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Many of today’s graph query languages are based on graph pattern matching. We investigate optimization of

tree-shaped patterns that have transitive closure operators. Such patterns do not only appear in the context of

graph databases but were originally studied for querying tree-structured data, where they can perform child-,

descendant-, node label-, and wildcard-tests.

The minimization problem aims at reducing the number of nodes in patterns and goes back to the early

2000’s. We provide an example showing that, in contrast to earlier claims, tree patterns cannot be minimized

by deleting nodes only. The example resolves the M

?

= NR problem, which asks if a tree pattern is minimal if

and only if it is nonredundant. The example can be adapted to prove that minimization is ΣP
2
-complete, which

resolves another question that was open since the early research on the problem. The latter result shows that,

unless NP = ΠP
2
, more general approaches for minimizing tree patterns are also bound to fail in general.
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1 INTRODUCTION
Tree patterns are a natural and user-friendly means to query graph- and tree-structured data. This

is why they can be found in the conceptual core of widely used query languages for graphs and

trees.

1.1 Motivation from GraphQuery Languages
Graph pattern matching is a fundamental concept in modern declarative graph query languages.

Indeed, graph query languages usually take one of two main perspectives: graph traversal or

graph pattern matching, the former being the imperative and the latter being the declarative

variant [36]. Today’s most prominent declarative graph query languages are SPARQL 1.1 [40]

and Neo4J Cypher [31]. Both languages have graph pattern matching at their core: the SPARQL

1.1 specification explicitly states “SPARQL is based around graph pattern matching” [40, Section
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Fig. 1. A graph database (as a property graph), inspired by a fragment of WikiData
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Fig. 2. A tree pattern finding the artists who were born in the United States. The query returns the person
names and the cities where they were born. (Fully circled nodes are return nodes.)

5] and the introduction of Neo4J’s documentation on Cypher [31, Section 3.1.1] is essentially an

introduction to the principles of graph pattern matching. Gremlin [24], another popular graph

query language, leans more towards the graph traversal side of the spectrum, but also supports

pattern matching style querying. It performs graph pattern matching similar to SPARQL [36].

The reason why graph pattern matching is so popular is not surprising. Graph patterns are

expressive, reasonably simple and intuitive to understand, and often efficient to evaluate. Consider

the graph in Figure 1. It contains information on artists, their occupation, and their place of

birth. The representation is inspired by property graphs, a popular model for graph databases in

practice [3, 35]. In property graphs, each node and edge carry a label and, in addition, nodes can

have a set of attributes. For instance, the node related to Jimi Hendrix has the label Person, its
“name” attribute is Jimi Hendrix, and its “aka” attribute is James Marshall Hendrix.

Assume that we would like to find the artists who were born in the United States. This amounts

to finding names of Person nodes that have (1) an occupation edge to “a subclass of artist” and (2)

a place of birth edge to a city that is located in the United States. For expressing these conditions,

we need to reason about paths in the graph. The occupation in (1) should be connected to artist by
a path of subclassof-edges and the city in (2) to United States by a path of locatedin-edges.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Minimization of Tree Patterns 1:3

These conditions are expressed in the pattern in Figure 2.
1
It has two types of edges and two

types of nodes. Single edges in the pattern can be matched to single edges in the graph with the

same label. The double edges can be matched to paths in the graph on which every edge has the

label given in the query. (For instance, the locatedin edge in the query can be matched to the path

from the Los Angeles node to the United States node.) The solid nodes in the query are output nodes

and the dashed nodes are ordinary nodes. The symbol “∗” is a wildcard symbol that can be matched

to any label. The query has two variables: x1 and x2. Intuitively, computing the answers to the

pattern corresponds to finding matches of the pattern in the graph and, for each such match, return

the nodes (or values) matched by the variables in output nodes of the pattern. When evaluated on

the graph in Figure 1, this pattern would return (Jimi Hendrix, Seattle) and (Marilyn Monroe, Los
Angeles).

Our example query is structured as a tree. In general, the underlying structure of queries in

languages such as SPARQL or Cypher can be an arbitrary graph and can therefore contain cycles.

The acyclic queries, however, form an important subclass. Graph patterns closely correspond to

conjunctive queries, which are known to be NP-complete to evaluate [12]. The tree-shaped patterns

closely correspond to acyclic conjunctive queries, which can be evaluated in polynomial time. In

fact, the quest for subclasses of conjunctive queries with a polynomial time evaluation problem

is rich with beautiful results (see, e.g., [22]). In this paper, however, we focus on queries whose

underlying structure is a tree and, for this reason, have tractable (polynomial time) evaluation. (We

note that the transitive closure operators we use make no difference in this respect.)

From a graph query language perspective, the tree patterns from this paper correspond to tree-

shaped conjunctive queries (or tree-shaped graph patterns, if you will) with transitive closure. Such

queries are prominent in graph query languages, as indicated by a recent study on SPARQL query

logs [11]. Transitive closure seems to be becoming increasingly popular in graph query languages,

even though there have been challenges in the early version of the operator in SPARQL 1.1 [5, 28].

In WikiData’s list of example queries [41], which help users getting started with the data set, 72

out of 272 queries use transitive closure of a label, which means that the feature is relevant. From

a theoretical point of view, several variants of such queries have been investigated by [27], who

extended their power with data value comparisons and studied their complexity and expressiveness.

1.2 Motivation from TreeQuery Languages
Tree-structured data is among us in many forms, JSON and XML being two examples. The tree

pattern queries that we consider were originally introduced to investigate query languages for

tree-structured data [29]. They are an abstraction of a fragment of XPath [34] and therefore also

appear in XQuery, XSLT, and languages for querying JSON [25]. Indeed, patterns such as the one

in Figure 2 can equally well be used for querying tree-structured data. (This is easy to see, since a

tree is a special case of a graph.)

Tree pattern queries are also important for many topics in fundamental research on tree-

structured data. For instance, they form a basis for conjunctive queries over trees [9, 23], for

models of XML with incomplete information [7], and for the closely related pattern-based XML

queries [16, 21]. They are used for specifying guards in Active XML systems [1] and for specifying

schema mappings in XML data exchange [4, 6].

1
The pattern we show here is closely related to graph patterns, which were identified by [3] as a part of the conceptual core

of many of today’s graph query languages.
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1.3 The Core Problem
We investigate the minimization problem for tree patterns. Optimization of queries has been a main

topic of database research ever since the beginning and therefore is very natural to consider for

tree patterns as well. Tree pattern query optimization already attracted significant attention in the

form of query containment [15, 29, 32], satisfiability [8], and minimization [2, 13, 20, 26, 33, 42].

Almost all this former work on query containment, satisfiability, and minimization exclusively

considered tree patterns as a language for querying tree-structured data. However, as argued by [29,

Section 5.3], many of the results hold just the same if we use tree patterns to query graph-structured

data.
2

We make two remarks about the tree patterns that were introduced by [29] (which we consider

in most of our proofs), compared to the pattern in Figure 2. The first is that the tree patterns

introduced by Miklau and Suciu cannot express the query in Figure 2, for the simple reason that

they cannot express the transitive closure of subclassof or locatedin. We will argue that our results

extend to these more expressive queries as well.

The second remark is that we will mostly consider Boolean queries, whereas the query in Figure 2

returns tuples of answers. Again, we will argue that our results also apply for higher-arity queries.
3

We consider the following problem (formally defined in Section 3).

Tree Pattern Minimization

Given: A tree pattern p and k ∈ N
Question: Is there a tree pattern q, equivalent to p, such

that its size is at most k?

We will see that the main difficulties for this problem are already present in a very restricted set

of tree patterns that

• only query graphs that are node-labeled and are tree-shaped; and

• over these graphs, only use labeled node tests, wildcard node tests, the child relation, and the

descendant relation.

These are precisely the tree patterns introduced by [29].

1.4 History of the Problem
Although the patterns we consider here have been widely studied [1, 4, 10, 15, 19, 20, 26, 29, 37, 43],

their minimization problem remained elusive for a long time. The most important previous work

for their minimization was done by [26] and by Flesca et al. [2003, 2008].

The key challenge was understanding the relationship between minimality (M) and nonredun-

dancy (NR). Here, a tree pattern is minimal if it has the smallest number of nodes among all

equivalent tree patterns. It is nonredundant if none of its leaves (or branches
4
) can be deleted

while remaining equivalent. The question was if minimality and nonredundancy are the same ([26,

Section 7] and [20, page 35]):

M

?

= NR Problem

Is a tree pattern minimal if and only if it is nonredundant?

2
We discuss this in Section 2.

3
[26, Section 5.2] proved that containment for k-ary queries can be reduced to the Boolean case. It is not clear whether

their reduction also proves that minimization can be reduced.

4
[26, Proposition 3.3] proved that a tree pattern has a redundant branch if and only if it has a redundant leaf.
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Fig. 3. Minimizing a tree pattern by removing redundant nodes

Notice that a part of the M

?

= NR problem is easy to see: a minimal pattern is trivially also

nonredundant (that is, M ⊆ NR). The opposite direction is much less clear.

If M =NR, then the simple algorithmic idea summarized in Algorithm 1 would correctly minimize

tree patterns. Therefore, the M

?

= NR problem is a natural question about the design of minimization

algorithms for tree patterns.

Algorithm 1 Computing a nonredundant subpattern

Input: A tree pattern p
Output: A nonredundant tree pattern q, equivalent to p

1: while a leaf of p can be removed (remaining equivalent to p) do
2: Remove the leaf

3: end while
4: return the resulting pattern

Example 1.1. It is easy to see that Algorithm 1 can be used for minimizing some patterns. Consider

the left pattern in Figure 3. Its root (labeled with a wildcard “∗”) can be matched to nodes n in a

graph such that (1) n has an a-labeled successor, (2) n has a b-labeled successor with a c-labeled
successor, and (3) from n a c-labeled node is reachable. (In this example, edge labels do not matter.)

In the semantics of such patterns, it is allowed that the different c-nodes are matched to the same

node in the data. Therefore, condition (3) is redundant and the pattern to the right is equivalent

and smaller.

The M

?

= NR problem is also a question about complexity. The main source of complexity of the

nonredundancy algorithm lies in testing equivalence between a tree pattern p and a tree pattern

obtained from p by removing a leaf on line 1. This test is generally coNP-complete [29]. If M = NR,

then Tree Pattern Minimization would also be coNP-complete.

In fact, the problem was claimed to be coNP-complete by [19, Theorem 2], but the status of the

minimization and the M

?

= NR problems were re-opened by [26], who found errors in the proofs.

Flesca et al.’s journal paper 2008 then proved that M = NR for a limited class of tree patterns,

namely those where every wildcard node has at most one child. Nevertheless, for tree patterns,

(a) the status of the M

?

= NR problem and

(b) the complexity of the minimization problem

remained open.

1.5 Our Contributions
We will prove the following:

(a) There exists a tree pattern that is nonredundant but not minimal. Therefore, M , NR.
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(b) Tree Pattern Minimization is ΣP
2
-complete. This implies that even the main idea in Algo-

rithm 1 cannot work unless coNP = ΣP
2
.

Interestingly, our counterexample for (a) uses only two wildcard nodes with two children and only

one transitive edge. This is only barely beyond the fragment from [20] for which it is known that

minimality and nonredundancy coincide.

Outline. In Section 2 we formally define tree patterns, their semantics, and basic notions that

we will use throughout the article. We formally state our main results in Section 3, discuss the

relationship between Boolean and k-ary tree patterns, and discuss the relationship between tree

patterns and the queries in introduction. We will also see that, for many of our results, it suffices

to only consider tree patterns that query trees (instead of graphs). In Section 4, we introduce

preliminaries for tree patterns that we only need when we consider them to query trees. We show

why M , NR in Section 5 and prove that minimal patterns are not unique in a strong way, that

is, they can have different shapes. In Section 6 we present the main reductions for the complexity

of the minimization and minimality problems. We postpone the proof of one technical lemma to

Section 7. We conclude in Section 8.

This article is based on [14] and extends the work in the following way. In addition to considering

tree patterns as a query language for tree-structured data, we now also define tree patterns as a

query for graph-structured data and prove our results in both contexts. Moreover, we provide the

results for generalized tree patterns, which have labeled transitive closure edges, which were not

present in [14]. In addition, we provide detailed proofs for the claims made in [14].

2 PRELIMINARIES
We formally define our data model, our queries, and recall important results about the static analysis

of queries.

2.1 Data Model: Node- and Edge-Labeled Graphs and Trees
Our data models are finite, node- and edge-labeled graphs and trees. The labels can come from

a countably infinite set Λ.5 In the graph database world, our model is closely related to property

graphs, the data model for Neo4J [35] (see, e.g., [3] for a formal definition of property graphs).
6

More formally, a (node- and edge-) labeled graph is a triple

G = (V ,E, lab),

whereV is a finite nonempty set of nodes, E is a set of directed edges (u,v) ∈ V×V and lab : V∪E → Λ
is a labeling function assigning to every node and edge its label coming from an infinite set of labels

Λ. In this article, we always assume that graphs are connected. A connected graph is a tree if,

(i) for every node v , there is at most one node u (called parent of v) with (u,v) ∈ E and

(ii) there is exactly one node v (called root) without a parent.

For trees, we refer to E as the child relation and E−1 as the parent relation. The descendant and
ancestor relations are transitive closures of the child and parent relations, respectively.

5
We choose the set of labels to be infinite because, in real-world data models such as RDF or XML, users can use strings to

label nodes. Intuitively, our labels correspond to such strings. The infinite size of the set of labels is also needed for some of

the techniques we use, see Section 3.4.

6
Property graphs are more refined, however, since they associate properties to nodes in addition to labels. From a formal

perspective, we want that nodes in the graph are not uniquely determined by their label. In particular, we do not want that

different occurrences of a label in a query must always be mapped to the same node in the graph. This behavior would

introduce unwanted cycles in tree pattern queries.
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A path of length n from a node v0 to a node vn is a sequence of nodes

π = v0 · · ·vn
where (vi−1,vi ) ∈ E for every i = 1, . . . ,n.

2.2 TheQueries: (Generalized) Tree Patterns
We will consider two kinds of tree patterns. The first kind has only node labels and we just call

them tree patterns (which is consistent with the literature [15, 20, 26, 29]). The second has node-

and edge-labels and we will call them generalized tree patterns.

More precisely, our formal model of patterns allows node- and edge-label tests, wildcard tests, and

transitive closures. The wildcard test (denoted by “∗” in patterns) matches any node- or edge-label

in a graph. To avoid confusion, we assume that ∗ < Λ.
A generalized tree pattern is a tuple

p = (Vp ,Ep , labp )
where

(1) labp : Vp ∪ Ep → Λ ⊎ {∗},
(2) (Vp ,Ep , labp ) satisfies the conditions (i) and (ii) we required for trees, and

(3) Ep is partitioned in two sets: simple edges and transitive-closure edges.

