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Abstract
We study the Weak MSO logic in relationship to infinitary λ-calculus. We show that for every
formula ϕ of Weak MSO there exists a finitary model of infinitary λ-calculus recognizing the set of
infinitary λ-terms whose Böhm tree satisfies ϕ. The model is effective, in the sense that for every
λY -term we can effectively compute its value in the model. In particular, given a finite λY -term,
one can decide whether the resulting Böhm tree satisfies a given formula of Weak MSO, which
is a special case of the result of Ong [16], which concerns unrestricted MSO. The existence of
effective models for Weak MSO and MSO was proved earlier by Salvati and Walukiewicz [19, 20]
but our proof uses a different method, as it does not involve automata, but works directly with
logics.
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1 Introduction

In this paper, we study the model-checking problem on infinite trees generated by finite
terms. More precisely, we consider simply typed λY -calculus – an extension of simply typed
λ-calculus by a fixpoint operator Y . Any term K of simply typed λY -calculus generates an
infinite tree, called the Böhm tree BT(K), which reflects the control flow of the program
corresponding to the term. We illustrate this with an example borrowed from [20], depicted
in Figure 1. Trees generated by terms of simply typed λY -calculus can be used to faithfully

Factorial(x) ≡ if x = 0 then 1 else x · Factorial(x − 1)
Fct ≡ Y (λf.(λx.if (isZero x) 1 (x ∗ f(x− 1)))
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Figure 1 The factorial function, the corresponding λY -term, and its Böhm tree

represent the workflow of programs in a language with higher-order functions. Traditionally,
higher-order recursion schemes are used for this purpose [6, 12, 16, 13]; this formalism is
equivalent to simply typed λY -calculus [18], and the translation between them is rather
straightforward. Collapsible pushdown systems [9] and ordered tree-pushdown systems [5]
are other equivalent formalisms.
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The model-checking problem for λY -calculus is the following: given a closed λY -term K

of the ground type, and a formula ϕ talking about trees, decide whether BT(K) |= ϕ. In
this paper, we consider this problem, where the formula ϕ is a formula of Weak MSO logic.
This logic extends first-order logic by allowing to quantify existentially and universally over
finite sets of vertices. For example, the formula ∃finX.∀x.(x ∈ X ⇐⇒ a(x)) holds in a tree
t iff t has finitely many nodes labeled with a.

Weak MSO logic can capture many natural properties important in verification, such
as safety or liveness. It is known from [16] that model-checking for a strictly larger logic is
decidable, namely, for MSO logic, where quantification is not restricted to finite sets only.
The same was later shown in [9, 13, 18, 23] using different methods.

The main result of our paper states that for every sentence ϕ of Weak MSO one can
construct an effective and finitary model of simply typed λY -calculus, recognizing the set
of trees in which ϕ is true. Roughly, this means that to every closed term K of λY -
calculus we assign its value [[K]]ϕ, that can be effectively computed from K and ϕ. This
assignment is such that only finitely many elements are used as values of terms of every fixed
type. It also preserves composition, i.e., for the composition KM of two terms, we have
[[KM ]]ϕ = [[K]]ϕ [[M ]]ϕ, for appropriately defined composition [[K]]ϕ [[M ]]ϕ of elements of the
model. Moreover, when K is of the ground type, we can determine whether BT(K) |= ϕ

holds seeing only [[K]]ϕ. A formal definition of a model is given in Section 2.

I Theorem 1.1. For every sentence of ϕ of Weak MSO there exists an effective and finitary
model of simply typed λY -calculus, that recognizes the set of trees in which ϕ is true.

We remark that the term “model of λ-calculus” has various meanings in the literature [15,
2, 14], and the notion of model roughly described above is sometimes called an applicative
structure. Our applicative structure has additional properties, namely that the value of a
λY -term can be computed in a compositional way, from the values of its subterms.

The above result was proved earlier in [20]. In [19] and [7] analogous result was proved
in full generality for MSO, and in [1] and [21] for properties definable by so-called TAC
automata that are even less expressive than the Weak MSO logic. In this paper, we give
yet another proof of this result for Weak MSO. Our approach is different than that of the
cited papers, in that those papers work with and exploit the structure of parity automata
corresponding to the logic, whereas we work directly with formulae.

It is argued in [21] that having a model has several other virtues in addition to providing
decidability of the model-checking problem. In particular it allows to obtain the reflection
property [4, 8] and the transfer theorem [17].

