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ABSTRACT
Many of today’s graph query languages are based on graph
pattern matching. We investigate optimization for tree-
shaped patterns with transitive closure. Such patterns are
quite expressive, yet can be evaluated efficiently. The min-
imization problem aims at reducing the number of nodes
in patterns and goes back to the early 2000’s. We provide
an example showing that, in contrast to earlier claims, tree
patterns cannot be minimized by deleting nodes only. The

example resolves the M
?
= NR problem, which asks if a tree

pattern is minimal if and only if it is nonredundant. The
example can be adapted to also understand the complexity
of minimization, which was another question that was open
since the early research on the problem. Interestingly, the
latter result also shows that, unless standard complexity as-
sumptions are false, more general approaches for minimizing
tree patterns are also bound to fail in some cases.

1. INTRODUCTION
Tree patterns are a very natural and user-friendly means

to query graph- and tree-structured data. This is why they
can be found in the conceptual core of widely used query
languages for graphs and trees.

1.1 Motivation from Graph Query Languages
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Graph pattern matching is a fundamental concept in mod-
ern declarative graph query languages. Indeed, graph query
languages usually take one of two main perspectives: graph
traversal or graph pattern matching, the former being the
imperative and the latter being the declarative variant [31].
Today’s most prominent declarative graph query languages
are SPARQL 1.1 [33] and Neo4J Cypher [25]. Both lan-
guages make it very clear in their specifications that they
have graph pattern matching at their core. SPARQL 1.1
explicitly writes “SPARQL is based around graph pattern
matching” [33, Section 5], and the introduction of Neo4J’s
documentation on Cypher [25, Section 3.1.1] is essentially
an introduction to the principles of graph pattern matching.
Gremlin [19], another popular graph query language, leans
more towards the graph traversal side of the spectrum, but
also supports pattern matching style querying. It performs
graph pattern matching similar to SPARQL [31].

The reason why graph pattern matching is so popular is
not surprising. Graph patterns are expressive, reasonably
simple and intuitive to understand, and often efficient to
evaluate. Consider the graph in Figure 1. It contains infor-
mation on artists, their occupation, and their place of birth.
The graph structure is inspired on property graphs, a popular
model for graph databases in practice [30, 3]. In this model,
each node and edge carry a label and, in addition, nodes can
have a set of attributes. For instance, the node related to
Jimi Hendrix has the label Person, its “name” attribute is
Jimi Hendrix, and its “aka” attribute is James Marshall Hen-
drix.

Assume that we would like to find the artists who were
born in the United States. This corresponds to finding
names of Person nodes that have (1) an occupation edge to
“a subclass of artist” and (2) a place of birth edge to a city
that is located in the United States. For expressing these
conditions, we need to reason about paths in the graph. The
occupation in (1) should be connected to artist by a path of
subclassof-edges and the city in (2) to United States by a
path of locatedin-edges.

These conditions are expressed in the pattern in Figure 2.1

It has two types of edges and two types of nodes. Single

1The pattern is closely related to graph patterns, which were
identified by Angles et al. [3] as a part of the conceptual core
of many of today’s graph query languages.
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Figure 1: A graph database (as a property graph), inspired on a fragment of WikiData
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Figure 2: A tree pattern finding the artists who were born
in the United States. The query returns the person names
and the cities where they were born. (Fully circled nodes
are return nodes.)

edges in the pattern can be matched to single edges in the
graph with the same label. The double edges can be matched
to paths in the graph on which every edge has the label given
in the query. (For instance, the locatedin edge in the query
can be matched on the path from the Los Angeles to United
States nodes.) The solid nodes in the query are output nodes
and the dashed nodes are ordinary nodes. The symbol ∗ is
a wildcard symbol that can be matched to any label. The
query has two variables: x1 and x2. Intuitively, computing
the answers to the pattern corresponds to finding matches
of the pattern in the graph and, for each such match, return
the nodes (or values) matched by the variables in output
nodes of the pattern. When evaluated on the graph in Fig-
ure 1, this pattern would return (Jimi Hendrix, Seattle) and
(Marilyn Monroe, Los Angeles).

