;(I) >0 foralll e {k,k+1,...,m —1}. Thus the
(@) rule is used Wilaly also in the resuiting derivation.

We notice that the proof does not remove any fragment of the original derivation. Thus,
by the above, if the original derivations contain some wild use of the (@) rule, the resulting
derivation also contains a wild use of the (@) rule, in the same place. <

Lemma 1.2 is obtained by specializing Lemma 1.6 to the situation when P is closed, and

XX:49

XX:50

Complexity of the Diagonal Problem for Recursion Schemes

(F,M,) = py,. Notice that then (Fl.,, 1, M[<,,_1,7) = pf,_1-

1.3 Proof of Lemma 1.3

In this lemma, we are given a derivation of € F, P : p& > ¢, where either kK = ¢ and m = 0,
or Kk =A and m = —1, and where P is of complexity 0. The proof is by induction on the
structure of some fixed derivation of ¢ -, P : p¥ >c. Let us analyze the shape of P. Because
the type environment is empty, and because P has complexity 0, P cannot be a variable, nor
a A-binder, nor an application. Thus P starts with a node constructor, P = b(Py,..., P.).
We have two cases.

An easier case is when b = nd. Then the final (ND) rule has one premiss ¢ ¥, P; : pf >c
for some i € {1,...,r}. The induction assumption gives us a tree T" such that P, —, T" and
for every a € A, the number of appearances of a in T is ¢(a). Since P —nq P;, this gives the
thesis.

Suppose now that b # nd. Recall that for (F,M,7) € TT~2, the flag set F and the
marker multiset M should be (—1)-bounded, hence F' = @) and M = 0, and the type 7 € T°
can only be o. For (F, M, T) € TT(we are required that 7 = o, that F and M are 0-bounded,
that M(0) = 1 (hence M = {0]}), and that M (k) = 0 for all (k,a) € F (hence F = 0)). In
consequence pf, is the only type triple in 77,7. It follows that premisses of the final rule
are of the form e ¥, P, : pff > ¢; for i € {1,...,r}. By the induction assumption, for every
i €{1,...,r} we obtain a tree T; such that P, =, T; and for every a € A, the number of
appearances of a in T; is ¢;(a). We take T' = b(T4,...,T,); then P —%, T. As in the proof of
Lemma H.2, we observe that (0, ¢) € Comp,,(Mk(p%,); ({(0,b)},0), (D,¢1),...,(0,¢.)) holds
exactly when c¢(a) = ¢1(a) + -+ ¢-(a) for a € A\ {b}, and ¢(a) =1+ c1(a) + -+ + ¢-(a) if
a=">be A. It follows that for every a € A, the number of appearances of a in T is ¢(a).

J Complexity

In this section we prove Theorems 2 and 5. In the first part we concentrate on the upper
bound. We are thus given a set A and a scheme G = (M, R, Ny) of order at most m + 1, and
we want to decide whether Diag 4 (L£(G)) holds. This should be done:

in (m + 1)-EXPTIME for m > 0, and in NP for m = —1, when G can be arbitrary, and
in m-EXPTIME for m > 1, and in NP for m = 0, assuming that G is word-recognizing.

Set K =A in the former case, and k = ¢ in the latter case. In the cases resulting in an
NP algorithm (i.e., Kk =A,m = —1 or kK = &,m = 0) we also prove that the problem is
fixed-parameter tractable when |A| is viewed as a parameter. Due to Theorems 3 and D.1, the
problem boils down to checking whether for every n € N we can derive € F% A(G) : p% > ¢y
with some ¢, such that c,(a) > n for all a € A (here we use the trivial fact that the
complexity of A(G) is not greater than the order of G).

Let us recall from page 11 three definitions.

Two type judgments are equivalent if they differ only in values of the flag counter.

A derivation is pumpable if for every symbol a € A, there are two equivalent type

judgments lying on one branch of the derivation and such that the a-coordinate of their

flag counter differs.

We say that a type judgment T' F5 @ : 7> d is useful (with respect to a scheme G) if @ is

m

a subterm of A(G) and T'(x) # 0 only for variables = that are free in Q.

P. Parys

Let U9 be the set of useful type judgments I' 5, Q : 7 > d satisfying Mk(T") < Mk(#),®
and let U QN be the set of equivalence classes of type judgments from U9.

For every rule of the type system it is easy to see that if the conclusion is useful, then
also premisses are useful. Moreover, Lemma G.1 tells us that all type judgments that
can be derived satisfy the inequality Mk(T') < Mk(7). It follows that all derivations of
e 5 A(G) : pf, > c contain only type judgments from UY.

J.1 Number of Equivalence Classes

In the first part, we bound the size of Z/{/QN, giving more details than in Section 3.

For n € {0,...,m+ 1}, denote by n the maximum of |77;%| over all k € {—1,0,...,n}
and over all sorts « such that || < 2-|G| and ord(«) < n. In order to bound 7%, let us take
this number k£ and this sort o = a1 — ... —as—o for which the maximum is reached. A type

triple in 77 ;% contains a flag set F', a marker multiset M, and a type C1— ... =»Cs—o.

In the flag set, for every order in [€ {0,...,k} we either have no flags of order [, or we
have an (I,a)-flag for some a € A (and no other flags of order [); this gives (|A| + 1)**1
possibilities. In the marker multiset, for every order in I € {0,...,k} the number of order-I
markers is in {0,...,|A|}; this also gives (|A| + 1)*+! possibilities. Every triple container

Ci is a function from TT70) to {0,...,[A]}; this gives (JA + 1)'7—7—&&‘

ord(ay;
ord(ay)
Since moreover s < |a| < 2- |G| and k <n < m + 1, for n > 1 we obtain:

s =TT < (AL + DR (4] + DR TToA] + D)7 eiten]
1=1
< (|A‘ + 1)2m+4+2»|g\'77271 .

For n = 0 we necessarily have s = 0, and thus n§ < (JA| + 1)2. It follows that for all n € N,
N is at most n-fold exponential in |G| and |A| (where by “0-fold exponential” we mean
“polynomial”).