If a node (resp., edge) is labeled “∗”, we call it a wildcard node (resp., wildcard edge). We will

regularly represent generalized tree patterns graphically. When we do so, we draw transitive-

closure edges using double lines. Furthermore, we omit wildcard symbols on edges for readability

and for consistency with the literature on tree patterns.

We say that a generalized tree pattern is just a tree pattern if all its edges are wildcard edges. The

size of a (generalized) tree pattern p, denoted size(p), is the number of its nodes.

For simplicity, we will define our queries to be Boolean, that is, we will only consider whether

they can be matched in a graph or not. Tree patterns with output nodes have been considered as

well [26, 29] and our main results also apply to those queries. We discuss this in Section 3.3.

2.3 Semantics ofQueries
The semantics for patterns is based on homomorphisms. Intuitively, a pattern can be matched in a

graph if there exists a mapping from the pattern to the graph that satisfies all constraints imposed

by the pattern.

More precisely, for a generalized tree patternp = (Vp ,Ep , labp ) and a labeled graphG = (V ,E, lab),
a function m: Vp → V is a match of p in G if it fulfills all the following conditions:

(1) If labp (v) , ∗ for v ∈ Vp then labp (v) = lab(m(v)).
(2) If (u,v) ∈ Ep is a simple edge then (m(u),m(v)) is an edge inG . Furthermore, if labp ((u,v)) , ∗

then labp ((u,v)) = lab((m(u),m(v))).
(3) If (u,v) ∈ Ep is a transitive-closure edge then there is a path of positive length from m(u) to

m(v) inG that satisfies the label constraint of the edge. That is, there exists a path π = u0 · · ·un
inG such thatm(u) = u0, andm(v) = un , and n > 0. Moreover, if labp ((u,v)) , ∗, then all edges

(ui−1,ui ) in π are labeled with labp ((u,v)).
We say that p can be matched in G if there exists a match from p to G. Figure 4 shows an example

of a generalized tree pattern, a labeled graph, and a match. Notice that we do not require matches

to be injective.

Definition 2.1 (Semantics of Generalized Tree Patterns). The set of models of a (generalized) tree

pattern p, denoted byM(p), is the set of graphs in which p can be matched. The set of tree models of

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Fig. 4. Example of a match of a generalized tree pattern (left) in a labeled graph (right)
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Fig. 5. Example for containment of patterns. (Non-labeled edges are implicitly assumed to have wildcard
tests.)

p, denoted byMt (p), is the subset ofM(p) containing only trees, that is, the set of trees in which p
can be matched.

Terminology for Tree Models. In a significant part of the article (Sections 4–7) we will only consider

tree models of patterns. In this context, if (u,v) is a simple edge in pattern p, then m(v) is always a
child of m(u) in G . Likewise, if (u,v) is a transitive-closure edge, then m(v) is always a descendant
of m(u). Therefore, when we only consider tree models, we will use the terms child edges and

descendant edges to refer to simple edges and transitive-closure edges, respectively.

2.4 Equivalence and Containment
Many optimization algorithms use equivalence or containment tests as subprocedures. In this paper,

equivalence and containment will therefore play a central role. We define these notions next.

Definition 2.2 (Containment, Equivalence). Let p1 and p2 be generalized tree patterns.

• We say that p1 is contained in p2 ifM(p1) ⊆ M(p2), which we denote by p1 ⊆ p2.
• We say that p1 is equivalent to p2 ifM(p1) = M(p2), which we denote by p1 ≡ p2.

Notice that p1 ≡ p2 if and only if p1 ⊆ p2 and p2 ⊆ p1.

Example 2.3. Figure 3 contains two patterns that are equivalent. (For the left pattern, the c-labeled
node on the right branch can always be matched to wherever the c-labeled node in the middle

branch is matched. Therefore it is equivalent to the pattern on the right.) In Figure 5, we give an

example for pattern containment. The right pattern matches in graphs that have an a-node which
has c1- and c2-nodes on distance two, such that there are b-nodes between the a and the ci . The
pattern on the left additionally requires the two b-nodes to be the same. Therefore, if the pattern

on the left can be matched, the pattern on the right can also be matched.

The following decision problems are central in many query optimization procedures:

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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(Generalized) Tree Pattern Eqivalence

Given: Two (generalized) tree patterns p1 and p2
Question: Is p1 ≡ p2?

(Generalized) Tree Pattern Containment

Given: Two (generalized) tree patterns p1 and p2
Question: Is p1 ⊆ p2?

We consider these problems for generalized tree patterns as well as for ordinary tree patterns.

The following proposition shows that it suffices to consider tree models to decide these containment

and equivalence problems.

Proposition 2.4. Let p1 and p2 be generalized tree patterns. Then

p1 ⊆ p2 if and only ifMt (p1) ⊆ Mt (p2) .
The same holds if p1 and p2 are tree patterns.

Sketch. If p1 and p2 are tree patterns, the result is already known [29, Section 5.3]. The proof of

Miklau and Suciu is by unfolding of graph models to trees. Their proof can be directly applied to

our setting. The only difference is that, in our setting, the trees and graphs can carry edge labels.

For completeness, we provide the minor adaptation of Miklau and Suciu’s proof in Appendix A. □

Leveraging Proposition 2.4, [29, Theorem 4] proved that Tree Pattern Eqivalence and Tree

Pattern Containment are coNP-complete. The results are not difficult to extend to generalized

tree patterns. (A proof can be found in Appendix A.)

Proposition 2.5. Generalized Tree Pattern Containment is coNP-complete.

From the coNP upper bound in Proposition 2.5 and the coNP lower bound for tree patterns [29,

Theorem 4], we can immediately infer the following.

Corollary 2.6. Generalized Tree Pattern Equivalence is coNP-complete.

2.5 Minimality and Nonredundancy
We call a generalized tree pattern p redundant if one of its nodes can be removed without changing

its set of models. For a node v of p, we denote by p \v the pattern obtained from p by removing v
and all its descendants and incident edges.

Definition 2.7 (Minimality, Nonredundancy). Let p be a generalized tree pattern.

• We say that p is redundant if it is equivalent to p \ v for a node v of p. In this case, v is a

redundant node. If p is not redundant we say that it is nonredundant.

• We say that p is minimal if there exists no generalized tree pattern that is equivalent to p but

has strictly smaller size.

Recall the definition of the M

?

= NR problem from the introduction, asking if minimality and

nonredundancy is the same. [20] studied this problem for tree patterns (so, every edge has a

wildcard) and identified the following important class.

Definition 2.8 (∗-narrow tree pattern). A tree pattern is a ∗-narrow tree pattern if every wildcard

node has at most one child.

Lemma 2.9 ([20, Corollary 4.15]). Let p be a ∗-narrow tree pattern. Then p is minimal if and only

if it is nonredundant.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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3 MAIN RESULTS
We can now formally define the main decision problem that we study in this article:

(Generalized) Tree Pattern Minimization

Given: A (generalized) tree pattern p and k ∈ N
Question: Does there exist a (generalized) tree pattern q such

that size(q) ≤ k and q ≡ p?

Again, there are two versions of this problem. The generalized version takes a generalized tree

pattern as input and searches for small equivalent generalized tree patterns. The other version of

the problem only considers ordinary tree patterns.

Furthermore, we can formally state our main results:

(M1) There exists a tree pattern that is nonredundant but not minimal (Section 5.1).

(M2) Minimal tree patterns are not unique (Section 5.2). The non-uniqueness holds in a strong

sense that we clarify in Section 5.2.

(M3) Generalized Tree Pattern Minimization and Tree Pattern Minimization are ΣP
2
-

complete. We prove the upper bound for Generalized Tree Pattern Minimization in

Section 3.1. The lower bound already holds in two special cases that are interesting in their

own right:

• Tree Pattern Minimization is ΣP
2
-hard. This case is interesting in the context of tree-

structured data, since the tree patterns are a fragment of XPath.Wewill prove it in Sections 6

and 7.

• Generalized Tree Pattern Minimization is ΣP
2
-hard even if wildcard edges are not used.

This case is interesting in the context of graph databases. (See, e.g., the example in the

introduction, where we use labels on every edge.) This case also follows from our main

proof in Sections 6 and 7, see Corollary 6.8.

3.1 Main Complexity Results
We will prove the following:

Theorem 3.1. Tree Pattern Minimization is ΣP
2
-complete.

Theorem 3.2. Generalized Tree Pattern Minimization is ΣP
2
-complete.

The upper bound for both Theorems is immediate from Lemma 3.3, which we prove here. The

lower bounds of Theorems 3.1 and 3.2 follow from Lemma 6.1 and Corollary 6.8, respectively, which

we prove in Section 6.

Lemma 3.3. The following two problems are in ΣP
2
.

(1) Generalized Tree Pattern Minimization

(2) Tree Pattern Minimization

Proof. We first prove (1). Given a generalized tree pattern p and k ∈ N, the ΣP
2
algorithm

first guesses (existentially) a generalized tree pattern q of size at most min(k, |p |) and then checks

(universally) ifp andq are equivalent. Clearlyq is polynomially large. Therefore, due to Corollary 2.6,

the universal phase also takes a polynomial number of steps.

The proof for (2) is completely analogous. It just considers tree patterns instead of generalized

tree patterns everywhere. □
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We note that these results extend to forests, i.e., conjunctions of tree patterns. Indeed, for tree

patterns p1, . . . ,pn , the query p1 ∧ · · · ∧ pn (with the obvious semantics) can be minimized by the

following algorithm:

1. Construct the tree pattern p consisting of a new wildcard root, with transitive-closure edges to

the root of each pi .
2. Minimize p.
3. Remove the root of p (yielding again a forest).

The resulting forest might have less than n tree patterns, in the case that some pattern was

redundant. We note that p is not necessarily exactly equivalent to the conjunction, as p requires

an additional node above some embedding of the conjunction. However, p is equivalent to the

conjunction p ′
1
∧ · · · ∧ p ′n , where p

′
i results from pi by adding a new root and connecting it with a

transitive-closure edge to the root of pi .

3.2 Non-Uniqueness Result
We provide some context for the non-uniqueness result (M2), since it contrasts a well-known

result for conjunctive queries. It is well known that minimal conjunctive queries are unique up

to isomorphisms (i.e., up to renaming of variables) [12]. This minimal query can be computed

by computing the so-called core of its associated hypergraph. For conjunctive queries, however,

minimization is NP-complete.

In Section 5.2, we do not only show that minimal tree patterns are not unique up to isomorphisms,

but we also show that their tree structure can be different. That is, even disregarding the difference

between simple edges and transitive-closure edges, the relation Ep of edges can be different.

3.3 Boolean Versus k-aryQueries
One can easily extend tree patterns to k-ary tree patterns that return k-tuples of answers (see, e.g.,
[26, 29]). We argue that our main results (M1–M3) also apply to such queries. Concerning (M1)

and (M2), this is trivial. Our examples showing that minimality is different from nonredundancy

(Section 5.1) and that minimal queries are not unique (Section 5.2) are Boolean queries, which are

special cases of k-ary queries (k = 0).

Concerning (M3), our main complexity results are the ΣP
2
-completeness results in Theorems 3.2

and 3.1. For Tree Pattern Minimization, the ΣP
2
upper bounds can be seen to hold for k-ary

queries by using the same naive algorithm as in Lemma 3.3 and using the following argument

of [26, Section 5.2] for showing that Tree Pattern Eqivalence for k-ary queries polynomially

reduces to the same problem for Boolean queries. A tree pattern with k output nodes (o1, . . . ,ok ) is
converted to a Boolean tree pattern by

(1) attaching to each output node oi a new child edge to a new node with label τi (here, τi is a new
label that we assume not to appear elsewhere in the query) and

(2) attaching to each leaf node not in {o1, . . . ,ok } a new child edge to a new wildcard node.

Then, [26, Proposition 5.2] prove that, for two k-ary queries p and q, we have that p is contained
7

in q if and only if the Boolean version of p is contained in the Boolean version of q.
For Generalized Tree Pattern Minimization, we can use precisely the same argument. The

only difference in the construction is that we need to add edge labels. But edge labels are of no

importance in the proof. Kimelfeld and Sagiv’s proof goes through if we label all newly created

child edges with wildcards, and also if we would label all of them with the same label. (This label

can even appear elsewhere in the query.) For reducing to containment of two queries p and q, it

7
Here, containment means that, for every tree t every k-tuple selected by p is also selected by q.
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is important that we choose the same label for both queries. The ΣP
2
lower bound is immediate

because we prove it for k = 0.

3.4 Finite Versus Infinite Domains and Schema Information
In Section 2, we define our graphs and trees such that their labels come from an infinite set Λ.
This assumption is important for some of the techniques we use. For instance, the definition of

canonical tree models in Section 4.2 requires a label z that does not occur in any of the tree patterns

we consider in the paper. This construction and the proof of Lemma 4.1 rely on the infinity of

Λ. That said, it is easy to see that some of our results still hold if Λ is finite. For instance, our

counterexample for (M1) is still valid if |Λ| = 5, since the patterns use four labels.

The discussion on the finiteness of Λ is closely connected to minimization of tree patterns

with schema information. This question has been extensively studied in the literature on query

containment for tree-structured data, see, e.g., [8, 10, 15, 32, 42]. It is well-known that the complexity

of minimization increases if schema information is present. For instance, even the validity problem

is EXPTIME-complete with respect to schema information [10, 15]. More precisely, if S is a schema

defining a set of trees T (S) and p is a tree pattern, then it is EXPTIME-complete to decide if p
matches all trees in T (S), that is T (S) ⊆ M(p). (Notice that, if T (S) ⊆ M(p), then on the trees T (S),
pattern p is equivalent to a trivial pattern ‘∗’ that matches every non-empty tree.) The EXPTIME

lower bound even holds if p does not branch and S is given as a tree automaton or a formalism for

XML Schema [10].

Shedding more light on (generalized) tree pattern minimization for finite alphabets or in the

context of schema information would be a valuable extension of our work.

3.5 Relationship to theQueries in the Introduction
The tree patterns we defined here aremuch simpler than the patternwe discussed in the introduction

(Figure 2). However, the two types of patterns are closely related when it comes to minimization.

Again, since the patterns we have here are simpler, it is easy to see that our M , NR example

equally applies to the kind of patterns in the introduction.

Moreover, the simplified patterns capture much of the expressivity of the more complex patterns

modulo a simple encoding. In Figure 6, we demonstrate this translation by example, using a subquery

of Figure 2. Here, each node of the pattern on the left becomes a node on the right labeled with the

property (the label in the rectangular box) if present, and the “name”-attributes of nodes become

children with incoming edges that identify the type of attribute. (We can make sure that the labels

of these incoming edges do not appear elsewhere in the query.)