Our example query is structured as a tree. In general,
the underlying structure of queries in SPARQL or Cypher
can be an arbitrary graph and can therefore contain cycles.
The acyclic queries form, however, an important subclass.
Graph patterns closely correspond to conjunctive queries,
which are known to be NP-complete to evaluate [10]. The
tree-shaped patterns closely correspond to acyclic conjunc-
tive queries, which can be evaluated in polynomial time. In

fact, the quest for subclasses of conjunctive queries with a
polynomial time evaluation problem is rich of beautiful re-
sults (see, e.g., [17]). In this paper, however, we focus on
queries whose underlying structure is a tree and, for this rea-
son, have a tractable (polynomial time) evaluation problem.
(We note that the transitive closure operators we use make
no difference in this respect.)

From a graph query language perspective, the tree pat-
terns from this paper correspond to tree-shaped conjunc-
tive queries (or tree-shaped graph patterns) with transi-
tive closure. Transitive closure seems to be becoming in-
creasingly popular in graph query languages, even though
there have been challenges in the early version of the oper-
ator in SPARQL 1.1 [5, 23]. In WikiData’s list of example
queries [34], which help users getting started with the data
set, 72 out of 272 queries use transitive closure of a label,
which means that the feature is important.

1.2 Motivation from Tree Query Languages
Tree-structured data is among us in many forms, JSON

and XML being two examples. The tree pattern queries that
we consider were originally introduced to investigate query
languages for tree-structured data [24]. They are an abstrac-
tion of a fragment of XPath [28] and therefore also appear in
XQuery [29], XSLT [21], and languages for querying JSON,
see, e.g., [20]. Indeed, patterns such as the one in Figure 2
can equally well be used for querying tree-structured data.
(This is easy to see, since a tree is a special case of a graph.)

Tree pattern queries are also important for many topics in
fundamental research on tree-structured data. For instance,
they form a basis for conjunctive queries over trees [18, 8],
for models of XML with incomplete information [6], and the
closely related pattern-based XML queries [16]. They are
used for specifying guards in Active XML systems [1] and
for specifying schema mappings in XML data exchange [4].

1.3 The Core Problem
We report in this paper on recent progress on the min-

imization problem for tree patterns [12]. Optimization of
queries has been a main topic of database research ever since



the beginning and therefore is very natural to consider for
tree patterns. Tree pattern query optimization already at-
tracted significant attention in the form of query contain-
ment [24, 26, 13], satisfiability [7], and minimization [2, 11,
15, 22, 27, 35].

Almost all this former work on containment, satisfiability,
and minimization exclusively considered tree patterns as a
language for querying tree-structured data. However, as ar-
gued by Miklau and Suciu [24, Section 5.3], many of these
results hold just the same if we use tree patterns to query
graph-structured data, i.e., if we use tree patterns as in Sec-
tion 1.1. The same argument holds for the minimization
problem. For this reason, one can often obtain results for
tree patterns on graph-structured data while only consider-
ing tree-structured data in proofs.

We note that the tree patterns that were considered in
this former work (and the ones we consider in the proofs
of [12]) cannot express the query in Figure 2, for the sim-
ple reason that they cannot express the transitive closure of
subclassof. We will argue that our results extend to these
more expressive queries as well.

Another difference is that we consider Boolean queries,
whereas the query in Figure 2 returns tuples of answers.
Again, we will argue that our results also apply for higher-
arity queries. We consider the following problem.

Tree Pattern Minimization
Given: A tree pattern p and k ∈ N
Question: Is there a tree pattern q, equivalent to

p, such that its size is at most k?

The main difficulties for this problem are already present
in a very restricted set of tree patterns that

• only query graphs that are node-labeled and are tree-
shaped ; and

• over these graphs, only use labeled node tests, wildcard
node tests, the child relation, and the descendant rela-
tion.

These are precisely the patterns introduced by Miklau and
Suciu [24].

1.4 History of the Problem
Although the patterns we consider here have been widely

studied [14, 24, 36, 15, 22, 1, 9, 4, 32], their minimization
problem remained elusive for a long time. The most im-
portant previous work for their minimization was done by
Kimelfeld and Sagiv [22] and by Flesca, Furfaro, and Mas-
ciari [14, 15].