In the case of Kk = € we need a stronger bound. It can be established, because for
every type triple (F, M,C1— ... —Cs—o0) € TT} we have the additional requirement that
M(0) + 37, Mk(C;)(0) = 1. For ord(a) = 0, this condition implies that M (0) = 1 (since
then s = 0). In consequence, for ord(a) = 1 the triple containers C,...,Cs can contain
altogether only at most one type triple (as every type triple in some C; adds one to the
sum Y.._, Mk(C;)(0)). It follows that we only need to remember which one of Ci, ..., Cj
is nonempty (or that all of them are empty), and which type triple from 777§ it contains.”
Thus for k£ and o maximizing nj we obtain:

05 =ITTRl < (Al + DM (AT + DM (L4 s - |TTE) < (AL + D) (1+ 2 1G] -115)

This means that 75 for n > 1 is at most (n — 1)-fold exponential in |G| and |A].

Recall from the proof of Proposition C.1 that by Ag(P) we denote the A-term obtained by
recursively expanding all nonterminals in a Ad-term P (which could contain nonterminals). We
remark that while substituting R(N) for a nonterminal N, there is no need for any renaming
of variables (capture-avoiding substitution), since R(N) does not have free variables other
than nonterminals. It is easy to see that every subterm of A(G) equals Ag(P) for some

8 As one can see in the proof, the inequality Mk(T") < Mk(#) is important only when x = ¢ and m = 0.
9 Actually, 77§ contains only one element, namely po = (0, {0}, 0), but this is irrelevant here.

ord(ang) possibilities.
Because ord(a;) < ord(a) =1 <n —1and |os] < [a] < 2-[G], we have [TT70 | < np_.

XX:51

XX:52

Complexity of the Diagonal Problem for Recursion Schemes

subterm P of R(N) for some nonterminal N € N. In consequence, there are at most |G|
subterms of A(G).

Let us now prove that if P of sort « is a subterm of R(NN) for some nonterminal N € N,
then |a| < |P|+ G| (so in particular || < 2-|G|).1? This is induction on the size of P. When
P starts with a node constructor this is trivial, since @« = 0. When P = @ R, this follows
directly from the inequality |f—a| < |Q| + |G| obtained from the induction assumption,
where f—« is the sort of @, since |o| < |f—al and |Q| < |P|. When P = A\z.Q), where
a = B—y, we obtain the thesis by adding 1 4 |3] to both sides of the induction assumption
we have |y| < |Q|. When P = z is a variable bound by some Az.Q somewhere in R(N), we
have |a| < [Az.Q| < |R(N)| < |P| +|G|. Finally, P = M may be a nonterminal, in which
case |a| is also included in |G|.

We now bound the size of U gN’ that is, the number of equivalence classes of useful type
judgments I' FF @ : 7> d satisfying Mk(T') < Mk(7). As already said, there are at most |G|
choices for @. The sort of Q = Ag(P) is the same as the sort of P, thus (by the above) the
size of this sort is at most 2 - |G|. The order of @ is at most m + 1, thus there are at most
Ny, 11 choices for 7. We now bound the number of choices for the type environment I'. Recall
that we may take I'(x) # 0 only for variables = that are free in (). All such variables are
subterms of A(x), so there exist at most |G| of them. Moreover, every free variable = of @ is
bound by some subterm Az.R in A(G); since ord(Ax.R) < m+ 1, we have ord(x) < m. We
now consider three cases, depending on m.

Suppose first that kK =A and m > 0, or k = ¢ and m > 1. Consider a free variable z of

Q. Its sort « satisfies [a| <2 |G], so we obtain [TT 55| < 15, The type environment

I' assigns to 2 a triple container from 7C"®, that is a function from TT75r) to

{0,...,|A|}. The number of such functions is at most (|A| 4 1)"=. By taking a product

over all free variables of @), we obtain that the number of possible type environments I" is

at most (|A| + 1)I9/" . This number is at most (m + 1)-fold exponential in |G| and |A]
for k =A, and at most m-fold exponential in |G| and |A]| for k = €.

Suppose now that k = ¢ and m = 0 (then the bound from the previous item is exponential,

while we need a polynomial one). In this case all free variables of @ are of order 0 (thus

of sort 0). As already noticed, we have Mk(5)(0) =1 for all 6 € TT(. On the other hand

Mk(7)(0) <1 (by definition of a marker multiset). Since we only consider type judgments

satisfying Mk(I") < Mk(7), the whole I assigns at most one type triple, to at most one

variable. We thus only need to remember which type triple it is, and to which variable it
is assigned. We have at most 1 + |G| - n§ possibilities (thus polynomially many).

Finally, suppose that k =A and m = —1. In this case @ has no free variables, so

necessarily I' = €.

Altogether, it follows that |L{/gN| is at most (m + 1)-fold exponential in |G| and |A| for
k =A, and at most m-fold exponential in |G| and |A| for k = .

J.2 Pumpable Derivations

In the second subsection, we argue that we are actually interested in finding a pumpable
derivation. We shall see here derivations as trees, similarly as in Appendix H.4. For a node
v of a derivation tree, by ¢, we denote the flag counter being part of the type judgment

1% One may wonder why we prove that |a| < 2-|G| instead of |a| < |G|, but it is not clear whether the
stronger inequality is always true. Surely analogous inequality for A-terms is false: for example, the
A-term Ax“.x“ is of size 2 + |a|, while its sort a—« is of size 2 - |a| + 1.

P. Parys

written in v. We start by the following lemma, saying that the flag counter cannot grow too
much in a single place.

» Lemma J.1. There exists a constant Cg such that for every a € A, for every derivation
tree t that derives € i A(G) : pii, > d (for some d), and every node u of t, if ¢,(a) > Cg,
then there exists a child v of u such that c,(a) > c%, cey(a).

Proof. As Cg we take a number such that:
Cg > (m+3)-(r+1) for every subterm of A(G) that is of the form b(Py,..., P.), and
Cg>m+3)-(1+]4] - (m+1)).

Such Cg exists because A(G) has finitely many subterms.

Fix now some a € A, and consider a type judgment I' -5, R : (F, M, 7) > ¢ appearing in
t, such that c(a) > Cg. We have several cases, depending on the rule used to derive this
type judgment. This cannot be the (VAR) rule, since it requires that ¢(a) = 0, while we have
c(a) > Cg > 0. If this is the (ND) rule or the ()\) rule, the flag counter in the unique premiss
of the rule is also ¢, so we trivially have c(a) > Cig - c(a).

