
Satisfiability is Decidable for a Fragment of
AMSO Logic on Infinite Words
Achim Blumensath1, Thomas Colcombet2, and Paweł Parys∗3

1 Department of Mathematics, Technische Universität Darmstadt, Germany
blumensath@mathematik.tu-darmstadt.de

2 CNRS, LIAFA, Université Paris Diderot, Paris 7, France
thomas.colcombet@liafa.univ-paris-diderot.fr

3 Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

Abstract
We prove that satisfiability over infinite words is decidable for a fragment of asymptotic monadic
second-order logic. In this fragment we only allow formulae of the form ∃t∀s∃r ϕ(r, s, t), where
ϕ does not use quantifiers over number variables, and variables r and s can be only used simul-
taneously, in subformulae of the form s < f(x) ≤ r.

1 Introduction

This paper continues a line of research trying to find logics that have decidable satisfiability
over infinite words (and infinite trees). The most known such logic is the monadic second-
order logic (MSO) considered in the seminal work of Büchi [8]. Extending MSO by the
ability of comparing some quantities quickly leads to undecidability. The idea behind the
logic MSO+U and, introduced recently, asymptotic monadic second-order logic (AMSO) is
to extend MSO by the ability of expressing boundedness properties of some sequences of
numbers. In MSO+U this is realized by an additional quantifier U: a formula UXϕ says
that ϕ is satisfied for arbitrarily large finite sets X. AMSO does not have, at least built in,
the ability to refer to the size of sets. Instead, it describes weighted structures (in particular
weighted infinite words), which are structures in which elements are labeled by natural
numbers called weights. More precisely, AMSO extends MSO by quantifiers over variables
of a new kind, ranging over natural numbers. These variables can be compared with weights
in the word, but under some positivity requirement: existentially quantified numbers can
only serve as upper bounds, while universally quantified numbers can only serve as lower
bounds. The two logics MSO+U and AMSO happens to be equivalent as far as decidability
of satisfiability is concerned [1], and, unfortunately, this means that both are undecidable
over infinite words [5]. Nevertheless, some fragments of these logics are be decidable.

Indeed, in [2] the satisfiability problem of MSO+U is solved over infinite trees for formulae
where the U quantifier is at the outermost position. A significantly more powerful fragment
of the logic, although over infinite words, was shown decidable in [4] using automata with
counters. These automata were further developed into the theory of regular cost functions
[11]. Another possibility is to consider the weak fragment of the logic (WMSO+U), where
set quantification is restricted to finite sets. Satisfiability for this logic was shown decidable
over infinite words [3] and infinite trees [6].

Notice that the mentioned decidability results can be used to solve, via reductions, several
seemingly unrelated problems, among others: the star height problem [15], the finite power

∗ Work supported by the fellowship of the Foundation for Polish Science, during the author’s post-doc
stay at Université Paris Diderot

© Achim Blumensath, Thomas Colcombet, Paweł Parys;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

property problem [18], deciding properties of CTL* [9], the realizability problem for prompt
LTL [16], deciding the winner in cost parity games [13], or deciding certain properties of
energy games [7].

Concerning AMSO, which was more recently introduced [1], no fragments are known
to be decidable so far (except trivial ones). Such fragments should, at least, circumvent
the arguments of undecidability of AMSO, that involve complicated number quantifiers
nested inside complicated quantification over infinite sets. There are two ways to avoid this:
either to consider the weak fragment (WAMSO), where set quantification is restricted to
finite sets, or to consider the number-prenex fragment (AMSOnp), where number quantifiers
are required to be placed only at the head of the formula. It turns out that these two
fragments are equivalent (Theorem 5 in [1]). It is conjectured that these two fragments have
decidable satisfiability over infinite words. Under a topological point of view, it is known
that MSO+U and AMSO inhabit all finite levels of the projective hierarchy [14, 1], while
WAMSO is extremely simpler since it only inhabits the finite levels of the Borel hierarchy.

Let us emphasize the fact that WAMSO is not related at all to WMSO+U, even though
AMSO and MSO+U are highly related. This is due to the fact that, since AMSO and
MSO+U have significantly different syntax, the restriction to finite set quantifiers has dra-
matically different consequences. In particular languages definable in WAMSO inhabit all
finite levels of the Borel hierarchy, while WMSO+U is confined in the third level.

Contributions

In [1], the satisfiability problem for AMSOnp/WAMSO was reduced to a form of tiling
systems. The main contribution of this paper is to solve a special case of this tiling problem.
In consequence we can solve the satisfiability problem over infinite words for a fragment of
AMSOnp, which we denote AMSOnp

2s . In this fragment we only allow formulae of the form
∃t∀s∃r ϕ(r, s, t), where ϕ does not use quantifiers over number variables, and variables r and
s can be only used simultaneously, in subformulae of the form s < f(x) ≤ r. As a tool, we
develop a new generalization of the Simon’s theorem about factorization forests [17].

2 Preliminaries

Asymptotic monadic second-order logic (AMSO for short) extends the MSO logic by the
ability to describe asymptotic properties over quantities. It refers to weighted structures, that
are pairs 〈A, f〉 consisting of a relational structure A and a tuple of functions fi : dom(A)→ N
(weight functions). We only consider the case when A is an infinite word (ω-word). AMSO
extends MSO by the following constructions:

quantifiers over number variables that range over natural numbers, and
atomic formulae f(x) ≤ r, where f is a weight function, x is a first-order variable, and r is
a number variable; such formulae are restricted to appear positively inside the existential
quantifier (dually: negatively inside the universal quantifier) binding r.

The main theorem of this paper is about a fragment of AMSO, denoted AMSOnp
2s , where

formulae are of the form ∃t∀s∃r ϕ(r, s, t), in which ϕ does not use quantifiers over number
variables, and variables r and s can be only used simultaneously, in subformulae of the form
s < f(x) ≤ r (formally: (f(x) ≤ r) ∧ ¬(f(x) ≤ s)).

I Example 2.1. The following are correct formulae of AMSOnp
2s :

∃t∀x (f(x) ≤ t), saying that the weights are bounded,

Achim Blumensath, Thomas Colcombet, Paweł Parys 3

∀s∃r∀x∃y (y > x ∧ s < f(y) ≤ r), saying that infinitely many weights occur infinitely
often in the weighted infinite word,
the disjunction (or conjunction) of the above two (we can move the quantifiers before
the disjunction).

