
Weak Containment for Partial Words is coNP-complete

Paweł Parys

University of Warsaw, Warsaw, Poland

Abstract

A partial word is a string that may contain a number of “hole” symbols, matching any letter. Such a partial word u
defines a language LA(u) of all words over an alphabet A to which it matches as a subword. We prove that for every
alphabet A of size at least two it is coNP-complete to decide given two partial words u, v whether LA(u) ⊆ LA(v).

Keywords: computational complexity, formal languages, NP-completeness, partial words, language containment

1. Introduction

A partial word is a string over a finite alphabet that
may contain a number of “do not know” symbols, called
holes and denoted by �. Such a hole matches any sin-
gle letter of the alphabet (possibly different letters for
different holes). Partial words appear in natural ways
in several areas of current interest such as molecular bi-
ology, data communication, XML querying, and DNA
computing [1].

Given a partial word u, its (weak) language LA(u)
contains all words over an alphabet A to which u
matches as a subword (infix). This paper investigates
the following very natural problem of weak contain-
ment: given two partial words u, v decide whether
LA(u) ⊆ LA(v) (for some fixed alphabet A). The same
can be stated in a more direct way: is it the case that
v matches as a subword to every full word w over the
alphabet A to which u matches as a subword. We prove
that this problem is coNP-complete for every alphabet
A of size at least two, as well as when A is considered
as a part of the input.

Since it is more natural to reason about “existen-
tial problems”, we immediately switch to the comple-
ment of the weak containment problem, about which
we prove that is NP-complete. It asks whether LA(u) \
LA(v) , ∅, that is whether there exists a full word w
(a counterexample) over the alphabet A, such that u
matches to a subword of w, but v does not match to any
subword of w.

Let us start by an easy observation: if such a coun-
terexample w exists, and u matches to its proper sub-

Email address: parys@mimuw.edu.pl (Paweł Parys)

word w′, then w′ is itself a counterexample—if v does
not match to any subword of w, then it cannot match to
any subword of w′ as well. Thus, equivalently, we may
look only for counterexamples of the same length as u.
This immediately shows that the the problem is in NP:
we can just guess a full word of length |u|, and check
whether u matches to it, and v does not match to any of
its subwords. It works when the alphabet A is fixed, as
well as when it is a part of the input.

Notice also that when the alphabet A contains only
one letter, the problem can be trivially solved in poly-
nomial time, since there is only one full word of length
|u|. Thus we may expect NP-completeness only when
|A| ≥ 2.

Related Work. One may consider strong1 languages
of partial words, and the strong containment problem,
where the partial words u, v are required to be aligned
at the beginning of the matching full word, not as sub-
words. This problem can be easily solved in polynomial
time: we have a fixed correspondence between positions
of the two partial words, so in the counterexample we
should try to put in some hole of u a letter that does not
appear at the corresponding position of v.

In the (complement of the) problem of tree pattern
query (TPQ) containment in the presence of a DTD,
we are given two tree pattern queries p, q (which are
like partial words, but in general may be branching, and
may contain descendant edges saying that the next let-
ter is matched not in a child but in any descendant)

1This weak vs. strong terminology comes from the area of tree
pattern queries.

Preprint submitted to Information Processing Letters August 18, 2015

and a DTD S (Document Type Definition—a formal-
ism for specifying a set of trees, weaker than finite
tree automata), and we are asked whether there exists
a tree satisfying S to which p matches but q does not
match. By TPC(DTD, /, ∗) let us denote the variant of
this problem where p and q consists of a single branch
without descendant edges (so, basically, these are par-
tial words, matching to some branch of a tree). This
problem is a generalization of our problem: a DTD S
can restrict considerations to trees consisting of a sin-
gle branch (that is words) labeled by letters from al-
phabet A,2 and partial words u, v can be interpreted as
tree pattern queries p, q. The TPC(DTD, /, ∗) problem
was first incorrectly claimed to be in PTIME ([2], The-
orem 7), even in presence of descendant edges, but later
the authors admitted a mistake ([3], page 14). Recently
in [4] (Theorem 6.6) it was shown that TPC(DTD, /, ∗)
is EXPTIME-complete. This hardness proof cannot be
transferred back to our partial words setting, since it is
using a nontrivial DTD.

In the problem of avoidability of sets of partial words,
one is given a set of partial words X, and has to decide
whether there exists an infinite full word to which none
of the partial words from X matches. This problem is
shown to be NP-hard [5]. It looks much harder, and it
remains open whether it can be solved in NP, it is only
known that it is in PSPACE [6].