Suppose now that the considered type judgment is derived using one of the rules (Con0),
(Conl), (Con>1), i.e., that R is of the form b(Py,...,P.), where b # nd. Let I'; F¥
P : (F;,M;, ;) >¢; for i € {1,...,r} be the premisses of this rule. It holds that (F,c) €
Comp,,,(M; ({(0,0)},0), (F1,c1), ..., (Fy,cr)). Consider the numbers fy , and f; , as in the
definition of the Comp,, predicate. We have that fr. = f;, ,+[{(0,0)}N{(k,a)}[+> 7, [FiN
{(k,a)}| < fr,+1+rfor k€ {0,...,m+1}, and f; , < fr—14 for k € {1,...,m + 1},
and f5, = 0. Tt follows that fr11a < (m+2)-(r+1) < (m+2)-(r+1)- Cig - c(a)

(the latter inequality holds because c(a) > Cg). Suppose now, contrary to the thesis, that

ci(a) < Cig -¢(a) for all i € {1,...,7}. Then we have that

c(a):fm+1,a+c1<a>+---+cr<a>s(m+2>-<r+1>-cig-c<a>+r-cig-c<a>,

which gives
Cg<(m+3)-(r+1)—1.

This contradicts the assumption that Cg > (m+ 3) - (r + 1), thus necessarily ¢;(a) > c% -c(a)
for some i € {1,...,r}.

It remains to consider the case of the (@) rule, when R = P (). Premisses of this rule are
Do FrE P (Fo, Mo, m0)>co and IT'; F5 Q : (F;, My, ;) > ¢; for i € I, where we assume that

0 ¢ I. It holds that (F,c) € Comp,,(M; (Fo,co), (Filsoraq): Ci))ier). Again, we consider
the numbers f; . and f; ,. Let | be the smallest natural number such that M (k) > 0 for

all ke {I,I+1,...,m} (when M(k) =0 for all k € {0,...,m}, we simply take | = m + 1).

Then by definition we have f; , = 0 (since either [=0 or M (I —1) =0) and f; , = fr-1,a
foral ke {I{+1,l+2,...,m+ 1}. We will also prove that for all k € {l,l +1,...,m + 1},

fra < fra+1+[Al-(m+1). (3)

To this end, we consider two cases. Suppose first that [<k < ord(Q). Then F;[40 N
{(k,a)} =0 for all 7 € I, so we obtain (3):

fra = fha+1Fo 0 {(k,a)} + D |Fls oraq) N {(k,)}
el

< frat 1< fiat+1+]A-(m+1).

XX:53

XX:54

Complexity of the Diagonal Problem for Recursion Schemes

Next, suppose that max(ord(Q) + 1,1) < k < m + 1. Notice that every index i € I with
M; # 0 adds at least one to the sum)7, ; 5772, M;(j). This sum cannot be greater than
|A[- (m+1), since ;o Mi <37, op0r Mi = M € M7, 1t follows that there are at most
|A| - (m + 1) indices ¢ € T for which M; # 0. On the other hand, from Lemma G.4 we know
that the derivation is not wild; in particular the considered use of the (@) rule is not wild.
This means that for all i € I with M; = 0 we have (k,a) € F;[,,q(g) (since k > [, we have
M(j) > Oforall j € {k,k+1,...,m}, so (k,a) € Fil, () implies wildness). So (3) follows
also in this case:

fk,a - fl,c,a + |F0 N {(k,a)H + Z |Fir>ord(Q) N {(k7a)}| < fl/c,a +1+ |A| : (m+ 1) .
i€l

Using (3) for all possible k, and the assumption that ¢(a) > Cg, we obtain that

1
frtta < (m=142)-(1+]A]- (m+1)) < (m+2) - (1+]|A]- (m+1)) - = cla).
g
Suppose now, contrary to the thesis, that ¢;(a) < C%; -¢(a) for all ¢ € {0} UI. For every
i € I such that M; = 0, by Lemma G.3 (which can be applied because ord(Q) < m) we
actually have that ¢;(a) = 0. There are at most |A| - (m + 1) indices ¢ € I for which M; # 0,
i.e., for which ¢;(a) can be nonzero (plus one more index i = 0). We thus obtain:

c(a) = fm+1,a + Z ci(a)
i€{0}UI
1

s<m+2>-<1+|A|-<m+1>)-cig~c<a>+<1+|A|-<m+1>>~C—g-c<a>,

which gives
Cg < (m+3)-(1+]A]- (m+1)).

This contradicts the assumption that Cg > (m + 3) - (1 + |A| - (m + 1)), thus necessarily
ci(a) > Cig - ¢(a) for some ¢ € {0} UI. <

In the next lemma we argue that it is enough to consider pumpable derivations.

» Lemma J.2. There exists a pumpable derivation of e F5 A(G) : pii, > ¢ if and only if for
every n € N we can derive € F5 A(G) : pt, > ¢, with some ¢, such that c,(a) > n for all
a€ A

Proof. The left-to-right implication was already justified on page 11. We now prove the
right-to-left implication. Let Cg be the constant from Lemma J.1, and let K = \Z/I/QN|. Take
n = (Cg)¥, and consider a derivation tree ¢ that derives ¢ F%, A(G) : p%, > ¢, for some ¢, such
that ¢, (a) > n for all a € A; it exists by assumption. We claim that ¢ is pumpable. In order to
prove this, take some symbol a € A. Our type system has the property that the flag counter
in the conclusion of a rule is always not smaller than the flag counter in all the premisses; in
other words, whenever w is a child of u in ¢, it holds that ¢, (a) < ¢,(a). We will construct
a sequence vy, - . ., vg of K nodes lying on one branch in ¢, such that c,,(a) > (Cg)%~ for
i€{0,...,K}, and ¢y, (a) < ¢y,_, (a) for i € {1,...,K}. As vg we take the root of ¢; then
o (@) = cn(a) > (Cg)®. Now suppose that vy, ...,v;_; are already constructed, and we
want to construct v; (we do this by induction, for i = 1,2,..., K). Let u be some node in
the subtree starting in v;_1, such that ¢, (a) = ¢,,_, (a) but ¢, (a) < ¢,,_, (a) for all children
w of u (such a node u has to exist, as ¢ is finite). Then, as v; we take a child of u such that

P. Parys

ey, (a) > C%, - ¢y (a), which exists by Lemma J.1. Because ¢, (a) = ¢,,_,(a) > (Cg)K =11 it
follows that c,,(a) > (Cg)%¥ % we also have c,,(a) < c,,_, (a).