The example shows that there is a very close correspondence between property graph patterns

and the generalized tree patterns we consider. Of course, for the minimization of property graph

patterns, one may be interested in minimizing a different cost function as the one obtained by

taking the size of the translated generalized tree pattern. Nevertheless, for many such cost functions,

it will be possible to translate our results to the property graph setting using a simple encoding as

the one in Figure 6.

4 PRELIMINARIES FOR TREE PATTERNS
All the results from here on in the article can be proved by only considering tree patterns. Therefore,

we will no longer consider generalized tree patterns in the remainder, except for Corollary 6.8.

Here we define technical notions for tree patterns that we need for our proofs.

Furthermore, due to Proposition 2.4, we will be able to almost exclusively consider tree models

from here on. (We make it explicit where we consider graphs.) We will therefore simplify our

notation in figures and omit the arrows on edges. All edges are assumed to be pointed downwards.
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name: ∗

∗
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subclassof

(a) Property graph pattern

Person

∗
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∗
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subclassof

occupation

(b) Translated generalized tree pattern

Fig. 6. Translating a subquery of Figure 2 to our simplified model

u
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q r

(a) A pattern p

u

v w

q r

(b) Subpattern pu

u

v

q

(c) Subpattern puv

u

w

r

(d) Subpattern puw

Fig. 7. Notation for subtrees and subpatterns. Labels and wildcards are inherited from p.

4.1 Basics
For a tree pattern p and node u, the depth of u in p is the number of edges on the path from the root

of p to u. For a tree pattern p and node u we use pu to denote the subpattern of p rooted at u, that
is, the tree pattern obtained from p by restricting its set of nodes to u and all its descendants (and

by restricting the edges accordingly). For a child v of the root of p, we denote by pv the pattern

consisting of the root of p, connected to the subpattern pv in the same way as they are connected in

p. We illustrate the notation in Figure 7. In Figure 7a we assume that u has precisely two children.

Then, the root of pu also has exactly two children (Figure 7b) and the types of edges are inherited

from p. Figures 7c and Figures 7d illustrate the notation with subindices but already start from the

pattern pu . We use the same notation for trees.

4.2 Canonical Tree Models
Canonical tree models were introduced by [29] and are special tree models of patterns. They are

structured similarly as the pattern and they are interesting because they simplify the containment

problem: a tree pattern p is contained in a tree pattern q if and only if all canonical tree models of p
are matched by q. We make extensive use of canonical tree models in our proofs.

Let z ∈ Λ be a special label that does not occur in any tree pattern that we consider in the paper.

(We can assume that such a label exists because Λ is infinite.) A canonical tree model of a tree pattern

p = (V ,E, labp ) is a tree t = (Vt ,Et , labt ) obtained from p by application of the two following steps:

• for every node v such that labp (v) = ∗, define labt (v) = z,
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Fig. 8. A tree pattern p and two canonical tree models t1 and t2

• change every descendant edge in p to a (nonempty) sequence of edges in t in such a way that

all newly created nodes are labeled by z.

Notice that we always have that V ⊆ Vt . Furthermore, it is possible that in the last step no new

nodes are created, in which case V = Vt . This happens when each descendant edge is replaced by a

single child edge. An example of a tree pattern p and two of its canonical tree models is given in

Figure 8. We denote by Can(p) the set of all canonical tree models of p.
The following lemma is very similar to Proposition 3 in [29]. The difference is that matches

in [29] additionally require that the root of the pattern is matched to the root of the tree. For

completeness we give a proof that works using our definition of matches.

Lemma 4.1. Let p and q be tree patterns. Then p ⊆ q if and only if Can(p) ⊆ Mt (q).

Proof. The “only if” direction is immediate, because Can(p) is contained inMt (p), which is, by

Proposition 2.4, contained inMt (q).
In order to show the “if” direction, we show the contraposition, i.e., we show p ⊈ q implies

Can(p) ⊈ Mt (q). From p ⊈ q we can conclude by Proposition 2.4 that Mt (p) ⊈ Mt (q). Therefore,
there exists a tree t0 ∈ Mt (p) such that t0 < Mt (q). We will apply some modifications to the tree

t0 obtaining a tree in Can(p), but not belonging toMt (q). Let Vp be the set of nodes of p, let V be

the set of nodes of t0, and let m: Vp → V be a match of p in t0. Then let t1 be the tree obtained
from t0 by removing all the nodes that do not have a descendant in m(Vp ), and all the nodes that

do not have an ancestor in m(Vp ). Observe that p also matches in t1, by the same match m. We also

still have t1 < Mt (q). Let t2 be the tree t1 relabeled appropriately, that is, every node of t1 which is

not equal to m(v) for some non-wildcard node v is relabeled to z. Note that still t2 ∈ Mt (p) and
t2 < Mt (q). Moreover, t2 is now a canonical tree model of p. Thus indeed Can(p) ⊈ Mt (q), which
finishes the proof. □

4.3 Canonical Matches
Given a pattern p and one of its canonical tree models t , there is a straightforward (injective) match

of the non-wildcard nodes of p into t . More precisely, since V ⊆ Vt , this match is the identity on V .

We sometimes use this correspondence to reason about nodes in t . That is, for a non-wildcard node
u of p, we use this injective match to identify the node in t corresponding to u. (Sometimes, in order

to shorten the presentation, we even identify these nodes with each other and use u to refer to the

node in p as well as the corresponding node in t . Which node we mean will always be clear from

the context.)

We sometimes also consider injective matches mt of p in t such that, for every node u of p, we
have that tmt (u)

is a canonical tree model of pu . We call such a match a canonical match. Notice

that the straightforward (injective) match of p in t we mentioned before fulfills this property, so

canonical matches always exist between tree patterns and their canonical tree models. On the other

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Minimization of Tree Patterns 1:15

0

1

2

3

4

5

6

7

∗

∗

a

a

∗

a

b

c1 c2

b

c1 c2

b

c1

b

c2

∗

∗

∗

a

b

c1

b

c2

∗

∗

∗

a

b

c1

b

c2

∗

∗

a

a

∗

a

b

c1 c2

b

c1 c2

b

c1

b

c2

∗

∗

∗

a

b

c1 c2

∗

∗

∗

a

b

c1

b

c2

q p
depth

Fig. 9. A nonredundant tree pattern p (right) and an equivalent tree pattern q that is smaller (left)

hand, given a tree pattern p and its canonical tree model t , there may be more than one canonical

match.

For example, the pattern p from Figure 8 has two canonical matches in the canonical tree model

t1: one where the wildcard node maps to the rightmost child of the root and one where it maps one

level deeper.

4.4 Homomorphisms Between Tree Patterns
Let p1 = (Vp1 ,Ep1 , labp1 ) and p2 = (Vp2 ,Ep2 , labp2 ) be tree patterns. A homomorphism from p1 to p2
is a function h: Vp1 → Vp2 that fulfills the following conditions:

(1) if labp1 (v) , ∗ for v ∈ Vp1 then labp1 (v) = labp2 (h(v)),
(2) if (u,v) ∈ Ep1 is a child edge then (h(u), h(v)) ∈ Ep2 is a child edge, and

(3) if (u,v) ∈ Ep1 is a descendant edge then h(u) is a proper ancestor of h(v) in p2.
The existence of a homomorphism from p1 to p2 is a sufficient condition for p2 ⊆ p1 [29].

Observation 4.2. If there is a homomorphism from tree pattern p1 to tree pattern p2, then p1 ⊆ p2.

The reason is that, if there exists a match m of p2 in a tree t , then m ◦ h is a match of p1 in t . We

make use of this fact later in the article.

5 NONREDUNDANCY AND MINIMALITY
In this section, we resolve the M

?

= NR problem by presenting a tree pattern that is nonredundant

but also not minimal. We build further on this example to show that minimal tree patterns are not

unique. We choose the examples in such a way that they help the reader to understand the gadgets

we use in Section 6.

5.1 Nonredundancy ,Minimality
To prove that nonredundancy is different from minimality, we will argue that the right pattern p in

Figure 9 is nonredundant and not minimal. Consider the pattern q on the left of Figure 9. We need

to make three points: (1) p is nonredundant, (2) p is equivalent to q, and (3) q is smaller than p.
Point (3) is trivial: q can be obtained from p by merging two b-nodes on depth six. Therefore, q

has one node fewer than p. Points (1) and (2) are non-trivial and we show them next.
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Fig. 10. Trees for proving nonredundancy of p in Figure 9

Pattern p is nonredundant. We will use the following proposition from Kimelfeld and Sagiv that

allows us to simplify the proof.
8

Proposition 5.1 ([26, Proposition 3.3]). A tree pattern is redundant if and only if it has a

redundant leaf.

In other words, it suffices to show that none of the leaves of p can be deleted while remaining

equivalent. For the purpose of this section, we order the leaves in p from left to right, that is, the

first leaf is the leftmost c1-leaf on depth 7, the fourth leaf is the c2-leaf on depth 5, etc.

Figure 10 contains two canonical tree models of p. If an arbitrary leaf n of p is removed, then the

resulting pattern p \ n always matches the trees t1 \ n and t2 \ n.9 We will show that, no matter

which leaf n we choose, either t1 \ n or t2 \ n will no longer be matched by the original pattern p.
This proves that, for every leaf n, pattern p \ n is not equivalent to p.

Let thus n be one of the leaves of p. We denote by tk this tree among t1, t2 in which n is circled in

Figure 10. We will prove that p cannot be matched in tk \ n. Let v be the dashed a-node above n in

tk (and, simultaneously, the corresponding node of p). In each of the ten cases v cannot be matched

to itself, as then n should be matched to some c1-node (resp. c2-node) being below v and on the

same depth as n, but there is no such node in tk \ n. It cannot be also matched to any node having

smaller depth, because the depth of v in p and in tk is the same, and above the image of v there

should be enough place to match the path from v up to the root. As there is no other a-node on the

same depth as v , this means that v has to be matched to some node being deeper in the tree. This

causes a problem:

• If n is one of the six leftmost leaves, we notice that in t1 \n there is no a-node with an a-child
on depth 3 or greater.

• Suppose that n is the seventh or the eighth leaf. Then v has to be matched to the a-node on
depth 6. It follows that the rightmost a-node of p has to be matched one level higher. The

8
They proved it for tree patterns that only accept tree models, but due to Proposition 2.4, their result also applies if we

consider graph models.

9
We use here that the nodes of p are a subset of the nodes of t1 and t2; see Section 4.2.
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only a-node on depth 5 in t2 \ n is v . Below v , however, the node n is missing, which makes

it impossible to match there.

• Finally, suppose that n is one of the two rightmost leaves. In this case, if v is matched on

depth greater than 4, it will be impossible to match the seventh leaf of p, because the tree
t1 \ n is too shallow.

This shows that pattern p is nonredundant.

Pattern p is not minimal. Finally, we show that the tree pattern p is equivalent to the tree pattern

q. To this end, observe that q ⊆ p because q is more restrictive: it has the same requirements as p
but, in addition, it says that the nodes to which the seventh and the eighth leaves are matched have

the same parent. More formally, it is also easy to see that there is a homomorphism from p to q. It
therefore only remains to show that p ⊆ q. By Lemma 4.1, it suffices to prove that Can(p) ⊆ Mt (q).
In Figure 11, we depicted q (always on the left) and the three possible cases t1, t2 and t≥3 of

canonical tree models of p on the right. Since p has only one descendant edge, its canonical tree

models only differ in the number of edges that are introduced to replace this descendant edge. We

consider five cases, depending on whether the descendant edge is replaced by

(a) one edge (t1),
(b) two edges (t2), or
(c) three edges (t3), or
(d) four edges (t4), or
(e) at least five edges (t≥5).

These five possibilities are depicted on the right of Figure 11. In all cases, the dotted arrows show

how q can be matched in the respective tree. (The gray parts of the canonical trees are parts that

are not needed for matching q.)
We therefore obtained the following:

Theorem 5.2 (M , NR). There exists a tree pattern that is nonredundant and not minimal.

5.2 Minimal Patterns are not Unique
It is easy to see that minimal tree patterns are not unique. For example, the tree patterns in Figure 12a

are different, minimal, and both express that there should be at least one node between an a-labeled
node and a b-labeled node.

It can be argued, however, that the difference between the patterns in Figure 12a is rather artificial.

In the context of the containment problem for tree patterns, these patterns were used to illustrate

that the existence of a homomorphism is not a necessary condition for containment [29, 30]. On

the other hand, [29, Section 3.2] proved that, in restricted cases, it is possible to rewrite patterns in

a normal form (which they call adorned tree patterns) that alleviates this problem.

We define relaxed patterns, which generalize adorned tree patterns since they bring patterns in

the same normal form if they have the same adorned tree patterns (such as those in Figure 12a),

but also those in Figure 12b, which have different adorned tree patterns.

The relaxed pattern of a tree pattern p is obtained by replacing child edges by descendant edges

in the following situations (until no replacements can be made anymore):

• when the child edge starts in a wildcard node that has no other outgoing edges, and that

either has no parent or is connected to its parent via a descendant edge (as in Figure 12a), and

• when the child edge ends in a wildcard node such that no child edge starts in that node

(as depicted in Figure 12b, where we give another example of two equivalent minimal tree

patterns).
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Fig. 11 (part 1). Showing that patterns p and q in Figure 9 are equivalent
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(e) How q can be matched in all other canonical tree models of p

Fig. 11 (part 2). Showing that patterns p and q in Figure 9 are equivalent

It is easy to see that, given a tree pattern p, its relaxed pattern is unique. Indeed, changing a child

edge to a descendant edge according to one situation will never invalidate one of the situations for

another child edge.

The question in this section is whether there exist two equivalent minimal tree patterns that do

not have isomorphic relaxed patterns. We can ask even more generally: are there two equivalent
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Fig. 12. Two examples of two equivalent minimal tree patterns
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Fig. 13. Gadget for constructing tree patterns (Section 5.2 and Lemma 6.3)

minimal tree patterns that are structurally different, i.e., that differ even if we do not distinguish

between child edges and descendant edges, and if we do not distinguish between different labels.

We show that such patterns can be obtained as follows. Consider the gadget P(X ,Y ,Z ) in Figure 13.

For tree patterns p, q, and r , denote by P(p,q, r ) the tree pattern obtained from P by instantiating

the subpatterns marked X , Y , and Z by p, q, and r , respectively. An important detail of the gadget

is that the subpatterns p, q and, r of P(p,q, r ) are connected to the b-nodes by descendant edges.