I Remark. It is easy to see that a formula of the form

∃t1 . . . ∃tk∀s1 . . . ∀sl∃r1 . . . rm ϕ(r1, . . . , rm, s1, . . . , sl, t1, . . . , tk)

is equivalent to ∃t∀s∃r ϕ(r, . . . , r, s, . . . , s, t, . . . , t).1 For this reason we only allow in AMSOnp
2s

formulae with single quantifiers ∃t∀s∃r, having in mind that decidability immediately ex-
tends to formulae with blocks of such quantifiers.

The following is the main result of this paper.

I Theorem 2.2. Given a formula ψ ∈ AMSOnp
2s , it is decidable whether there exists a

weighted infinite word in which ψ is satisfied.

Commutative Lossy Tiling Problem

Theorem 9 of [1] reduces satisfiability of AMSOnp to a (multidimensional) lossy tiling prob-
lem. In this paper we solve a commutative variant of this problem, in dimension one.

A picture p : {1, . . . , h} × {1, . . . , w} → Σ is a rectangle labeled by letters from a fi-
nite alphabet Σ, where h and w are height and width of the picture. For i ∈ {1, . . . , w},
the i-th column of the picture is the word p(1, i)p(2, i) . . . p(h, i); similarly the j-th row for
j ∈ {1, . . . , h}. A language K ⊆ Σ∗ is commutative (lossy) if it is closed under reordering
(respectively: removing) letters. In the commutative lossy tiling problem we are given a reg-
ular languages K,L ⊆ Σ∗ (column language and row language), where the column language
K is commutative and lossy. We are asked whether for all h ∈ N there exists a picture p
of height h such that all columns in p belong to K and all rows in p belong to L (such a
picture is called a solution of the tiling system (K,L)). Notice that since K is commutative
and lossy, we can reorder rows in a solution and again obtain a solution; we can also remove
some rows and obtain a solution of smaller height. In consequence demanding solutions of
each height h ∈ N amounts to demanding solutions of arbitrarily large height h ∈ N.

3 From Logic to Tilings

The reduction from satisfiability of AMSOnp to the multidimensional lossy tiling problem is
given in [1], but we need to observe that the restriction to AMSOnp

2s yields the commutative
lossy tiling problem.

Let us concentrate on the situation when there is exactly one weight function; satisfia-
bility of the general case easily reduces to this situation.

Before starting, we eliminate the outermost existential quantifier. Suppose that we have a
formula ψ = ∃t∀s∃r ϕ(r, s, t) ∈ AMSOnp

2s . We create a formula ψ′ = ∀s∃r ϕ′(r, s) ∈ AMSOnp
2s

using an additional unary predicate small(x): ϕ′ is obtained from ϕ by replacing each atom
f(x) ≤ t by small(x), and by replacing each subformula s < f(x) ≤ r by s < f(x) ≤
r ∧ ¬small(x). It is easy to see that ψ is satisfiable if and only if ψ′ is satisfiable. The idea
is that small marks those positions on which the weight function f “is small”.

1 See Proposition 14 in the appendix to [1], available at the authors’ webpages.

4 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

Next, we apply the reduction of [1] to the formula ψ′. Let us explain briefly that the
resulting tiling system is indeed a commutative lossy tiling system. The reduction is realized
in three steps.

In the first step, the satisfiability of AMSOnp is reduced to the limit satisfiability problem.
The idea is to chop an infinite word into infinitely many finite pieces that have the same
theory (using repeated use of the Theorem of Ramsey). Originally, this is a theory with
respect to all AMSOnp formulae up to some quantifier rank. We should replace it by the
theory with respect to formulae where r and s are only used simultaneously, in subformulae
of the form s < f(x) ≤ r. Such theories have as well all needed compositionality properties,
and the proof can be repeated smoothly after this modification. The resulting formulae in
the limit satisfiability problem test only for the theory of the finite words, so again r and s
are only used simultaneously, in subformulae of the form s < f(x) ≤ r.

In the second step, it is argued that a formula ∀s∃r ϕ(r, s) is equivalent to ∀sϕ(s+ 1, s).
This step is not affected.

In the third step, the limit satisfiability problem is reduced to the lossy tiling problem.
First, we observe that, because of just one variable s quantified universally, the resulting
tiling system is of dimension one. Then, we have to change slightly the resulting tiling
system so that it becomes commutative. The alphabet of the system was Σ × {<,=, >},
and the column language was K =

⋃
a∈Σ(a,<)∗((a,=)∪ ε)(a,>)∗. Intuitively, the meaning

of a letter (a,<) (or (a,=), (a,>)) is that the row number is smaller (respectively: equal,
greater) than the value of the weight function on this position (thus in each column initial
rows contain (a,<), then there is at most one (a,=) marking the value of the weight function,
and then we have (a,>)). Now in our formulae we cannot distinguish small values from big
values, we can only test whether s < f(x) ≤ s + 1 holds. For this reason (a,<) and (a,>)
become indistinguishable and can be replaced by one letter, call it (a, 6=). The row language
becomes K =

⋃
a∈Σ(a, 6=)∗((a,=) ∪ ε)(a, 6=)∗, which is a commutative language.

4 Monoids

In this section we slightly rephrase the problem of deciding commutative lossy tiling problems
using explicitly monoids. In our solution we use algebra, in particular monoids. Recall that
every regular language (in particular the row language L) can be recognized by a morphism
into a finite monoid. This means that there exists a morphism ϕ : Σ∗ → M into a finite
monoid M , and a set F ⊆ M such that L = ϕ−1(F). It is more convenient to write in
the picture directly elements of M (ϕ(a) instead of a). The row language becomes π−1(F),
where π : M∗ →M , called evaluation, is the morphism defined by π(s1 . . . sk) = s1 · . . . · sk.
The column language changes into K ′ = {ϕ(a1) . . . ϕ(ah) | a1 . . . ah ∈ K}, which is some
commutative lossy language.

