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ABSTRACT
We prove that minimization for tree patterns is ΣP

2 -complete
and thus solve a problem first attacked by Flesca, Furfaro,
and Masciari in 2003. We first provide an example that
shows that tree patterns cannot be minimized by delet-
ing nodes. This example shows that the M-NR conjecture,
which states that minimality of tree patterns is equivalent
to their nonredundancy, is false. We then show how the ex-
ample can be turned into a gadget that allows us to prove
ΣP

2 -completeness.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Com-
plexity]: General; H.2.3 [Database Management]:
Languages—query languages

Keywords
XPath, XML, trees, tree patterns, graph databases, op-
timization, complexity

1. INTRODUCTION
Tree pattern queries are a fundamental tool for node-

selection and querying in tree- and graph-structured
data. They are present in most query languages for
tree-structured data, most notably, XPath [31]. In fun-
damental research they appear in a wide range of topics.
For example, they form a basis for conjunctive queries
over trees [20], for models of XML with incomplete in-
formation [5], and for the closely related pattern-based
XML queries [18]. They are used for specifying guards
in Active XML systems [1] and for specifying schema
mappings in XML data exchange [4].

Beyond trees, they are a natural language for query-
ing graph databases [25, 14].

Optimization of tree pattern queries is therefore a
very natural question. Not only do new results in this
direction give us new insights on query optimization in
many practical languages, they can also give us a bet-
ter understanding of the foundations of the above men-
tioned models which are based on tree patterns. Tree
∗Supported by Poland’s National Science Centre grant no.
UMO-2013/11/D/ST6/03075.
†Supported by grant number MA 4938/2–1 from the
Deutsche Forschungsgemeinschaft (Emmy Noether Nach-
wuchsgruppe).

pattern query optimization already attracted significant
attention in the form of query containment [27, 29, 14],
satisfiability [6], and minimization [3, 13, 16, 23, 30,
33].

In this paper we study the minimization problem for
tree patterns that use the child relation, descendant re-
lation, label tests and wildcards (henceforth: tree pat-
terns). These tree patterns are widely studied [15, 27,
34, 16, 23, 1, 8, 4, 32] but their minimization problem
remained elusive. In particular, the complexity of min-
imization is unknown.

It is believed that a key in understanding tree pattern
minimization lies in understanding the relationship be-
tween minimality (M) and nonredundancy (NR) [16,
23]. Here, a tree pattern is minimal if it has the small-
est number of nodes among all equivalent tree patterns.
It is nonredundant if none of its leaves or branches can
be deleted while remaining equivalent. The question is
if minimality and nonredundancy are the same:

M-NR Conjecture (page 35 of [16], rephrased):
A tree pattern is minimal if and only if it is nonre-
dundant.

Clearly, every minimal tree pattern is nonredundant,
so one direction of the M-NR conjecture trivially holds.
The opposite direction is much less clear. If it would
be true, it means that, for a given tree pattern p, a
minimal tree pattern is always a substructure of p. It
would also mean that tree pattern minimization can be
solved by tree pattern containment. Indeed, one would
be able to minimize tree patterns p by iteratively remov-
ing leaves and testing if the obtained tree pattern p′ is
still contained in p. If no leaf can be removed anymore,
the remaining tree pattern would be nonredundant and
therefore minimal. Since testing containment of tree
patterns is coNP-complete [27], this would mean that
one could solve minimization with a polynomial-time al-
gorithm with a coNP oracle and that the minimization
problem for tree patterns is coNP-complete.

The minimization problem for tree patterns is not
entirely uncontroversial. It was claimed to be coNP-
complete in 2003 [15] but the algorithm relied on the M-
NR conjecture. Kimelfeld and Sagiv [23] proved that,
in contrast to claims in [15], the M-NR conjecture is
open and, as a consequence, the algorithms from [15]
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were revised in [16]. The updated work [16] proves that
the M-NR conjecture holds for tree patterns in which
every wildcard node has at most one child and presents
a coNP algorithm for this case. Although [16, 23] con-
tain a wealth of valuable results on tree patterns and
their minimization (many of which we use here), the
most central questions, that is, the status of the M-NR
conjecture and the question of the complexity of tree
pattern minimization remained open.

Our main contributions are the following:

• We prove that the M-NR conjecture is false by
providing a tree pattern that is nonredundant but
not minimal.

• We prove that tree pattern minimization is ΣP2 -
complete. This means that, unless ΣP2 = coNP,
we have that tree pattern minimization cannot be
solved by a polynomial-time algorithm with an or-
acle for tree pattern containment.

• Interestingly, our counterexample and our gadgets
in the ΣP2 -hardness proof use only two wildcard
nodes with two children, which is only barely be-
yond the fragment for which the M-NR conjecture
is known to hold.

The Bigger Picture.
This paper fits naturally in a line of research that

originated in the early days of database theory. Query
minimization and optimization by removing redundant
parts goes back to the seminal work of Chandra and
Merlin [11] and has since then been successfully adopted
for many types of queries, in various data models such
as relations and trees (see, e.g., [3, 10, 11, 16, 30, 33]).
In this section we highlight a few parallels and differ-
ences between conjunctive queries and acyclic conjunc-
tive queries over relational data and over tree-structured
data.
Conjunctive Queries over Relations. Minimiza-
tion, containment, and evaluation of conjunctive queries
over relations are well known to be NP-complete [11].
For acyclic conjunctive queries, which have been exten-
sively studied (see, e.g., [12, 21, 35]), the complexity of
these problems is in polynomial time.
Conjunctive Queries over Trees. Conjunctive queries
over trees [20] are different from conjunctive queries
over relations in two respects. First, the underlying
model is based on trees instead of relations and second,
conjunctive queries over trees use different built-in re-
lations. Most notably, apart from the child relation,
they can use the descendant relation and therefore have
the power to reason about certain transitive closures.
They therefore query a more restricted data model than
their counterpart over relations but in return they have
more powerful reasoning. The original definition of con-
junctive queries over trees allows for many built-in rela-
tions (child, descendant, nextsibling, following-sibling,
etc. [20]); we only discuss the two most basic ones, child
and descendant, in the following.

Conjunctive queries over trees have an NP-complete
evaluation problem [20] just like conjunctive queries over
relations. Their containment problem, however, is ΠP

2 -
complete [7] and the complexity of their minimization
problem is unknown.

Tree patterns can be seen as acyclic variants of con-
junctive queries over trees. Their evaluation problem is
in polynomial time [19] and their containment problem
is coNP-complete [27].

In this paper, we aim at completing this picture by
showing that minimization of tree patterns is ΣP2 -com-
plete. We are currently working on adapting our proof
for conjunctive queries over trees and think that it can
be used to prove that their minimization problem is
ΣP3 -complete.

Tree Patterns as a Graph Query Language.
Due to their modal nature, tree patterns and XPath-

like languages are also a suitable language for querying
graph databases [9, 22, 25, 2, 26, 17]. In fact, the com-
plexity of tree pattern containment does not depend on
whether they are evaluated over trees or over graphs,
see [27, Section 5.3] and [14, Section 7]. The same is
true for the minimization problem. Therefore, the com-
plexity results in this paper can be extended to tree
patterns over graphs as well. We present all results in
terms of trees because it makes proofs considerably sim-
pler.

The problems for trees can even be extended to data
graphs [25] and patterns that compare data values with
constants (such comparisons are essentially the same
as the label tests of tree patterns). However, as soon
as data value comparisons enter the picture, such a
straightforward extension to graphs does not work any-
more, see, e.g. [24].

Outline.
We present the counterexample to the M-NR conjec-

ture in Section 3. We also show in Section 3 that min-
imal tree patterns are not unique (up to adornments).
In Section 4 we prove that tree pattern minimization is
ΣP2 -complete. We discuss implications on k-ary queries
and further outlooks in Section 5. We postpone a very
technical proof (Lemma 4.2) to the Appendix.

2. PRELIMINARIES
We are interested in finite, labeled, unordered trees.1

A labeled unordered tree is a triple (V,E, lab), where V
is a finite set of nodes, E is a set of edges (u, v) ∈ V ×V
and lab : V → Σ is a labeling function assigning to every
node its label coming from an infinite set of labels Σ. If
(u, v) ∈ E then we say that u is the parent of v and v is a
child of u. For every node v there is at most one (u, v) ∈
E, so the parent is uniquely determined. There is a
unique node without parent, which we denote root(t)
and call the root of t. The descendant and ancestor
relations are transitive closures of the child and parent

1However, we don’t require trees to be unordered. Our re-
sults are the same for ordered trees.
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relations, respectively. We say that a child of a node
u is a 1-descendant of u and a child of a k-descendant
of u is a (k + 1)-descendant of u for any k ∈ N. We
define k-ancestors similarly. A node has depth k if it is
k-descendant of the root. In the sequel we just use the
term trees for referring to labeled unordered trees.

For a tree t = (V,E, lab) and a node v ∈ V we denote
by tv the subtree of t rooted in node v. By t \ v we
denote the tree obtained from t by deleting the subtree
rooted at v (including node v itself).

A tree pattern is intended to describe a set of trees. It
is a special type a of tree; its set of edges is divided into
two disjoint sets: child edges and descendant edges (we
draw descendant edges using double lines). Its labeling
function provides every node with a label from Σ or a
special label ∗ which we assume not to be in Σ and
call wildcard. We denote Σ∗ = Σ ∪ {∗}. The intended
meaning of the wildcard is not to specify any particular
label.