Once vy, ...,vk are constructed, we notice that there is more of them than equivalence
classes in L{/QN. As already noticed, only type judgments from Z/l/gN may appear in t. It follows
that among the nodes vy, ..., vk there are two, v; and v; for 7 < j, labeled by equivalent
type judgments. By construction v; and v; are located on the same branch, and we have that
cy; (@) > ¢y;(a). Such a pair of nodes can be found for every a € A, so t is pumpable. <

J.3 Algorithms

We now give two algorithms which check whether a pumpable derivation of € -, A(G) : pp>c
exists for some ¢, and which in effect solves the diagonal problem. The first algorithm is
deterministic, and works in time polynomial in |U/g~\ + 1G] + f(J4]) for some exponential
function f (notice that when |Z/{/gN| is exponential in |G| + |A|, the component f(|A|) is
anyway dominated by |Z/{/gN|) The second algorithm is nondeterministic, and works in time
polynomial in |U/gN| +1|G| +|A4], so it avoids the exponential dependence on |A|. The existence
of these algorithms proves upper bounds required by Theorems 2 and 5.

A type judgment is called basic if its flag counter is 0. Basic type judgments can be
used to represent equivalence classes of type judgments, as in every equivalence class there is
exactly one basic type judgment.

We denote type judgments using letters J, K, and L (possibly with some subscripts or

superscripts). While denoting basic type judgments, we put 0 in the superscript, like in J°.

For a type judgment J, let J| be the basic type judgment equivalent to J, and let c¢; be the
type judgment appearing in J.
Our algorithm computes several sets, which we now define. The set D (containing basic
type judgments from 1Y) is the smallest set such that:
if by applying a rule to type judgments JY, ..., J? € D one can derive a type judgment
J € U9, then J| € D.
In the above definition we allow any r > 0 (in particular, we also consider rules that do not
need any premisses). The set £ (being a subset of D x D) is the smallest set such that:
(J°,J% € € for all J° € D, and
if by applying a rule to type judgments J?, ..., J? € D one can derive a type judgment
Jeu9, and (J2,K°) € € for some | € {1,...,r}, then (J],K°) € £.
For every a € A, the set D, (being a subset of D) is the smallest set such that:
if JY,...,J? € D, and J) € D, for some k € {1,...,r}, and by applying a rule to
JY ..., JY one can derive a type judgment J € U9, then J| € D,, and
if by applying a rule to type judgments J?, ..., J? € D one can derive a type judgment
J € U9 satisfying cy(a) > 0, then J| € D,.

Finally, for every a € A, the set &, (being a subset of D, x D) is the smallest set such that:

if by applying a rule to type judgments JY, ..., J? € D one can derive a type judgment
JeU9, and (J?,K°) € &, for some | € {1,...,7}, then (J|, K°) € &,,

it J,...,JY € D, and J? € D, for some k € {1,...,7}, and by applying a rule to
J?,...,J? one can derive a type judgment J € UY, and (J?,K°) € £ for some [€
{1,...,7}\ {k}, then (J],KY) € &, and

if by applying a rule to type judgments JY, ..., J? € D one can derive a type judgment

J € UY satisfying c;(a) > 0, and (J?, K°) € € for some | € {1,...,r}, then (J|, K°) € &,.

» Lemma J.3. In the setting as above:
(a) the set D consists of projections J. of all type judgments J € U9 that can be derived,

XX:55

XX:56

Complexity of the Diagonal Problem for Recursion Schemes

(b) the set & consists of pairs (J1, K1) for all type judgments J € UY that can be derived so
that K appears in a derivation of J,

(c) for every a € A, the set D, consists of projections J| of all type judgments J € UY that
can be derived and that satisfy cy(a) > 0, and

(d) for every a € A, the set &, consists of pairs (J|, K|) for all type judgments J € UY that
can be derived so that K appears in a derivation of J, and where cj(a) > ck(a).

Proof. We first argue that every element in D (in D,) is of the form JJ for some type
judgment J € U9 that can be derived (and satisfies c;(a) > 0, respectively). This is shown
by induction on the order in which type judgments are added to the set D (or D,) in its
definition. By definition, some J'| is added to D, if it can be derived by applying some
rule to basic type judgments J?, ..., J? € D, where from the induction assumption we know
fori € {1,...,r} that J? = J;| for some type judgment J; € U9 that can be derived. The
same rule can be applied to the type judgments Ji, ..., J,, and results in a type judgment J
equivalent to J', where c; = ¢y +cy, + -+ +cy,. If J? € D, for some k € {1,...,r} (first
item in the definition of D,), by the induction assumption we actually know that ¢z, (a) > 0,
so also ¢y(a) > 0. If ¢js(a) > 0 (second item in the definition of D,) then automatically also
cy(a) > 0.

The opposite inclusion is shown by induction on the size of a fixed derivation of the
considered derivable type judgment .J € &Y. Consider the final rule used in the derivation;
let Ji,...,J, be its premisses. As already said, .Ji,...,.J, necessarily belong to 9. By
the induction assumption we have that Ji|,...,J.] € D. The application of the final rule
remains valid if we replace the flag counters in Jq, ..., J, by 0, and we appropriately decrease
the flag counter in J. This proves that J] € D.

When additionally c¢;(a) > 0, and we want to prove that J| € D,, we have two cases.

If ¢y, (a) > 0 for some k € {1,...,r}, then we have Ji| € D, by the induction assumption,

so J] € D, according to the first item in the definition of D, .

Otherwise, ¢y, (a) = 0 for all 4 € {1,...,r}. Then, while replacing the flag counters in

J1,...,J by 0, we do not change the a-coordinate of the flag counter in J, so it remains

positive. Thus J| € D, according to the second item in the definition of D,.

The argumentation for the sets £ and &, is actually very similar, and thus it is left to the
reader. |

We now come to pumpable derivations. Here we need a few more definitions. For a
set of symbols B C A, we say that a derivation is B-pumpable if for every symbol a € B,
there are two equivalent type judgments lying on one branch of the derivation and such that
the a-coordinate of their flag counter differs (the previous notion of a pumpable derivation
was for B = A). Next, for a nonempty subset B of A we define a B-skeleton (we will use
skeletons to describe a general shape of a pumpable derivation). For B = {a} we have only
one B-skeleton, which is a. For B of size at least 2, a B-skeleton is of the form either:

a[S], where S is a (B \ {a})-skeleton, or

(51)s...,(Ss), where S; is a B;-skeleton for ¢ € {1,...,s}, for some division of B into

disjoint nonempty subsets By,..., Bs, where s > 2.