A finite counterpart of the avoidability problem was
considered in [7]. There one looks for a full word of
given finite length (instead of an infinite word) to which
none of given partial words matches. Different variants
of this problem are shown to be NP-complete or #P-
complete. In fact, in our proof we base on one of the
results from [7].

2. Reduction

In our hardness proof we reduce from Problem 2 from
[7], which we call finite avoidability. In the finite avoid-
ability problem we are given a set X of partial words,
all of the same length n, and we are asked whether there
exists a full word of length n (over a fixed alphabet A of
size at least 2) to which none of the partial words from
X matches. Theorem 1 in [7] says that this problem is
NP-complete; the hardness proof amounts to a direct re-
duction from the CNF-SAT problem [8].

2Equally well we could allow all trees over the alphabet A: if there
exists a branching counterexample, then we can look at its branch to
which p (that is u) matches, and it will be still a good counterexample.
Nevertheless a DTD is needed to restrict the alphabet to A.

As already mentioned, we reduce from the finite
avoidability problem to the complement of the weak
containment problem. Consider an instance of the finite
avoidability problem: a set X = {v1, . . . , vs} of partial
words, all of the same length n. Let A = {a, b}] C
be the fixed alphabet (of any size not smaller than two)
over which this instance is considered. We will create
two partial words u, v such that there exists a full word
of length n to which none of the partial words v1, . . . , vs

matches if and only if there exists a full word to which
u matches but v does not match to any of its subwords.

The overall idea is as follows. The partial word u will
contain n holes, surrounded by some prefix and suffix,
and v will contain all v1, . . . , vs surrounded and sepa-
rated by appropriate partial words. Then the choice of a
full word w to which u matches boils down to the choice
of an n-letter word put in the place of the n holes in u.
The construction is maintained in such a way that:

• if v is aligned so that none of vi is placed precisely
over the n holes, then surely v will not match, and

• if v is aligned so that some vi is placed precisely
over the n holes, then the rest of v (except vi) surely
matches, so v aligned in this way matches to w if
and only if vi matches to the word replacing the n
holes.

Now we give the details of the construction. Both par-
tial words will consist of several blocks, each of length
2n + 5. We use the following kinds of blocks:

• the empty block bnbabn+2a,

• the query block �naabn+2a,

• the easy-fit block �n�abn+2a,

• for each i ∈ {1, . . . , s} the i-th negative block
viaabn+2a.

The partial word v consists of

• 1-st negative block,

• s2 + 1 easy-fit blocks,

• 2-nd negative block,

• s2 + 2 easy-fit blocks,

• . . . ,

• i-th negative block,

• s2 + i easy-fit blocks,

• . . . ,

2

• (s − 1)-th negative block,

• s2 + s − 1 easy-fit blocks,

• s-th negative block.

Observe that the distance (in number of blocks) be-
tween the i-th and the j-th negative block in v is dif-
ferent for each pair i, j, where i < j. Indeed, this dis-
tance is strictly between s2(j − i) and s2(j − i + 1), so
it determines the difference j − i; when the difference is
fixed, the number of easy-fit blocks is clearly different
between each pair.

Let m be the number of blocks in v. The partial word
u consists of 2m − 1 blocks. Exactly in the middle (at
block m) we put the query block. When the distance
in v between the i-th and the j-th negative block is k
for some i, j where i < j, at block m − k in u we put
the i-th negative block, and at block m + k we put the
j-th negative block. At the remaining positions we put
empty blocks.

Below we present the two partial words for s = 2,
where “1” and “2” denote the first and the second nega-
tive block, “e” denotes the empty block, “q” denotes the
query block, and “f” denotes the easy-fit block.

u = 1 e e e e e q e e e e e 2

v = 1 f f f f f 2

Now, assume that there is a word w to which u
matches, but such that v does not match to any of its sub-
words. Let w′ be the fragment of w substituted for the n
holes in the query block in u. We will prove that none of
v1, . . . , vs matches to w′. In fact, this is straightforward:
for each i, consider the alignment of v in which the i-th
negative block is aligned along the query block. Then
the j-th negative block in v (where j , i) is aligned to
w in the same place as an j-th negative block in u, so it
necessarily matches. Also each easy-fit block in v nec-
essarily matches to w, as it is aligned in the same place
as some block of u. We have assumed that v does not
match to w in any place, so necessarily the i-th negative
block of v does not match to the query block in w. This
simply means that vi does not match to w′.