The key challenge was understanding the relationship be-
tween minimality (M) and nonredundancy (NR). Here, a
tree pattern is minimal if it has the smallest number of
nodes among all equivalent tree patterns. It is nonredun-
dant if none of its leaves (or branches2) can be deleted while
remaining equivalent. The question was if minimality and
nonredundancy are the same ([22, Section 7] and [15, p. 35]):

M
?
= NR Problem:

Is a tree pattern minimal
if and only if it is nonredundant?

2Kimelfeld and Sagiv proved that a tree pattern has a re-
dundant branch if and only if it has a redundant leaf [22,
Proposition 3.3].
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Figure 3: Minimizing a tree pattern by removing redundant
nodes

Notice that a part of the M
?
= NR problem is easy to see:

a minimal pattern is trivially also nonredundant (that is, M
⊆ NR). The opposite direction is much less clear.

If the problem would have a positive answer, it would
mean that the simple algorithmic idea summarised in Algo-
rithm 1 correctly minimizes tree patterns. Therefore, the

M
?
= NR problem is a natural question about the design of

minimization algorithms for tree patterns.

Algorithm 1 Computing a nonredundant subpattern

Input: A tree pattern p
Output: A nonredundant tree pattern q, equivalent to p

while a leaf of p can be removed
(remaining equivalent to p) do

Remove the leaf
end while
return the resulting pattern

Example 1.1. It is easy to see that Algorithm 1 can be
used for minimizing some patterns. Consider the left pat-
tern in Figure 3. Its root (labeled with a wildcard ∗) can
be matched on nodes n in a graph such that (1) n has an
a-labeled successor, (2) a b-labeled successor with a c-labeled
successor, and (3) a c-labeled node is reachable from n. (In
this example, edge labels do not matter.) In the semantics
of such patterns, it is allowed that the different c-nodes are
matched on the same node in the data. Therefore, condition
(3) is redundant and the pattern to the right is equivalent
and smaller.

The M
?
= NR problem is also a question about complexity.

The main source of complexity of the nonredundancy algo-
rithm lies in testing equivalence between a pattern p and a

pattern p′, which is generally coNP-complete [24]. If M
?
=

NR has a positive answer, then Tree Pattern Minimiza-
tion would also be coNP-complete.

In fact, the problem was claimed to be coNP-complete in
2003 [14, Theorem 2], but the status of the minimization-

and the M
?
= NR problems were re-opened by Kimelfeld and

Sagiv [22], who found errors in the proofs. Flesca et al.’s
journal paper then proved that M = NR for a limited class
of tree patterns, namely those where every wildcard node has
at most one child [15]. Nevertheless, for tree patterns,

(a) the status of the M
?
= NR problem and

(b) the complexity of the minimization problem

remained open.



1.5 Our Contributions
We proved the following [12]:

(a) There exists a tree pattern that is nonredundant but not
minimal. Therefore, M 6= NR.

(b) Tree Pattern Minimization is ΣP
2 -complete. This

implies that even the main idea in Algorithm 1 cannot
work unless coNP = ΣP

2 .

Interestingly, our counterexample for (a) uses only two wild-
card nodes with two children and only one transitive edge.
This is only barely beyond the fragment for which it is known
that minimality and nonredundancy coincide.

Outline.
In Section 2 we formally define tree patterns, their se-

mantics, and discuss their relationship to the queries in the
Introduction. We show why M 6= NR in Section 3. In Sec-
tion 4 we briefly discuss the complexity result and its con-
sequences.

2. PRELIMINARIES
We formally define our data model and queries, recall im-

portant results about the static analysis of queries, and dis-
cuss the relationship between other data models and ours.