For a tree pattern p = (Vp, Ep, labp) and a tree t =
(V,E, lab), a function π : Vp → V is a strong embed-
ding2 of p in t if it fulfils all the following conditions:

(1) if labp(v) 6= ∗ for v ∈ Vp then labp(v) = lab(π(v)),

(2) if (u, v) ∈ Ep is a child edge then π(u) is a parent
of π(v) in the tree t,

(3) if (u, v) ∈ Ep is a descendant edge then π(u) is an
ancestor of π(v) in the tree t, and

(4) π(root(p)) = root(t).

We say that p strongly embeds in t if there exists a strong
embedding of p in t. We say that π is a weak embedding
of p in t and p weakly embeds in t if the above conditions
(1)–(3) are fulfilled, but not necessarily π(root(p)) =
root(t). Figure 1 contains examples of strong and weak
embeddings. Notice that we do not require embeddings
to be injective (Figure 1(c)).

Equivalence, Containment, and Minimality.
The (strong) language of a tree pattern p, denoted by

LS(p), is the set of trees in which p strongly embeds. A
tree pattern p1 is (strongly) contained in a tree pattern
p2 if LS(p1) ⊆ LS(p2), which we denote by p1 ⊆S p2. If
p1 ⊆S p2 and p1 ⊇S p2 then we say that the tree pat-
terns p1 and p2 are (strongly) equivalent and we write
p1 ≡S p2.

We call a tree pattern p redundant if one of its nodes
can be removed without changing its language. More
formally, p is redundant if it is strongly equivalent to p\v
for a node v of p. In this case, v is a redundant node. If
p is not redundant we say that it is nonredundant. It is
known that a pattern is redundant if and only if it has
a redundant leaf [23, Proposition 3.3].

The size of a tree pattern p, denoted size(p), is the
number of its nodes. A tree pattern p is said to be
minimal if there is no tree pattern p′ that is equivalent
to p but has strictly smaller size.
2A strong embedding is sometimes also called root embed-
ding.
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c b

p = a

b a

b c

= t

(a) A strong embedding of a tree pattern p in a tree t.

a

c b

p = a

b a

b c

= t

(b) A weak embedding of a tree pattern p in a tree t.

a

b b

d g

∗

f

p =

a

b

c d

f

e

g

= t

(c) A strong embedding of a tree pattern p in tree t. Em-
beddings are not required to be injective.

Figure 1: Examples of strong and weak embeddings.

Analogously, we define weak language, weak contain-
ment, weak equivalence, weak redundancy, and weak nonre-
dundancy. The definitions are exactly the same, but use
weak embeddings instead of strong embeddings. The
notation for weak containment and weak equivalence is
p1 ⊆W p2 and p1 ≡W p2, respectively.

It is well-known that containment of tree patterns,
i.e., deciding for two given tree patterns p and q if p ⊆S
q, is coNP-complete.

Theorem 2.1 ([27]). Containment of tree patterns
is coNP-complete.

We now mention a weak version of the M-NR Conjec-
ture which was proved in [16]. We require the following
definition.

Definition 2.2 (∗-narrow pattern). A tree pat-
tern is a ∗-narrow pattern if every wildcard node has at
most one child.

For example, the tree patterns in Figure 1 are ∗-narrow
patterns.

Lemma 2.3 (Corollary 4.5 in [16]). If p is a ∗-
narrow pattern, then p is minimal if and only if p is
non-redundant.
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p =

a

b d ∗

a c c

t =

a

b z z

a c z

d

z

c

Figure 2: A tree pattern p and a canonical tree t.

Canonical trees.
Canonical trees were introduced by Miklau and Su-

ciu [27] for studying the containment problem for tree
patterns. We need them in our paper to simplify proofs.

Let z ∈ Σ be a special label that does not occur in
any tree pattern that we consider in the paper. (We can
assume that such a label exists because Σ is infinite.)
A canonical tree of a tree pattern p is a tree obtained
from p by application of the two following steps:

• for every node v such that labp(v) = ∗, we relabel
lab(v) = z,

• change every descendant edge in p to a sequence
of edges in t in such a way that all newly created
nodes are labeled by z.

An example is given in Figure 2. We denote by Can(p)
the set of all canonical trees of p.

Given a pattern p and one of its canonical trees t,
there is a canonical injective embedding of the non-
wildcard nodes of p into t. We sometimes use this cor-
respondence to talk about nodes in t. That is, for a
non-wildcard node u of p, we use this injective embed-
ding to identify the node in t corresponding to u.

Lemma 2.4 (Proposition 3 in [27]). Let p1 and
p2 be two tree patterns. Then p1 ⊆S p2 if and only if
Can(p1) ⊆ LS(p2).

A corresponding lemma for weak containment can be
proved analogously. (See Lemma B.1 in Appendix B.)

Homomorphisms.
Let p1 = (Vp1 , Ep1 , labp1) and p2 = (Vp2 , Ep2 , labp2)

be tree patterns. A homomorphism from p1 to p2 is a
function h : Vp1 → Vp2 that fulfils the following condi-
tions:

(1) h(root(p1)) = root(p2),

(2) if labp1(v) 6= ∗ for v ∈ Vp1 then labp1(v) = labp2(h(v)),

(3) if (u, v) ∈ Ep1 is a child edge then (h(u), h(v)) ∈ Ep2
is a child edge, and

(4) if (u, v) ∈ Ep1 is a descendant edge then h(u) is an
ancestor of h(v) in p2.

The existence of a homomorphism h from p1 to p2 is a
sufficient for p2 ⊆S p1 [27]. Essentially, the reason is
that, if π is a strong embedding of p2 in a tree t, then
π ◦ h is a strong embedding of p1 in t. We make use of
this fact later in the paper.

3. NONREDUNDANCY AND MINIMALITY
In this section we present a counterexample for the

M-NR conjecture. We build further on this example to
show that minimal tree patterns are not unique. We
choose the examples in such a way that they help the
reader to understand the gadgets we use in Section 4.

Nonredundancy 6= Minimality.
We will show that the left tree pattern p in Figure 3

is nonredundant and not minimal. One thing is easy to
see: the tree pattern q on the right is smaller. Seeing
that the left tree pattern p is nonredundant and equiv-
alent to the tree pattern q on the right requires more
work.

First we show that the tree pattern p is non-redundant.
To this end, it suffices to show that none of its leaves
can be deleted while remaining equivalent [23, Propo-
sition 3.3]. For the purpose of this proof, we order the
leaves in p from left to right, that is, the first c1-leaf is
the one in depth 7, the second c1-leaf is the leftmost
leaf on depth 8, and so on.

• If the first c1-leaf is removed, then the resulting
tree pattern matches the tree in Figure 4(a) by the
strong embedding π which we partly illustrated in
Figure 4(a). However, the tree pattern p does not
match. The reason why we cannot remove the first
c2-leaf of p is analogous (replace the first c2-leaf in
the tree in Figure 4(a) by a c1-leaf).

• If the second c1-leaf is removed, then the resulting
tree pattern matches the tree in Figure 4(b) using
the strong embedding π which we partly illustrated
in Figure 4(b). However, the tree pattern p does
not match. The reason why we cannot remove the
first c2-leaf of p is analogous (replace the first c2-
leaf in the tree in Figure 4(b) by a c1-leaf).

• Finally, if any of the other c1- or c2-leaves would be
removed, the tree pattern would match the tree in
Figure 4(c) in which the corresponding (circled)
leaf would be removed and this is always a tree
that is not matched by p.

Finally, we show that the tree pattern p is (strongly)
equivalent to the tree pattern q. To this end, observe
that q ⊆S p because q is more restrictive: it has the
same requirements as p but, in addition it says that
the nodes onto which the second c1- and c2-leaves are
matched have the same parent. It therefore only re-
mains to show that p ⊆S q. By Lemma 2.4, it suffices
to prove that Can(p) ⊆S LS(q).

Let t ∈ Can(p). Let πp be a strong embedding of p in
t. Consider the nodes uA and uB in p. We make a case
distinction on the number of nodes between πp(uA) and
πp(uB) in t and show in each case how to construct a
strong embedding πq from q in t.

• If πp(uA) is the parent of πp(uB), then we can
define πq(v2) := πp(u4). For all non-descendants
of v2, we define πq the same as πp.
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Figure 3: A non-redundant tree pattern p (left) and an equivalent tree pattern q that is smaller (right).

• If πp(uA) is the 2-ancestor of πp(uB) (see Fig-
ure 5(a)), then we can define πq(v1) := πq(u2),
and πq(v2) := πp(u4), and πq(vB) := πp(uB), and,
since the distance between πq(v2) and πq(vA) is
four, we map vA to the parent of πp(uB). In par-
ticular, the leftmost branch of t is not used by πq
at all.

• If πp(uA) is the 3-ancestor of πp(uB) (see Fig-
ure 5(b)), then we can define πq(v1) := πp(uB)
and πq(v2) := πp(u3). In particular, the two left-
most branches of t are not used by πq at all.

• If πp(uA) is the k-ancestor of πb(uB) for some k ≥
4, we proceed in the same way than in the previous
case. Here, we move πq(vA) downward on the path
to πp(uB) so that the distance between πq(v2) and
πq(vA) is four.

This means that every canonical tree of p can be (strongly)
matched by q. By Lemma 2.4 this means that p and q
are strongly equivalent.

Putting everything together, we therefore obtained
that p is non-redundant but q is equivalent and smaller,
which leads to the following theorem:

Theorem 3.1. The M-NR conjecture is false.