Next, we observe that we can restrict our considerations to sets F that are singletons.
Namely, the tiling system (K ′, π−1(F)) has arbitrarily high solutions if and only if for some
s ∈ F the system (K ′, π−1(s)) has arbitrarily high solutions. Indeed, every solution of the
latter system is a solution of the former. On the other hand, from a solution of (K ′, π−1(F))
of height h we can choose rows evaluating to the most popular element sh ∈ F and obtain
a solution of (K ′, π−1(sh)) of height at least h

|F | . Although elements sh depend on h, some
of them has to be used for infinitely many h (that is, for arbitrarily large h).

As a final simplification, let us analyze the column language. For a language L, let L↓
be the closure of L under removing letters (we add to L all words obtained by removing
letters in words from L), and L� the closure of L under reordering letters (we add to L all

Achim Blumensath, Thomas Colcombet, Paweł Parys 5

words obtained by reordering letters in words from L). A language (over M) is called a base
language if it is of the form (wA∗)↓�, where A ⊆ M and w ∈ (M \ A)∗ (words in (wA∗)↓�
can use letters from A arbitrarily many times, and letters from w at most as many times as
they appear in w). Base languages play an important role in our proof. We use the letter ρ
to denote base languages. Notice that the content of a base language (wA∗)↓� determines A
uniquely, and w up to the order of its letters (with the assumption that w does not contain
letters from A). The set A is called the global part of ρ = (wA∗)↓�, and denoted gl(ρ). The
norm of such ρ, denoted ||ρ||, is defined as |w|.

It is a consequence of the Highman’s lemma that every lossy language (over M) is
a finite union of languages of the form (A∗0b1A∗1 . . . bkA∗k)↓, where A0, . . . , Ak ⊆ M and
b1, . . . , bk ∈M . Our column language K is lossy and commutative, so it is a finite union of
base languages.

Summing up, we can restate our problem as follows:
input: a finite monoid M , a finite set B of base languages over M , an element s ∈M ;
question: does there exist for every h ∈ N a picture of height h whose each column belongs
to
⋃
B, and every row to π−1(s)?

For a picture p we define the evaluation of p, denoted π(p), as the word of the same
length as the height of p, whose i-th letter equals to the evaluation of the i-th row of p, for
each i. Then, instead of requesting that every row of p belongs to π−1(s), we can say that
π(p) ∈ s∗.

5 Decision Procedure

Our decision procedure maintains a set of base languages such that for every word from
some of these languages there is a picture evaluating to this word, such that each column
of this picture belongs to

⋃
B. New base languages are added following two kind schemas,

called the product schemas and diagonal schemas. These schemas are just ways of describing
pictures of arbitrarily large size, evaluating to all words in some base language. The main
difficulty is to prove completeness, saying that using some other fancy pictures one cannot
obtain more base languages than we obtain using pictures generated from our schemas.

Let us now define the two kinds of schemas generating new base languages: product
schemas and diagonal schemas.

Let ρ1, ρ2 be base languages. A product schema for ρ1, ρ2 is given by a picture q, whose
rows are divided into special rows and global rows, such that (for j ∈ {1, 2})
1. q is of width 2, and the j-th column belongs to ρj , and
2. the height of q is at most ||ρ1||+ ||ρ2||+ |M |2, and
3. the j-th letter of each global row belongs to gl(ρj).
The base language generated by q is (wA∗)↓�, where w consists of the letters of π(q) corre-
sponding to special rows, and A contains the letters of π(q) corresponding to global rows.
We only allow schemas q for which w does not contain letters from A.

While defining a diagonal schema we need to use the powerset monoid. The set P(M)
of subsets of M has a natural monoid structure: A ·B = {a · b | a ∈ A, b ∈ B}. We say that
a set of base languages B is uniform, when it is nonempty, and for all ρ1, ρ2 ∈ B it holds
gl(ρ1) = gl(ρ2), and this set is idempotent. For a uniform B we denote gl(B) for gl(ρ) where
ρ ∈ B. The set of all finite uniform sets of base languages over M is denoted by UBL(M).

Let B be a uniform set of base languages. A diagonal schema for B is given by a picture
q, whose rows are divided into special rows and global rows, and which is divided horizontally

6 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

cb y b
ba a c
ax c z

a
c
x ax c x

ay c z
ax c z x

z x z x z x z y
y z x x z y z x

xx z z y x z x z
x

ba a c ba a c ba a c
a
c

cb bxz y z y z x y x

Figure 1 On the left we have an example diagonal schema. Elements of gl(B) are shaded in
gray. The first row is a global row, and the other two are special rows (we suppose that a · b · a · c is
idempotent). The double line divides the schema horizontally into two pictures. On the right there
is a picture created out of the schema for n = 3. Here double lines are introduced only for readability.
Gray cells are stretched into longer areas evaluating to the same value (e.g. x = z · x · z · x · y).

into pictures q1, . . . , qk (which means that q1, . . . , qk have as many rows as q, and the i-th
row of q is the concatenation of the i-th rows of q1, . . . , qk), such that:
1. each column of q belongs to

⋃
B, and

2. each special row of each qj either has length 1, or evaluates to an idempotent, or it
contains a letter belonging to gl(B), and

3. the first and the last letter of each global row of each qj belongs to gl(B).
The base language generated by q is (wA∗)↓�, where w consists of the letters of π(q) corre-
sponding to special rows, and A contains the letters of π(q) corresponding to global rows.
Again, we only allow schemas q for which w does not contain letters from A. An example
diagonal schema is depicted in Figure 1 (left).

The following theorem states soundness and completeness of our schemas.

I Theorem 5.1. Let B0 be a finite set of base languages over a monoid M . For a function
η : UBL(M) → N let B≤η0 = B0 and for each i > 0, inductively, let B≤ηi be the set of all
base languages ρ such that

ρ ∈ B≤ηi−1, or
ρ is generated by some product schema for some base languages ρ1, ρ2 ∈ B≤ηi−1, or
ρ is generated by some diagonal schema for a uniform set of base languages B ⊆ B≤ηi−1,
of width and height at most η(B).

There is a computable function η : UBL(M) → N such that for every s ∈ M the following
two statements are equivalent:

for each h ∈ N there exists a picture p of height h, whose each column belongs to
⋃
B0,

and for which π(p) ∈ s∗, and
for x = 3 · (2|M | + 1)2 there exists a base language ρ ∈ B≤ηx with s ∈ gl(ρ).