Data Model: Node- and Edge-Labeled Graphs.
Our data model is very simple: we use finite, node- and

edge-labeled directed graphs, where the labels come from
an infinite set. In the graph database world, this model is
closely related to property graphs, the data model for Neo4J
[30] (see, e.g., [3] for a formal definition of property graphs).3

More formally, a (node- and edge-) labeled graph is a triple
(V,E, lab), where V is a finite nonempty set of nodes, E is
a set of directed edges (u, v) ∈ V × V and lab : V ∪ E → Λ
is a labeling function assigning to every node and edge its
label coming from an infinite set of labels Λ. We assume
that graphs are connected. A path from node v1 to vn is
a sequence of nodes π = v1 · · · vn, where (vi, vi+1) ∈ E for
every i = 1, . . . , n− 1.

A graph is a tree if,

(i) for every node v, there is at most one node u (called
parent of v) with (u, v) ∈ E and

(ii) there is exactly one node v (called root) without a par-
ent.

We assume familiarity with standard terminology on trees
such as child and descendant.

The Queries: Tree Patterns.
Our formal model of graph patterns allows node- and edge

label tests, wildcard tests, and transitive closures. The wild-
card test (denoted by “∗” in patterns) matches any node- or
edge label in a graph. To avoid confusion, we assume that
∗ /∈ Λ.

3Property graphs are more refined, however, since they as-
sociate properties to nodes in addition to labels. From a
formal perspective, we want that nodes in the graph are not
uniquely determined by their label. We do not want that
different occurrences of a label in a query must always be
mapped to the same node in the graph. This behaviour
would introduce unwanted cycles in tree pattern queries.
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Figure 4: Example of a match from a tree pattern (left) to
a labeled graph (right)

Formally, a graph pattern is a tuple p = (Vp, Ep, labp)
where labp : Vp ∪Ep → Λ]{∗} and Vp is partitioned in two
sets: simple edges and transitive closure edges. In figures,
we draw transitive closure edges using double lines. Further-
more, if we do not write a label on an edge, we implicitly
assume that the edge label is the wildcard “∗”.

A tree pattern is a graph pattern that satisfies the condi-
tions (i) and (ii) we required for trees. From now on in this
paper, we will only consider tree patterns (although many
definitions also apply for graph patterns). The size of a
pattern p, denoted size(p), is the number of its nodes.

For simplicity, we will define our queries to be Boolean,
that is, we will only consider whether they can be matched in
a graph or not. Tree patterns with output nodes have been
considered as well [24, 22] and our main results also apply
to those queries. We discuss this later in the Preliminaries
(see Boolean vs. k-ary queries).

Semantics of Queries.
We use a homomorphism-based semantics for tree pat-

terns. For a tree pattern p = (Vp, Ep, labp) and a graph
G = (V,E, lab), a function m: Vp → V is a match of p in g
if it fulfills all the following conditions:

(1) If labp(v) 6= ∗ for v ∈ Vp then labp(v) = lab(m(v)).

(2) If (u, v) ∈ Ep is a simple edge then (m(u),m(v)) is
an edge in G. Furthermore, if labp((u, v)) 6= ∗ then
labp((u, v)) = lab((m(u),m(v))).

(3) If (u, v) ∈ Ep is a transitive closure edge then there is
a path from m(u) to m(v) in G that satisfies the label
constraint of the edge. That is, there exists a path π =
u1 · · ·un in G (with n > 1)) such that m(u) = u1 and
m(v) = un. Furthermore, if labp((u, v)) 6= ∗, then all
edges (ui, ui+1) in π are labeled labp((u, v)).

We say that p can be matched in G if there exists a match
from p to G. Figure 4 shows an example of a match. Notice
that we do not require matches to be injective.

Definition 2.1 (Semantics of Tree Patterns).
The set of models of a tree pattern p, denoted by M(p), is
the set of graphs in which p can be matched.

Containment, Equivalence, and Minimality.
A tree pattern p1 is contained in a tree pattern p2 if

M(p1) ⊆ M(p2), which we denote by p1 ⊆ p2. If p1 ⊆ p2
and p1 ⊇ p2 then we say that the patterns p1 and p2 are
equivalent and we write p1 ≡ p2.