Minimal Patterns are not Unique up to Adornment.
It is well known that minimal tree patterns are not

unique [27]. The underlying reason is very simple: the
tree patterns in Figure 7(a) are equivalent and minimal.
It is for this reason that the existence of a homomor-
phism between tree patterns fails to be necessary for
containment [28]. To circumvent this problem, Mik-
lau and Suciu introduced adorned patterns [27, Section
3.2], which allowed them to obtain a sound, polyno-
mial time algorithm for containment that is complete
in many cases. Adornment essentially rewrites paths

that do not branch and consist of wildcard nodes, child
edges and at least one descendant edge into a normal
form. The normal form consists of considering each such
path and replacing each child edge in the path with a
descendant edge. Notice that any given tree pattern is
equivalent to its adorned version. We do not formally
define adornment here but we refer to Figure 7(b) for a
simple example and to [27, Section 3.2] for the details.

Here we show that there exist equivalent but “struc-
turally different” minimal tree patterns or, more for-
mally, equivalent minimal tree patterns that have differ-
ent adorned patterns. Consider the gadget P (X,Y, Z)
in Figure 8. For tree patterns p, q, and r, denote by
P (p, q, r) the tree pattern obtained from P by instanti-
ating the subtrees marked X, Y , and Z by p, q, and r,
respectively. Consider the tree patterns p, q1, q2, and r
from Figure 6. Then, we claim that

P (p, q1, r) and P (p, q2, r)

are equivalent and minimal, but their adorned versions
are different. It is easy to see that the adorned versions
of these tree patterns are different, but their equivalence
and minimality are non-trivial.

We first show that the tree patterns are equivalent.
To this end, we first prove a lemma that already gives
insight to a central property of the gadget in Figure 8.

Lemma 3.2. Let α, β1, β2, and γ be tree patterns that
do not use labels in {a, b} and such that α ⊆S β1 ⊆S γ
and α ⊆S β2 ⊆S γ. Then P (α, β1, γ) ≡S P (α, β2, γ).

Proof sketch. The proof follows the same lines as
the proof showing that the two tree patterns in Fig-
ure 3 are equivalent. Given a tree t and embedding
π1 of P (α, β1, γ) in t, the corresponding embedding π2
of P (α, β2, γ) in t can be constructed using the same
case distinction as for tree patterns in Figure 3 and
in an analogous manner. Proving that P (α, β2, γ) ⊆S
P (α, β1, γ) is analogous.
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Figure 4: Trees for proving non-redundancy of p in Figure 3.
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Figure 5: Canonical trees for proving that p and q in Figure 3 are equivalent.
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Figure 7: Two minimal but different tree patterns and
their equivalent adorned pattern.

We are now ready to show the equivalence between
the tree patterns.

Proposition 3.3. P (p, q1, r) is strongly equivalent to
P (p, q2, r).

Proof sketch. The inclusions q1 ⊆S r and q2 ⊆S r
are trivial: q1 and q2 restrict r by additionally requiring
that two nodes labeled g1 and g2 should have the same
parent. The inclusion p ⊆S q1 holds since q1 is a strict
subpattern of p and the inclusion p ⊆S q2 holds since
there is a homomorphism π from q2 to p that maps the
topmost d-node of q1 to the middle d-node of p. The
equivalence then follows from Lemma 3.2.

Minimality of P (p, q1, r) and P (p, q2, r) is more tech-
nical to prove and requires material which we develop in
Section 4. More precisely, minimality of P (p, q1, r) and
P (p, q2, r) follows from Lemma 4.2. We briefly explain
why. Since p and r are ∗-narrow, their minimality is im-
mediate because they are nonredundant (Lemma 2.3).
It remains to prove that q1 and q2 are smallest tree pat-
terns such that p ⊆S qi ⊆S r holds. The intuitive3

reason is that, starting with tree pattern r, we can only
get a smaller pattern q that still satisfies q ⊆S r by
merging f -nodes that are siblings. Furthermore, we can
only merge one pair of f -nodes, because otherwise the
pattern does not satisfy p ⊆S q any more.

4. THE COMPLEXITY OF MINIMIZATION
In this section we study the complexity of the follow-

ing problems.

Tree Pattern Minimization
Given: A tree pattern p and k ∈ N
Question: Does there exist a tree pattern q

such that size(q) ≤ k and q ≡S p?

Minimality
Given: A tree pattern p
Question: Is p minimal?

It was proved in [16, Theorem 5.9] that Tree Pat-
tern Minimization is coNP-hard. Minimality is
known to be NP-hard [23, Theorem 6.3]. The central
theorem of this section is:
3The more formal proof is completely analogous to the proof
of Claim 4.7, which we prove in Appendix C.2.
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∗
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a
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∗
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b
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b

Z

a

b

X

∗

a

b

X

Figure 8: Gadget for constructing tree patterns
(Lemma 4.3).

Theorem 4.1. Tree Pattern Minimization is ΣP2 -
complete.

Since testing non-redundancy of a tree pattern is NP-
complete [23, Theorem 6.3], the above theorem proves
that, under standard complexity theoretic assumptions,
Tree Pattern Minimization is more difficult than
testing non-redundancy.

We will now prove Theorem 4.1. The ΣP2 upper bound
is straightforward: given an instance of Tree Pattern
Minimization consisting of tree pattern p and k ∈ N,
one can guess a tree pattern q of size at most k and test if
it is equivalent to p. Since we make polynomially many
non-deterministic guesses and since testing equivalence
is coNP-complete, this is a ΣP2 algorithm.

To show hardness, we will introduce an intermediate
problem called relative minimization. We will give two
reductions: the first is from relative minimization to
tree pattern minimization and the second one shows
that relative minimization is ΣP2 -hard.

Relative Tree Pattern Minimization
Given: Minimal tree patterns p and r such

that p ⊆S r and k ∈ N
Question: Is there a pattern q such that

size(q) ≤ k and p ⊆S q ⊆S r?

We will use the gadget P (X,Y, Z) from Figure 8. Re-
call that, for tree patterns p, q, and r, we denote by
P (p, q, r) the tree pattern obtained from P by instanti-
ating the subtrees marked X, Y , and Z by p, q, and r,
respectively.

The following lemma is the technically most difficult
result in the paper. It is crucial for connecting Tree
Pattern Minimization with Relative Tree Pat-
tern Minimization and essentially proves two things.
First, if one inserts minimal patterns p, q, r in the posi-
tions X, Y and Z, then one may still be able to obtain a
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smaller pattern by changing q. Second, all minimal pat-
terns that are equivalent to P (p, q, r) and satisfy some
side-conditions are, in a sense, similar to P (p, q, r). It
is this second part that has a very technical proof.

Lemma 4.2. Let p, q, and r be tree patterns that have
at least one node, do not use labels in {a, b}, and such
that p ⊆S q ⊆S r. Then P (p, q, r) is minimal if and
only if

(1) p and r are minimal; and

(2) there is no tree pattern q′ smaller than q such that
p ⊆S q′ ⊆S r.

The proof of the lemma considers an arbitrary pattern
that is minimal and equivalent to P (p, q, r) and proves
step by step that it must be similar to P (p, q, r). In a
second step, we infer that the pattern at Y must be a
smallest possible pattern q such that p ⊆S q ⊆S r. A
particular challenge in the proof is the lack of methods
that work for the general class of tree patterns.

Lemma 4.3. Relative Tree Pattern Minimiza-
tion is reducible to Tree Pattern Minimization in
logarithmic space.

Proof. Consider an arbitrary instance of Relative
Tree Pattern Minimization consisting of minimal
tree patterns p and r such that p ⊆S r, and a number
k ∈ N. We can assume w.l.o.g. that p and r have at
least one node. Since we can rename labels, we can also
assume that p and r do not use the labels a or b. We will
construct an instance pm and k′ ∈ N of Tree Pattern
Minimization so that pm has an equivalent pattern of
size at most k′ if and only if there is a tree pattern q
with size(q) ≤ k and p ⊆S q ⊆S r.

Tree pattern pm is P (p, p, r), where the gadget P is
illustrated in Figure 8. We define k′ as k+2|p|+2|r|+20.

We now prove that the reduction is correct. We need
to prove two implications. For the first, assume that
p, r, and k have a solution q w.r.t. Relative Tree
Pattern Minimization. In this case we know from
Lemma 3.2 that pm = P (p, p, r) ≡S P (p, q, r). Further-
more, the size of P (p, q, r) is size(q)+2|p|+2|r|+20 ≤ k′.

We prove the other implication. We assume that
pm = P (p, p, r) has an equivalent pattern of size at most
k′ and we want to prove that there exists a pattern q of
size at most k such that p ⊆S q ⊆S r. Let q a smallest
pattern such that p ⊆S q ⊆S r.

By Lemma 3.2, we have that P (p, q, r) ≡S pm. Tree
patterns p and r are minimal and q is minimal among
p ⊆S q ⊆S r so by Lemma 4.2 pattern P (p, q, r) is
minimal as well. Therefore its size is at most k′ =
k + 2|p| + 2|r| + 20. This implies that |q| ≤ k and
concludes the proof.

To prove Theorem 4.1 it therefore only remains to
prove that Relative Tree Pattern Minimization
is ΣP2 -complete, which we do next. We will reduce
from the following problem, which is a mild variation
of the canonical satisfiability problem of quantified ∃∀-
formulas (∃∀-QBF).