The paper [20], besides proving Theorem 1.1, provides a type system, such that typing
a term using this system is equivalent to the Böhm tree being accepted by the fixed weak
alternating automaton. The approach to model checking of Böhm trees using type systems
has many advantages, and appears earlier in [13, 23, 11].
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2 Preliminaries

Trees. Let Σ be a ranked alphabet, i.e., a set of symbols together with a rank function rank
assigning a nonnegative integer to each of the symbols. Apart from Σ, we have a special
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symbol ⊥ 6∈ Σ of rank 0, used to label a „missing part” of a tree. A Σ-labeled tree is a tree
which is rooted (there is a distinguished root node which is the ancestor of every node in the
tree), node-labeled (every node has a label from Σ ∪ {⊥}), ranked (a node with label of rank
n has exactly n children), and ordered (the children of a node of rank n are numbered from
1 to n).

Weak MSO. The Weak MSO logic is a restriction of the MSO logic, in which set quantifiers
range only over finite sets. For technical convenience, we use a variant of Weak MSO in
which there are no first-order variables, and where set variables do not contain nodes labeled
by ⊥. It is easy to translate a formula from any standard syntax of Weak MSO to ours (at
least when the alphabet Σ is finite). In the syntax of Weak MSO we have the following
constructions:

ϕ ::= a(X) | X <i Y | X ⊆ Y | ϕ1 ∧ ϕ2 | ¬ϕ′ | ∃finX.ϕ
′ where a ∈ Σ, i ∈ N+.

We evaluate formulae of Weak MSO in Σ-labeled trees. Set variables are interpreted as sets
of nodes labeled by elements of Σ, and the semantics of formulae is defined as follows:

a(X) holds iff every node in X is labeled by a,
X <i Y holds iff every node in Y is a (not necessarily proper) descendant of the i-th
child of every node in X,
X ⊆ Y , ϕ1 ∧ ϕ2, and ¬ϕ′ are defined as expected, and
∃finX.ϕ

′ holds iff ϕ′ holds for some finite set X of nodes labeled by elements of Σ.

Infinitary λ-calculus. We consider infinitary, simply typed λ-calculus. In particular, each
term has an associated type.

The set of types is constructed from a unique ground type o using a binary operation
→. Thus o is a type and if α, β are types, so is (α→ β). The order of a type is defined by:
ord(o) = 0, and ord(α→ β) = max(1 + ord(α), ord(β)). By convention, → associates to the
right, i.e., α→ β → γ is understood as α→ (β → γ). Every type α can be uniquely written
as α1 → α2 → . . .→ αn → o. The type o→ · · · → o︸ ︷︷ ︸

k

→ o is denoted ok → o, where o0 → o

is simply o.
Infinitary λ-terms (or just terms) are defined by coinduction, according to the following

rules:

For each symbol a ∈ Σ of rank r, aor→o is a term.
For each type α there are infinitely many variables xα, yα, zα, . . . ; each of them is a term.
If Kα→β and Mα are terms, then (Kα→βMα)β is a term.
If Kβ is a term and xα is a variable, then (λxα.Kβ)α→β is a term.

We naturally identify two terms if they are α-equivalent. We often omit the type
annotations of terms, but we keep in mind that every term has a fixed type. The set FV(K)
of free variables of a term K is defined as expected. A term K is closed if FV(K) = ∅. We
denote terms by capital roman letters, e.g. K,M,N, P,Q, . . .

λY -calculus. The syntax of λY -calculus is the same as of finite λ-calculus, extended by
symbols Y (α→α)→α, for each type α. A term of λY -calculus is seen as a term of infinitary
λ-calculus, by substituting each symbol Y (α→α)→α by the unique term Y such that Y is equal
to λMα→α.M (Y M). In this way, we view λY -calculus as a fragment of infinitary λ-calculus.
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Trees Generated by Terms. Let K be a closed (infinitary) term of type o. The tree t
generated by K is constructed by coinduction, as follows: if there is a sequence of β-reductions
from K to a term of the form aK1 . . . Kr, where a is a symbol (of rank r), then the root of
the tree t has label a, and, for i ∈ {1, . . . , r}, the i-th child of the root of t is the root of the
tree generated by Ki. If there is no sequence of β-reductions from K to a term of the above
form, the tree generated by K consists of a single node labeled by ⊥.

The tree generated by K is also called the Böhm tree of K, and denoted BT (K).

Models. In this paper, we choose the following definition of a model. An applicative
structure D consists of a set D[α] for each type α, and of an application operation that to
all elements σ ∈ D[α→ β] and τ ∈ D[α] assigns an element (σ τ) ∈ D[β]. A D-valuation is
a partial function v that maps some variables of λ-calculus to elements of the applicative
structure, so that v(xα) ∈ D[α].