Consider the tree patterns p, q1, q2, and r from Figure 14. Then, we claim that

P(p,q1, r ) and P(p,q2, r )
are equivalent and minimal, but structurally different. Indeed, q1 and q2 are structurally different,

hence so are P(p,q1, r ) and P(p,q2, r ). It remains to show that P(p,q1, r ) and P(p,q2, r ) are equivalent
and minimal, which is non-trivial.

We first show that the tree patterns are equivalent. To this end, we first prove a lemma that

already gives insight to a central property of the gadget in Figure 13.

Lemma 5.3. Let pX , pY 1, pY 2, and pZ be tree patterns that do not use labels in {a,b} and such that

pX ⊆ pY 1 ⊆ pZ and pX ⊆ pY 2 ⊆ pZ . Then P(pX ,pY 1,pZ ) ≡ P(pX ,pY 2,pZ ).

Proof. We only show that P(pX ,pY 1,pZ ) ⊆ P(pX ,pY 2,pZ ) since the other direction is symmetric.

The proof follows the same lines as the proof showing that the two tree patterns in Figure 9 are

equivalent. By Lemma 4.1, it suffices to prove that Can(P(pX ,pY 1,pZ )) ⊆ Mt (P(pX ,pY 2,pZ )). To
this end, take a canonical tree model t of P(pX ,pY 1,pZ ). We consider three cases, depending on
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Fig. 14. Tree patterns used to show that minimal tree patters can be structurally different

whether the descendant edge of P(pX ,pY 1,pZ ) located above the a-node on depth 2 is replaced in

t by one edge, two edges, or at least three edges. In each of these cases, we are going to match

P(pX ,pY 2,pZ ) in t in a way analogous to that shown on Figure 11 for the previously considered

patterns. As a part of such a match, we need a match of the subpatterns pX , pY 2, pZ in appropriate

places of the tree t . Namely, it is enough to

• match pX in the canonical tree models of pX being a part of t ,
• match pZ in the canonical tree models of pZ being a part of t ,
• match pY 2 in the canonical tree models of pX being a part of t ,
• match pZ in the canonical tree model of pY 1 being a part of t .

This is possible by Lemma 4.1, because of the inclusions pX ⊆ pX , pZ ⊆ pZ , pX ⊆ pY 2, and pY 1 ⊆ pZ .
It was important here that the subpatterns pX , pY 1, pY 2, pZ are attached on descendant edges, not

on child edges; thanks to that, it is enough to match pZ anywhere in the canonical tree model of

pY 1, without the requirement that the root of pZ has to be matched to the root of the canonical tree

model (similarly for pY 2 and pX ). □

We are now ready to show the equivalence between the tree patterns.

Proposition 5.4. P(p,q1, r ) and P(p,q2, r ) are equivalent.

Proof. The equivalence follows from Lemma 5.3 once we know that p ⊆ q1 ⊆ q and p ⊆ q2 ⊆ q.
These inclusions hold because there are homomorphisms from r to q1, from r to q2 (here we only
glue together two e-nodes), from q1 to p, and from q2 to p (in the last case, the topmost c-node of
q2 is mapped to the middle c-node of p). □

Minimality of P(p,q1, r ) and P(p,q2, r ) is more technical to prove and requires material which

we develop in Section 6. More precisely, minimality of P(p,q1, r ) and P(p,q2, r ) follows from

Lemma 6.2. In order to use this lemma, we have to know that p and r are minimal, and that
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q1 and q2 are as small as possible, that is, there is no tree patterns q′ with p ⊆ q′ ⊆ r and

size(q′) < 11 = size(q1) = size(q2). Since p and r are ∗-narrow, their minimality is immediate

because they are nonredundant (Lemma 2.9). It remains to prove the latter condition. To this end,

suppose that there is some tree pattern q′ such that p ⊆ q′ ⊆ r and size(q′) ≤ 10. Let tq′ be the
canonical tree model of q′ in which every descendant edge of q′ was replaced by two edges with a

new z-node between them. Letm
r
be an arbitrary match of r in tq′ , which exists because q′ ⊆ r . All

nodes of r are matched by m
r
to nodes of tq′ that existed already in q′, because the newly created

nodes have label z; thus |im(mr )| ≤ size(q′), where |im(mr )| denotes the number of nodes in the

image of m
r
. Moreover, we have that m

r (x) = m
r (y) for x , y only when x and y are on the same

depth and have the same label, thus only when x and y are e-labeled siblings. The only way we

can ensure |im(mr )| ≤ size(q′) ≤ 10 is to match both nodes in both pairs of e-siblings to the same

node, and to have in q′ only those nodes that are in the image of m
r
. Next, we notice that if (x ,y)

is a child edge in r , then (mr (x),mr (y)) is an edge in tq′ , and thus it is a child edge also in q′. This
gives only one possible candidate for q′: it is the pattern obtained from r by merging both pairs of

e-siblings. We notice, however, that such a pattern q′ does not satisfy p ⊆ q′, and thus actually no

q′ satisfying our assumptions can exist.

6 THE COMPLEXITY OF MINIMIZATION
In this section we present the main steps of the proof of the following lemma:

Lemma 6.1. Tree Pattern Minimization is ΣP
2
-hard.

In the proof, we will only consider tree models. More specifically, we prove that there exists a

class of tree patterns such that, given a tree pattern p from this class and k ∈ N, it is ΣP
2
-hard to

decide if there exists a tree pattern q of size at most k for whichMt (p) = Mt (q). By Proposition 2.4,

we have thatMt (p) = Mt (q) if and only ifM(p) = M(q), which proves the lemma.

Therefore, we only consider tree models from here on in the proof. The outline of the proof is as

follows. We will first introduce an intermediate problem called relative tree pattern minimization. We

will then perform two reductions: the first is from relative minimization to tree pattern minimization

and the second one shows that relative minimization is ΣP
2
-hard. The first reduction will use a

technical lemma for which we postpone the proof to Section 7.

Relative Tree Pattern Minimization

Given: Minimal tree patterns p and r such that p ⊆ r and k ∈ N
Question: Is there a tree pattern q such that size(q) ≤ k and p ⊆ q ⊆ r?

We note that Relative Tree Pattern Minimization is a promise problem, i.e., the output is

undefined if one of the patterns p and r is not minimal or if p ⊆ r does not hold. Checking whether
the promise (especially the minimality of p and r ) is satisfied is as hard as solving the original

problem. We need the conditions in the promise in the reduction from Relative Tree Pattern

Minimization to Tree Pattern Minimization. However, the reduction showing that Relative

Tree Pattern Minimization is hard always produces tree patterns p and r that we prove to

be minimal and to satisfy p ⊆ r . Therefore, the composition of the two reductions is indeed a

logarithmic space computable reduction.

We will use the gadget P(X ,Y ,Z ) from Figure 13. Recall that, for tree patterns p, q, and r , we
denote by P(p,q, r ) the tree pattern obtained from P by instantiating the subpatterns marked X , Y ,
and Z by p, q, and r , respectively.

The following lemma is crucial for proving that Relative Tree Pattern Minimization can be

reduced to Tree Pattern Minimization.
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Lemma 6.2. Let p, q, and r be tree patterns that have non-wildcard roots, do not use labels in {a,b},
and such that p ⊆ q ⊆ r . If

(1) p and r are minimal, and

(2) there is no tree pattern q′ such that

• p ⊆ q′ ⊆ r and
• size(q′) < size(q),

then P(p,q, r ) is minimal.

We prove the lemma in Section 7. Notice that condition (2) in Lemma 6.2 is subtle. If P(p,q, r ) is
minimal, then all p, q, r must also be minimal. But minimality of q does not imply that P(p,q, r ) is
minimal. Indeed, if there would be a pattern q′ that is not equivalent to q but such that size(q′) <
size(q) and p ⊆ q′ ⊆ r , then P(p,q′, r ) would be equivalent to P(p,q, r ) (by Lemma 5.3) and smaller.

Lemma 6.3. For patterns p and r that have non-wildcard roots, Relative Tree Pattern Minimiza-

tion is reducible to Tree Pattern Minimization in logarithmic space.

Proof. Consider an arbitrary instance of Relative Tree Pattern Minimization consisting

of minimal tree patterns p and r such that p ⊆ r , and a number k ∈ N. We assume furthermore

that p and r have non-wildcard roots. Since we can rename labels, we can also assume that p and

r do not use the labels a and b. We will construct an instance pm and k ′ ∈ N of Tree Pattern

Minimization so that there exists a tree pattern of size at most k ′
equivalent to pm if and only if

there is a tree pattern q with size(q) ≤ k and p ⊆ q ⊆ r .
We define the tree pattern pm to be P(p,p, r ), where the gadget P is illustrated in Figure 13. We

define k ′
as k + 2 · size(p) + 2 · size(r ) + 19.

We now prove that the reduction is correct. We need to prove two implications. For the first,

assume that p, r , and k have a solution q w.r.t. Relative Tree Pattern Minimization. In this

case we know from Lemma 5.3 that pm = P(p,p, r ) ≡ P(p,q, r ). Furthermore, the size of P(p,q, r ) is
size(q) + 2 · size(p) + 2 · size(r ) + 19 ≤ k ′

.

We prove the other implication. Assume that pm = P(p,p, r ) has an equivalent tree pattern of size

at most k ′
. We want to prove that there exists a tree pattern q of size at most k such that p ⊆ q ⊆ r .

Let q be a tree pattern such that p ⊆ q ⊆ r and such that there exists no pattern q′ smaller than q,
for which p ⊆ q′ ⊆ r (of course such a pattern exists, since, e.g., q := p satisfies p ⊆ q ⊆ r ).
By Lemma 5.3, we have that P(p,q, r ) ≡ pm . The tree patterns p and r are minimal and q is a

pattern of size min{size(q′) | p ⊆ q′ ⊆ r }. Therefore, by Lemma 6.2, pattern P(p,q, r ) is minimal,

and thus its size is at most k ′ = k + 2 · size(p)+ 2 · size(r )+ 19. This implies that size(q) ≤ k . Clearly,
the reduction can be performed in logarithmic space, which concludes the proof. □

We now show the second part of the reduction by proving that Relative Tree Pattern Mini-

mization is ΣP
2
-complete. We will reduce from the following problem, which is a mild variation of

∃∀-QBF, the canonical satisfiability problem of quantified Boolean ∃∀-formulas.

∃-validity
Given: A set of pairs of conjunctive clauses

{(c1
1
, c2

1
), . . . , (c1m , c2m)} over variables x1, . . . ,xn

Question: Is there a (i1, . . . , im) ∈ {1, 2}m such that

ci1
1
∨ · · · ∨ cimm

is true for every valuation of x1, . . . ,xn?

We show that ∃-validity is ΣP
2
-complete by reduction from ∃∀-QBF.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:24 Wojciech Czerwiński, Wim Martens, Matthias Niewerth, and Paweł Parys

Lemma 6.4. ∃-validity is ΣP
2
-complete under logarithmic space reductions.

Proof. Membership in ΣP
2
is obvious. For proving ΣP

2
-hardness, let

Ψ = ∃x1, . . . ,xn∀y1, . . . ,yℓ Φ(x1, . . . ,xn ,y1, . . . ,yℓ)
be an ∃∀-QBF formula such that Φ = c1 ∨ · · · ∨ cm is quantifier-free and in disjunctive normal form.

The problem of deciding whether such a formula is true is known to be ΣP
2
-hard [38, Theorem 4.1].

We compute the ∃-validity instance
{(ci , ci ) | i ∈ {1, . . . ,m}} ∪ {(xi ,¬xi ) | i ∈ {1, . . . ,n}} .

This concludes the reduction, which can clearly be done in logarithmic space. For showing the

correctness of the reduction, we first observe that Ψ is equivalent to

Ψ′ = ∃z1, . . . , zn∀x1, . . . ,xn ,y1, . . . ,yℓ Φ(x1, . . . ,xn ,y1, . . . ,yℓ) ∨ z1 , x1 ∨ · · · ∨ zn , xn .

Now it is easy to see the correctness, as the pairs

(c1, c1), . . . , (cm , cm)
enforce that each original clause appears in the resulting formula (there is no choice) and the pairs

(x1,¬x1), . . . , (xn ,¬xn) allow an existential choice for the values of the x-variables as demonstrated

in Ψ′
, i.e., if some x-variable xi should be true, we choose ¬xi from the pair (xi ,¬xi ) and vice

versa. □

We now use ∃-validity to prove that Relative Tree Pattern Minimization is ΣP
2
-complete,

which is our final step in proving Lemma 6.1.

Lemma 6.5. Relative Tree Pattern Minimization is ΣP
2
-complete under logarithmic space reduc-

tions, even if the patterns are restricted to have non-wildcard roots.

Proof. The upper bound follows from the straightforward algorithm: guess q and check whether

p ⊆ q ⊆ r . Clearly, guessing q can be done by a polynomial number of guesses. We never need to

guess a pattern larger than size(r ), since r trivially satisfies p ⊆ r ⊆ r . The containment tests can

be done in coNP by Proposition 2.5.

For the lower bound, we reduce from ∃-validity. We borrow an idea from Miklau and Suciu’s

proof that containment of tree patterns is coNP-hard [29, Proofs of Lemma 3 and Theorem 4], but

we have to make multiple significant changes. Let I = {(c1
1
, c2

1
), . . . , (c1m , c2m)} be an instance of

∃-validity. We can assume w.l.o.g. that no clause contains the same variable twice. Indeed, such

clauses are either unnecessarily large (xi ∧xi ) or not satisfiable (xi ∧¬xi ). We compute the patternsp
and r as shown in Figure 15, and we let k = size(r )−m. Obviously, both patterns have non-wildcard

roots. Each subpattern of r that is rooted in a b-labeled node represents a pair of clauses and the

subpattern C j
i represents the clause c

j
i for each i ∈ {1, . . . ,m} and j ∈ {1, 2}. The subpattern C j

i
has a root labeled д. For each positive literal xi of c

j
i , the д-labeled node has an xi -labeled child

that itself has an xi -labeled child, connected by a child edge. For each negative literal ¬xi of c ji ,
the д-labeled node is connected to a sequence of three nodes connected by descendant edges; the

middle node is labeled by ∗, and the two other nodes by xi (as in Figure 15).

Notice that the pattern p only depends on the number of clauses and variables of I and not on

the clauses themselves (it usesm in the picture of p and n in the subpatternsC and D). Furthermore,

p does not contain any wildcards and contains descendant edges only in its subpattern D. In
consequence the canonical tree models of p only differ from p in the subtree corresponding to D.

Pattern r does contain wildcards in the subpatterns C j
i , but these wildcards have only one child.