∃-validity
Given: A set of pairs of conjunctive

clauses {(c11, c21), . . . , (c1m, c
2
m)} over

variables x1, . . . , xn
Question: Is there a (i1, . . . , im) ∈ {1, 2}m such

that ci11 ∨ · · · ∨ cimm is true for every
valuation of x1, . . . , xn?

Due to the similarity between ∃-validity and ∃∀-
QBF, it is not surprising that ∃-validity is ΣP2 -complete.

Lemma 4.4. ∃-validity is ΣP2 -complete.

Proof. Membership in ΣP2 is obvious. For the other
direction let

Ψ = ∃x1, . . . , xn∀y1, . . . , y` Φ(x1, . . . , xn, y1, . . . , y`)

be a QBF formula such that Φ = c1∨· · ·∨cm is quantifier-
free and in disjunctive normal form. We compute the
∃-validity instance

{(ci, ci) | i ∈ [1,m]} ∪ {(xi,¬xi) | i ∈ [1, n]} .
For the correctness of the reduction, we first observe,

that the formula Ψ is equivalent to

Ψ′ = ∃x1, . . . , xn∀y1, . . . , yn+`
Φ(y1, . . . , yn+`) ∨ y1 6= x1 ∨ · · · ∨ yn 6= xn .

Now it is easy to see the correctness, as the pairs
(c1, c1), . . . , (cm, cm) enforce that each original clause
has to be satisfied (there is no choice) and the pairs
(x1,¬x1), . . . , (xn,¬xn) allow an existential choice for
the values of the x-variables as demonstrated in Ψ′, i.e.,
if some x-variable xi should be true, we choose ¬xi from
the pair (xi,¬xi) and vice versa.

We now use ∃-validity to prove that Relative Tree
Pattern Minimization is ΣP2 -complete, which is our
final step in proving Theorem 4.1.

Lemma 4.5. Relative Tree Pattern Minimiza-
tion is ΣP2 -complete.

Proof. The upper bound follows from the straight-
forward algorithm: guess q and check whether p ⊆S
q ⊆S r. Clearly, guessing q can be done by a polyno-
mial number of guesses and the containment tests can
be done in coNP by Theorem 2.1.

For the lower bound, we reduce from ∃-validity. We
build on Miklau and Suciu’s proof that containment
of tree patterns is coNP-hard ([27, Proofs of Lemma
3 and Theorem 4]) and extend their idea. Let I =
{(c11, c21), . . . , (c1m, c

2
m)} be an instance of ∃-validity.

We compute the patterns p and r as given in Figure 9.
We let k = |r| − m. Notice that the pattern p only
depends on the number of clauses and variables of I (it
uses m in the picture of p and n in the subpatterns C
and D) and not on the clauses itself. Furthermore, p
does not contain any wildcards and only contains de-
scendant edges in its subquery D. Pattern r does con-
tain wildcards in the subpatterns cji , but these wildcards
have only one child. Therefore, p and r are ∗-narrow
patterns.
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Figure 9: Patterns used in the proof of Theorem 4.1

The idea of p and r is that each subpattern of r that
is rooted at a b-labeled node represents a pair of clauses
and the subpattern Cji represents the clause cji for each

i ∈ {1, . . . ,m} and j ∈ {1, 2}. The subpattern Cji has
as root a g-labeled node. For each positive literal xi of
cji , the g-labeled node has an xi-labeled child that itself
has an xi-labeled child, connected by a child edge. For
each negative literal ¬xi of cji , the g-labeled node has an
xi-labeled child, that has a wildcard node as child which
has an xi-labeled child connected by a descendant edge.

Since the only descendant edges of p occur in the sub-
pattern D, the canonical trees of p only differ from p in
the subtree corresponding to D.

We will show that I is a true instance of ∃-validity if
and only if p, r, and k are a true instance of Relative
Tree Pattern Minimization. To this end, we first

present two claims (both are proved in Appendix C)
and prove correctness of the reduction based on these
claims.

The first claim states that p, r, and k are an instance
of Relative Tree Pattern Minimization.

Claim 4.6. The tree patterns p and r are minimal.

The second claim limits the form of solutions q to the
instance. We say that a tree pattern q is in normal form
if it can be obtained from pattern r by the following
algorithm: Select in each subpattern rooted at a b-node
at most one subpattern rooted at a d-node. In each
selected subpattern, merge the two nodes labeled e.

Claim 4.7. Every minimal pattern q that satisfies p ⊆S
q ⊆S r is in normal form.

A pattern q in normal form that has size k and satis-
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fies p ⊆S q ⊆S r, i.e., where, in every subpattern rooted
at a b-labeled node, two e-labeled nodes are merged, is
called a solution to I.

Let q be a tree pattern of size k in normal form. We
denote by vji for i ∈ {1, . . . ,m} and j ∈ {1, 2} the d-

labeled node of q that is ancestor of the Cji subpattern.
We define a function fq : {1, . . . ,m} → {1, 2} as follows:

fq(i) =

{
1 if v1i has exactly one child

2 if v2i has exactly one child

Notice that fq is well-defined for every pattern q in nor-
mal form.

Let t be a canonical tree of pattern p and let d(xi) de-
note the distance of the two xi-labeled nodes in the sub-
tree of t corresponding to the D-subpattern of p. With
t we associate a valuation σt of the variables x1, . . . , xn
as follows:

σt(xi) =

{
true if d(xi) = 1

false if d(xi) > 1

We can show the following points, which prove the
equivalence between tree pattern minimization and ∃-
validity.

(a) If q is a solution to I, then σt satisfies

c
fq(1)
1 ∨ · · · ∨ cf

q(m)
m

for every canonical tree t of r. This shows univer-
sality of the formula because there exists a canon-
ical tree t of p such that σt = ρ for each possible
valuation ρ of variables.

For the other direction, let ι : {0, . . . ,m} → {1, 2} be a
choice of clauses. We can show the following.

(b) If the formula c
ι(1)
1 ∨ · · · ∨ cι(m)

m is universally true,
then the normal form pattern q of size k such that

fq(j) = ι(j) for all j ∈ {1, . . . ,m}

satisfies r ⊆S q ⊆S p.

The statements (a) and (b) together with Claims 4.6
and 4.7 show that the reduction to tree pattern mini-
mization is correct. Notice that the patterns p and q
and the number k can be computed in LOGSPACE.

It therefore remains to prove statements (a) and (b)
and Claims 4.6 and 4.7. We do this in Appendix C.

The techniques we used for proving that Tree Pat-
tern Minimization is ΣP2 -complete can also be used
to prove that Minimality is ΠP

2 -complete. The proof
for minimality uses the same ideas as the proof for mini-
mization, but it is not immediate, as hardness for exists
k, does not imply hardness for k = n − 1. The basic
observation idea is that we can compute a tree pattern q
such that p ⊆S q ⊆S r and size(q) = k+1 = |r|−m+1.
Therefore, P (p, q, r) is minimal if and only if the under-
lying ∃-validity instance is a false instance.

Theorem 4.8. Minimality is ΠP
2 -complete.

Proof Sketch. Membership in ΠP
2 is trivial: the

algorithm just has to check whether each smaller pat-
tern is non-equivalent. The latter can be done in NP
since equivalence of tree patterns is in coNP.

For ΠP
2 -hardness, we use essentially the same (com-

bined) reduction as in the proofs of Lemma 4.5 and 4.3.
Let I be an instance of ∃-validity and let p and r be
the patterns computed in the reduction from ∃-validity
to Relative Tree Pattern Minimization in the
proof of Lemma 4.5.

We compute a pattern q from p by merging the e-
nodes above the subpatterns C1

1 to C1
m−1 with their

siblings.
It is easy to see that p ⊆S q ⊆S r. The second in-

clusion holds again, because we restrict the trees by
merging nodes. The first inclusion holds, because there
exists a homomorphism from q to p which embeds the
lowest b-subpattern of q on the b-subpattern containing
D. The two c-labeled nodes from the q-pattern can be
embedded on the upper and lower c-labeled nodes inside
the b-subpattern of p.

Finally, we ask whether the pattern P (p, q, r) is mini-
mal. If the answer is yes, then I has no solution because
we already know that a solution to I implies the ex-
istence of a pattern q′ with size(q′) = size(r) − m <
size(q) = size(r) − m + 1 and p ⊆S q′ ⊆S r. By
Lemma 3.2, we know that P (p, q′, r) ≡S P (p, q, r). Fur-
thermore, P (p, q′, r) is smaller than P (p, q, r).

On the other hand, if there exists a pattern Pmin with
Pmin ≡S P (p, q, r) and size(Pmin) < size(P (p, q, r)),
then, by Lemma 4.2, we know that there exists a pat-
tern q′ with size(q′) < size(q) and p ⊆S q′ ⊆ r. As
size(q′) < size(q) = size(r) − m + 1 (and therefore
size(q) ≤ size(r) −m), we know from the reduction in
Lemma 4.5, that I has a solution.

5. DISCUSSION AND OUTLOOK

Boolean versus k-ary Queries.
We proved that minimization for Boolean tree pat-

terns is ΣP2 -complete. This result can also be extended
to k-ary tree patterns (as considered in [27, 23]). How-
ever, the technique to transfer this result is not the usual
one from [23, Section 5] because, as the authors say, it
is not clear if the reduction presented there preserves
minimality. We can transfer the complexity directly,
however. For k-ary queries, the ΣP2 upper bound follows
by applying the naive algorithm and the lower bound
follows from attaching all k output nodes to the root of
our gadgets.