A model M of infinitary λ-calculus consists of an applicative structure DM, called
the domain, and a mapping that to each term Kα and to each DM-valuation v with
dom(v) ⊇ FV(K) assigns an element [[K]]vM ∈ DM[α] so that

(M1) [[K]]vM = [[K]]wM whenever v(x) = w(x) for all x ∈ FV(K),
(M2) [[KM ]]vM = [[K]]vM [[M ]]vM,
(M3) [[λx.K]]vM σ = [[K]]v[x 7→σ]

M (informally, [[λx.K]]vM = λσ.[[K]]v[x 7→σ]
M ), and

(M4) [[K[M/x]]]vM = [[K]]v[x 7→[[M ]]v
M]

M .

When K is closed, we write [[K]]M for [[K]]vM (which is independent from v). The following
fact follows easily from conditions (M2)-(M4).

I Fact 2.1. In every model M it holds that [[K]]vM = [[K ′]]vM whenever K and K ′ are
β-equivalent.

We say that a modelM recognizes a set of trees L if there is a subset F of DM[o] such
that for every closed term Ko, the tree generated by K belongs to L if and only if [[K]]M ∈ F .
We say that a model M is finitary if DM[α] is finite for each type α, and furthermore it
is effective, if for a given λY -term K, one can compute [[K]]M (where K is treated as an
infinitary λ-term obtained by expanding all Y symbols).

The main result of this paper, Theorem 1.1, states that there exists a finitary, effective
model of infinitary λ-calculus recognizing any set of trees definable by a Weak MSO formula.
Moreover, we will see that the value of a λY -term can be computed in a compositional way.

3 Phenotypes of Trees

In this section, we define phenotypes. These are objects that characterize properties of trees
with respect to a given formula of Weak MSO, and that are compositional.

Let F be a finite set of variables of Weak MSO. An F-tree is a pair t⊗ v, where t is a
Σ-labeled tree, and v is a valuation of the variables in F in t. We write t̂ to denote F -trees,
for some F . If t̂ = t⊗ v is a F -tree and x is a node of t̂, then the subtree of t̂ rooted at x is
the F̂ -tree s⊗ w consisting of the subtree s of t rooted at t and the valuation w which is v
restricted to the nodes of s (i.e., for a variable X, w(X) is v(X) intersected with the nodes
of s).

Suppose that ϕ is a formula with free variables contained in F and t̂ = t⊗ v is an F -tree.
Then we write t̂ |= ϕ if t, v |= ϕ. We also define the ϕ-phenotype of t̂ = t⊗ v, denoted [t̂]ϕ,
by induction on the size of the formula ϕ as follows:
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if ϕ is of the form a(X) (for some symbol a ∈ Σ) or X ⊆ Y then [t̂]ϕ is the logical value
of ϕ in t̂, i.e., true if t, v |= ϕ and false otherwise,
if ϕ is of the form X <i Y , then [t̂]ϕ is the triple whose first element is the logical value of
ϕ in t̂, the second element is true if v(X) = ∅ and false otherwise, and the third element
analogously for Y ,
if ϕ = (ψ1 ∧ ψ2), then [t̂]ϕ = ([t̂]ψ1 , [t̂]ψ2),
if ϕ = (¬ψ), then [t̂]ϕ = [t̂]ψ, and
if ϕ = ∃finX.ψ, then [t̂]ϕ = {[t⊗ w]ψ | w is a valuation extending v to X}.

For each ϕ, let Phtϕ denote the set of all potential ϕ-phenotypes. Namely, Phtϕ =
{true, false} in the first case, Phtϕ = {true, false}3 in the second case, Phtϕ = Phtψ1 ×Phtψ2

in the third case, Phtϕ = Phtψ in the fourth case, and Phtϕ = P(Phtψ) in the last case.
We are particularly interested in ϕ-phenotypes for valuations that map all set variables

to the empty set. Thus for a tree t, by [t]ϕ we denote [t⊗ v∅]ϕ, where v∅ is the valuation
mapping all free variables of ϕ to the empty set.

We immediately see two facts. First, Phtϕ is finite for every ϕ. Second, the fact whether
ϕ holds in t̂ is determined by [t̂]ϕ.

Next, we observe that phenotypes of trees behave in a compositional way, as formalized
below. For every symbol a and every formula ϕ, define a function Compa,ϕ : P(V)×(Phtϕ)r →
Phtϕ, where r is the rank of a, and V is the set of variables that may occur in formulae of
Weak MSO. The functions are defined so that the following lemma holds.