Next, we prove the opposite direction. Consider any
full word w′ of length n to which none of v1, . . . , vs

matches. We construct w by substituting w′ for the n
holes in the query block u, and any letter for other holes
in u (that may be present in negative blocks). Of course
u matches to w. We should prove that v does not match
to any subword of w. For that, we have to consider all
possible alignments of v. When the beginning of v is not
aligned at the beginning of a block in w, then it surely

does not match: near the end of v we have n + 2 consec-
utive letters b, which cannot appear on any other place
of a block. Notice also that a negative block in v does
not fit to the empty block in w (because of the a on the
(n + 1)-th position of the negative block, which is b in
the empty block). The query block in u is surrounded
by s2 + 1 empty blocks in each direction (this is the
minimal distance between negative blocks in v). Thus
when no negative block of v is aligned above the query
block of w, then some negative block is aligned above
an empty block, so it does not match (there is some neg-
ative block to the left, and some to the right, and the
maximal distance between consecutive negative blocks
in v is smaller than 2s2). The remaining alignments are
such that, for some i ∈ {1, . . . , s}, the i-th negative block
in v is over the query block in w. Then v does not match
to w since vi was not matching to w′. This finishes the
proof.

We remark that our reduction is motivated by Lemma
3 in [9], although the details of the proof are completely
different.

[1] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words,
Discrete mathematics and its applications, CRC Press, 2008.
URL http://www.crcpress.com/product/isbn/9781420060928

[2] F. Neven, T. Schwentick, XPath containment in the presence of
disjunction, DTDs, and variables, in: D. Calvanese, M. Lenzerini,
R. Motwani (Eds.), Database Theory - ICDT 2003, 9th Interna-
tional Conference, Siena, Italy, January 8-10, 2003, Proceedings,
Vol. 2572 of Lecture Notes in Computer Science, Springer, 2003,
pp. 312–326. doi:10.1007/3-540-36285-1 21.
URL http://dx.doi.org/10.1007/3-540-36285-1_21

[3] F. Neven, T. Schwentick, On the complexity of XPath contain-
ment in the presence of disjunction, DTDs, and variables, Log-
ical Methods in Computer Science 2 (3). doi:10.2168/LMCS-
2(3:1)2006.
URL http://dx.doi.org/10.2168/LMCS-2(3:1)2006

[4] W. Czerwiński, W. Martens, P. Parys, M. Przybyłko, The (al-
most) complete guide to tree pattern containment, in: T. Milo,
D. Calvanese (Eds.), Proceedings of the 34th ACM Symposium
on Principles of Database Systems, PODS 2015, Melbourne, Vic-
toria, Australia, May 31 - June 4, 2015, ACM, 2015, pp. 117–130.
doi:10.1145/2745754.2745766.
URL http://doi.acm.org/10.1145/2745754.2745766

[5] F. Blanchet-Sadri, R. M. Jungers, J. Palumbo, Testing avoidabil-
ity on sets of partial words is hard, Theor. Comput. Sci. 410 (8-10)
(2009) 968–972. doi:10.1016/j.tcs.2008.11.011.
URL http://dx.doi.org/10.1016/j.tcs.2008.11.011

[6] B. Blakeley, F. Blanchet-Sadri, J. Gunter, N. Rampersad,
On the complexity of deciding avoidability of sets of par-
tial words, Theor. Comput. Sci. 411 (49) (2010) 4263–4271.
doi:10.1016/j.tcs.2010.09.006.
URL http://dx.doi.org/10.1016/j.tcs.2010.09.006

[7] F. Manea, C. Tiseanu, The hardness of counting full words com-
patible with partial words, J. Comput. Syst. Sci. 79 (1) (2013)
7–22. doi:10.1016/j.jcss.2012.04.001.
URL http://dx.doi.org/10.1016/j.jcss.2012.04.001

[8] M. R. Garey, D. S. Johnson, Computers and intractability: a guide
to NP-completeness, Vol. 52, WH Freeman New York, 1979.

[9] G. Miklau, D. Suciu, Containment and equivalence for

3

a fragment of XPath, J. ACM 51 (1) (2004) 2–45.
doi:10.1145/962446.962448.
URL http://doi.acm.org/10.1145/962446.962448

4