Conjunctive Queries over Trees.
We believe that our reduction can be used to show

that minimization of conjunctive queries over trees (us-
ing child and descendant relations) is ΣP3 -complete. In
particular, we believe that Lemma 4.2 also holds true
when p, q, and r are conjunctive queries over trees sat-
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isfying certain sanity conditions4. In fact, in our proof
we do not require the languages depicted by p, q and r
to be defined by tree patterns.

We believe that combining the ideas from the proof of
Lemma 4.5 combined with ideas from [7] allows to show
ΣP3 -hardness of relative conjunctive query minimization
(defined analogously to relative tree pattern minimiza-
tion). It also seems that Lemma 4.3 can be adapted to
show ΣP3 -hardness of conjunctive query minimization.

Lessons for Minimization.
This work gives new insights on how minimal tree

patterns may need to be obtained and is the first to
give a tight complexity bound for doing so. Even though
our main result is a hardness result, we believe that the
new insights can be used to develop better tree pattern
optimization algorithms. For example, we know that
minimization of ∗-narrow tree patterns can always be
done by (iteratively) removing leaves [16]. It was long
believed that all tree patterns can be minimized in such
a way (in [15] it was claimed to be true) but, from this
paper we now know that this is not the case and, in
particular, it may also be necessary to merge nodes.

This is a fact that we can use for developing better
heuristics for greedy tree pattern minimization. That is,
we can approximate the minimal pattern by iteratively
removing a leaf or merging two nodes and testing if the
resulting tree pattern is still equivalent; until no such
operation can be done anymore. If a polynomial-time
algorithm for the equivalence test can be used, we have a
polynomial-time algorithm for approximating minimal
trees patterns.

We note that the presented approach is still a heuris-
tic and does not always produce a minimal pattern. In-
deed, not every minimal tree pattern can be obtained
from a given pattern by removing leaves and merging
nodes. For example, it may even be necessary to split
nodes. This is easy to see if we take an instance of
P (p, q, r), where p and r are the patterns from Figure 9
and q results from r by merging the“wrong”nodes. It is
an interesting question which (non-trivial) set of oper-
ations would be sufficient to guarantee that a minimal
pattern can always be obtained by applying a sequence
of such operations to the input pattern.
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APPENDIX
The Appendix is structured as follows: Appendix A
introduces some notation that will be used throughout
the Appendices. Appendix B contains some technical
lemmas that are not specific to our gadget in Figure 8,
while Appendix C is dedicated to show Lemmas 4.2
and 4.5 and proves properties specific to the structure
of the tree pattern in Figure 8.

A. BASIC NOTIONS

Subtrees and Subpatterns.
Recall that, for a tree pattern p and node u we use

pu to denote the subtree of p rooted at u. For a child v
of the root of p, we denote by pv the pattern consisting
of the root of p, connected to the subpattern pv in the
same way as they are connected in p. We illustrate
the notation in Figure 10. In Figure 10(a) we assume
that u has precisely two children. Then, the root of
pu also has exactly two children (Figure 10(b)) and the
types of edges are inherited from p. Figures 10(c) and
Figures 10(d) illustrate the notation with subindices but
already start from the pattern pu.

Canonical Embeddings.
Given a canonical tree t of a tree pattern p, we some-

times consider injective embeddings πt of p in t, such
that for every node u of p, we have that tπt(u) is a canon-
ical tree of pu. Notice that the “canonical” embedding
of p in t (i.e., the one which we use in the definition of
canonical trees t) is always such an injective embedding
but, given a tree pattern p and canonical tree t, there
may be more than one such injective embedding.

For such injective embeddings πt we sometimes also
consider the inverse π−1t which is a partial function that
is defined for all nodes, except nodes inserted into t due
to descendant edges. In particular, π−1t is defined for
all nodes with a label different from z.

B. PREPARING THE COMPLEXITY PROOF
The following lemma is very similar to Proposition

3 in [27] but is about weak inclusion instead of strong
inclusion.

Lemma B.1. Let p and q be tree patterns. Then p ⊆W
q if and only if Can(p) ⊆ LW (q).

Proof. The “only if” direction follows immediately
from the fact that Can(p) ⊆ LW (p), so in order to have
LW (p) ⊆ LW (q) we need to have Can(p) ⊆ LW (q).

In order to show the “if” direction assume towards
a contradiction that Can(p) ⊆ LW (q) but LW (p) 6⊆
LW (q). Therefore, there exists a tree t ∈ LW (p) such
that t 6∈ LW (q). We will apply some modifications to
the tree t obtaining a tree in Can(p), but not belonging
to LW (q), which will contradict our assumption. Let Vp
be the set of nodes of p, V be the set of nodes of t and
let π : Vp → V be a weak embedding of p in t. Then let
t′ be a subtree of t obtained by cutting off all the nodes
which do not have a descendant in π(Vp). Observe that

p also embeds in t′, by the same embedding π. We also
still have t′ 6∈ LW (q). Let t′′ be the tree t′ relabeled
appropriately. Concretely, every node of t′ which is not
equal to π(v) for some non-wildcard node v is relabeled
to z. Note that still t′′ ∈ LW (p) and t′′ 6∈ LW (q).
Moreover t′′ is now a canonical tree of p. Thus indeed
Can(p) 6⊆ LW (q), which is a contradiction and finishes
the proof.

Lemma B.2 (Lemma 4.4 in [16]). Let p and q be
tree patterns. Then p ⊆S q if and only if, for each child
j of q’s root there exists a child i of p’s root such that
pi ⊆S qj.

Lemma B.2 can be used to prove the following result
which is useful to infer similarities between equivalent
patterns.

Lemma B.3. Let p ≡S q and both p and q are strongly
nonredundant. Then p and q have the same number
of children n. Moreover, there exists a bijection ϕ :
{1, . . . , n} → {1, . . . , n} such that for all i ∈ {1, . . . , n}
it holds pi ≡S qϕ(i).
Proof. Since p ⊆S q. Say that p’s root has n chil-

dren {1, . . . , n} and q’s root has m children {1, . . . ,m}.
By Lemma B.2, for every qj (where j ∈ {1, . . . ,m}),
there exists a pi (where i ∈ {1, . . . , n}) such that pi ⊆S
qj . Define f to be the function that maps each such j
to the corresponding i.

Similarly, for every i ∈ {1, . . . , n}, there exists a g(i) ∈
{1, . . . ,m} such that qg(i) ⊆S pi.

We will show that f = g−1, so f ◦ g is the identity.
Assume otherwise; say that f(g(i)) = i′ 6= i. Then

pi ⊇S qg(i) ⊇S pf(g(i)) = pi′ .

However, this means that p is strongly redundant. In-
deed: by removing the subtree pi we would obtain a
strongly equivalent pattern. This is a contradiction.

So, f = g−1, which means in particular that the set
of branches of p and q have the same cardinality and
there is a bijection ϕ (defined as ϕ(i) = f(i)) such that

∀j ∈ {1, . . . , n} : pj ⊆S qϕ(j) and pj ⊇S qϕ(j)
which simply means that

∀j ∈ {1, . . . , n} : pj ≡S qϕ(j).
This concludes the proof.

The following is a corollary of Lemma 4.11 in [23].

Lemma B.4. Let p ≡W q and both p and q are weakly
nonredundant. Then p and q have the same number
of children n. Moreover there exists a bijection ϕ :
{1, . . . , n} → {1, . . . , n} such that for all i ∈ {1, . . . , n}
it holds pi ≡W qϕ(i).

Proof sketch. Lemma 4.11 in [23] is phrased dif-
ferently from the present lemma and, in particular, its
second condition is about relative containment. How-
ever, as the paper explains after Definition 3.11, in this
case, weak containment in both directions (and there-
fore weak equivalence) is implied by the two directions
of relative containment.
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Figure 10: Our notation for subtrees and subpatterns. All labels or wildcards are inherited from p.

Lemma B.5 (Implicit in Theorem 4.3 in [23]).
Let p be a tree pattern such that the root of p is not la-
beled ∗. Then, for every tree pattern q:

(a) p ⊆W q implies p ⊆S q; and

(b) p ≡W q implies p ≡S q.

Lemma B.5(b) is presented as case 1 of Theorem 4.3
in [23]. The presented proof shows both inclusions in-
dependently and therefore also shows Lemma B.5(a),
even if not stated explicitly.

Lemma B.6. Let k ∈ N and p and q be two tree pat-
terns such that p ⊆W q. Then for every k-descendant v
of root(q), there exists a k-descendant u of root(p), such
that pu ⊆W qv.

Proof. Assume towards a contradiction that there
exists a k-descendant v of q such that there is no k-
descendant u of p with pu ⊆W qv.

Let t ∈ Can(p) be a canonical tree of p such that

(a) every descendant edge above depth k is embedded
in a path of length one (i.e., in a child edge); and

(b) for every k-descendant w of root(t), it holds that
qv cannot be weakly embedded in tw.

By assumption and by Lemma B.1, such a canonical
tree exists. By (b), we know that qv also cannot be
strongly embedded on any node of depth at least k in
t. Therefore, q cannot be weakly embedded in t, which
is a contradiction to p ⊆W q.

Lemma B.7. Let p be a tree pattern such that its root
has only one child u. Furthermore, let the edge from the
root of p to u be a descendant edge. Then if p is strongly
nonredundant then pu is weakly nonredundant.