Example {a, b, c}-skeletons are a[b[c]], and c[(b), (a)], and (b), (a), (c), and (a), ((b), (c)). It
should be clear that an A-skeleton can be represented in a space polynomial in |A], so the
number of A-skeletons is at most exponential in A.

Below, we assume that premisses of a rule are always listed in some order, so that in the

(Con>1) rule consecutive premisses concern consecutive subterms P, ..., P, of the considered

P. Parys

Aterm a(Py, ..., P.), and in the (@) rule we first have a premiss concerning the function and
then premisses concerning the argument (listed in any order).

For every skeleton S we define a set Pg as the smallest set such that:

it JO,...,J? € D, and J? € Pg for some k € {1,...,7}, and by applying a rule to

JY, ..., J? one can derive a type judgment J € U9, then J| € Pg,

if S equals a, and (J°, J%) € &,, then JY € Pg,

if S equals a[9’], and (J°,JY) € &,, and JV € Pg/, then J° € Pg, and

if S equals (S1),...,(Ss), and J?, ..., J° € D, and there is a subsequence J]Ql,. .. ,Jj(l of
JY . JY (with §p < -+ < js) satisfying Jﬁ € Pg, for i € {1,...,s}, and by applying a
rule to JY, ..., JO one can derive a type judgment J € U9, then J| € Ps.

» Lemma J.4. Let J° € U9 be a basic type judgment, and let B C A be nonempty. Then
there exwists a B-pumpable derivation of a type judgment equivalent to J° if and only if
JO € Pg for some B-skeleton S.

Proof. We first suppose that J° € Pg for some B-skeleton S, and we show a B-pumpable
derivation for a type judgment equivalent to J°. This is induction on the size of B, and
internally on the order in which type judgments are added to Ps. We have several cases:
Suppose that JY,...,J? € D, and J € Pg for some k € {1,...,r}, and by applying a
rule to JY, ..., JO one can derive a type judgment equivalent to J° (the first item in the
definition). Then by the induction assumption we have a B-pumpable derivation for a
type judgment equivalent to J?, and for i € {1,...,7}\ {k} by Lemma J.3(a) we have a
derivation for a type judgment equivalent to J?. We finish the derivation by applying the
considered rule, and we obtain a B-pumpable derivation for a type judgment equivalent
to JO.
Suppose that S equals a, and (J°, JY) € &, (the second item in the definition). In this
case B = {a}. Lemma J.3(d) implies that there is a derivation for a type judgments .J;
equivalent to JY in which some J, equivalent to J® appears, where cy, (a) > cz,(a). By
definition such a derivation is B-pumpable.
Suppose that S equals a[S’], and (J°,J°) € &,, and J° € Pg (the third item in the
definition). Recall that S’ is a B’-skeleton for B’ = B\ {a}. Lemma J.3(d) implies that
there is a derivation tree ¢ for a type judgments J; equivalent to JY in which some J,
equivalent to J° appears, where c;, (a) > cy,(a). Moreover, the induction assumption
implies that there is a B’-pumpable derivation tree t’ of a type judgment J3 equivalent
to J°. We now insert ¢ in a node of ¢ in which Jy was written (cutting off all children of
that node), and we modify appropriately flag counters on the path from this node to the
root of ¢. This way, we obtain a B-pumpable derivation of a type judgment equivalent to
JO.
Finally, suppose that S equals (S1),...,(Ss), and J?,...,J° € D, and there is a subse-
quence J](-)l, e JJQS of JO,...,JY (with j; < --- < j,) satisfying Jﬁ_ € Pg, fori € {1,...,s},
and by applying a rule to J?, ..., J° one can derive a type judgment equivalent to J°. Let
B = By U---U By, where S; is a B;-skeleton for ¢ € {1,...,s}. Then, forie {1,...,s},
by the induction assumption we have a B;-pumpable derivation of a type judgment
equivalent to .J9 . Moreover, for i € {1,...,7}\ {j1,...,Jjs} by Lemma J.3(a) we have a
derivation of a type judgment equivalent to J?. We finish the derivation by applying the
considered rule, and we obtain a B-pumpable derivation for a type judgment equivalent
to JO.
Next, we prove the opposite implication. Consider thus a B-pumpable derivation of a
type judgment J equivalent to JY. Let Jy,...,J, be the premisses of the final rule used in
this derivation. We have several possibilities here:

XX:57

XX:58

Complexity of the Diagonal Problem for Recursion Schemes

It is possible that already a subderivation resulting in Ji for some k € {1,...,r} is
B-pumpable. Then, by the induction assumption, Ji] € Pg for some B-skeleton S.
Moreover, Jil,...,Jr} € D by Lemma J.3(a). By scaling down flag counters in the
rule used in the root of the derivation, we obtain a situation as in the first item of the
definition, so J° € Pg.

Suppose now that a type judgment J’ equivalent to J° appears somewhere in D, with
cs(a) > cy(a) for some a € B. Then (J°,J%) € &, by Lemma J.3(d). If B = {a}, as S
we take a, and we obtain J° € Pg by the second item of the definition. Suppose thus
that |B| > 2. Let B = B\ {a}. A B-pumpable derivation is also B’-pumpable, so by
the induction assumption we have that J° € Pgs for some B’-skeleton S’. As S we take
a[S’], and then J° € Pg by the third item of the definition.

Finally, suppose that the two above possibilities do not hold. Then necessarily there is a
subsequence Jj,,...,J;, of Ji,...,J,, and a division of B to disjoint nonempty subsets
By, ...,Bs (where s > 2) such that for all i € {1,...,s} the subderivation resulting in
Jj, is B;-pumpable. Then for all ¢ € {1, ..., s} by the induction assumption we have that
Jj;d € Pg, for some B;-skeleton S;. Moreover, Jil,...,J.} € D by Lemma J.3(a). By
scaling down flag counters in the rule used in the root of the derivation, we obtain a
situation as in the fourth item of the definition, so J° € Pg. |

Finally, let us see that all the sets can be quickly computed. We start by a lemma
describing a single rule.