Notice that this theorem gives decidability of the commutative lossy tiling problem.
Indeed, given B≤ηi−1 we can calculate B≤ηi , because the number of product and diagonal
schemas to consider is finite (the size of product schemas is bounded by definition, and the
size of diagonal schemas is bounded by the function η).

6 Soundness

In this section we prove the easier direction of Theorem 5.1, that is from right to left. This
implication is based on the following two lemmas.

I Lemma 6.1. Let ρ be a base language generated by some product schema for some base
languages ρ1, ρ2, and let c ∈ ρ. Then there exists a picture p whose each column belongs to
ρ1 ∪ ρ2, and such that π(p) = c.

Achim Blumensath, Thomas Colcombet, Paweł Parys 7

I Lemma 6.2. Let ρ be a base language generated by some diagonal schema for a uniform
set of base languages B, and let c ∈ ρ. Then there exists a picture p whose each column
belongs to

⋃
B, and such that π(p) = c.

Using these lemmas we now conclude with the soundness implication of Theorem 5.1.
Let B≤ηi be the sets from Theorem 5.1. The function η bounding sizes of diagonal schemas
does not matter in this implication. We will prove by induction on i that if c ∈

⋃
B≤ηi , then

there exists a picture p whose each column belongs to
⋃
B0, and such that π(p) = c (this

concludes the proof: we take c = sh; since s ∈ gl(ρ) for some ρ ∈ B≤ηx , we have c ∈
⋃
B≤ηx).

This is immediate for i = 0: we can take p containing c as the only column. Take some
c ∈

⋃
B≤ηi for i > 0. We have c ∈ ρ for some ρ ∈ B≤ηi . If ρ ∈ B≤ηi−1 we are done. Otherwise

we are in the second or the third case of definition of B≤ηi , and then we use Lemma 6.1 or
6.2. We obtain a picture p′ whose each column belongs to

⋃
B≤ηi−1, and such that π(p′) = c.

Moreover, by induction assumption, for each column cj of p′ there exists a picture pj whose
each column belongs to

⋃
B0 and such that π(pj) = cj . To obtain p, in p′ we replace, for

each j, the j-th column cj by pj . Notice that π(p) = π(p′), so p is as required.
In the remaining part of this section we prove Lemmata 6.1 and 6.2.

Proof of Lemma 6.1. The proof is immediate. We start from a product schema q for ρ1, ρ2
which generates ρ. Since global rows of q contain only letters from the global parts of ρ1, ρ2,
in q we can duplicate any global row, and still the j-th column belongs to ρj . We can also
remove any row, and reorder the rows. By performing such operations we can obtain a
picture p such that π(p) = c. J

Proof of Lemma 6.2. Let ρ = (wA∗)↓�, let q be a diagonal schema for B generating ρ, and
let q1, . . . , qk be the pictures into which q is divided. W.l.o.g. we assume that each global
row of q evaluates to a different element of A (otherwise we remove redundant rows). Notice
also that if the lemma holds for some word c, then it holds also for any c′ obtained from c by
removing and reordering letters (because we can remove and reorder rows of the resulting
picture p). Thus it is enough to consider, for each n ∈ N, a column c which begins by w and
then has each letter of A repeated n times.

The idea of constructing a picture p out of the diagonal schema q is depicted in Figure
1. For each j ∈ {1, . . . , k} we create pj by modifying qj . In pj we will have |A| · (n−1) more
rows than in qj ; more precisely, each global row of qj will evolve into n rows of pj , and each
special row of qj will evolve into one row of pj . Fix some j. Let m be the width of qj . If
m = 1, we just replace each global row by its n copies. Assume now that m > 1. Then the
width of pj will be nm. Consider a special row v. One case is that π(v) is idempotent. Then
we just repeat the content of the row n times. After the repetition the value remains the
same. Otherwise, by definition there exists an index i such that the i-th letter of v belongs
to gl(B). Then, as the first i − 1 letters of the new row we take the first i − 1 letters of v.
Also as the last m − i letters of the new row we take the last m − i letters of v. On the
remaining mn−m+1 positions we place letters from gl(B) in such a way that their product
is equal to the i-th letter of v (it is possible since gl(B) is idempotent thanks to uniformity
of B). Again, the value of the row remains unchanged. Finally, consider a global row v of
qj . Out of it we create n rows in pj ; the i-th of them, for i ∈ {1, . . . , n}, is created in the
following way. On the first (i−1)m+ 1 positions of the new row we place letters from gl(B)
in such a way that their product is equal to the first letter of v (recall that by definition the
first and the last letter of v are in gl(B)). Also on the last (n− i)m+ 1 positions of the new
row we place letters from gl(B) in such a way that their product is equal to the last letter

8 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

of v. On the remaining m − 2 positions we put the middle m − 2 letters of v, without the
first and the last letter.

As p we take the concatenation of p1, . . . , pk (which means that the i-th row of p is
obtained by concatenating the i-th rows of p1, . . . , pk). We observe that the evaluation of p
is c (the rows created out of special rows evaluate to w, and the rows created out of global
rows evaluate to elements of A, each n times). It remains to observe that each column of
p (so of each pj) belongs to

⋃
B. When pj has only one column, this is clear, because it is

obtained by duplicating some letters from gl(B) in a column from
⋃
B. Otherwise (with m

as above), a column number i+ i′m of pj (for i ∈ {1, . . . ,m}) is obtained from the column
number i of qj (which is in

⋃
B): the letters which are not in gl(B) are taken at most

once, on the other positions we take some letters from gl(B); thus the new column is also
in
⋃
B. J

7 Completeness

In this section we prove the opposite direction of Theorem 5.1, that is from left to right.
The strategy is as follows. First we consider special cases that can be described by a single
schema. In Section 7.1 we analyze pictures of width 2, out of which one can extract product
schemas. In Section 7.2 we analyze pictures whose columns come from a union of a uniform
set of base languages; they can be turned into diagonal schemas. Next, in Section 7.3 we
introduce a tool: a new version of the factorization trees theorem [17]. This theorem is used
in Section 7.4 to decompose arbitrary picture into simple fragments corresponding to single
schemas, which allows to finish the proof. For the scope of the whole section we assume that
the monoid M is fixed.