Proof. Towards a contradiction, assume that pu is
weakly redundant, thus there exists a leaf n such that
pu ≡W pu \ n. We will show that p ≡S p \ n. It is clear
that p ⊆S p \ n, so it remains to show that p \ n ⊆S
p. Consider a tree t ∈ Can(p \ n) and fix an injective
embedding πt of p \ n to t. Let ut be the image of u
in t through the embedding πt, thus tut ∈ Can(pu \ n).
Then we have that pu weakly embeds into tut because
pu ≡W pu\n. Therefore, p strongly embeds into t. This

shows that in any canonical tree of p \ n the pattern p
strongly embeds, which means that p \ n ⊆S p. This
would imply that p is strongly redundant, which is a
contradiction.

Lemma B.8. Let p ≡S q be two tree patterns that are
both strongly nonredundant. Let furthermore the roots
of p and q have exactly one child (u and v, respectively).
Moreover let the edge from the root of p be a descendant
edge. Then pu ≡W qv and both pu and qv are weakly
nonredundant.

Proof. We first show pu ⊆W qv. Let t′ ∈ Can(pu).
Let t be a tree obtained from t′ by adding a new root
above root(t′) and labeling it by the label of root(p).
Clearly we have that t ∈ Can(p). By the strong equiva-
lence between p and q, there exists a strong embedding
of q into t. In this embedding, the image of v is a node
below root(t), that is, a node inside t′. This means that
qv weakly embeds into t′, which shows that pu ⊆W qv.

The proof for the other direction is completely sym-
metric. We note that we did not use the fact that
(root(p), u) is a descendant edge until now.

It remains to show the weak nonredundancy of pu and
qv.

Since we know that (root(p), u) is a descendant edge,
Lemma B.7 immediately gives us that pu is weakly nonre-
dundant. The same holds for qv if (root(q), v) is a de-
scendant edge. Therefore, we assume in the following
that (root(q), v) is a child edge.

Let T be the set of nodes of q which are reachable
from root(q) by only following child edges. We first
show that every node in T \ {root(q)} is labeled by ∗.
Take an arbitrary c ∈ T \ {root(q)}. Consider a tree
t ∈ Can(p) where, in the canonical embedding, the edge
(root(p), u) is mapped into a path longer than depth of
c in q. By the strong equivalence of p and q we know
that there exists a strong embedding of p in t. Since c is
connected to root(q) by only child edges, such a strong
embedding maps c to a node labeled by z, which means
that c has to be labeled by ∗.

We can conclude that the pattern q looks as follows:
Below the root, there is a non-empty region T of nodes
which are connected to the root by paths of child edges.
All nodes in this region are labeled by ∗.
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Below the region T , there may still be other nodes,
but every edge that leaves T is a descendant edge. We
use this to information to show that qv is indeed weakly
nonredundant. Let w be a leaf of q and assume towards
a contradiction that qv ≡W qv \ w. We show that then
q ≡S q \ w.

Clearly q ⊆S q \ w, so it remains to show that q ⊇S
q \w. Let t ∈ Can(q \w). Let c be the child of root(t).
Then clearly tc ∈ Can(qv \ w) because (root(q), v) is a
child edge. As qv ≡W qv \ w, we have that qv weakly
embeds in tc. Take an arbitrary such embedding π. We
now construct a strong embedding π′ of q in t. For a
node d 6∈ T we define π′(d) = π(d). For a node d ∈ T
we define π′(d) to be the ancestor of π(d), which is at
the depth equal to the depth of d in q. If d is the root
of q it is embedded therefore into the root of t, so the
label is the same because t ∈ Can(q \w). If d ∈ T is not
the root, we know that d is labeled by ∗, so the label of
π′(d) does not matter. One can easily verify that all the
other conditions are fulfilled and π′ is indeed a strong
embedding of q in t. This contradicts the strong nonre-
dundancy of q. Thus indeed qv is weakly nonredundant,
which finishes the proof.

C. PROOFS FOR SECTION 4
We start with a simple observation. Let t ∈ Can(α).

By definition of α and canonical trees, t has a unique
a-labeled node that has an a-labeled child.

Observation C.1. Let t ∈ Can(α), let π be a weak
embedding of α in t and let naa be the unique a-labeled
node with an a-labeled child in t. Then π(uRR) = naa.

Before we prove Lemma 4.2, we do a first step by
showing that the pattern P (p, q, r) is strongly nonre-
dundant, if the conditions (1) and (2) of Lemma 4.2 are
satisfied.

Definition C.2. We say that a pattern α is barely
included in a pattern β if α ⊆S β but, for every leaf n
of α, it holds that α \n 6⊆S β. We denote it by α ⊆BS β.

Lemma C.3. Let p, q, and r be strongly nonredun-
dant patterns such that q ⊆BS r. Then P (p, q, r) is
strongly nonredundant.

Proof. Let α = P (p, q, r). We show that, for every
leaf u of α, we have α \ u 6≡S α. The proof will go by
a case distinction depending on where u is located. Let
Ti,j(t1, t2, t3, t4, t5) for t1, t3 ∈ Can(r), t2 ∈ Can(q) and
t4, t5 ∈ Can(p) be the canonical tree of α in which the i-
th pattern p, q or r from the left (ordered as in Figure 8)
was mapped into ti, the descendant edge from the root
is mapped to a path of length i, and the descendant
edge (uR, uRR) is mapped to a path of length j. Let
tp ∈ Can(p), tq ∈ Can(q), and tr ∈ Can(r) be arbitrary
but fixed canonical trees.

Consider first the case where u is a descendant of the
node uL, i.e., it is a leaf in the left-most subpattern r.
We know that r 6≡S r \ u, so by Lemma 2.4 there exists
a tree t ∈ Can(r \ u) such that t 6∈ LS(r). We claim

that the tree T = T1,1(t, tq, tr, tp, tp) does not belong
to LS(α) (see Figure 11(a)). Towards a contradiction,
assume otherwise. Therefore, there must exist a strong
embedding of α in T . By Observation C.1, the node
uRR has to be mapped to naa. Since uRR is mapped
into naa, which is on depth 3, the node uε has to be
mapped into a node at depth 1 and thus the node uLD
has to be mapped into a node at depth 5. Therefore
uLD also has to be mapped to nLD in T , because it
is the only a-labeled node in T at depth 5. Hence the
pattern r has to be mapped into t, which, as we know,
is impossible. So indeed T 6∈ LS(α).

Assume now that u is a descendant of the node uRL,
so it is a leaf in the subpattern q. This is the most com-
plicated case. Since q is barely included in r we know by
Lemma 2.4 that there exists a tree t ∈ Can(q \ u) such
that t 6∈ LS(r). As LS(q) ⊆ LS(r) then clearly also t 6∈
LS(q). We claim that the tree T = T1,2(tr, t, tr, tp, tp)
(see Figure 11(b)) does not belong to LS(α). Again,
towards a contradiction, assume otherwise and consider
an arbitrary strong embedding of α in T . We note that
in T , there is exactly one a-node on depth 6: the node
nRLD. Therefore, if uε embeds in nε in T then uRLD
has to embed in some a-labeled node on depth 6, that is,
in nRLD. This means that q would have to strongly em-
bed into t, which is impossible. Thus, uε cannot embed
into nε. Notice that, again, by Observation C.1, uRR
has to embed into naa. Here, naa is a node on depth 4.
Therefore the only remaining option is that uε embeds
into nR, a node on depth 2. Notice now that uLD has to
embed into some a-labeled node 4 levels lower. There is
however only one such node in T , which is nRLD. This
means that r has to embed into t, which, as we already
said, is impossible. Thus we also have that T 6∈ LS(α)
in this case.

For the remainder of the proof, notice first that it is
easy to show that since p and r are strongly nonredun-
dant then so is αuRR . Consider now the case when u is
a descendant of node uRR. As αuRR is strongly nonre-
dundant, there exists a tree t ∈ Can(αuRR \u) such that
t 6∈ LS(αuRR). To construct this t we use the trees t3,
t4 and t5. We claim now that T = T1,1(tr, tq, t3, t4, t5)
(see Figure 11(c)) does not belong to LS(α). Indeed, to-
wards a contradiction assume that there exists a strong
embedding of α in T . Again by Observation C.1, uRR
has to embed into naa. This however means that αuRR

has to strongly embed into t, which is impossible, as we
said before. Thus also in this case α 6≡S α \ u, which
finishes the proof that α is strongly nonredundant.

C.1 Proof of Lemma 4.2
Lemma 4.2: Let p, q, and r be tree patterns that have

at least one node, do not use labels in {a, b}, and such
that p ⊆S q ⊆S r. Then P (p, q, r) is minimal if and
only if

(1) p and r are minimal; and

(2) there is no tree pattern q′ smaller than q such that
p ⊆S q′ ⊆S r.

Proof. The “only if”-direction is a corollary from
Lemma 3.2. Indeed, if (1) or (2) are not satisfied, one
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Figure 11: Canonical trees for the proof of Lemma C.3.
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Figure 8: Gadget for constructing tree patterns
(Lemma 4.3). (repeated from page 7)

can exchange p, q or r with a smaller pattern leading
to a smaller, yet equivalent pattern.

We continue showing the “if”-direction. So we know
that (1) and (2) are true. Towards a contradiction,
assume that α is not minimal and thus there is some
smaller tree pattern β such that α ≡S β. We assume
w.l.o.g. that β is minimal and therefore also strongly
nonredundant. Along the proof, we will gradually re-
strict the possible form of β and we will finally reach a
contradiction.

We first want to apply Lemma C.3 to α. To this end
we first note that q is barely included in r. Indeed, if q
would not be barely included in r, then we could remove
a leaf n of q and obtain a pattern q′ such that p ⊆S
q′ ⊆S r and q′ is smaller than q, which contradicts (2).
Therefore, q is barely included in r and, by Lemma C.3
we obtain that α is strongly nonredundant.