Therefore, p and r are ∗-narrow patterns.
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Fig. 15. Tree patterns used in the proof of Lemma 6.5
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Clearly, the patterns p and q and the number k can be computed using logarithmic space. We will

show that I is a yes-instance of ∃-validity if and only if p, r , and k are a yes-instance of Relative

Tree Pattern Minimization. Before that, we prove that p, r , and k are at all a correct instance of

Relative Tree Pattern Minimization, which is a consequence of the following claim.

Claim 6.6. The tree patterns p and r are minimal and p ⊆ r .

We prove the claim. We first show that p and r are minimal. Since p and r both are ∗-narrow,
it suffices to show that both patterns are nonredundant, according to Lemma 2.9. It is easy (but

tedious) to verify that removing any leaf from any canonical tree of p results in a tree that is not in

Mt (p). By Lemma 4.1, this means that none of the patterns obtained from p by removing a leaf is

equivalent to p. This means that p is nonredundant and therefore also minimal. The proof that r is
minimal is analogous.

We now prove that p ⊆ r . We show that there is a homomorphism from r to p, which proves

that p ⊆ r (Observation 4.2). It is easy to see that such a homomorphism exists: the root of r can be

mapped to the root of p and each C j
i -subpattern in r can be mapped to a C-subpattern in p. This

concludes the proof of Claim 6.6. □

Next, we show that if I is a yes-instance of ∃-validity, then p, r , and k are a yes-instance of

Relative Tree Pattern Minimization. To this end, suppose that I is a yes-instance of ∃-validity,
and fix a choice of clauses ι : {1, . . . ,m} → {1, 2} such that c ι(1)

1
∨ · · ·∨c ι(m)

m is true for all valuations

of variables. We obtain q from r by the following algorithm: for every i ∈ {1, . . . ,m} take the
e-labeled parent of the subpattern C ι(i)

i and merge it with its e-labeled sibling.

Because we have merged exactlym nodes, we have size(q) = size(r ) −m = k . We also see that

q ⊆ r , since the operation of merging sibling nodes only imposes extra restrictions on the set of

models.

It remains to show that p ⊆ q holds, which we do by showing that there is a match m
q,t

of q in

every canonical tree model t of p. To this end, let t be an arbitrary canonical tree model of p and let

am be the middle a-labeled node in t . With t we associate a valuation σ t
of the variables x1, . . . ,xn

as follows:

σ t (xi ) =
{
true if dt (xi ) = 1,

false if dt (xi ) > 1,

wheredt (xi ) denotes the distance between the two xi -labeled nodes in the subtree of t corresponding
to the D-subpattern of p.

Since c ι(1)
1

∨ · · · ∨ c ι(m)
m is universally true, there must be a k such that the clause c ι(k )k is satisfied

by σ t
. We define m

q,t
such that

• the k-th a-labeled node of q (i.e., on depth k − 1) is mapped to am and
10

• for every subpattern of q rooted at a b-labeled node, the d-labeled nodes are matched so that

the d-labeled node with only one child is mapped to the d-labeled node with only one child

in the corresponding subtree of t .

From this point on, matching of the a-, b-, c-, d-, e-, f -, and д-labeled nodes is obvious, as there

is only one way to do it. Furthermore, each of the C j
i -subpatterns can be matched in one of the

copies of C . It remains to show that C ι(k )
k can be matched in the part tD of t corresponding to D.

10
In other words: the first a-labeled node of q is mapped to the (m − k + 1)-th a-labeled node of t , counting from the root

downwards.
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If, in C ι(k )
k , below д there exist two xi -nodes being in distance one, then xi appears positively in

c ι(k)k . Therefore, σ t (xi ) has to be true (as c ι(k )k is satisfied) and we can conclude that dt (xi ) = 1 by

definition of σ t
. As dt (xi ) = 1, we can match the two xi -labeled nodes in tD .

On the other hand, if, in C ι(k)
k , below д there exist two xi -nodes with a wildcard node between

them, then ¬xi appears in c ι(k )k . Therefore, σ t (xi ) has to be false and we can conclude that dt (xi ) > 1

by definition of σ t
. As dt (xi ) > 1, we again can match the two xi -labeled nodes in tD (including

the wildcard node between these nodes). From the construction, it is clear that m
q,t

is indeed a

match of q in t . This shows that p, r , and k are indeed a yes-instance to Relative Tree Pattern

Minimization.

We continue by proving the more difficult direction: if p, r , and k are a yes-instance of Relative

Tree Pattern Minimization, then I is a yes-instance of ∃-validity. We first need to limit the

form of candidate solutions q to Relative Tree Pattern Minimization. We say that a tree pattern

q is well-formed if it can be obtained from pattern r by the following algorithm: Select in each

subpattern rooted at a b-labeled node one subpattern rooted at a d-labeled node. In each selected

subpattern, merge the two nodes labeled e—other nodes remain unchanged. Furthermore, we allow

to replace descendant edges by child edges and to replace wildcards by other labels.
11

Claim 6.7. Let q be a pattern such that p ⊆ q ⊆ r and size(q) ≤ size(r ) −m. Then q is well-formed.

We prove the claim. We use the following fact that holds for all matches m of r (into arbitrary
trees t ) and all nodes u , v of r :

m(u) = m(v) implies that lab(u) = lab(v) = e and that u and v are siblings. (⋆)

The fact (⋆) can be verified by observing that all other pairwise different nodes have different

sequences of labels on the path to the root of r . Therefore these nodes must also be matched on

different paths in t .
We continue with the proof of the claim. Let tq be the canonical tree model of q obtained as

follows: every descendant edge connecting two xi -nodes (for some i) is replaced by a single edge;

every other descendant edge is replaced by two edges with a new z-labeled node between them.

Let m
r
be an arbitrary match of r in tq . All non-wildcard nodes of r are mapped to nodes of tq that

existed already in q. Consider a wildcard node of r . It is located between two xi -nodes. It is possible
that this wildcard node is mapped to a z-node of tq , created in the middle of some descendant edge

of q. But at least one end of this edge is not labeled by xi (we have not added z-nodes on descendant

edges connecting two xi -nodes), and thus is not used as the image of the parent (resp., the child) of

the considered wildcard node. In consequence, we can alter m
r
so that it maps the wildcard node

to this end of the descendant edge. This means that we can assume w.l.o.g. that the image of m
r

contains only nodes of q. We can thus consider m
r
as a mapping from r to q. We also notice that if

(u,v) is a child edge in r , then there is an edge (mr (u),mr (v)) in tq , and thus also in q. If u is not

labeled by any xi , then this edge in q is a child edge. If (u,v) is a descendant edge in r , we only
know that m

r (v) is a descendant of mr (u) in q.
Let |im(mr )| denote the number of nodes in the image of m

r
, i.e., the cardinality of {u ∈ t | ∃v ∈

r . mr (v) = u}. By the assumptions of the claim, we have |im(mr )| ≤ size(q) ≤ size(r ) −m. This

implies, due to (⋆), that there are at leastm pairs of e-siblings that are matched by m
r
to the same

node. We can observe that in every subpattern rooted at a b-labeled node in r , at most one pair of

e-siblings can be matched by m
r
to the same node. Indeed, suppose to the contrary that both pairs

11
The important operation, however, is the merging of nodes, since this operation changes the size of a pattern. The only

reason why we also allow replacement of descendant edges by child edges and replacement of wildcards by other labels is

because we cannot avoid it in Claim 6.7.
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of e-siblings below some b-node in r are matched by m
r
to the same node. Consider these e-nodes,

their f - and д-children, their d-parents, and their c-grandparents. The image of these nodes in q
consists of an e-node with an f -child, a д-child, a d-parent, and a c-grandparent (connected by

child edges only), and of another copy of such a tree fragment, where the c-grandparent in one of

the copies is a descendant of the c-grandparent in the other copy. Such a fragment of q cannot be

matched in the smallest canonical tree model tp of p. This is because tp has, in each subtree rooted

at a b-labeled node, at most one e-node having both an f -child and a д-child (and it is impossible

to map both considered e-nodes of q to the same node of tp ). So this would contradict that p ⊆ q.
In consequence, below every b-labeled node exactly one pair of e-siblings is matched by m

r
to the

same node, and |im(mr )| = size(r ) −m = size(q).
This means that there are no other nodes in q than those coming from r . Consider now a

descendant edge (u,v) of r . We need to argue that there is an edge (mr (u),mr (v)) in q, as right
now we only know that m

r (v) is a descendant of mr (u), and that, by surjectivity of m
r
, all nodes

between m
r (u) and m

r (v) are in the image of m
r
. We have three series of descendant edges in r :

those starting in a b-node, those starting in a c-node, and those contained in the C j
i subpatterns.

When u is a b-node, it is easy to see that the only node of r that can be matched to a child of m
r (u)

is v (i.e., the c-child of u). Suppose that u is a c-node. This time, the only nodes of r that can be

matched to a child of m
r (u) are v and the d-child w of u. If v (being a c-node) was matched to

a descendant of m
r (w), then such q could not be matched in the smallest canonical tree model

tp of p, because in p there is no c-node located below a d-node. Thus v is matched to a child of

m
r (u). Finally, if u is an xi -node or a wildcard node, it is again easy to see (taking into account the

previously resolved case) that the only node of r that can be matched to a child of m
r (u) is v .

Having the above, we almost know that q is well-formed, but we still need to show that if (u,v)
is a child edge of r with u labeled by some xi , then (mr (u),mr (v)) is a child edge in q. But, indeed,
if (mr (u),mr (v)) was a descendant edge in q, then q would have a canonical tree model in which

this edge is replaced by a sequence of edges; such a model could not be matched by r , contrary to

the assumption q ⊆ r . This finishes the proof of Claim 6.7. □

We now proceed with the proof of Lemma 6.5. To this end, consider a pattern q such that

p ⊆ q ⊆ r and size(q) ≤ k ; recall that k = size(r ) −m. By Claim 6.7, q is well-formed.

We denote by v j
i for i ∈ {1, . . . ,m} and j ∈ {1, 2} the d-labeled node of q that is ancestor of the

C j
i subpattern. We define a function f

q
: {1, . . . ,m} → {1, 2} as follows:

f
q(i) =

{
1 if v1

i has exactly one child,

2 if v2

i has exactly one child.

Notice that f
q
is well-defined as q is well-formed.

We are also going to use the valuation σ t
and the numbers dt (xi ) defined during the proof of

the opposite direction for a canonical tree t of p.
We claim that

c f
q (1)
1

∨ · · · ∨ c f
q (m)
m

is valid (i.e., true for all valuations of variables). More precisely, for every canonical tree model t of

p, we claim that the valuation σ t
satisfies c f

q (1)
1

∨ · · · ∨ c f
q (m)
m . This shows validity of the formula

because, for each valuation ρ of x1, . . . ,xn , there exists a canonical tree model t of p such that

σ t = ρ.
Let thus t be a canonical tree model of p and let m

q
be a match of q in t . Notice that mq

exists

because p ⊆ q. We denote the subtree of t corresponding to the subpattern D of p by tD . Since there
is a path ofm a-labeled nodes in q (because q is in well-formed) and a path of 2m − 1 a-labeled
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nodes in t , exactly one a-labeled node of q has to be matched to the middle a-labeled node of t . Call
this node aj (and assume that it has depth j − 1 in q, where the root has depth 0).

We show that the clause c f
q (j)
j is satisfied by σ t

. To achieve this, it is sufficient to look how the

subpattern rooted at the b-child of aj is matched in the subtree rooted at the b-child of the middle

a-labeled node of t (it has to be matched there, because the b-child of aj is connected to aj by a

child edge). Consider this subtree of t and note that it only has a single e-labeled node that has

both an f -labeled and a д-labeled child. Therefore, we know that m
q
needs to match C f

q (j)
j to tD .

We show that every literal of c f
q (j)
j is satisfied by σ t

.

Let xi be a positive literal of c f
q (j)
j . Then there are two xi -labeled nodes in C f

q (j)
j , which are

connected by a child edge. These nodes have to be matched to the xi -labeled nodes of tD . Therefore
dt (xi ) = 1 and σ t (xi ) = true.

Now let ¬xi be a negative literal of c f
q (j)
j . Then there are two xi -labeled nodes inC

f
q (j)
j , connected

by a path of two descendant edges. Again, these nodes have to be matched to the xi -labeled nodes

of tD . Therefore d
t (xi ) > 1 and σ t (xi ) = false. This concludes the proof that I is a yes-instance of

∃-validity, and thus the proof of Lemma 6.5. □

Finally we note that, throughout the entire proof of Lemma 6.1, we never use edge labels. In

particular, the entire proof goes through just the same if every edge on every query carries the

same, fixed label. We therefore have the following corollary.

Corollary 6.8. Generalized Tree Pattern Minimization is ΣP
2
-hard, even if the patterns have

no wildcard edges.

Minimality. The following problem is closely related to Tree Pattern Minimization and has

also been considered in the literature:

Minimality

Given: A tree pattern p

Question: Is p minimal?

Indeed, Minimality can be seen as a variant of Tree Pattern Minimization where k =
size(p) − 1.

Minimality is known to be NP-hard [26, Theorem 6.3] but, just as Tree Pattern Minimization,

its precise complexity was unknown. The techniques we used for proving that Tree Pattern

Minimization is ΣP
2
-complete can be used to prove thatMinimality is ΠP

2
-complete.

Theorem 6.9. Minimality is ΠP
2
-complete.

Proof. Membership in ΠP
2
is immediate: the algorithm has to check whether each smaller pattern

is non-equivalent. The non-equivalence test can be done in NP since equivalence of tree patterns is

coNP-complete [29].

For ΠP
2
-hardness, we can use essentially the same (combined) reduction as in the proofs of

Lemmas 6.5 and 6.3. Let I be an instance of ∃-validity (havingm pairs of clauses) and let p and r be
the patterns computed in the reduction from ∃-validity to Relative Tree Pattern Minimization

in the proof of Lemma 6.5.

We compute a pattern q0 from r by merging the e-labeled nodes above the subpatterns C1

1
to

C1

m−1 with their siblings.

We show that p ⊆ q0 ⊆ r . The inclusion p ⊆ q0 holds because there exists a homomorphism

from q0 to p which maps the lowest subpattern rooted at a b-labeled node of q0 to the subpattern

in p rooted at the b-labeled ancestor of the D-subpattern. (The two c-labeled nodes from the q0
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pattern can be matched to the upper and lower c-labeled nodes inside the subpattern with D in p.)
The inclusion q0 ⊆ r is immediate because q0 is obtained by merging nodes of r , which imposes

extra restrictions.