I Lemma 3.1. Let ϕ be a formula with free variables contained in F , and let t̂ = t⊗ v be
an F-tree with root labeled by a symbol a of rank r. If R is the set those variables X ∈ F for
which v(X) contains the root of t, and t̂i is the subtree of t̂ rooted at the i-th child of the root
(for i ∈ {1, . . . , r}), then [t̂]ϕ = Compa,ϕ(R, [t̂1]ϕ, . . . , [t̂r]ϕ).

While defining Compa,ϕ we proceed by induction on the size of ϕ.
When ϕ is of the form b(X) or X ⊆ Y , then we see that ϕ holds in t̂ iff it holds in every

subtree t̂i and in the root of t̂. Thus for ϕ = b(X) as Compa,ϕ(R, τ1, . . . , τr) we take true
when τi = true for all i ∈ {1, . . . , r} and either a = b or X 6∈ R. For ϕ = (X ⊆ Y ) the last
part of the condition is replaced by „if X ∈ R then Y ∈ R”.

Next, suppose that ϕ = (X <i Y ). There are several ways in which X and Y can be
distributed between the subtrees t̂j and the root of t̂ so that X <i Y holds in t̂ (i.e. so that
the first coordinate of [t]ϕ is true), but in any case, to determine whether X <i Y holds
in t̂ it is enough to know whether X contains the root of t̂, whether Y contains the root
of t̂, and for each j ∈ {1, . . . , r} whether X is nonempty in t̂j , whether Y is nonempty in
t̂j , and whether X <i Y holds in t̂j . These facts are determined by the set R and by the
ϕ-phenotypes of t̂j . For the last two parts of the ϕ-phenotype the situation is even more
direct, as X is empty in t̂ iff it does not contain the root of t̂ and is empty in all t̂j . The
function Compa,ϕ is defined appropriately.

When ϕ = (ψ1∧ψ2) as Compa,ϕ(R, τ1, . . . , τr) we take the pair of Compa,ψi
(R, τ1, . . . , τr)

for i ∈ {1, 2}, and when ϕ = (¬ψ), we simply take Compa,ϕ = Compa,ψ.
Finally, suppose that ϕ = ∃finX.ψ. In this situation we see that the proper definition of

Compa,ϕ(R, τ1, . . . , τr) is

{Compa,ψ(R \ {X}, σ1, . . . , σr),Compa,ψ(R∪ {X}, σ1, . . . , σr) | σ1 ∈ τ1, . . . , σr ∈ τr} .
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4 Values of Terms

In this section, we introduce the models announced in Theorem 1.1. At the end, we need
the models only for sentences, but, in order to perform induction, we define them also for
formulae with free variables.

Fix a formula ϕ of Weak MSO. We will construct a finitary model Mϕ of infinitary
λ-calculus, i.e., define a finite set DMϕ [α] for each type α, and its element [[K]]vMϕ

for each
closed term K of type α and each DMϕ

-valuation v with dom(v) ⊇ FV(K). Instead of
DMϕ [α] and [[K]]vMϕ

we simply write Dϕ[α] and [[K]]vϕ. When K is closed, we omit the
superscript v, and we call [[K]]ϕ the ϕ-value of K. Additionally, we will define a function
phtϕ : Dϕ[o]→ Phtϕ, with the intention that phtϕ([[Ko]]ϕ) = [BT (K)]ϕ.

The model is defined by induction on the formula ϕ. When x = (x1, . . . , xk) is a tuple,
we write πi(x) for xi.

If ϕ is an atomic formula, then Dϕ[α] = {>} and [[K]]vϕ = >. The function phtϕ maps
> ∈ Dϕ[o] to the unique ϕ-phenotype that is of the form [t]ϕ (when all set variables are
mapped to the empty set, the ϕ-phenotype does not depend on the tree t).

If ϕ = (ψ1∧ψ2), then we take Dϕ[α] = Dψ1 [α]×Dψ2 [α], and [[K]]vϕ = ([[K]]π1◦v
ψ1

, [[K]]π2◦v
ψ2

),
and phtϕ((τ1, τ2)) = (phtψ1(τ1), phtψ2(τ2)). If ϕ = (¬ψ), then simply Dϕ[α] = Dψ[α], and
[[K]]vϕ = [[K]]vψ, and phtϕ = phtψ.

Suppose now that ϕ = ∃finX.ψ; this case is slightly more complicated. We start by
defining the domain Dϕ[α], by induction on the type α, as follows:

Dϕ[α] = D1
ϕ[α]×Dψ[α] , where

D1
ϕ[α1 → · · · → αn → o] = (Phtϕ)Dϕ[α1]×···×Dϕ[αn] .