7.1 Products
We start by analyzing pictures of width 2, and we say that they can be turned into product
schemas.

I Lemma 7.1. Let ρ1, ρ2 be two base languages. Let p be a picture of width 2 such that
the first column belongs to ρ1 and the second to ρ2. Then there exists a product schema for
ρ1, ρ2 which generates a base language ρ such that π(p) ∈ ρ, and gl(ρ) = gl(ρ1) · gl(ρ2).

Proof. We take ρ = (wA∗)↓�, where A = gl(ρ1)·gl(ρ2) and w consists of those letters of π(p)
which are not in A (taken as many times as they appear in π(p)). Obviously π(p) ∈ ρ. To q
we take all rows of p which do not evaluate to an element of A. That will be special rows.
Notice that in each of these rows either its first letter does not belong to gl(ρ1), or its second
letter does not belong to gl(ρ2). Thus we have at most ||ρ1||+ ||ρ2|| such rows. Moreover, for
each r ∈ gl(ρ1) and each s ∈ gl(ρ2), to q we add a row having r in the first column, and s
in the second column. That will be global rows. We have |gl(ρ1)| · |gl(ρ2)| ≤ |M |2 of them.
We see that q is a product schema for ρ1, ρ2 that generates ρ. J

7.2 Uniform Case
Next, we consider a special case when the set of base languages allowed in columns is uniform,
and we say that then a picture can be transformed into a single diagonal schema.

I Lemma 7.2. There is a computable function η : UBL(M) → N such that for every finite
uniform set of base languages B and every picture p whose each column belongs to

⋃
B

Achim Blumensath, Thomas Colcombet, Paweł Parys 9

there exists a diagonal schema for B of width and height at most η(B), that generates a base
language ρ such that

π(p) ∈ ρ, and
for E = gl(B) and A = gl(ρ) it holds E ⊆ A = E ·A · E.

Let us comment on the second condition (E ⊆ A = E ·A · E). It enforces that the base
language ρ (and hence also the diagonal schema) is more robust, what will be useful later.
Namely, the global part of ρ contains not only the letters that appear many times in π(p),
but also (E ⊆ A) all letters from gl(B), and (E · A · E ⊆ A) all results of surrounding the
former letters by letters from gl(B). Notice that always A ⊆ E ·A ·E, since each global row
begins and ends by a letter from gl(B).

Below we prove the above lemma. We base on the following fact saying that each word
can be chopped into a small number of idempotents and single letters. To eliminate towers
of exponents, we write p2(x) for 2x.

I Fact 7.3. Let M ′ be a finite monoid, and let w be a word over M ′. Then we can divide
w into fragments w = w1 . . . wk for k ≤ p2(3|M ′|) such that for each i either |wi| = 1, or
π(wi) is idempotent.

This fact is applied to a picture, in order to split it horizontally as in a diagonal schema.
While reading the next lemma have in mind that E will be used for gl(B).

I Lemma 7.4. Let p be a picture, and let E ⊆ M . Let x be the number of rows of p
which contain only letters from M \ E, and let y be the smallest number such that in each
column of p there are at most y positions containing a letter from M \ E. Then, for some
k ≤ p2(3(y − x + 1)|M |y), we can divide p horizontally into pictures p1, . . . , pk in such a
way that each row of each pj either has length 1, or evaluates to an idempotent, or contains
a letter from E.

Proof. This is induction on y−x (notice that always x ≤ y). Consider the monoidM ′ = Mx

with coordinatewise multiplication. Let I be the set of (numbers of) those rows which
contain only letters from E (by definition |I| = x). Let w ∈ (M ′)∗ be the word consisting
of the rows of p which are in I (each its letter contains the elements of M appearing in
the x rows of a column). We apply Fact 7.3 to w. It gives us a division w = w1 . . . wm
for m ≤ p2(3|M |x) ≤ p2(3|M |y) such that each wj either has length 1, or evaluates to an
idempotent. We divide p into p′1, . . . , p′m in the same way: the width of p′j is the same as
the length of wj . Then each row of each p′j which is in I either has length 1, or evaluates to
an idempotent. Next, for each p′j we proceed in one of two ways.

The first case is that each row of p′j which is not in I contains a letter from E. Then
this p′j satisfies the thesis of the lemma.
There exists a row of p′j not in I which contains only letters fromM \E. Then x′ ≥ x+1
and y′ ≤ y, where x′ is the number of rows of p′j which contain only letters from M \E,
and y′ is the smallest number such that in each column of p′j there are at most y′ positions
containing a letter from M \ E. We use the induction assumption for p′j ; it gives us a
subdivision of p′j as required by the statement of the lemma.

Since each of the subdivisions returns at most p2(3(y′ − x′ + 1)|M |y′) ≤ p2(3(y − x)|M |y)
pictures, in total we have at most m · p2(3(y−x)|M |y) ≤ p2(3(y−x+ 1)|M |y) pictures. J

Proof of Lemma 7.2. Denote E = gl(B). First, we apply Lemma 7.4 to the picture p and
to the set E. It divides p into some pictures p1, . . . , pk. Notice that the number y in the
statement of the lemma is equal to the maximal norm of a base language in B, and x ≥ 0;

10 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

we have k ≤ p2(3(y − x + 1)|M |y) ≤ p2(3(y + 1)|M |y). We identify a set I1 of numbers of
rows of p: we have i ∈ I1 when the first or the last letter of the i-th row of some pj is in
M \E. Notice that |I1| ≤ 2ky (where y is again the maximal norm of a base language in B):
we look for letters from M \E only in 2k columns (the first and the last column of each pj),
and in each of these columns we have at most y letters from M \E. The picture p with this
division is almost a diagonal schema as needed (when rows from I1 are treated as special
rows). However we still need to reduce its size, and ensure the condition E ⊆ A = E ·A ·E.

For each i, by si we denote the evaluation of the i-th row without the first and the last
letter (so the value of the i-th row can be obtained by multiplying its first letter by si and
by its last letter). Let I2 be the set of numbers i 6∈ I1 of rows of p such that there are less
than |E|2 numbers j 6∈ I1 for which si = sj . Notice that |I2| ≤ |M |3 (we have at most
|E|2 − 1 ≤ |M |2 rows for each of |M | possible values of si). Denote I = I1 ∪ I2.