Since α ≡S β and both are strongly nonredundant,
we can apply Lemma B.3 and obtain that the root of
pattern β has exactly one child, because α’s root also
has one child. Furthermore, since α’s root is labeled
∗ and α ≡S β, the root of β is also labeled ∗. From
now on, we use u and v (possibly with some index) to
denote nodes from α and β, respectively. We use the
node names from Figure 8 for the nodes of α. Where
possible, we use similar names (with u replaced by v)
for corresponding nodes from β. We use vε to denote
the unique child of root(β).

By Lemma B.8 we know that

βvε ≡W αuε

and that

αuε and βvε are weakly nonredundant.

Therefore we can apply Lemma B.4 to αuε and βvε and
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obtain that the root of βvε has exactly two children, vL
and vR; and

(�) αuεuL ≡W βvεvL and αuεuR ≡W βvεvR .

Indeed, if the last condition is not the case, we can
ensure it by swapping the names vL and vR.

To conclude the proof, we will show that

(A) αuεuL ≡S β
vε
vL and αuL ≡S βvL ;

(B) vR has a child vRR such that αuRR ≡S βvRR ;

(C) (vε, vR) is a child edge;

(D) (vR, vRR) is a descendant edge; and

(E) vR has a child vRL which is the root of a subtree of
the form ∗−∗−∗− a− b− q′, where p ⊆S q′ ⊆S r.

We first argue that the statements (A) to (E) imply
minimality of α. If we know that (A)–(E) hold, then we
know that β has the following form: The root has one
child vε, which has two children vL and vR. By (A),
αuL ≡S βvL . Therefore by the fact that r is minimal
we have that size(αvL) ≤ size(βuL). By (B) and (E), we
have that the node vR has at least two children: vRL and
vRR. By (B), we have that αuRR ≡S βvRR . Since p and
r are minimal, we have that size(αvRR) ≤ size(βuRR).
Finally by (E), we have that there is a 5-descendant
vRLDD of vRL such that p ⊆S βvRLDD ⊆S r. By the
fact that q is a smallest pattern to fulfil p ⊆S q ⊆S r,
we have that size(αvRL) ≤ size(βuRL). Summarizing
we have that size(α) ≤ size(β), which would contradict
that β is smaller than α and shows that α is indeed
minimal.

It remains to show (A) to (E). We start with (A).
By (�) we know that βvεvL ⊆W αuεuL . Therefore, by
Lemma B.6, there has to be a node vLD at depth 4
in βvεvL such that βvLD ⊆W αuLD . We also know by
(�) that αuεuL ⊆W βvεvL and therefore, by Lemma B.6,
there has to be a node at depth 4 in u ∈ αuεuL such
that αu ⊆W βvLD ⊆W αuLD . Since αuεuL only has one
node at depth 4, we have that u = uLD. We therefore
established that αuLD ≡W βvLD and, by Lemma B.5,

(?) αuLD ≡S βvLD .

Furthermore, all nodes above vLD need to be wildcard
nodes, because otherwise βvεvL would not embed into any
canonical tree of αuεuL . To finish the proof that αuεuL ≡S
βvεvL , we still need to show that all edges above vLD
are child edges. Assume otherwise. Then — contrary
to our assumption — β would be strongly redundant,
because βvεvR ⊆W αuεuR ⊆W αuεuL ≡W βvεvL . Indeed, we
have βvεvR ⊆W αuεuR by (�), αuεuR ⊆W αuεuL (by definition
of α and because p ⊆S r), and βvεvL ≡W αuεuL again by
(�). Therefore, if one of the edges of above vLD would
be a descendant edge, β would be strongly equivalent
to β \ vLD. This concludes the proof of (A).

We continue with (B), i.e., we show that vR has a
child vRR such that αuRR ≡S βvRR . By (�) we know
that αuεuR ≡W βvεvR . By Lemma B.6, there exists a 2-
descendant vRR of vε in βvεvR such that βvRR ⊆W αuRR .
As vε has only one child in βvεvR , this means that vRR
has to be a child of vR.

z

z

z z

·
a

a

n0

n1 = πt(vε)

n2

n3 = πt(vR)

n4 = πt(vRR)

πt(vL)

≡S αuεuL

≡S αuRR

Figure 13: Tree t and embedding πt, as used in the
proof of (C)

Using Lemma B.6, once more, we also get that there
is a 2-descendant u of uε in αuεuR , such that αu ⊆W
βvRR ⊆W αuRR . The only possibility is that u = uRR.
As αuRR ≡W βvRR and the root of vRR is not labeled
by a wildcard, we obtain by Lemma B.5 that αuRR ≡S
βvRR , which proves (B).

We continue to show (C), i.e., that (vε, vR) is a child
edge. We first show the following.

(†) In β there cannot be an a-labeled node which is
3-descendant of vR and such that the path from vR
contains only child edges.

Indeed, in such a case, βvε would not weakly em-
bed into a canonical tree tα of αuε in which all the
descendant edges are instantiated as paths of length 1.
(Therefore, tα can be seen as the subtree of the tree in
Figure 11(c) rooted at nε.) We note that vRR would
need to embed into naa due to Observation C.1 and be-
cause βvRR ≡S αvRR due to (B). Therefore, vR would
need to embed into nR (see Figure 11(c)), which means
that we would have an a-labeled node 3 levels below
vR which cannot embed anywhere in t. Therefore (†) is
true.

Towards a contradiction, assume that (vε, vR) is a
descendant edge. Then consider a tree t ∈ Can(β) and
an injective canonical embedding πt of β in t such that

• (root(β), vε) is mapped onto a child edge,

• (vε, vR) is mapped into the path of length two,

• (vR, vRR) is mapped onto a child edge, and

• all other descendant edges are mapped onto paths
of length 4.

We sketched t and πt in Figure 13.
We will show that α does not strongly embed in t,

which will contradict the fact that α ≡S β. Notice that
uRR of α needs to be embedded on πt(vRR) because,
since p, q and r do not use the labels a or b, it is the
only place in t where an a-labeled node has an a-labeled
child. In particular, uRR is mapped to a node of depth
4 in t. We name this node n4 and its ancestors on depth
0, 1, 2, and 3 we name n0 (the root), n1 = πt(vε), n2,
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Figure 14: Tree t as used in the proof of (D).

and n3 = πt(vR). We now have two cases. The nodes
uε and uR are either mapped to n1 and n2, respectively,
or to n2 and n3, respectively. We show that both cases
are impossible.

In the case where uε is mapped to n1, the node uRLD
has to be mapped to some a-labeled node on depth 6. In
the case when uε is mapped to n2, the node uLD has to
be mapped to some a-labeled node on depth 6. We will
show however that there is no a-labeled node on depth
6 in t, ruling out both cases. In the subtree tπt(vL) of t
corresponding to βvL , there is clearly no such node due
to (A).

We now consider the other subtree, i.e., the one corre-
sponding to βvR . Node πt(vR) is on depth 3 in t. Con-
sider an arbitrary a-labeled descendant na of πt(vR). If
na is in tπt(vRR) we know, due to the strong equivalence
in (B) that it is on depth 4, 5, or 7 since πt(vRR) is on
depth 4. If na is not in tπt(vRR) then π−1t (na), which
is an a-labeled node5 in βvR , either is connected to vR
only through child edges or is not connected to vR only
through child edges. In the first case, na does not have
depth 6 by (†). In the second case, the depth of na is at
least 7 = 3 + 4 because we mapped all descendant edges
to paths of length 4. Thus there is indeed no a-labeled
node on depth 6 in t. Therefore the edge (vε, vR) has
to be a child edge, which shows (C).

Now we show (D), that is, (vR, vRR) is a descen-
dant edge. Assume towards a contradiction that it is
a child edge. Consider a canonical tree t of α in which
(uR, uRR) is mapped to a path of length 3 and all the
other descendant edges are mapped onto child edges.
We sketched t in Figure 14. Let π be an embedding of
β into t and d be the depth of π(vε). Then the node
vLD (which exists by (?)) is mapped into a node of depth
d + 4. We note that we can exclude the possibility of
descendant edges on the path vε to the 3-descendant of
vL, because αuεuL ≡S β

vε
vL by (A).

5Notice that π−1
t (na) is well-defined because πt is injective

and because na has label a.
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a(‡)

n0

n1 = πtβ (vε)

n2 = πtβ (vR)

n3

n4 = πtβ (vRR)

πtβ (vL)

≡S αuεuL

≡S αuRR

Figure 15: Sketch of a tree tβ , as used in the proof of (E)

On the other hand, the a-labeled descendants of vRR
are mapped into nodes of depths d+ 2, d+ 3 and d+ 5.
We note that αuεuL ≡S β

vε
vL allows us to exclude the pos-

sibility of descendant edges between vRR and the afore-
mentioned a-labeled nodes. Also, we assumed (vR, vRR)
to be a child edge and (vε, vR) is a child edge by (C).

Together, this means that there have to be 4 consec-
utive depths in t which have a-labeled nodes. However,
this is not the case in the tree t which has its a-labeled
nodes are on depths 5, 6 and 8. Thus indeed the as-
sumption that (vR, vRR) is a child edge has to be wrong,
which finishes the proof of (D).

We now continue with (E), i.e., we show that in β, the
node vR has a child vRL which is the root of a subtree
of the form ∗ − ∗ − ∗ − a− b− q′, where p ⊆S q′ ⊆S r.