For σ ∈ Dϕ[α→ β] and τ ∈ Dϕ[α], the composition (σ τ) ∈ Dϕ[β] is defined by

π1(σ τ)(ρ1, . . . , ρn) = π1(σ)(τ, ρ1, . . . , ρn) for all arguments ρ1, . . . , ρn, and
π2(σ τ) = (π2(σ)π2(τ)) .

Next, for each term K and each ϕ-valuation v with dom(v) ⊇ FV(K), the value [[K]]vϕ
is defined using least fixpoints, as follows. A ϕ-evaluation is a function that maps every
term Kα and every ϕ-valuation v with dom(v) ⊇ FV(K) to an element of D1

ϕ[α]. Recall
that Phtϕ is a set, so the inclusion order on this set induces an order on ϕ-evaluations
that is a complete lattice. Namely, for σ̂, τ̂ ∈ D1

ϕ[α1 → · · · → αn → o] we say that σ̂ ⊆ τ̂

if for all ρ1 ∈ Dϕ[α1], . . . , ρn ∈ Dϕ[αn] it holds that σ̂(ρ1, . . . , ρn) ⊆ τ̂(ρ1, . . . , ρn), and
for two ϕ-evaluations p, q we say that p ⊆ q if for every term K and every ϕ-valuation
v with dom(v) ⊇ FV(K) it holds that p(K, v) ⊆ q(K, v). We define an operation Fϕ on
ϕ-evaluations. Let K, v and ρ1, . . . , ρn be as above. We take

Fϕ(p)(K, v)(ρ1, . . . , ρn) = {phtψ([[K]]π2◦v
ψ π2(ρ1) . . . π2(ρn))} ∪ η , where

η =


p(M,v)((p(N, v), [[N ]]π2◦v

ψ ), ρ1, . . . , ρn) if K = M N,

p(M,v[x 7→ ρ1])(ρ2, . . . , ρn) if K = λx.M,

π1(v(x))(ρ1, . . . , ρn) if K = x,

Compa,ϕ(∅, π1(ρ1), . . . , π1(ρn)) if K = a.

It is clear that the operation Fϕ is monotone, and hence we can consider its least fixpoint.
We take [[K]]vϕ = (LFP(Fϕ)(K, v), [[K]]π2◦v

ψ ), and phtϕ = π1.
The first component in the definition of Fϕ(p), i.e. phtψ([[K]]π2◦v

ψ π2(ρ1) . . . π2(ρn)),
intuitively corresponds to the possibility that the set X, over which we quantify, is empty
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(and then we can simply read the phenotype for the subformula ψ). In the second component,
η, we look inside the term, and, basically, we compose the results from its subterms. In
particular, when K is a symbol (K = a), the call to Compa,ϕ takes into account both the
possibility that X contains the a-labeled root, and that it does not contain it. Since we take
the least fixpoint, we descend to subterms only finitely many times, and after that we have
to take the first component (or end with K = x or K = a); this corresponds to the fact that
the quantification ranges over finite sets only.

We need to observe that our construction indeed satisfies conditions (M1)-(M4) of a model.
Condition (M1) is clear. The other conditions are established in the following lemmata.

I Lemma 4.1. For every term of the form M N , every formula ϕ of Weak MSO, and every
ϕ-valuation v with dom(v) ⊇ FV(M N) it holds that [[M N ]]vϕ = ([[M ]]vϕ [[N ]]vϕ).

Proof. The proof is by induction on ϕ. The lemma is obvious for atomic ϕ, and for
conjunctions and negations it follows immediately from the induction assumption. Suppose
thus that ϕ = ∃finX.ψ. The second coordinates of [[M N ]]vϕ and [[M ]]vϕ [[N ]]vϕ contain ψ-values,
equal by the induction assumption. It remains to prove for all arguments ρ1, . . . , ρn that

π1([[M N ]]vϕ)(ρ1, . . . , ρn) = π1([[M ]]vϕ)([[N ]]vϕ, ρ1, . . . , ρn) . (1)

Because π1([[·]]·ϕ) is a fixpoint of the Fϕ operation, by the definition of Fϕ we have

π1([[M N ]]vϕ)(ρ1, . . . , ρn) = {ξ} ∪ π1([[M ]]vϕ)([[N ]]vϕ, ρ1, . . . , ρn) , where
ξ = phtψ([[M N ]]π2◦v

ψ π2(ρ1) . . . π2(ρn)) .