Next, let A′ be the set of si for all i 6∈ I. Let A = (E · A′ · E) ∪ E, and let w contain
those letters of π(p) which are not in A (as many times as they appear in π(p)); we take
ρ = (wA∗)↓�. We easily see that π(p) ∈ ρ and E ⊆ A = E ·A ·E, because E is idempotent.
It remains to construct a diagonal schema q for B that generates ρ.

The width of q will be the same as of p; we also divide q into q1, . . . , qk of the same
widths as p1, . . . , pk. To q we take all those rows of p which do not evaluate to an element of
A. That will be special rows. Notice that by the thesis of Lemma 7.4, any row of p can be
taken as a special row: inside each pj it either has length 1, or evaluates to an idempotent,
or it contains a letter belonging to E. Moreover, all these rows are in I; indeed, any other
row i 6∈ I evaluates to r · si · r′, where r, r′ are the first and the last letter of the row, that
are in E by definition of I1, and si ∈ A′. In consequence, there are at most |I| such rows.

Then, for each s ∈ A′ we consider |E|2 rows i 6∈ I for which si = s (we have at least |E|2
such rows by definition of I2), and we modify them: for each pair r, r′ ∈ E we take to q one
such row, in which we replace the first letter by r, and the last letter by r′. That will be
global rows. This is allowed: recall that the first and the last letter of each such row inside
each pj belongs to E, also the replaced letters are in E. Additionally, for each s ∈ E, we
add to q a row containing only letters from E, which evaluates to s (for any length such row
exists, because E is idempotent). That will be global rows as well. This is allowed, since all
letters of these rows are in E.

We see that every column of q belongs to
⋃
B: it is a column of p, with some letters

removed, and some letters from E added. The special rows evaluate exactly to the letters
of w. The global rows of the first kind evaluate to all elements of E ·A′ · E, and the global
rows of the second kind to all elements of E. Thus q generates the base language ρ.

It remains to bound the size. The number of rows in q is at most

|I|+ |E| · |A′| · |E|+ |E| ≤ 2ky + 2|M |3 + |M | ≤ 2y · p2(3(y + 1)|M |y) + 3|M |3,

where y is the maximal norm of a base language in B. We denote the last number as θ(B)
(it depends only on B and |M |).

We also have to restrict the width of q. Since we have started from any picture p, the
width can be arbitrary; we have to remove some columns. Fix some qj that has more than
one column. In each special row whose value is not idempotent there is some letter from
E. In each such row we choose one of these letters, and we mark the column containing
it (we don’t want to remove this column). We also mark the first and the last column of
qj ; they contain letters from E in global rows, so we also don’t want to remove them. We
have marked at most θ(B) + 2 columns. We want to remove some not-marked columns,
so that the picture evaluates to the same word. For each number of columns i, consider

Achim Blumensath, Thomas Colcombet, Paweł Parys 11

the picture consisting of the first i columns of qj ; let wi be the evaluation of this picture
(wi is a word in Mh, where h ≤ θ(B) is the height of qj). Whenever wi = wl for some
i < l, we can remove the columns number i + 1, . . . , l, and the whole new picture will still
evaluate to π(qj); we do this only when none of these columns is marked. We repeat this
removing as long as such pair of indices i, l exists. And, by pigeonhole principle, among
any |M |h + 1 numbers we can find two i, l for which wi = wl. Thus, after such removal,
we have at most (θ(B) + 1) · (|M |h + 1) + 1 columns in qj . Because we do not remove
marked columns, the properties of a diagonal schema are preserved. In total we have at
most k · ((θ(B)+1) · (|M |h+1)+1) ≤ p2(3(y+1)|M |y) · ((θ(B)+1) · (|M |h+1)+1) columns.
We denote the last number as η(B). Notice that θ(B) ≤ η(B), so not only the width but
also the height of q is bounded by η(B). J

7.3 Factorization Trees
In this subsection we present a new generalization of the factorization trees theorem [17]. In
this generalization the result in an “idempotent” node depends on some additional data in
the arguments. This theorem will be used in Section 7.4 to decompose an arbitrary picture
into pictures of the special form described in Sections 7.1 and 7.2.

The nodes of our factorization trees will be labeled by elements of any set D, possibly
infinite. We also have a finite monoid M ′ and a projection σ : D →M ′. The construction is
parameterized by two functions. The function pr : D2 → D describes a product. The other
function

st : {d1 . . . dc ∈ D+ | σ(d1) = · · · = σ(dc) is idempotent} → D

describes an operation which will be used in idempotent nodes. We require that the functions
satisfy axioms:

(*) for each a, b ∈ D it holds σ(pr(a, b)) = σ(a) · σ(b), and
(**) for each d1 . . . dc ∈ dom(st) it holds σ(st(d1 . . . dc)) = σ(d1) or σ(st(d1 . . . dc)) <J
σ(d1).

In the second axiom above we use the ≤J preorder, which is defined by r ≤J s when
there exist u1, u2 such that r = u1 · s · u2 (recall that each monoid contains an identity
element, that is allowed as u1 and u2). Two elements are J -equivalent, denoted r ∼J s,
when r ≤J s and s ≤J r. Equivalence classes of this relation are called J -classes. We write
r <J s when r ≤J s, but r 6∼J s.

A factorization tree is a tree labeled by elements of D, whose nodes are of one of three
forms:

a leaf, or
a binary node, having exactly two children; it is labeled by pr(d1, d2), where d1, d2 are
the labels of its children, or
an idempotent node, having at least three children labeled by d1, . . . , dc such that σ(d1) =
· · · = σ(dc) is idempotent; the node itself is labeled by st(d1 . . . dc).

The word (in D+) read from the leaves of a factorization tree t (from left to right) is called
the input of t, and the label of the root of t is called its output.

Notice that standard factorization trees as in [17] can be obtained by taking D = M ′ and
st(e . . . e) = e. In computation trees for a stabilization monoid [12], we again have D = M ′,
but st(e . . . e) depends on the number of these e: it is e for short e . . . e, and e] for longer
e . . . e. The key result is the existence of factorization trees of constant height, described by
the following theorem.