From the proofs of Lemmas 6.5 and 6.3 we know that I is a yes-instance if and only if there

exists a tree pattern equivalent to P(p,p, r ) and having size at most k = size(P(p,p, r )) −m. Notice

that size(q0) = size(p) − m + 1, hence k = size(P(p,q0, r )) − 1. By Lemma 5.3, we know that

P(p,p, r ) ≡ P(p,q0, r ), and thus I is a yes instance if and only if there exists a tree pattern equivalent

to P(p,q0, r ) and having size at most size(P(p,q0, r )) − 1. The latter condition simply says that

P(p,q0, r ) is not minimal. Thus, in order to solve I we just need to ask whether the pattern P(p,q, r )
is minimal, and negate the answer. □

7 TECHNICAL CORE
This section is dedicated to prove Lemma 6.2. We present a few general lemmas in Section 7.1 and

lemmas specific to the structure of the tree pattern in Figure 13 in Section 7.2. We prove Lemma 6.2

in Section 7.3.

7.1 General Tools
We first revisit the definitions of match, containment, equivalence, and nonredundancy for tree

models. The reason is that we will sometimes require in proofs that the root of the pattern is mapped

to the root of the tree. We therefore say that a match m of tree pattern p = (Vp ,Ep , labp ) into a tree

t = (V ,E, lab) is a strong match if m(rp ) = r , where rp and r are roots of p and t , respectively. We

define strong containment, strong equivalence and strong redundancy analogously to containment,

equivalence and redundancy, but we require the matches in the respective definitions to be strong.

For two tree patterns p and q we denote by p ⊆S q that p is strongly contained is q and by p ≡S q
that p and q are strongly equivalent.

We note that strong redundancy implies redundancy, and thus for nonredundancy the implication

is inverted: nonredundancy implies non-strong-redundancy. This implication can be strengthened

a bit: if a pattern p is nonredundant, then every subpattern pv is non-strongly-redundant. Indeed,

towards a contradiction, if pv ≡S p
v \n for some node n of pv , then in every match of p \n in some

tree t we can replace the match of the subpattern pv \ n by a match of pv that matches v to the

same node, obtaining a match p in t . As obviously p ⊆ p \n, this shows that p ≡ p \n, contradicting
the assumption that p is nonredundant.

We have an analogue of Lemma 4.1 that holds for strong containment.

Lemma 7.1 ([29, Proposition 3]). Let p and q be tree patterns. Then p ⊆S q if and only if every

canonical tree model of p is strongly matched by q.

Every strong match is a match, and thus it immediately follows from Lemmas 4.1 and 7.1 that,

if p ⊆S q then also p ⊆ q (and if p ≡S q then also p ≡ q). The converse is not true in general. For

example, the pattern ∗ ⇒ a is equivalent to ∗ → a but not strongly equivalent. The following result

shows, however, that we can deduce strong equivalence from equivalence in a special case.

Lemma 7.2 (Corollary of [26, Theorem 4.3, case 1]). Let p be a tree pattern such that the root of

p is not a wildcard node. Then, for every tree pattern q we have that p ≡ q if and only if p ≡S q.

We now prove a few lemmas that are useful to infer similarities between equivalent patterns.

We start by comparing roots.

Lemma 7.3. Let p and q be tree patterns such that p ≡ q. Then the roots of p and of q have the same

label.
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Proof. If the root of any of these patterns is not a wildcard node, by Lemma 7.2 we have p ≡S q,
which implies that p has to strongly match in every canonical tree of q. This is only possible when

the roots of p and of q have the same label. The remaining case is that both roots are wildcard

nodes, for which the conclusion also holds. □

The next result, coming from [26], allows us to descend to the root’s children. Recall that for a

node v of p, by pv we denote the subpattern rooted at v , and when v is a child of the root of p, by
pv we denote the subpattern consisting of pv and of the root.

Lemma 7.4. Let p and q be nonredundant and let p ≡ q. Then the roots of p and of q have the same

number of children. Moreover, there exists a bijection φ between children of p’s root and children of q’s
root such that for every child u of p’s root it holds that pu ≡ qφ(u).

sketch. Lemma 4.11 in [26] is phrased differently from the present lemma and, in particular,

its second condition is about relative containment. However, as Kimelfeld and Sagiv explain after

Definition 3.11, in this case, containment in both directions (and therefore equivalence) is implied

by the two directions of relative containment. □

We can prove an analogous result for strong equivalence and non-strong-redundancy (here some

assumptions are stronger, but the thesis is also stronger).

Lemma 7.5. Let p and q be non-strongly-redundant and let p ≡S q. Then the roots of p and of q
have the same number of children. Moreover, there exists a bijection φ between children of p’s root and
children of q’s root such that for every child u of p’s root it holds that pu ≡S qφ(u).

Before proving Lemma 7.5, we recall the following result that will be useful in the proof.

Lemma 7.6 ([20, Lemma 4.4]). Let p and q be tree patterns. Then p ⊆S q if and only if, for each

child v of q’s root there exists a child u of p’s root such that pu ⊆S qv .
12

of Lemma 7.5. Assume that p’s root has n children denotedu1, . . . ,un and q’s root hasm children

denotedv1, . . . ,vm . Since p ⊆S q, by Lemma 7.6, for every qv (wherev ∈ {v1, . . . ,vm}), there exists
a pu (where u ∈ {u1, . . . ,un}) such that pu ⊆S qv . Let f be a function that maps each such v to one

such corresponding u. Similarly we can define a function g such that for every u ∈ {u1, . . . ,un},
we have that g(u) ∈ {v1, . . . ,vm} satisfies q

g(u) ⊆S pu .
We will show that f ◦ g is the identity. Assume otherwise; say that f(g(u)) = u ′

for some u ′ , u.
Then

pu′ = p
f(g(u)) ⊆S q

g(u) ⊆S pu .

However, this means that p is strongly redundant. Indeed: by removing the subpattern pu we would

obtain a strongly equivalent pattern. This is a contradiction. Similarly we obtain that g ◦ f is the
identity.

We thus have f = g
−1
, which means in particular that the roots of p and of q have the same

number of children and that there is a bijection φ (defined as φ(u) = g(u)) such that

∀u ∈ {u1, . . . ,un} : pu ⊆S qφ(u) and pu ⊇S qφ(u)

which simply means that

∀u ∈ {u1, . . . ,un} : pu ≡S qφ(u)

This concludes the proof. □

12
When comparing this lemma to the statement of Flesca et al., it is important to note that Flesca et al. define matches

such that the root of the pattern always needs to be matched to the root of the tree [20, page 7, definition of embedding].

Therefore, their notion of containment corresponds to our notion of strong containment.
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The next two lemmas allow to preserve equivalence while removing the root (the first of them

works already for containment).

Lemma 7.7. Let p and q be two tree patterns such that p ⊆ q and the roots of p and q have exactly

one child (u and v , respectively). Then pu ⊆ qv .

Proof. Let t ′ ∈ Can(pu ). Let t be a tree obtained from t ′ by adding a new root above the root of

t ′ and labeling it by the label of the root of p, or by z if the root of p is labeled ∗. Clearly we have

that t ∈ Can(p), so p can be matched in t . By p ⊆ q, there exists a match of q in t . In this match, the

image of v is a node below the root of t , that is, a node inside t ′. This means that qv matches in t ′,
which shows that pu ⊆ qv . □

Under a slightly stronger assumption than in Lemma 7.7, we can even obtain strong equivalence

of the subpatterns, as stated in the next lemma.

Lemma 7.8. Let p and q be two tree patterns such that p ≡S q and the roots of p and q have exactly

one child (u and v , respectively). Additionally, suppose that

(a) u is not a wildcard node, or

(b) the edges from p’s root to u and from q’s root to v are child edges.

Then pu ≡S qv and the edges from p’s root to u and from q’s root to v are either both child edges, or

both descendant edges.
13

Proof. In case (a), we first deducepu ≡ qv from Lemma 7.7. This can be strengthened topu ≡S qv

by Lemma 7.2, due to the assumption that the root of pu is not a wildcard node. Suppose now, to

the contrary of our conclusion, that the edge from p’s root to u is a child edge but the edge from

q’s root to v is a descendant edge. Then we can consider a canonical tree model t of q in which this

descendant edge is replaced by a path of length at least 2. The (only) root’s child in t has label z,
and thus p cannot be strongly matched in t , which contradicts our assumption that p ≡S q. In the

situation where the edge in p is a descendant edge and the edge in q is a child edge, we know by

Lemma 7.3 that v is not a wildcard node. Therefore, this case is resolved by symmetry. Thus both

edges are of the same type.

Consider now case (b). Let t ∈ Can(qv ) be an arbitrary canonical tree model for qv . By definition

of q, there is a tree t ′, strongly matched by q, where the only difference to t is that t ′ has a new
root with the root of t being its child. As p ≡S q, p strongly matches in t ′ and as the edge from p’s
root to u is a child edge, pu strongly matches in t . By Lemma 7.1 we get that qv ⊆S p

u
. The proof

for pu ⊆S qv is completely symmetric, yielding pu ≡S qv as desired. □

The next lemma is similar to Lemma 7.6, but talks about nodes on an arbitrary depth.

Lemma 7.9. Let k ∈ N, and let p and q be two tree patterns such that p ⊆ q. Then, for every node v
on depth k in q, there exists a node u on depth k in p such that pu ⊆ qv .

Proof. Assume towards a contradiction that there exists a node v on depth k in q such that

there is no node u on depth k in p with pu ⊆ qv . Let t ∈ Can(p) be a canonical tree model of p such

that

(a) every descendant edge on depth smaller than k is replaced with a single child edge; and

(b) for every nodew on depth k in t , it holds that qv does not match tw .

By assumption and by Lemma 4.1, such a canonical tree model exists. By (b), we know that qv also

cannot be strongly matched in any subtree of t starting on depth at least k . Therefore, q cannot be

matched in t , which contradicts the assumption p ⊆ q. □
13
Of course the latter part of the conclusion is nontrivial only in case (a).
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Fig. 16. The main gadget, instantiated with patterns p, q, and r , and annotated with node names for the proof
of Lemma 6.3

7.2 Gadget-Specific Tools
Before we prove Lemma 6.2, we do a first step by showing that the pattern P(p,q, r ) is nonredundant
if the conditions (1) and (2) of Lemma 6.2 are satisfied.

We repeated the gadget from Figure 13 in Figure 16, where we annotate it with node names to

facilitate references.

Definition 7.10. We say that a pattern p is barely contained in a pattern q if p ⊆ q but, for every

leaf n of p, it holds that p \ n ⊈ q. We denote it by p ⊆B q.

Lemma 7.11. Let p, q, and r be nonredundant tree patterns not using labels a nor b, and such that

q ⊆B r . Then P(p,q, r ) is nonredundant.

Proof. The proof is analogous to the proof from page 16 showing that the pattern p in Figure 9 is

nonredundant. Let α = P(p,q, r ). Throughout the proof, we use ub1 , . . . ,ub5 to denote the b-nodes
of α from left to right. We show that, for every leaf u of α , we have α \ u . α . We assume towards

a contradiction that α \ u ≡ α for some leaf u of α . The proof is by a case distinction depending on

the i for which u is a descendant of ubi .
For the proof we will use something similar as our main gadget, but this time with five parameters.

More precisely, the two structures Tj (x1, . . . ,x5) for j = 1, 2 in Figure 17 can be instantiated with

5-tuples of trees (t1, . . . , t5). The result is a tree Tj (t1, t2, . . . , t5) obtained from Tj by replacing each

xk by tk . These trees are canonical tree models of α if the subtrees t1, . . . , t5 are canonical tree
models of p, p, r , q, and r , respectively. Let tx , for every x ∈ {p,q, r }, be a canonical tree model of x
and tx\u , for each leaf u of x , be a canonical tree model of x \u such that tx\u < Mt (x). Furthermore,

if x = q, we require that tx\u < Mt (r ). As p, q, and r are nonredundant and q ⊆B r (which implies
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Fig. 17. Gadget for making canonical tree models for the proof of Lemma 7.11

q \ u ⊈ r and q ⊆ r ), such trees exist. We choose a tree t ∈ Mt (α \ u) as follows:

t =



T1(tp\u , tp , tr , tq , tr ) if u is below ub1
T1(tp , tp\u , tr , tq , tr ) if u is below ub2
T1(tp , tp , tr\u , tq , tr ) if u is below ub3
T2(tp , tp , tr , tq\u , tr ) if u is below ub4
T1(tp , tp , tr , tq , tr\u ) if u is below ub5

We observe that, in all cases, t is a canonical tree model of α \ u. Let m be a match of α in t . We

now show that this leads to a contradiction in all the five cases.

In the cases where u is below ubi for i ∈ {1, 2, 3, 5}, we have m(ubi ) = nbi . This follows from the

relative depths of b-nodes and the fact that ua3 needs to be matched at the only a-node that has
an a-child. In all four cases, this leads to a contradiction, as by the definition of tx\u , it holds that
tx\u < Mt (x) and thus this match is not possible.

The remaining case is that u is a descendant of ub4 . The root of α can only be matched to the

root of t or one level deeper, as otherwise, the lowest b-nodes, i.e., the nodes ub1 and ub4 cannot be
matched anywhere. Therefore, either m(ub4 ) or m(ub5 ) has to be a node on depth 6. This implies

that m(ub4 ) = nb4 or m(ub5 ) = nb4 , as nb4 is the only b-node on depth 6. Both matches are not

possible, however, as tq\u < Mt (q) and tq\u < Mt (r ). This concludes the proof. □

7.3 Proof of Lemma 6.2
Lemma 6.2: Let p, q, and r be tree patterns that have non-wildcard roots, do not use labels in {a,b},
and such that p ⊆ q ⊆ r . If

(1) p and r are minimal, and

(2) there is no tree pattern q′ such that

• p ⊆ q′ ⊆ r and
• size(q′) < size(q),
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then P(p,q, r ) is minimal.

Assume that (1) and (2) are true and let α = P(p,q, r ). Let β be an arbitrary minimal pattern with

α ≡ β . We will show that β cannot be smaller than α by gradually restricting the structure of β .
This proves that α is minimal.

Pattern α is depicted in Figure 16. We annotated α with node names that we will use in the proof.

Where possible, we use similar names (with u replaced by v) for corresponding nodes from β , e.g.,
we use vε to denote the root of β .

Recall that β is nonredundant because it is minimal. We now show that α is also nonredundant.

By assumption we have that q ⊆ r . If there were a leaf n such that q \ n ⊆ r then we would have

p ⊆ q \ n ⊆ r , which contradicts (2). Thus, q is barely contained in r and, by Lemma 7.11, α is

indeed nonredundant. Therefore we can apply Lemma 7.4 to α and β and obtain that the root of β
has exactly two children, vL and vR such that

αuL ≡ βvL and αuR ≡ βvR . (⋄)

We will prove the following claims, from which we will be able to deduce Lemma 6.2.