» Lemma J.5. Given a set of basic type judgments D C UY, and its subsets Dy,..., Dy C D,
and a basic type judgment J° € U9, and (in the case of (b)) a symbol a, € A, it can be
decided in time polynomial in |Z/{/gN |+ |G|+ s whether there exist type judgments JY, ..., J° € D
such that a subsequence JJ(-)l, ceey JJQS of JY,...,JY (with j; < --- < js) satisfies J;{ € D; for
i €{l,...,s}, and such that by applying a type system rule to J?, ..., JO (listed in this order)
one can derive:

(a) a type judgment J that is equivalent to J°;

(b) a type judgment J that is equivalent to J° and such that cj(ay) > 0.

Proof. This lemma not completely obvious, as the number r of premisses can be arbitrarily
large (the same type judgment can be even repeated in the list of premisses), so we cannot
iterate through all possible lists of type judgments from D. But let analyze every rule
separately. In the proof we always assume that we have some a; € A. Formally, this can
be problematic when A = (), but it should be clear that also in this case we can obtain an
algorithm for (a), by simply removing all fragments talking about a.

The rules (VArR) and (Con0) have no premisses, so they require s = 0. It can be easily
checked whether some J equivalent to J° can be derived, and whether its flag counter c;
can satisfy c¢j(as) > 0.

For the rules (ND), (\), and (Con1) the situation is also easy, as they require exactly
one premiss. We can thus loop over all type judgments J{ € D. For s = 1 we require
that JY € Dy, and for s > 2 we always fail. When the premiss and the conclusion are
fixed (modulo the value of the flag counter in the conclusion), it is straightforward to check
whether the rule can be applied, and whether the flag counter ¢ in the conclusion can satisfy
clay) > 0.

In the (Con>1) and (@) rules it is useful to consider a predicate Comp!, (k,a, M, F") which
is true if k € {0,...,m+ 1}, and a € A, and there exists [€ {0,...,k} such that (I,a) € F’
and M (i) > 0 for all 4 satisfying | < ¢ < k — 1. Tt follows directly from the definition of

P. Parys XX:59

Comp,, that for any M, Fy, ..., F, the set
{F | (F,c) € Comp,,(M;(Fy,0),...,(F,,0)) for some c}
contains exactly these sets F' for which
V(k,a) € F.3i€{l,...,n}.Comp.,(k,a, M, F;).
Moreover, the set
{F | (F,c) € Comp,,(M;(Fy,0),...,(F,,0)) for some ¢ with c(ay) > 0}
contains exactly these sets F' for which
V(k,a) € FU{(m+1,ay)}.3i € {1,...,n}.Comp., (k,a, M, F;).

Consider now the (Con>1) rule, whose conclusion should be T' F& b(Py,..., P) :
(F,M,o0) > c for some c. Its premisses should be of the form I'; F% P, : (F;, M;,0) >0
for i € {1,...,r}, where we have a big choice for T';, M;, F;. The key point is that we do
not need to know all premisses simultaneously. Indeed, after scanning through the first n
premisses, the only things that we need to remember are:

the union I, =T, U ---UT,,

the sum M), = My + -+ + M,

the set F! of these (k,a) € FU{(m + 1,a4)} for which Comp., (k,a, M, F;) is satisfied

for some i € {1,...,n}, and

the maximal number s,, such that a subsequence J](-’l,...,JJQM of the list of these n

premisses satisfies Jjoi e€D;forie{l,...,sn}.

These tuples (I, M/ | F s,) satisfy T/, <T, and M, < M, and F,, C FU{(m+1,a4)}, and
55, < 5. The number of such tuples is at most 2 - |Z/{/g~|3 - (s + 1), because all possible choices
for T/, (and similarly for M/, and for F’ N F) can appear in some type judgments from /9.
Thus in the algorithm we make a loop over n € {1,...,r}, where after each step we remember
the set of all tuples (I, M/, F! ., s,) that can be obtained after considering any choice of the
first n premisses. For every such n we consider all possible candidates for the n-th premiss,
and basing on the set of obtainable tuples (I',_;, M/ _,,F! _4,s,-1) we compute the set of
obtainable tuples (I, M, F! s,). Knowing which tuples (I}, M/, F! s,) can be obtained
after choosing all premisses, we can determine whether the considered conclusion can be
derived in the required way. Such an algorithm is polynomial (we remark that r can be
larger than \Z/l/gN|, but surely r < |G|).

For the (@) rule the situation is similar. Let I' % P @Q : (F, M, T) > ¢ be the considered
conclusion (where ¢ is not fixed). We need to have one premiss concerning P, so we can
iterate over all candidates. Fix some such candidate I'g F%, P : (Fy, My, C—7) > 0. Having
some number of premisses concerning @, namely I'; F% Q : (F;, M;, ;) >0 for i € {1,...,n},
we only need to remember:

the union IV =Ty U --- UL,

the sum M’ = My +--- + M,

the set F” of these (k,a) € FU{(m + 1,a4)} for which Comp[,(k,a, M, F;|. ,q(0)) is

satisfied for some i € {1,...,n},

the triple container C' = {|(Fi|<,rq(0)> Mil<ora(q),7i) | # € {1,...,n}[}, and

the maximal number s" such that a subsequence J9 , ..., JJQS, of the list containing the
premiss for P and the n premisses for Q satisfies J) € D; fori € {1,...,5'}.

XX:60

Complexity of the Diagonal Problem for Recursion Schemes

We necessarily have that IV < T, and M' < M, and F/ C FU{(m+ 1,a4)}, and ¢’ < C,
and s’ < s, so the number of possible tuples (I", M’, F',C", s') is at most 2- |Z/{;J~|4 -s. Having
an obtainable tuple, and some candidate for a premiss, we can easily compute the tuple
obtained after including this premiss. When this set is computed, we can easily determine
whether the conclusion can be derived in the required way. <

Having established Lemma J.5, we come back to the main algorithm, where we want
to compute all the sets. Let us start with the set D. It can be computed by a saturation
algorithm, following its definition. We start by taking D = (). Then, in a loop, we check
for every basic type judgment J° € U9 whether some type judgment J equivalent to J°
can be obtained by applying some rule to some type judgments J?, ..., J? belonging to the
current version of D; if so, we add J° to D. Every such check can be done quickly due to
Lemma J.5(a) (where we take s = 0). Clearly, we will enlarge the set D at most \Z/l/g~| times,
and after every change of D we need to check at most |Z/[/gN\ basic type judgments. Overall,
the computation works in time polynomial in |L{/gN| +1G|.