12 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

I Theorem 7.5. Let v ∈ D+. Then there exists a factorization tree with input v and height
at most2 3(|M ′|+ 1)2.

This theorem can be proved basically in the same way as its stabilization monoid case
([12], Theorem 3.3): the tree is constructed in a bottom-up way, so it is not a problem that
the result in an idempotent node depends in some way on the subtree constructed below.
Details are given in Appendix B.

7.4 Final Argument

In this subsection we conclude our proof of the left-to-right implication of Theorem 5.1. The
function η in its statement is taken from Lemma 7.2. Let B≤ηi be sets of base languages
as in Theorem 5.1, for some finite set of base languages B0. Each B≤ηi is finite. Let
h be the smallest number greater than the norm of each base language in B≤ηx , where
x = 3 · (2|M | + 1)2. Take some picture p of height h, whose each column belongs to

⋃
B0,

and for which π(p) ∈ s∗. Our goal is to find ρ ∈ B≤ηx such that s ∈ ρ.
We want to use the results about factorization trees from the previous subsection. As D

we take the set of pairs (w, ρ), where w ∈ Mh, and ρ is a base language such that w ∈ ρ.
We take M ′ = P(M), and σ((w, ρ)) = gl(ρ). We now define the functions pr and st.

Consider two letters (w1, ρ1) and (w2, ρ2) from D for which we want to define pr . Let
p be the picture with two columns: w1 and w2. We fix some base language ρ such that
π(p) ∈ ρ, and gl(ρ) = gl(ρ1) · gl(ρ2), and there exists a product schema for ρ1, ρ2 which
generates ρ; it exists by Lemma 7.1. We return pr((w1, ρ1), (w2, ρ2)) = (π(p), ρ). Axiom (*)
is satisfied because gl(ρ) = gl(ρ1) · gl(ρ2). Observe also that when ρ1, ρ2 ∈ B≤ηj for some j,
then ρ ∈ B≤ηj+1.

Consider now (w1, ρ1) . . . (wk, ρk) ∈ D+ such that gl(ρ1) = · · · = gl(ρk) is idempotent.
Let p be the picture with k columns: the i-th column is wi. Denote B = {ρ1, . . . , ρk}; by
definition it is a uniform set of base languages, and each column of p belongs to

⋃
B. Let

E = gl(B). We fix some base language ρ such that π(p) ∈ ρ, and E ⊆ gl(ρ) = E · gl(ρ) · E,
and there exists a diagonal schema for B of width and height at most η(B) which generates
ρ; it exists by Lemma 7.2. We return st((w1, ρ1) . . . (wk, ρk)) = (π(p), ρ). Observe that when
ρi ∈ B≤ηj for some j and all i, then ρ ∈ B≤ηj+1. Axiom (**) is satisfied due to the following
fact.

I Fact 7.6. Let E,A ⊆ M . Assume that E is idempotent, and E ⊆ A = E · A · E. Then
either A = E or A <J E.

Recall that p is a picture of height h, whose each column belongs to
⋃
B0, and for which

π(p) ∈ s∗. We want to find a base language ρ ∈ B≤ηx for which s ∈ gl(ρ). Consider a word
w = (d1, ρ1) . . . (dm, ρm) ∈ D+, where di is the i-th column of p, and ρi ∈ B0 is some base
language such that di ∈ ρi. Consider a factorization tree t with height at most x and input
w; it exists by Theorem 7.5. Denote its output as (d, ρ). Notice that d = π(p) = sh (by
definition of the pr and st functions), and d ∈ ρ (by definition of D). Moreover ρ ∈ B≤ηx
(more generally, when a root of a subtree of height at most i is labeled by some (d′, ρ′), then
ρ′ ∈ B≤ηi). Because h is by definition greater than the size of ρ, necessarily s ∈ gl(ρ), which
is what we wanted to prove.

2 One can obtain a bound 3|M ′|, but it requires enhancing the proof.

Achim Blumensath, Thomas Colcombet, Paweł Parys 13

References
1 A. Blumensath, O. Carton, and T. Colcombet. Asymptotic monadic second-order logic.

In E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik, editors, Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary,
August 25-29, 2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science,
pages 87–98. Springer, 2014.

2 M. Bojańczyk. The finite graph problem for two-way alternating automata. Theor. Comput.
Sci., 3(298):511–528, 2003.

3 M. Bojańczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554–576, 2011.

4 M. Bojańczyk and T. Colcombet. Bounds in w-regularity. In 21th IEEE Symposium on
Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceed-
ings, pages 285–296. IEEE Computer Society, 2006.

5 M. Bojańczyk, P. Parys, and S. Toruńczyk. The MSO+U theory of (N, <) is undecidable.
CoRR, abs/1502.04578, 2015. Submitted to STACS 2016.

6 M. Bojańczyk and S. Toruńczyk. Weak MSO+U over infinite trees. In C. Dürr and T. Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 648–660.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

7 T. Brázdil, K. Chatterjee, A. Kucera, and P. Novotný. Efficient controller synthesis for
consumption games with multiple resource types. In P. Madhusudan and S. A. Seshia,
editors, Computer Aided Verification - 24th International Conference, CAV 2012, Berkeley,
CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes in Computer Science,
pages 23–38. Springer, 2012.

8 J. R. Büchi. On a decision method in a restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pages 1–11, Stanford,
Calif., 1962. Stanford Univ. Press.

9 C. Carapelle, A. Kartzow, and M. Lohrey. Satisfiability of CTL* with constraints. In
P. R. D’Argenio and H. C. Melgratti, editors, CONCUR 2013 - Concurrency Theory - 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 455–469. Springer,
2013.

10 T. Colcombet. Factorisation forests for infinite words. In E. Csuhaj-Varjú and Z. Ésik,
editors, FCT, volume 4639 of Lecture Notes in Computer Science, pages 226–237. Springer,
2007.