Figure 3 contains two patterns that are equivalent. (For
the left pattern, the c-labeled node on the right branch can
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Figure 5: Example for containment of patterns. (Non-
labeled edges are implicitly assumed to have wildcard tests.)

always be matched to wherever the c-labeled node in the
middle branch is matched. Therefore it is equivalent to the
pattern on the right.) In Figure 5, we give an example for
pattern containment. The right pattern matches a-nodes
which have c1- and c2-nodes on distance two, such that there
are b-nodes between the a and the ci. The pattern on the
left additionally requires the two b-nodes to be the same.
Since the latter is more restrictive, if the left pattern can
be matched in a graph, then the right one can be matched
there as well.

The following problem is important in many query opti-
mization procedures:

Tree Pattern Equivalence

Given: Two tree patterns p1 and p2
Question: Is p1 ≡ p2?

We call a tree pattern p redundant if one of its nodes can
be removed without changing its set of models. For a node
v of p, we denote by p \ v the pattern obtained from p by
removing v and all its descendants and incident edges.

Definition 2.2 (Minimality, Nonredundancy).

• A tree pattern p is redundant if it is equivalent to p \ v
for a node v of p. In this case, v is a redundant node.
If p is not redundant we say that it is nonredundant.

• A pattern p is said to be minimal if there exists no tree
pattern that is equivalent to p but has strictly smaller
size.

It is known that tree patterns are redundant if and only if
they have a redundant leaf [22, Proposition 3.3].

Complexity.
One can obtain an almost trivial ΣP

2 upper bound for
Tree Pattern Minimization (as defined in the Introduc-
tion) by using the following result.

Theorem 2.3. Tree Pattern Equivalence is coNP-
complete.

Proof sketch. Miklau and Suciu [24] prove this theo-
rem for tree patterns without edge labels, but these can
easily be added. Furthermore, their patterns only have tree
models, whereas we consider graph models. However, they
explain [24, Section 5.3] that these two variants of the prob-
lem are the same.

From this result, a ΣP
2 upper bound for Tree Pattern

Minimization is immediate.

Theorem 2.4. Tree Pattern Minimization is in ΣP
2 .

Proof. Given a tree pattern p and k ∈ N, the ΣP
2 algo-

rithm first guesses (existential quantification) a tree pattern
p′ of size at most k and then checks (universal quantifica-
tion) if p′ and p are equivalent.

name: ∗

∗

name: artist

Person

Profession

occupation

subclassof

(a) Property Graph Query

Person

∗

@name

∗

Profession

artist

@name

subclassof

occupation

(b) Translated Query

Figure 6: Translating a subquery of Figure 2 to our simpli-
fied model

Notice that, if M = NR, then p′ can be found among the sub-
patterns of p, which would drop the upper bound to coNP.

Boolean vs. k-ary queries.
One can easily extend tree patterns to k-ary tree patterns

that return k-tuples of answers (see, e.g., [24, 22]). We ar-
gue that our results also hold for such queries. It is trivial
for our M 6= NR example, because a Boolean query is just
a special case of a k-ary query. The other main result is
the ΣP

2 -completeness result in Theorem 4.1. The ΣP
2 upper

bound can be seen to hold for k-ary queries by using the
same naive algorithm as in Theorem 2.4 and using the ar-
gument of Kimelfeld and Sagiv [22, Section 5.2] for showing
that Tree Pattern Equivalence for k-ary queries poly-
nomially reduces to the same problem for Boolean queries.
The ΣP

2 lower bound follows immediately.

Relationship to the Queries in the Introduction.
The tree patterns we defined here are much simpler than

the pattern we discussed in the Introduction (Figure 2).
However, the two types of patterns are closely related when
it comes to minimization. Again, since the patterns we have
here are simpler, it is easy to see that our M 6= NR example
equally applies to the kind of patterns in the Introduction.

Moreover, the simplified patterns capture much of the ex-
pressivity of the more complex patterns modulo a simple
encoding. In Figure 6, we demonstrate this translation by
example, using a subquery of Figure 2. Essentially, each
node of the pattern on the left becomes a node on the right
labeled with the property (the label in the rectangular box)
if present, and the “name”-attributes of nodes become chil-
dren with incoming edges that identify the type of attribute.
(We can make sure that the labels of these incoming edges
do not appear elsewhere in the query.)