The sets D, can be computed similarly. Here, we need to check whether some type
judgment J equivalent to J° can be obtained by applying some rule to some type judgments
J?, ..., J? belonging to the current version of D, where J? for some k € {1,...,r} belongs
to D, (the first item of the definition); this can be done by Lemma J.5(a), where as D; we
take D,, and s = 1. We also need to check whether some type judgment J equivalent to J°
and with flag counter satisfying c;(a) > 0 can be obtained by applying some rule to some
type judgments JY, ..., J? belonging to the current version of D (the second item of the
definition); this can be done by Lemma J.5(b) (where s = 0 and a4 = a).

The set £ is also computed by a saturation algorithm. Here we loop over triples of
basic type judgments J° K9 L° such that (L°, K°) € £, and in a simple check we fire
Lemma J.5(a) with D; = {L°} and s = 1. While computing sets £, we have three kinds of
checks, but again all of them can be handled by Lemma J.5, where s < 2.

Finally, we want to compute the set Pg for some skeleton S, assuming that we have
already computed the set Pg if S = a[S’], and the sets Pg,, ..., Pg, if S equals (S1), ..., (Ss).
Here we have four kinds of checks, corresponding to the four items of the definition. The
first of them is similar to what we did previously. The next two do not even require to use
Lemma J.5. The fourth item is more complicated, but Lemma J.5(a) is perfectly suited to
solve it.

At the end, due to the equivalence given by Lemma J.4, we need to check whether the
type judgment € -, A(G) : p,>0 belongs to Pg for some A-skeleton S. Here is the only place
where nondeterminism helps. If we can proceed nondeterministically, then we simply guess
an A-skeleton S, compute Pg only for this skeleton (and recursively for its subskeletons),
and check whether the type judgment belongs there. As already said, a single set Pg can be
computed in polynomial time. If we want to be deterministic, we compute the sets Pg for all
A-skeletons S (their number is exponential in |A]), and we check whether the type judgment
belongs to some of them.

J.4 Lower Bounds

We now prove lower bound appearing in Theorems 2 and 5. We base here on the problem
of nonemptiness of £(G). The complexity of this problem was established by Engelfried
[9] for higher-order pushdown automata, which are equivalent to a subclass of higher-order
recursion schemes [14]. For us it is more convenient to use results of Kobayashi and Ong
[19], as they talk directly about schemes.

P. Parys

Kobayashi and Ong [19, Theorem 4.3] prove that for m > 1 the following problem is m-
EXPTIME-hard: given a scheme G of order at most m+1, and a disjunctive alternating parity
tree automaton B, decide whether B accepts BT (A(G)). Instead of recalling the definition of
a disjunctive alternating parity tree automaton, we notice that G and B produced by their
reduction are of a special form. Namely, BT (A(G)) consists of binary nodes labeled by brs
and leaves labeled by e. The automaton B is always the same, and it accepts those trees,
which contain an e-labeled leaf. Let us rename all bro symbols appearing in G to nd; call the
resulting scheme G’. Then B accepts BT (A(G)) if and only if £(G’) is nonempty. Moreover,
G’ is word-recognizing. It follows that for m > 1 the following problem is m-EXPTIME-hard:
given a word-recognizing scheme G’ of order at most m+ 1, decide whether £(G’) is nonempty.

Kobayashi and Ong [19, Corollary 3.7] also prove that for m > 1 the following problem is
m-EXPTIME-hard: given a scheme G of order at most m, and a trivial alternating parity
tree automaton B, decide whether B accepts BT (A(G)). In this reduction, the tree BT (A(G))
consists of n-ary nodes (for some n € N) labeled by A or E, and of leaves labeled by T or R.
Let L be the smallest language such that:

L contains the tree whose unique node is labeled by T,

if L contains a tree T, then L contains every tree T” whose root is labeled by E, and such

that the subtree rooted in one among children of the root equals T, and

if L contains trees T4, ..., T}, then L contains the tree 77 whose root is labeled by A, and

such that the subtrees rooted in children of the root are T1,...,T,.

The automaton B produced in the reduction is always the same (modulo the fact that n
can vary), and it accepts those trees of the above form that do not belong to L. Let us
rename all E and R symbols appearing in G to nd; call the resulting scheme G’. It is not
difficult to see that BT(A(G)) € L (i.e., B rejects BT(A(G)) if and only if £(G’) is nonempty.
The m-EXPTIME complexity class is closed under taking the complement of a language. It
follows that for m > 1 the following problem is m-EXPTIME-hard: given a scheme G’ of
order at most m, decide whether £(G’) is nonempty.

For the special case of A = (), the diagonal problem checks precisely whether the language
is nonempty, i.e., Diagy(£(G)) holds if and only if £(G) # 0. Thus from the above we
immediately obtain that for m > 1 the diagonal problem for word-recognizing order-(m + 1)
schemes and the diagonal problem for tree-recognizing order-m schemes are m-EXPTIME-
hard.

One may wonder whether the problems are m-EXPTIME-hard also when A is nonempty
or, in particular, when A contains all letters appearing in the scheme. As expected, this is
the case. Let us reduce from the problem of nonemptiness of £(G) to the problem of deciding
Diag,y(£(G')), where G' is a scheme using only one symbol a (beside of the nd symbol). To
produce G’ we add to G a fresh starting nonterminal N{ with rule R(N(}) = nd(Ny, a(N{)),
where Ny is the starting nonterminal of G. Moreover we rename every symbol appearing in
G, other than nd, to a. Notice that G’ allows to precede every tree from L£(G) by a sequence
of any number of a symbols; thus Diagy,,(£(G")) holds if and only if £(G) # 0. Moreover,
the orders of G and G’ are the same, and if G was word-recognizing, so is G’.

In the last part, we prove that the diagonal problem for order-0 word-recognizing schemes
is NP-hard. Of course this problem is a special case of the diagonal problem for order-1
word-recognizing schemes, and of the diagonal problem for order-0 tree-recognizing schemes,
so the latter two problems are also NP-hard. We reduce from the undirected Hamiltonian
cycle problem, known to be NP-complete [12]. We are thus given an undirected graph G, and
we construct a word-recognizing scheme G of order 0 such that Diag4(G) holds if and only if
there exists a Hamiltonian cycle in G. Suppose that the nodes of G are named 1,...,m, and

XX:61

XX:62

Complexity of the Diagonal Problem for Recursion Schemes

m > 2. In G we use symbols ay,...,a,, and we take all of them to A. The nonterminals of
G are N;'. for i € {0,...,m} and j € {1,...,m}, all of sort 0. For i, € {1,...,m} the rules
are:

R(NE) = aj(nd(N%, NiT) [NEY))

J vy

where v1, ..., v, are all neighbors of j in G. Moreover,
R(NY) = a; (), and
R(N9) = nd() for j € {2,...,m}.