By the induction assumption we have [[M N ]]π2◦v
ψ = [[M ]]π2◦v

ψ [[N ]]π2◦v
ψ = [[M ]]π2◦v

ψ π2([[N ]]vϕ),
Once again looking at the definition of Fϕ (this time for the term M) we conclude that ξ
belongs to the set π1([[M ]]vϕ)([[N ]]vϕ, ρ1, . . . , ρn), which yields (1). J

I Lemma 4.2. For every term of the form λxα.M , every formula ϕ of Weak MSO, every
ϕ-valuation v with dom(v) ⊇ FV(λx.M), and every τ ∈ Dϕ[α] it holds that ([[λx.M ]]vϕ τ) =
[[M ]]v[x 7→τ ]

ϕ .

Proof. Very similar to the previous one. J

I Lemma 4.3. For every term of the form K[M/x], every formula ϕ of Weak MSO, and
every ϕ-valuation v with dom(v) ⊇ FV(K[M/x]) ∪ FV(M) it holds that [[K[M/x]]]vϕ =
[[K]]v[x 7→[[M ]]v

ϕ]
ϕ .

Proof. The proof bases on the fact that [[x[M/x]]]vϕ = [[M ]]vϕ = [[x]]v[x 7→[[M ]]v
ϕ]

ϕ . SinceK[M/x] is
obtained by replacing inK every x byM , and the ϕ-phenotypes are defined in a compositional
way, using standard techniques it is easy to conclude that [[K[M/x]]]vψ = [[K]]v[x 7→[[M ]]v

ϕ]
ϕ . J

We now come to the crucial lemma saying that the model actually computes ϕ-phenotypes
of generated trees.

I Lemma 4.4. For every closed term P of type o, and every formula ϕ of Weak MSO it
holds that phtϕ([[P ]]ϕ) = [BT (P )]ϕ.

Proof. The proof is by induction on ϕ. The lemma is obvious when ϕ is atomic, and it
immediately follows from the induction assumption when ϕ is a conjunction or a negation.
In the sequel we assume that ϕ = ∃finX.ψ. In this case a ϕ-phenotype is a set, and thus we
have to prove two inclusions. Recall that phtϕ = π1.
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We first concentrate on the inclusion π1([[P ]]ϕ) ⊆ [BT(P )]ϕ (soundness). In fact, we
prove a generalized statement, talking about terms of all types, and not necessarily closed;
to state it, we need to say what it means for a ϕ-value to be sound for a term. We define it
by induction on the type. Let K be a closed term of type α = α1 → · · · → αn → o; assume
that we already know which ϕ-values are sound for closed terms of types α1, . . . , αn. We say
that σ̂ ∈ D1

ϕ[α] is sound for K, if whenever some ρ1 ∈ Dϕ[α1], . . . , ρn ∈ Dϕ[αn] are sound
for some closed terms Q1, . . . , Qn, respectively, then σ̂(ρ1, . . . , ρn) ⊆ [BT(KQ1 . . . Qn)]ϕ.
We say that σ ∈ Dϕ[α] is sound for K if π1(σ) is sound for K, and π2(σ) = [[K]]ψ.

Next, we define soundness for terms with free variables. We say that a ϕ-valuation v is
sound for a substitution (i.e. a partial mapping from variables to closed terms) θ if v(x) is
sound for θ(x) for every x ∈ dom(v) = dom(θ). We say that σ ∈ Dϕ[α] is v-sound for a term
Kα, where FV(K) ⊆ dom(v), if whenever v is sound for a substitution θ then σ is sound for
Kθ. When p is a ϕ-evaluation, we say that it is sound if p(K, v) is v-sound for K, for all
arguments K, v.

Recall that π1([[·]]·ϕ) is the least fixpoint of the Fϕ operation. We want to prove that it is
sound. In order to prove some property (e.g. soundness) for the least fixpoint, it is enough to
prove three things: that the property holds for the minimal element of the lattice, that it is
preserved by the operation, and that it is preserved by taking the least upper bound. In our
case the minimal ϕ-evaluation p0 maps all arguments to the empty set, so it is clearly sound,
since the empty set is a subset of every set. Consider now some set P of sound ϕ-evaluations.
Its least upper bound

⋃
P is defined by (

⋃
P)(K, v)(ρ1, . . . , ρn) =

⋃
p∈P p(K, v)(ρ1, . . . , ρn)

for all arguments K, v, ρ1, . . . , ρn. It is thus clear that
⋃
P is sound, since whenever ξ ∈

(
⋃
P)(K, v)(ρ1, . . . , ρn), then ξ ∈ p(K)(ρ1, . . . , ρn) for some p ∈ P. In order to obtain that

the least fixpoint π1([[·]]·ϕ) is sound, it remains to prove the following claim.
I Claim. If p is a sound ϕ-evaluation, then Fϕ(p) is sound as well.