We do not claim that this translation gives a 100% corre-
spondence between the world of tree patterns and the world
of “property graph tree patterns”, but we do believe that it
shows a very close connection. For instance, the translation
can be used for testing equivalence between certain types
of property graph patterns (translate to tree patterns and
test equivalence between those). Likewise, for a large class
of property graph tree patterns, minimization would work
very similarly to minimization of the translated tree pattern
query.
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Figure 7: A non-redundant tree pattern p (right) and an equivalent tree pattern q that is smaller (left)

3. THE M ?
= NR PROBLEM

We show that M 6= NR by presenting a tree pattern that
is nonredundant but also not minimal.

Indeed, we will argue that the right pattern p in Figure 7
is nonredundant and not minimal. (For readability, we omit-
ted arrows. All arrows are assumed to point downwards.)
Consider the pattern q on the left of Figure 7. To convince
the reader, we need to make three points: (1) p is nonre-
dundant, (2) p is equivalent to q, and (3) q is smaller than
p.

Point (3) is trivial: q can be obtained from p by merging
two b-nodes on depth six. Therefore, q has one fewer node
than p. Points (1) and (2) are non-trivial. Here we will
only show (2) because it is the most interesting argument of
the two. (Point (1) can be shown by proving that p is not
equivalent to any of its subpatterns, see [12].)

We want to convince the reader of point (2) by a sequence
of pictures. First of all, observe that q ⊆ p. The reason is the
same as the one we already discussed in Figure 5. Therefore
it only remains to argue why p ⊆ q.

In Figure 8, we depicted q (always on the left) and three
patterns p1, p2 and p3 on the right. If p is matched in a
graph, there are three possibilities for matching the double
edge connecting the ∗-node with the a-node. This double
edge is matched to a path that either consists of

(a) one edge,

(b) two edges, or

(c) at least three edges.

These three possibilities are depicted on the right of Fig-
ure 8. If we have case (a), then we can also match the left
pattern in Figure 8(a) (similar for (b) and (c)). (Some parts
of these patterns are grey. We will get to that soon.)

The dotted edges have the following meaning. Whenever
the pattern p1, p2, or p3 on the right can be matched on a
graph, then pattern q (on the left) can also be matched, by
matching the nodes on the left to wherever the connected
node on the right is matched. For instance, in case (a), the
root of q can always be matched to wherever the root of p1
was matched. The grey part of p1 is in fact irrelevant for q
in this case. All nodes of q can be matched to places where
black nodes of p1 are matched. The grey parts in (b) and
(c) have the same meaning.

The dotted edges show completely how q can be matched
in cases (a) and (b). In case (c), we also have a dashed edge.
The dashed edge shows how the matching of q works if we
have exactly three edges in (c), but if there are more, then
the target of the edge needs to go downward accordingly.
The reason for this is easy to see: the two a-nodes on the
right side of q are connected to the root by paths of fixed
length. So, if the target of the a-nodes move further away,
the root of q needs to follow as well. Since all nodes on the
path to the root are wildcards, this is possible. Therefore, q
can always be matched in case (c) as well.

This gives us the following Theorem:

Theorem 3.1 (M 6= NR).
Minimality 6= Nonredundancy

4. COMPLEXITY AND CONSEQUENCES
Leveraging the behavior of the patterns in Figure 7, we

could prove the following:

Theorem 4.1 ([12]). Tree Pattern Minimization is
ΣP

2 -complete.

This result is even more drastic than the example in Fig-
ure 7. Observe that the query q can be obtained from p by
just merging two nodes together. So, the reader may won-
der if the following is true. Say that a query is in NR′ if
none of its nodes can be deleted or merged while remaining

equivalent. Then, M
?
= NR′ would be the question: Can tree

patterns always be minimized by deleting or merging nodes?
Although Figure 7 does not show that M 6= NR′, Theo-

rem 4.1 shows that, if M = NR′, then coNP = ΣP
2 . Indeed,

if it would be possible to always minimize tree patterns by
deleting or merging nodes, then Algorithm 1 (from the In-
troduction) can be adapted to be a coNP test for minimiza-
tion. (Instead of deleting nodes, it would also merge nodes
together.) For this reason, also the search for candidate
minimal patterns is a difficult problem.
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