(A) βvR is of the form ∗ → ∗ → ∗ → ∗ → a → b ⇒ r ′ with r ′ equivalent to r .
(B) vL has a child va3 such that βva3 ≡S αua3 . The tree pattern βva3 has a node v∗ and nodes vai

and vbi for i = 1, 2, 3, all pairwise different. Moreover, βv∗ ≡S αu∗ and, for every i = 1, 2, 3, we
have βvai ≡S αuai and βvbi ≡S αubi .

(C) vL has a child vLR (other than va3 ) that has a descendant on depth 7 in β which is the root of a

subpattern q′ such that p ⊆ q′ ⊆ r .

The claims (A), (B), and (C) imply that β is structured like α , with the exceptions that

• the subpatterns below the nodes vb1 , vb2 , vb3 , and vb5 can be different but equivalent;

• 5 levels below vLR there is a subpattern q′, possibly different from q, but with p ⊆ q′ ⊆ r ;
• for some edges, we do not know whether they are child edges or descendant edges; and

• β can have additional subpatterns not enforced by the above conditions (attached below

nodes on the path from vL to the subpattern q′).

Using conditions (1) and (2) from the lemma statement, we then have that size(α) ≤ size(β). This
means that it suffices to prove Claims (A)–(C) to conclude the proof of Lemma 6.2.

It therefore remains to show Claims (A)–(C). Before diving into these proofs, we give a list of

some easy “negative” properties, saying that β cannot have particular combinations of nodes as

substructures:

(N1) in βvR there is no a-node with an a-descendant;
(N2) in β there is no b-node with an a-descendant nor with a b-descendant; and
(N3) in β there is no a-node on depth at least 4 whose parent is a-labeled and connected to this

node by a child edge;

(N4) in β there is no a-node on depth at least 4 whose grandparent has an a-labeled child, and the

edges connecting the grandparent to this node and to the a-labeled child are all child edges;

(N5) in βvL there is no a-node on depth 4 such that the path from vL to this node contains only

child edges;

(N6) in β there is no a-node on depth 2 such that the path from vε to this node contains only child

edges.

We now argue that (N1)–(N6) are true. Let us recall that subpatterns p, q, r contain no nodes

labeled a or b.
Property (N1) holds because, by (⋄), βvR has to match in every canonical tree model of αuR , while

in these models there is only one a-node. Similarly, (N2) holds because β has to match in every
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Fig. 18. Trees used in the proof of (N5) and (N6)

canonical tree model of α , while in these models there is no b-node with an a-descendant nor with
a b-descendant. For (N3) and (N4), we consider the smallest canonical tree model t1 of α (i.e., that

in which all the descendant edges are instantiated as paths of length one, that is, single edges).

Necessarily there is a match of β in t1. In this match, a hypothetical node of β violating (N3) or

(N4) should be matched to an a-node on depth at least 4 such that some child of its grandparent is

a-labeled. Such a node does not exist in t1, so (N3) and (N4) hold.

Suppose that (N5) is violated by some v of βvL . Consider the smallest canonical tree model t of
αuL , depicted in Figure 18a, and a match m of βvL in t , which exists by (⋄). Since in t there is no
a-node on depth 4 nor on depth higher than 5, necessarily v is matched to a node on depth 5. The

node vL , connected to v on three child edges, has to be matched to a node on depth 2. Then vε is
matched either to uL or to uε . We may, however, alter m so that it matches vε to uL (it remains a

correct match, since vL is the only child of vε in βvL , and m(vL) is a child of uL). This means that

βvL matches in the subtree tuL of t , starting in uL . But then, by (⋄), αuL has to match in tuL as well.

This is, however, not the case, since αuL requires an a-node on depth at least 5, while in tuL there is

no such node. This shows that the node v could not exist, and thus (N5) holds.

Finally, we show (N6). Assume towards a contradiction that (N6) is violated by some a-node v on

depth 2 in β such that the path from vε to v consists of two child edges. Consider the canonical tree

model t of α in which (uL,ua3 ) is replaced by a path of length 3 and all the other descendant edges

are replaced by child edges. We depict the structure of t in Figure 18b. Let m be a match of β in t .
The node v is matched to some a-node of t , and vε is matched to the grandparent of m(v). We have

5 possibilities for m(vε ), denoted as д1–д5. In any case, β matches in the subtree tдi , and thus also

α , which is equivalent to β , matches in this subtree. We can see, however, that α does not match

tдi for any i ∈ {1, 2, 3, 4, 5}. Thus our assumption was wrong, which finishes the proof of (N6).

We now come back to the proof of claims (A)–(C).

Claim (A): Pattern βvR is of the form

∗ → ∗ → ∗ → ∗ → a → b ⇒ r ′

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Minimization of Tree Patterns 1:37

with r ′ equivalent to r .

Proof. We first prove that there is a node va5 on depth 4 in βvR such that αua5 ≡S βva5 and on

the path from vε to va5 there are only child edges. To this end, consider a canonical tree model tvL
of βvL such that β does not match in tvL (it exists because β is nonredundant, and thus βvL ⊈ β).
Consider also a canonical tree model tvR of βvR constructed as follows:

• in every a-node v such that βv ⊈S αua5 we attach a canonical tree model tv of βv such that

αua5 does not match strongly in tv (it is possible to do this independently for every such

a-node thanks to (N1)); this fixes lengths of paths instantiated for some descendant edges;

• all other descendant edges of βvR (in particular all those that are above a-labeled nodes) are

instantiated as paths of length 5.

Let t be the tree obtained from tvL and tvR by merging their roots. We have t ∈ Can(β).
Since α ≡ β , there is a match m of α in t . By assumption, tvL < Mt (β) = Mt (α). Moreover,

tvR < Mt (αuL ) because in tvR there is no a-node with an a-descendant by (N1). Thusm has to match

uε to the root of t , nodes of αuL to nodes of tvL , and nodes of αuR to nodes of tvR . In particular, ua5
is matched to an a-node va5 on depth 4 in tvR . Since va5 is a labeled node, it is a node that is also in

β . We necessarily have βva5 ⊆S αua5 , because all subtrees tv starting in a-nodes v with βv ⊈S αua5

are by construction such that αua5 does not match strongly in tv . Moreover, there is no descendant

edge on the path from vε to va5 in β , as it would have been replaced by a path of length 5 in t ,
while va5 is on depth 4 in t . This shows that va5 is a node on depth 4 in βvR , that there are only
child edges on the path from vε to va5 , and that βva5 ⊆S αva5 .
Since αuR ⊆ βvR by (⋄), by Lemma 7.9 there has to be a node u on depth 4 in αuR such that

αu ⊆ βva5 . As αuR only has one node on depth 4, we have that u = ua5 . We therefore established

that αua5 ≡ βva5 and, by Lemma 7.2, αua5 ≡S βva5 .
From the above we can deduce that αuR ≡S βvR . Indeed, consider a canonical tree model t of

αuR . Because αuR ≡ βvR there is a match of βvR in t . In t there is only one a-node, on depth 4, and

thus va5 has to be matched to this node. It follows that the root of βvR is matched to the root of t ,
and hence this is a strong match. Conversely, consider a canonical tree model t of βvR . Then, by
αua5 ≡S βva5 , there is a strong match of αua5 in the subtree tva5 . It can be extended to a strong

match of the whole αuR in t , because va5 is on depth 4 in t . This shows that αuR ≡S βvR .
We obtain (A) by repeatedly applying Lemmas 7.3, 7.5, and 7.8 to subpatterns of αuR and βvR

starting in nodes on depths from 0 to 5. We start by applying Lemma 7.3 to αuR and βvR and deduce

that uε in α and vε in β have the same label. Then, we apply Lemma 7.8(b) to these patterns, and

obtain that αuR ≡S βvR . On the next level, we additionally use Lemma 7.5 to ensure that vR has

only one child (this lemma requires the patterns to be non-strongly-redundant, but recall that α
and β are nonredundant, which implies that all their subpatterns are non-strongly-redundant), and

we may again apply Lemmas 7.3 and 7.8(b). On depths 4 and 5 we use case (a) of Lemma 7.8, which

additionally ensures that the edges starting in va5 and in its child are a child edge and a descendant

edge, respectively. On depth 5 we use the assumption that the root of r is not a wildcard, in which

case we use Lemma 7.8(a). This concludes the proof of (A). □

We now prove claim (B).

Claim (B):vL has a childva3 such that β
va

3 ≡S αua3 . The tree pattern βva3 has a nodev∗ and nodes
vai and vbi for i = 1, 2, 3, all pairwise different. Moreover, βv∗ ≡S αu∗ and, for every i = 1, 2, 3, we
have βvai ≡S αuai and βvbi ≡S αubi .

Proof. Essentially, we want to show that vL has a child va3 such that βva3 is structured like

αua3 , except that the subpatterns rooted below b-nodes may be different but equivalent.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:38 Wojciech Czerwiński, Wim Martens, Matthias Niewerth, and Paweł Parys

z

z

z

a

a

z

vε = n0

n1

vL = n2

n3

vR

Fig. 19. Sketch of the tree t , as used in the proof of (C1)

By (⋄) we know that αuL ≡ βvL . By Lemma 7.9, there exists a node va3 on depth 2 in βvL such

that βva3 ⊆ αua3 . As vε has only one child in βvL , this means that va3 has to be a child of vL .
Using Lemma 7.9, once more, we also get that there is a node u on depth 2 in αuL such that

αu ⊆ βva3 ⊆ αua3 . The only possibility is that u = ua3 , because α
uLR ⊈ αua3 . As αua3 ≡ βva3 and

ua3 is not labeled by a wildcard, we obtain by Lemma 7.2 that αua3 ≡S βva3 .
As in (A), we can now derive (B) alternatingly using Lemmas 7.3, 7.5, and 7.8, starting at ua3

and va3 . The first application of Lemma 7.5 yields that va3 has two children va2 and vb3 , such that

(αua3 )ua
2

≡S (βva3 )va
2

and (αua3 )ub
3

≡S (βva3 )vb
3

, while Lemma 7.3 ensures that va3 has label a.
Using Lemma 7.8(a) twice, we get βva2 ≡S αua2 and βvb3 ≡S αub3 , and that the edges leading to va2
and vb3 are child edges. Continuing like this finally yields (B). □

Claim (C): NodevL in β has a childvLR (different fromva3 ) that has a descendant on depth 7 which
is the root of a subpattern q′ such that p ⊆ q′ ⊆ r .

Proof. We first prove the following properties, which we will need to prove the claim:

(C1) the label of vL is ∗, (vε ,vL) is a child edge, and (vL,va3 ) is a descendant edge; and
(C2) in β there is only one a-node (namely va3 ) that has an a-child attached on a child edge.

We first prove (C1). Since αuL ≡ βvL , we obtain αuL ≡ βvL from Lemma 7.7. Thus, by Lemma 7.3,

vL has label ∗.
Let us prove the part that (vε ,vL) is a child edge. Towards a contradiction, assume that (vε ,vL)

is a descendant edge. Then consider the canonical tree model t ∈ Can(β) such that

• (vε ,vL) is instantiated as a path of length two,

• every descendant edge that starts in vL and leads to an a-labeled child having itself an a-
labeled child connected to it by a child edge (in particular the edge (vL,va3 ), if this is at all a
descendant edge) is replaced by a single edge, and

• all other descendant edges are replaced by paths of length 4.

As previously, we identify nodes of β with corresponding nodes of t . We have sketched t in Figure 19.
We will show that α does not match t , which will contradict the fact that α ≡ β . Notice that ua3 of α
needs to be matched to some child of vL in t , as by (N3) (and because we have replaced descendant

edges of β by sequences of edges in t ) it cannot be matched anywhere deeper, and by Claim (A) it

cannot be matched in tvR . Thus assume that ua3 is matched to a node on depth 3 in t . We name

this node n3 and its ancestors on depth 0, 1, and 2 we name n0 = vε , n1, and n2 = vL . We now have

two cases. The nodes uε and uL of α are either mapped to n0 and n1, respectively, or to n1 and n2,
respectively. We show that both cases are impossible.
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In the case where uε is mapped to n0, the node ua4 has to be mapped to some a-labeled node on

depth 5. In the case where uε is mapped to n1, the node ua5 has to be mapped to some a-labeled
node on depth 5. We will show, however, that there is no a-labeled node on depth 5 in t , ruling out

both cases. Clearly, the subtree tvR does not have such a node by Claim (A).

We now consider the other subtree, i.e., the one corresponding to βvL . Node vL is on depth 2 in t .
Consider an arbitrary a-labeled descendant na of vL in t ; it is simultaneously a node of β . If na is in

tva3 we know that it is on depth 3, 4, or 6, since va3 is on depth 3 in t and Claim (B) holds. If na is

not in tva3 , we consider three cases.

• If in β the node vL is connected to na only through child edges, na does not have depth 5

(i.e., depth 4 in β) by (N5).

• If in β some edge between vL and na is a descendant edge that was replaced in t by a path of

length 4, the depth of na in t is at least 6=2+4.
• In the remaining case, the path from vL to na consists of a descendant edge followed by child

edges, where the node n′ after the descendant edge is a-labeled and has an a-labeled child

connected to n′ by a child edge. Then na cannot be on depth 5 in t due to (N4) (as then it

would be two levels below n′).

Thus there is indeed no a-labeled node on depth 5 in t . Therefore the edge (vε ,vL) has to be a child
edge. Then (vL,va3 ) has to be a descendant edge due to (N6). This shows (C1).

We now prove that (C2) holds. To the contrary, suppose that there is an a-node v that has an

a-child attached on a child edge, and such that v , va3 . By (N3) v is on depth at most 2, by Claim

(A) it is not in βvR , and by (C1) we have v , vL . Thus v is a child of vL . Moreover, by (N6), we have

that (vL,v) is a descendant edge.
We will show that αua3 ⊆ βv . To this end, take any canonical tree model tua3 of αua3 , and extend

it to a tree model t of α in any way. Because α ≡ β , we have a match m of β in t . In t there is
only one a-node with an a-child, namely ua3 , and thus v has to be matched to ua3 . This means that

the part of m concerning only nodes of βv is a match of βv in tua3 . As this can be done for every

canonical tree model of αua3 , we obtain αua3 ⊆ βv .
By Claim (B) we have βva3 ≡ αua3 , and thus actually βva3 ⊆ βv . Since v is attached to its parent

on a descendant edge, it should be clear that β ≡ β \v , and thus β is redundant, contrary to our

assumption. It follows that the considered node v could not exist, which finishes the proof of (C2).

We now continue with proving Claim (C), i.e., we show that in β , the node vL has a child vLR
(other than va3 ) that has a descendant on depth 7 which is the root of a subpattern q′ such that

p ⊆ q′ ⊆ r .
To this end, consider a canonical tree model t ∈ Can(β) such that

• (vL,va3 ) is instantiated as a path of length two,

• in every b-node v such that βv ⊈ αub5 we attach a canonical tree model tv of βv such that

αub5 does not match in tv (it is possible to do this independently for every such b-node thanks
to (N2)); this fixes lengths of paths instantiated for some descendant edges;

• all other descendant edges of β are instantiated as paths of length 6.