Proof. The proof is by a straightforward analysis of definitions of Fϕ and of soundness. The
details follow.

Let K be a term of type α = α1 → · · · → αn → o, let v be a ϕ-valuation that is sound
for a substitution θ, where FV(K) ⊆ dom(v), let ρ1 ∈ Dϕ[α1], . . . , ρn ∈ Dϕ[αn] be sound
for some closed terms Q1, . . . , Qn (respectively), and let ξ ∈ Fϕ(p, v)(ρ1, . . . , ρn). Denote
t = BT (KθQ1 . . . Qn). We need to prove that ξ ∈ [t]ϕ.

We follow the definition of Fϕ(p). It is possible that ξ = phtψ([[K]]π2◦v
ψ π2(ρ1) . . . π2(ρn)).

Then, by the definition of soundness we have that π2(ρi) = [[Qi]]ψ for all i ∈ {1, . . . , n},
and that π2(v(x)) = [[θ(x)]]ψ for all x ∈ FV(K); thus by Lemmata 4.3 and 4.1 we have
ξ = phtψ([[KθQ1 . . . Qn]]ψ). The induction assumption of the whole lemma implies that
ξ = [t]ψ, and thus ξ ∈ [t]ϕ by the definition of a ϕ-phenotype of a tree.

Next, suppose that K = M N and ξ ∈ η = p(M,v)((p(N, v), [[N ]]π2◦v
ψ ), ρ1, . . . , ρn). By

assumption p(M,v) is v-sound for M , hence sound for Mθ, and p(N, v) is v-sound for N ,
hence sound for Nθ. Because π2(v(x)) = [[θ(x)]]ψ for all x ∈ FV(K), by Lemma 4.3 we have
[[N ]]π2◦v

ψ = [[Nθ]]ψ, so (p(N, v), [[N ]]π2◦v
ψ ) is sound for Nθ. Noticing that Mθ (Nθ) = Kθ, and

recalling that ρi is is sound for Qi, for every i, it follows from the definition of soundness
that η ⊆ [t]ϕ.

Another possibility is that K = λx.M and ξ ∈ η = p(M, v[x 7→ ρ1])(ρ2, . . . , ρn). Notice
that v′ = v[x 7→ ρ1] is sound for θ′ = θ[x 7→ Q1]. By assumption p(M, v′) is v′-sound for M ,
so sound for Mθ′. This implies that η is a subset of the ϕ-phenotype of the tree generated
by Mθ′Q2 . . . Qn, hence of t (since Mθ′ is β-equivalent to KQ1).

Yet another possibility is that K = x and ξ ∈ η = π1(v(x))(ρ1, . . . , ρn). Then, by sound-
ness of ρi and v(x), we obtain that η is a subset of the ϕ-phenotype of BT (θ(x)Q1 . . . Qn) = t.
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Finally, it is possible that K = a and ξ ∈ η = Compa,ϕ(∅, π1(ρ1), . . . , π1(ρn)). Notice
that the types α1, . . . , αn are o, and that n is the rank of a. By soundness of ρi we have that
π1(ρi) ⊆ [BT (Qi)]ϕ for i ∈ {1, . . . , n}. The root of t has label a, and the subtrees starting in
its children are BT (Qi), so by monotonicity of Compa,ϕ we obtain

ξ ∈ Compa,ϕ(∅, π1(ρ1), . . . , π1(ρn)) ⊆ Compa,ϕ(∅, [BT (Q1)]ϕ, . . . , [BT (Qn)]ϕ) = [t]ϕ .

J

This finishes the proof of the „soundness” inclusion π1([[P ]]ϕ) ⊆ [BT (P )]ϕ. We now turn
into the „completeness” inclusion, i.e. [BT (P )]ϕ ⊆ π1([[P ]]ϕ).

Let X be a finite set of nodes of the tree generated by a term K. The following definition
is by induction on the depth (distance from the root) of the deepest node in X. We say that
K is expanded up to X if either

X is empty, or
K = aK1 . . . Kr, and Ki is expanded up to the set X�BT(Ki), for all i ∈ {1, . . . , r}.

In other words, it is required that all nodes from X and their ancestors can be generated
from K without performing any β-reductions. We prove the following claim.