Let Tβ ⊆ Can(β) be the set of canonical trees of β for
which that the edge between root(β) and vε is mapped
into a child edge and the edge (vR, vRR) is mapped into
a path of length 2.

Assume that

(‡) vR has no 4-descendant vRLD which is root of a
subtree of the form a− b− q′, where q′ ⊆S r.

Let tβ be a tree from Tβ and πtβ be a canonical, injective
mapping of β into tβ such that αuLD cannot be weakly
embedded in any node of tβ\πtβ (vRR) at depth 6. By (‡)
and Lemma B.1, such a canonical tree and mapping
exist. We put a sketch of tβ and πtβ in Figure 15. (We
also depict the 4-descendant that we assume not to exist
by (‡).)

As β ⊆S α, there is a strong embedding of α into tβ .
The node uRR has to embed into πtβ (vRR) (the only a-
labeled node with an a-labeled child), which is at depth
4. We call this node n4 and its ancestors of depth i,
we call ni, similarly as in the proof of (C). Nodes uε
and uR have to embed either in n1 and n2, respectively
(Case 1), or into n2 and n3, respectively (Case 2).

Let us first consider Case 1. Then uR is embedded to
πtβ (vR). The node uRLD has to embed in an a-labeled
node 4 levels below πtβ (vR). Consider now Case 2,
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where uε embeds into πtβ (vR). Then the node uLD has
to embed in an a-labeled node 4 levels below πtβ (vR).
So, irrespective of Case 1 or 2, we know that there must
be an a-labeled node 4 levels below πtβ (vR).

Clearly in t
πtβ (vRR)

β , the image of the subtree βvRR ,

there is no such node, because πtβ (vRR) has no 2-descendant
a-labeled node (since βvRR ≡S αuRR by (B)). Therefore,
there has to be some other child n of πtβ (vR), in which
either the subtree αuRL can embed (which is Case 1) or
the subtree αuL can embed (which is Case 2).

However, since q ⊆S r, we have that αuRuRL ⊆S αuεuL .
This means that, in both cases it must be possible to
embed αuεuL to an a-labeled node on level 4 of tβ , outside
the subtree of the node vRR. By (‡), such a node does
not exist and therefore, α cannot be embedded into tβ ,
which is a contradiction to β ⊆S α. We can conclude
that (‡) is false. This means that there is indeed a 4-
descendant vRLD of vR outside the subtree rooted at
vRR and βvRLD ⊆W αuLD . By Lemma B.5, we further-
more know that βvRLD ⊆S αuLD , because uLD is no
wildcard node.

Now we aim at showing αuRRD ⊆S βvRLD . We know
by Lemma B.6 that there has to be a node u on depth
6 in α such that αu ⊆W βvRLD . As there are only two
a-labeled nodes on depth 6 in α, we either have that
u = uRLD or u = uRRD. As furthermore αuRRD ⊆S
αuRLD , we can conclude that αuRRD ⊆W βvRLD . By
Lemma B.5, since uRRD is not a wildcard node, we
have that αuRRD ⊆S βvRLD .

Summarizing, we have that αuRRD ⊆S βvRLD ⊆S
αuLD , which implies that vRLD is the root of a subtree
of the form a− b− q′ with p ⊆S q′ ⊆S r. Furthermore,
vRLD is a 4-descendant of vR and therefore not in the
subtree βvRR . This implies that vR has a child vRL dif-
ferent from vRR, such that vRLD is a 3-descendant of
vRL. Putting everything together, vRL is the root of a
subtree of the form ∗−∗−∗−a−b−q′ with p ⊆S q′ ⊆S r.
We note that the edges between vR and vRLD cannot
be descendant edges, as otherwise βvRvRR ⊆W βvRvRL and
therefore the branch would be redundant. This finishes
the proof of (E) and the lemma.

C.2 Proof of Lemma 4.5
We first prove the two claims in the proof of Lemma 4.5.

We then continue with the proof of the lemma. The be-
ginning of the proof is already in the body of the paper
and is omitted here. We denote this by · · · .
Claim 4.6: The tree patterns p and r are minimal.

Proof. As p and r both are ∗-narrow, by Lemma 2.3,
it is enough to show that both patterns are non-redundant.
It is easy (but tedious) to verify that removing any node
from any canonical tree of p results in a tree that is not
in L(p). The same holds for canonical trees of q and
L(q). We conclude by Lemma 2.4. This concludes the
proof of Claim 4.6.

Claim 4.7: Every minimal pattern q that satisfies
p ⊆S q ⊆S r is in normal form.

Proof. Let q be a smallest tree pattern such that

p ⊆S q ⊆S r. Let tq be the smallest canonical tree of q
and π be an embedding of r into tq.

We first show that π is surjective. Assume otherwise,
then we can construct a tree pattern q′ such that p ⊆S
q′ ⊆S r and size(q′) < size(q) by removing a node of tq
not used by π, relabeling every z-node as wildcard node,
and changing any edge (π(u), π(v)) of tq such that (u, v)
is a descendant edge in r into a descendant edge. We
note that there are no nodes u, v and w in r such that
all of the following hold:

• v is a descendant of u;

• (u,w) is a descendant edge;

• v and w have the same label or one of the nodes is
a wildcard; and

• v and w are in different subtrees, i.e., v is not a
descendant of w or vice versa.

If for two nodes v and w of r we have that π(v) =
π(w), then both nodes are e-nodes and siblings. All
other possibilities are easily excluded by looking at the
relative level of nodes in the pattern and ancestor-de-
scendant relationships. Furthermore, in any b-subpat-
tern, there is at most one pair of e-siblings, such that
π(v) = π(w), as otherwise p 6⊆S q.
Lemma 4.5: Relative Tree Pattern Minimiza-

tion is ΣP2 -complete.

Proof. · · · We start with (a). Let t be a canonical
tree of p, let π be an embedding of p in t, and ρ be an
embedding of q in t. Such an embedding exists due to
Lemma 2.4 and since p ⊆S q.

We denote the subtree of t corresponding to the sub-
pattern D of p by tD.

As there is a path of m a-labeled nodes in q (and
therefore in t) and a path of 2m− 1 a-labeled nodes in
p, one a-labeled node uj of q has to be embedded on
the middle a-labeled node of t.

We show that the clause c
fq(j)
j is satisfied by σ(t),

which directly shows (a). To achieve this goal it is suf-
ficient to look how the subpattern rooted at uj is em-
bedded on the subtree rooted at vtarget.

As there is only one e-node in the am-subtree which
has both an f -labeled and a g-labeled child, we know

that ρ needs to embed C
fq(j)
j on tD. We show that every

literal of c
fq(j)
j is satisfied by σ(t).

Let xi be a positive literal of c
fq(j)
j . Then there are two

xi-labeled nodes in C
fq(j)
j , connected by a child edge.

These nodes have to be embedded on the xi-labeled
nodes of tD. Therefore d(xi) = 1 and σ(t)(xi) = true.

Now let ¬xi be a negative literal of c
fq(j)
j . Then there

are two xi-labeled nodes in C
fq(j)
j , connected by a path

of length at least two, i.e., a path consisting a one child-
edge and one descendant-edge. Again, these nodes have
to be embedded on the xi-labeled nodes of tD. There-
fore d(xi) > 1 and σ(t)(xi) = false. This concludes the
proof of (a).

Concerning (b), let q be the pattern according to
statement (b). We first observe that, as q is in nor-
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mal form, q ⊆S r holds. In this case q results from r
by merging some sibling e-labeled nodes, which restricts
the trees in the language, as the f -labeled nodes and g-
labeled nodes (from the patterns Cji ) need to have the
same parent.

It remains to show that p ⊆S q holds, which we do
by giving an embedding π of q for every canonical tree
t of p. Let therefore t be an arbitrary canonical tree of

p. Let i be such that the clause c
ι(i)
i is satisfied by σ(t).

As c
ι(1)
1 ∨ · · · ∨ cι(m)

m is universally true, such a clause
has to exist.

We define π such that

• the root of q is embedded at the root of t;

• the i-th a-labeled node of q is embedded at am;6

• for any subpattern of q rooted at an a-labeled node,
the c-labeled nodes are embedded such that the c-
labeled node with only one child is embedded at
the c-labeled node that has only one child of the
corresponding subtree of t.

From this point on, the embedding of the d-, e-, and
f -labeled nodes is obvious, as there is no choice. Fur-
thermore, any Cji -subpattern can be embedded in one

of the copies of C. It remains to show that C
ι(i)
i can be

embedded in the part of tD of t corresponding to D.

If there exists xi-labeled nodes below g in C
ι(i)
i with

a distance of one, then xi ∈ c
ι(i)
i . Therefore, σ(t)(xi)

has to be true (as c
ι(i)
i is satisfied) and we can conclude

that d(xi) = 1 by definition of σ(t). As d(xi) = 1, we
can embed the two xi-labeled nodes in tD.

If on the other hand, there exists xi nodes below g

in C
ι(i)
i with a distance of at least two, then ¬xi ∈

c
ι(i)
i . Therefore, σ(t)(xi) has to be false and we can

conclude that d(xi) > 1 by definition of σ(t). As d(xi) >
1, we again can embed the two xi-labeled nodes in tD
(including the wildcard node in between both nodes).

From the construction, it is clear that π is a valid
embedding. This concludes the proof of (b).

This concludes the proof of Lemma 4.5.

6In other words: the first a-labeled node of q is embedded
at the m− i+ 1-th a-labeled node of t.
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