As the starting nonterminal we take N7*.

By induction on i € {0,...,m} we can see that L(BT(Ag(N}))) contains words of the
form (aj,)™(a;,_,)™ " ...(aj,)" aj,, where ny,...,n; are arbitrary positive numbers, and
JisJi—1,- -+, Jo isapath in G such that j; = j and jo = 1. It follows that £(G) contains words of
the form (aj,,)" (aj,,_,)" " ...(a;;)"*aj,, where ni,...,n,, are arbitrary positive numbers,
and jm, jm—1,- -+, Jo is a path in G such that j,, = jo = 1. If G contains Hamiltonian cycles,
as Jm, Jm—1,- - -, jo we can take one of them, starting and ending in node 1 (by definition all
Hamiltonian cycles have length m). Then the words (a;,,)"(a;,,_,)" ... (a;;)"a, foralln > 1
are in £(G) and contain every symbol from ay,...,a,, at least n times, so they witness that
Diag 4(G) holds. Oppositely, if G does not contain Hamiltonian cycles, then on every path
Jms Jm—1s -+ Jo With j,, = jo = 1 some node k € {2,...,m} is missing. In consequence, in
every word (a;,.)" (a;,,)" *...(aj,)"aj, € L£(G) some letter a; € A does not appear at
all, so Diag 4(G) does not hold. This proves that the reduction is correct.

K Theorem 4

Finally, we prove Theorem 4. This theorem concerns the problem of deciding whether
I C L(H)], where I is an ideal, and H is a word-recognizing scheme of order at most m + 1,
where m is a fixed positive number.

We remark that schemes of order 0 are equivalent to nondeterministic finite automata,
and schemes of order at most 1 are equivalent to context-free grammars (and translations
between these formalisms can be performed in polynomial time). Thus from Zetzsche [29] it
follows that the problem of deciding whether I C £(H)] is NL-complete for H of order 0
(i.e., for m = —1), and P-complete for H of order at most 1 (i.e., for m = 0).

But here we assume that m > 1. Let us first see that the problem is m-EXPTIME-hard.
This follows directly from m-EXPTIME-hardness of the problem of deciding whether £(H)
is nonempty (cf. Appendix J.4). Indeed, L(H) # @ if and only if {¢} C L(#H)|; we notice
that the singleton containing the empty word is a special case of an ideal.

In the remaining part of this section we prove that the problem can be actually solved in
m-EXPTIME. We follow here the approach of Zetzsche [28, 29]. He has shown [28, Proof
of Theorem 1] that basing on an ideal I one can construct a nondeterministic finite-state
transducer 7 and a set of symbols A such that for every language L we have that I C L|
if and only if Diag,(7 (L)) holds.'! Here by T(L) we mean the effect of applying the
transformation defined by T to the language L (i.e., the set of all words w such that for some

1 Definitions of finite-state transducers and collapsible pushdown automata are omitted here. We describe
our procedure only on a high level of abstraction, so details of these definitions are actually irrelevant
for us. It is standard to adopt the constructions proposed here to concrete formal definitions.

P. Parys

v € L the pair (v,w) is in the relation recognized by T). The construction of 7 and A can
be performed in polynomial time, and the diagonal problem for word-recognizing schemes of
order at most m + 1 can be solved in m-EXPTIME.
It remains to see that H and 7 can be combined (in polynomial time) into a scheme H
such that L(H7) = T(L(H)). To this end, we perform the following steps.
Treating nd as any other symbol, we translate H into a deterministic tree-generating
collapsible pushdown automaton (CPDA) A that generates BT (A(#)). Preferably, we
refer here to the translation of Salvati and Walukiewicz [27, Sections 3.1 and 4], as this
translation is given for schemes defined similarly as in the current paper, and thus it can
be easily adopted. In particular, it works well when as R(N) we allow arbitrary A-terms
(cf. Appendix C.3). It can be seen that their translation works in polynomial time. We
shall only remark that the size of AY-terms (appearing in their paper as intermediate
objects) should be defined as the number of different subterms; in other words, AY -terms
should be represented as (directed, acyclic) graphs, without expanding them into trees.
We change the deterministic tree-generating CPDA A into a nondeterministic word-
recognizing CPDA B: whenever A was generating a node with nd as its label and with
r children, in B we nondeterministically choose one of the r options; whenever A was
generating a node with some other symbol as its label (and with at most one child), in B
we allow to read this symbol, and if this symbol had no children, we accept. As a result
of this construction we obtain an automaton B which recognizes the language £(H), seen
as a language of words.
We combine B with our finite-state transducer T, so that the resulting CPDA C recognizes
T(L(H)). This amounts to taking as the state set of C the product of state sets of B and
T, and appropriately combining their transitions.
We change the word-recognizing nondeterministic CPDA C back to a deterministic
tree-generating CPDA D; in particular, in all configurations with multiple successors,
we generate an nd-labeled node with multiple children (and in configurations with no
successors, we generate an nd-labeled leaf). The CPDA D generates a tree T such that
L(T)=T(LH)).
We translate D back to a recursion scheme Hy such that BT(A(Hr)) = T [11], i.e.,
L(H7) =T(L(H)).
Finally, we notice that all the modifications can be performed in polynomial time (so, in
particular, H7 is of polynomial size). Moreover, none of them increases the order, and
thus the order of H7 is at most m + 1, as required.

XX:63

	Introduction
	Preliminaries
	Type System for the Diagonal Problem
	Extensions
	Related work
	Additional Definitions
	Our Definition of Schemes
	Symbols Are Unranked
	Node Constructors
	Looser Definition of Schemes
	Ensuring Homogeneity

	Tree-Generating Schemes
	Examples
	Finite Prefixes of Infinite -terms
	Properties of Type Judgments
	Completeness
	Proof of Lemma H.1
	Proof of Lemma H.2
	Proof of Lemma H.3
	Proof of Lemma H.4

	Soundness
	Proof of Lemma I.1
	Proof of Lemma I.2
	Proof of Lemma I.3

	Complexity
	Number of Equivalence Classes
	Pumpable Derivations
	Algorithms
	Lower Bounds

	Theorem 4