As always, we identify nodes of β with the corresponding nodes in t . We sketched t in Figure 20.

Just ignore the subtree marked (‡) for now. It will become important later.

We first show that if an a-node va in t has an a-child v ′
a , then va = va3 . Indeed, by (N2), va has

no b-ancestor. Thus, by construction of t , every descendant edge starting in va is replaced by a

path of length at least two. It follows that the edge (va ,v ′
a) was a child edge in β . Thus by (C2) we

necessarily have va = va3 .
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Fig. 20. Sketch of a tree t , as used in the proof of (C)

As β ⊆ α , there is a match m of α in t . Surely ua3 is matched to an a-node that has an a-child
in t . Thus, by the above, m(ua3 ) = va3 . We name this node n3 and its ancestors on depth i , we
call ni , similarly as in the proof of (C1). Nodes uε and uL have to be matched either to n0 and n1,
respectively (Case 1), or to n1 and n2, respectively (Case 2).

Let us first consider Case 1. Then uL is matched to vL . The node ub4 has to be matched to a

b-labeled node 5 levels below vL . Consider now Case 2, where uε is matched to vL . Then the node

ub5 has to be matched to a b-labeled node 5 levels below vL . So, irrespective of Case 1 or 2, we
know that there must be a b-labeled node 5 levels below vL .

Clearly in tn3
—the image of the subpattern βva3—there is no such node due to Claim (B). Therefore,

in t there has to be some other child n of n1 and 4 levels below n, there has to be a b-node vb4 . We

sketched this subtree as (‡) in Figure 20. Because, by (N2), vb4 has no b-ancestor, by construction

of t we notice that every descendant edge between vL and vb4 in β is replaced in t by a path of

length 6. Thus, because vb4 is only 5 levels below vL in t , we we can furthermore conclude that vL
is connected to vv4

using only child edges, and hence it is on depth 6 in β .
We already know that m either matches the subpattern αub4 in the subtree tvb4 (Case 1) or

matches the subpattern αub5 in the subtree tvb4 (Case 2). Since q ⊆ r , we have that αub4 ⊆ αub5 . We

can conclude that in both cases it is possible to match αub5 in tvb4 . We necessarily have βvb4 ⊆ αua5 ,
because all subtrees tv starting in b-nodes v with βv ⊈ αua5 are by construction such that αua5

does not match in tv .
Now we aim at showing αub1 ⊆ βvb4 . We know by Lemma 7.9 that there has to be a node u on

depth 6 in α such that αu ⊆ βvb4 . As there are only two b-labeled nodes on depth 6 in α , we either
have that u = ub4 or u = ub1 . As furthermore αub1 ⊆ αub4 , we can conclude that αub1 ⊆ βvb4 .
Summarizing, we have that αub1 ⊆ βvb4 ⊆ αub5 . By Lemma 7.9 applied to the child of ub5 , we

obtain that vb4 has a child v such that βv ⊆ r . Moreover, by Lemma 7.9 applied to v , we obtain
that ub1 has a child u such that αu ⊆ βv . As ub1 has only one child, which is the root of p, we can
conclude that p ⊆ βv ⊆ r . This finishes the proof of Claim (C). □

8 DISCUSSION AND OUTLOOK
In Table 1 we give an overview the complexities of tree pattern optimization problems from [29] and

this work. We provided several new insights on the minimization problems for tree patterns and

generalized tree patterns. It is the first to give a tight complexity bound for these problems. From
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Problem Containment Eqivalence Minimization

Queries TP GTP TP GTP TP GTP

On trees coNP
(a)

coNP
(b)

coNP
(a)

coNP
(c) ΣP

2

(e) ΣP
2

(f )

On graphs coNP
(a)

coNP
(b,d )

coNP
(a)

coNP
(c,d ) ΣP

2

(e,d ) ΣP
2

(f ,d )

(a)
Miklau and Suciu [29]

(b)
Proposition 2.5

(c)
Corollary 2.4

(d )
Proposition 2.6

(e)
Theorem 3.1

(f )
Theorem 3.2

Table 1. A complexity overview of containment, equivalence, and minimization for tree patterns (TP) and
generalized tree patterns (GTP). All complexities are completeness results.

Section 5.1 we now know that such patterns cannot be, in general, minimized by removing nodes.

In contrast, for tree patterns, it is known that minimization by removing nodes is possible if the

patterns are ∗-narrow (Lemma 2.9, cfr. [20]). It would be interesting to see if ∗-narrow generalized

tree patterns can also be minimized by removing nodes.

From the example in Section 5.1, we know that it may also be necessary to merge nodes to reach

a minimal pattern from a given one. It is now natural to ask if merging and deleting nodes always

suffices for minimizing patterns. We first observe that, if patterns can be minimized by merging and

deleting nodes, then the order in which these operations occur is not important. Indeed, assume that

we are given a (non-minimal) pattern p and assume that we obtained an equivalent pattern p1 from
p by deleting a node or merging two nodes. If patterns can always be minimized by merging and

deleting nodes, then we can also go from p1 to a minimal pattern (which would also be equivalent

to p) by merging and deleting nodes.

Given our main complexity results (Theorems 3.2 and 3.1), the existence of an algorithm that

minimizes patterns in this way seems unlikely. Indeed, the theorems imply that that, if one can

minimize patterns by merging and removing nodes, then ΣP
2
= coNP. Following the idea for the

NP upper bound from [19, Lemma 6], one would be able to decide the complement of minimization

by guessing nodes that cannot be deleted or merged, plus guessing trees witnessing why deleting

or merging these nodes would result in non-equivalent patterns.

We believe that the above argument can be strengthened so that the ΣP
2
, coNP condition is not

needed. This proof would be based on the concrete patterns we construct in the proof of Lemma 6.5.

Essentially, the argument boils down to showing that there are patterns q′′ with p ⊆ q′′ ⊆ r from
which no smallest pattern in {q′ | p ⊆ q′ ⊆ r } can be reached by merging nodes. This means

that, for the pattern P(p,q′′, r ), it would be necessary to split a node in order to reach a pattern

of the form P(p,q′, r ) where q′ is one of the smallest patterns in {q′ | p ⊆ q′ ⊆ r }. So, a rewriting
sequence from a given pattern to an equivalent minimal one may have to perform steps that make

patterns larger.

Operations for Reaching Minimal Patterns. It is an interesting question which (non-trivial) set

of operations would be sufficient to guarantee that a minimal pattern can always be obtained by

applying a sequence of such operations to the input pattern. This line of thinking leads to questions

about query rewriting and axiomatizations for tree pattern equivalence. Ten Cate and Marx 2009

studied such axiomatizations for XPath 2.0 (which contains tree patterns as a sublanguage) and

present a sound and complete set of axioms for query equivalence, that is, a set of axioms for

rewriting patterns into equivalent ones. Fazzinga et al. 2010, 2011 considered this question for tree

patterns and provided a set of axioms complete up to homomorphism containment.
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In the light of what we have seen in this paper, we believe that, by allowing (1) deletion of nodes,

(2) merging of nodes, and (3) splitting of nodes it may be possible to reach a minimal equivalent

pattern from each given pattern. These operations suffice for all patterns we have considered in

this paper but we do not know if they are sufficient in general.

Reflexive transitive closure. A final but very interesting question is to which extent the results of

this paper can be strengthened to queries that have reflexive transitive closure. Reflexive transitive

closure is interesting in the context of querying graphs and, for many queries, more natural to ask

for than transitive closure. However, our proofs do not naively carry over to queries with reflexive

transitive closure and it would be interesting to see if they can be adapted.
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A APPENDIX
Proposition 2.4. Let p1 and p2 be generalized tree patterns. Then

p1 ⊆ p2 if and only ifMt (p1) ⊆ Mt (p2) .
The same holds if p1 and p2 are tree patterns.

Proof. The following proof is a minor adaptation of the argument in [29, Section 5.3]. Let

unfold(G) be the (possibly infinite) tree unfolding of some graphG , where edge labels are preserved.
Then, for any pattern p, the following are equivalent: (1) p can be matched inG , (2) p can be matched

in unfold(G), (3) there exists a finite subtree t of unfold(G) such that p can be matched in t .
Thus, if there exists a witness graph G such that p1 can be matched in G but p2 cannot, then we

can construct a witness tree t such that p1 can be matched in t and p2 cannot: just take the finite
subree t of unfold(G) as above. Notice that p2 cannot be matched in t , since any embedding from p2
to t extends to an embedding from p2 to G. This shows thatMt (p1) ⊆ Mt (p2) implies that p1 ⊆ p2.
The other direction is trivial. □

Proposition 2.5. Generalized Tree Pattern Containment is coNP-complete.

Proof. The coNP lower bound is immediate from [29, Theorem 4]. It therefore suffices to prove

the upper bound. We use some ideas from [29].

Let p1 and p2 be two generalized tree patterns. For a tree t we define its size, denoted size(t), as
the number of its nodes. We show the upper bound by a small model property, i.e., we will show

that

(SMP) If Mt (p1) \ Mt (p2) is nonempty, then there is a tree in Mt (p1) \ Mt (p2) of size at most

2 · size(p1) · size(p2).
The coNP upper bound follows from (SMP) by the trivial algorithm that guesses a counterexample

t of size at most 2 · size(p1) · size(p2) and then verifies in polynomial time that t ∈ Mt (p1) \Mt (p2).
By Proposition 2.4, this yields the statement.

It remains to show (SMP). Let t be a smallest tree inMt (p1) \Mt (p2) and let m1 be a match of p1
in t . We show that

(a) for every node v that does not appear in the image of m1,

• a descendant of v appears in the image of m1; and

• an ancestor of v appears in the image of m1;

and, furthermore,

(b) for every path π = v1 · · ·vn in t with n ≥ size(p2) and such that every node of π has exactly

one child, some node of π appears in the image of m1.

From (a) and (b), we can conclude that size(t) ≤ 2 · size(p1) · size(p2), as in t there can be only

the following nodes:

• up to size(p1) nodes that appear in the image of m1;

• up to size(p1) nodes that have more than one child (since t has at most as many leaves as p1);
and

• at most 2 · size(p1) − 1 many maximal paths strictly between these nodes, each of them

consisting of at most size(p2) − 1 nodes, due to (b).

It remains to show (a) and (b). Assume towards a contradiction that (a) is not satisfied. We

consider two cases. First, if a nodev and none of its descendants appear in the image ofm1, then we

can remove the subtree rooted at v from t . The resulting tree would also not be inMt (p2). However,
it would still be inMt (p1) because m1 is still a match. This contradicts the assumption that t is as
small as possible in Mt (p1) \Mt (p2). Second, if a node v and none of its ancestors appear in the
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image ofm1, then we can remove all nodes from t that are not descendants ofm1(u), where u is the

root of p1. Again, the resulting tree is smaller than t (becausev exists) and is still inMt (p1) \Mt (p2),
which is again a contradiction.

We now show (b). Towards a contradiction, assume that π = v1 · · ·vn is a path in t with

n ≥ size(p2), every node of π has exactly one child, and no node of π is in the image ofm1. Let vn+1
be the only child ofvn . Again, we will construct a smaller tree t ′ ∈ Mt (p1) \Mt (p2). We construct t ′

from t by removing all the nodesv
size(p2), . . . ,vn and changing the only child ofv

size(p2)−1 to bevn+1.
Furthermore, we change the node labels of v1, . . . ,vsize(p2)−1 to z, where z is a label that does not
appear in p2. If the labels on the edges (v1,v2), . . . , (vn ,vn+1) are not identical, we know that they

cannot witness a labeled transitive-closure test in p1, and, in this case, we change all edge labels on

(v1,v2), . . . , (vsize(p2)−1,vn+1) to z. Otherwise all edges (including the new edge (v
size(p2)−1,vn+1))

keep the common label.

Notice that we have that t ′ ∈ Mt (p1) because m1 is still a match. It remains to show that

t ′ < Mt (p2). Assume otherwise and let m
′
2
be a match of p2 in t ′. We will show that in this case

t ∈ Mt (p2), contradicting the assumption that t ∈ Mt (p1) \Mt (p2).
Let π ′

be the path v1 · · ·vsize(p2)−1 in t ′. We will construct a match m2 of p2 in t . The match m2 is

identical to m
′
2
for all nodesw of p2 for which

• m
′
2
(w) < π ′

; or

• w is connected by a path consisting only of child edges to an ancestor u of w such that

m
′
2
(u) < π ′

.

For all other nodesw , we define m2(w) = vj+n−size(p2)+1, where j is such that m
′
2
(w) = vj . We now

show that m2 is indeed a match, by proving that conditions (1)–(3) in the definition of a match are

fulfilled.

Condition (1) carries over from m
′
2
to m2, because all nodes w with lab(m′

2
(w)) , lab(m2(w))

have lab(m′
2
(w)) = z and thus lab(w) = ∗.

Condition (2) carries over by a case analysis on the match of the endpoints of simple edges (u,w)
of p2. In the following cases, (2) holds because the match of the edge is not changed:

• m
′
2
(u) < π ′

and m
′
2
(w) < π ′

: The edge is matched outside of π ′
by m

′
2
and thus matched

outside of π in m2.

• m
′
2
(w) = v1: By definition, m2(u) = m

′
2
(u) and m2(w) = m

′
2
(w).

• m
′
2
(u) = v

size(p2)−1: In this case it is not possible that u is connected to some ancestor u ′

of u (with m
′
2
(u ′) < π ′

) only by child edges, because of the length of π ′
and the size of p2.

Therefore, m2(u) = vn , as size(p2) − 1 + n − size(p2) + 1 = n. We note that m2(w) = m
′
2
(w) is

the only child of vn .
• m

′
2
(u) ∈ π ′

and m
′
2
(w) ∈ π ′

: Here, either both nodes are mapped identically as in m
′
2
, or both

nodes are mapped n − size(p2) + 1 levels deeper than in m
′
2
. Therefore (m2(u),m2(w)) is an

edge in t .

For the labels, we have the same observation as in the case of nodes. If for some edge (u,w) of p2,
we have that (m′

2
(u),m′

2
(w)) , (m2(u),m2(w)), then lab(u,w) = ∗.

Condition (3) follows by similar arguments. We note that the path from m2(u) to m2(w) can be

n − size(p2) + 1 nodes longer than the path from m
′
2
(u) to m′

2
(w) in some cases, for example, when

m
′
2
(u) is above v1 and m

′
2
(w) below v

size(p2)−1. □
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