I Claim. Let K be a closed term of type o that is expanded up to a finite set X, and let v
be the valuation that maps the variable X to the set X, and all free variables of ϕ to the
empty set. Then [BT (K)⊗ v]ψ ∈ π1([[K]]ϕ).

Proof. The proof is by induction on the depth (distance from the root) of the deepest node
in X. We have two cases. Suppose first that X is empty. Then [BT (K)⊗ v]ψ = [BT (K)]ψ =
phtψ([[K]]ψ) by the induction assumption of the whole lemma. By definition of the Fϕ
operation, we see that phtψ([[K]]ψ) is an element of π1([[K]]ϕ), as required.

Another possibility is that K = aK1 . . . Kr, and Ki is expanded up to the set X�BT(Ki),
for all i ∈ {1, . . . , r}. Let vi be the valuation that maps variable X to the set X�BT(Ki),
and all free variables of ϕ to the empty set. Lemma 3.1 says that [BT(K) ⊗ v]ψ =
Compa,ψ(R, [BT (K1)⊗ v1]ψ, . . . , [BT (Kr)⊗ vr]ψ), where R = {X} if X contains the root of
BT (K), and R = ∅ otherwise. Denote ρ̂i = π1([[Ki]]ϕ), for all i. The induction assumption
implies that [BT(Ki) ⊗ vi]ψ ∈ ρ̂i, so by definition of Compa,ϕ we have [BT(K) ⊗ v]ψ ∈
Compa,ϕ(∅, ρ̂1, . . . , ρ̂r). Finally, by the definition of Fϕ and by Lemma 4.1 we obtain

[BT (K)⊗ v]ψ ∈ Compa,ϕ(∅, ρ̂1, . . . , ρ̂r) ⊆ π1([[a]]ϕ)([[K1]]ϕ, . . . , [[Kr]]ϕ) = π1([[K]]ϕ) .

J

We come back to the proof of the inclusion [BT(P )]ϕ ⊆ π1([[P ]]ϕ). Take some ξ ∈
[BT(P )]ϕ. By the definition of the ϕ-phenotype, ξ = [BT(P ) ⊗ v]ψ for some valuation v
that maps the variable X to some finite set X of Σ-labeled nodes of BT(P ), and all free
variables of ϕ to the empty set. It should be clear that after performing appropriately
many head β-reductions from P one obtains a term P ′ that is expanded up to the set X
(thanks to the fact that X does not contain ⊥-labeled nodes). By the above claim we have
that ξ ∈ π1([[P ′]]ϕ), and Fact 2.1 implies that [[P ′]]ϕ = [[P ]]ϕ. This finishes the proof of the
inclusion [BT (P )]ϕ ⊆ π1([[P ]]ϕ). J



XX:10 Models of λ-Calculus and the Weak MSO Logic

4.1 Effectiveness
Thanks to Lemma 4.4 we obtain, for every sentence ϕ of Weak MSO, that our model
recognizes the set of trees in which ϕ holds. In order to obtain Theorem 1.1, we need to
observe that this model is effective, i.e., that the ϕ-value of a λY -term K can be computed
from K and from ϕ.

This boils down to the question how to compute [[K]]ϕ in the situation when ϕ = ∃finX.ψ.
Then the definition uses the least fixpoint of the Fϕ operation on ϕ-evaluations. Although a
ϕ-evaluation is an infinite object, we do not need to compute it for all arguments. Namely, a
pair of arguments (M, v) is called interesting, if M is a subterm of K, and dom(v) contains
only variables that appear in K. When (M,v) is interesting, we notice that in order to
compute Fϕ(p)(M, v) using the definition of Fϕ, it is enough to know what p returns for
interesting pairs. Moreover, there are only finitely many interesting pairs: the λY -term K

has only finitely many different subterms (even while being seen as an infinitary λ-term). It
follows that there are only finitely many ways how a ϕ-evaluation may behave on interesting
arguments, and thus the least fixpoint of Fϕ on these arguments can be computed by
repeatedly applying Fϕ to the minimal ϕ-evaluation.

5 Conclusions

We have shown how, given a sentence of Weak MSO, one can construct an effective and finitary
model of simply typed λ-calculus, that recognizes the set of trees in which the sentence is true.
Whereas this result was obtained earlier in [20] by employing parity automata corresponding
to Weak MSO, we define the model directly from the formula. We do not claim that our
method is better or simpler, it is just different. We believe that the logical approach may be
potentially useful when considering other weak logics, for which there is no natural automata
model. In fact, it is an ongoing work to prove that the same result holds for the WMSO+U
logic, which extends Weak MSO by a quantifier U, expressing that a subformula holds for
arbitrarily large finite sets [3].
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