11 T. Colcombet. The theory of stabilisation monoids and regular cost functions. In S. Al-
bers, A. Marchetti-Spaccamela, Y. Matias, S. E. Nikoletseas, and W. Thomas, editors,
Automata, Languages and Programming, 36th Internatilonal Collogquium, ICALP 2009,
Rhodes, greece, July 5-12, 2009, Proceedings, Part II, volume 5556 of Lecture Notes in
Computer Science, pages 139–150. Springer, 2009.

12 T. Colcombet. Regular cost functions, part I: logic and algebra over words. Logical Methods
in Computer Science, 9(3), 2013.

13 N. Fijalkow and M. Zimmermann. Cost-parity and cost-streett games. Logical Methods in
Computer Science, 10(2), 2014.

14 S. Hummel and M. Skrzypczak. The topological complexity of MSO+U and related au-
tomata models. Fundam. Inform., 119(1):87–111, 2012.

15 D. Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455–509,
2005.

16 O. Kupferman, N. Piterman, and M. Y. Vardi. From liveness to promptness. Formal
Methods in System Design, 34(2):83–103, 2009.

14 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

17 I. Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94, 1990.
18 S. Toruńczyk. Languages of profinite words and the limitedness problem. PhD thesis,

Warsaw University, 2011.

A Appendix to Section 3

Let us explain in more detail the fact stated in Section 3 saying that ψ is satisfiable if and
only if ψ′ is satisfiable. Recall that ψ = ∃t∀s∃r ϕ(r, s, t) and ψ′ = ∀s∃r ϕ′(r, s), where ϕ′
is obtained from ϕ by replacing each atom f(x) ≤ t by small(x), and by replacing each
subformula s < f(x) ≤ r by s < f(x) ≤ r ∧ ¬small(x).

Suppose that we have a weighted infinite word 〈w, f〉 that is a model for ψ. This gives
some value of t for which ∀s∃r ϕ(r, s, t) is true in 〈w, f〉. To obtain a model 〈w′, f〉 for ψ′,
it is enough to mark by small those positions x where f(x) ≤ t. Then clearly for every s ≥ t
the formula ∃r ϕ′(r, s) holds in 〈w′, f〉, since f(x) ≤ t in 〈w, f〉 implies small(x) in 〈w′, f〉
(for the same position x), and s < f(x) ≤ r in 〈w, f〉 implies s < f(x) ≤ r ∧ ¬small(x)
in 〈w′, f〉 (recall that these subformulae appear only positively). But since all comparisons
with s are s < f(x) appearing positively, the formula ∃r ϕ′(r, s) holds even more for smaller
s, thus ψ′ = ∀s∃r ϕ′(r, s) holds in 〈w′, f〉.

Conversely, suppose that 〈w′, f ′〉 is a model for ψ′. In a model 〈w, f〉 for ψ we take
f(x) = 0 if small(x) holds, and f(x) = f ′(x) otherwise (and we remove the predicate small).
For t = 0 we have that small(x) in 〈w′, f ′〉 implies f(x) ≤ t in 〈w, f〉 and s < f(x) ≤
r ∧ ¬small(x) in 〈w′, f ′〉 implies s < f(x) ≤ r in 〈w, f〉. Thus ψ holds in 〈w, f〉.

B Factorization Trees

In this section we prove Theorem 7.5. As we have said, a proof of this theorem can be
obtained by minor modifications in the proof for the stabilization monoid case ([12], Theorem
3.3). Here, instead of repeating that proof, we base on the standard factorization trees
theorem (see e.g. [10], Theorem 1). This theorem only deals with the case when D = M ′

and σ(s) = s. However a factorization tree for this case remains correct (after relabeling its
nodes) for any D and σ such that σ(st(d1 . . . dc)) = σ(d1), as stated below.

I Theorem B.1 ([10]). Assume that σ(st(d1 . . . dc)) = σ(d1) for each d1 . . . dc in the domain
of st. Let v ∈ D+. Then there exists a factorization tree with input v and height at most
3|M ′|.

Next, we show how to repair the factorization tree obtained in the above theorem when
the operation st changes. The first auxiliary lemma deals with a single J -class.

I Lemma B.2. Let J be a J -class of M ′, and let v ∈ D+. Then there exist factorization
trees t1, . . . , tk with height at most 3|M ′|, such that the concatenation of their inputs gives
v, and whenever some ti for i ∈ {1, . . . , k − 1} has output in σ−1(J), then ti+1 has output
outside σ−1(J).

Proof. The proof is by induction on the length of v. One case is that there exists some
infix w (where v = uwu′) for which there exists a factorization tree t with input w, height
at most 3|M ′|, and output outside σ−1(J). Then we use the induction assumption for the
shorter words u and u′ (if nonempty); the trees over these words together with t give the
thesis.

The remaining case is that for no infix w of v there exists a factorization tree with input
w, height at most 3|M ′|, and output outside σ−1(J). This in particular means that each

Achim Blumensath, Thomas Colcombet, Paweł Parys 15

letter of v is in σ−1(J) (otherwise we can construct a one-node factorization tree with this
letter as input and with output outside σ−1(J)). Consider the operation st′ defined by

st′(d1 . . . dk) =
{

st(d1 . . . dk) when σ(st(d1 . . . dk)) = σ(d1),
d1 otherwise.

We construct a factorization tree t with input v using Theorem B.1 for the operation st′
instead of st. We will prove that t is a correct factorization tree also for the original st
function (that is, we always use only the first case in the definition of st′); this will finish
the proof: we take k = 1 and t1 = t. Assume the contrary: fix some idempotent node x of
t, for which σ(st(d1 . . . dc)) 6= σ(d1), where d1, . . . , dc are the labels of the children of x, and
such that no descendant of x has this property. Notice that σ(st(d1 . . . dc)) <J σ(d1) ≤J J :
the first inequality is true due to axiom (**), since σ(st(d1 . . . dc)) 6= σ(d1), and the second
because σ(d1) is the product of the letters in the leaf nodes below x, which are all in J .
Consider the subtree of t rooted in x, in which we change the label of x into st(d1 . . . dc).
It is a factorization tree for the st function (recall that in descendants of x the functions st
and st′ return the same values) with height at most 3|M ′|, output outside σ−1(J), and its
input is an infix of v. This contradicts with our assumption about v. J

The next lemma constructs a factorization tree for sets A consisting of multiple J -classes,
by composing factorization trees for single J -classes obtained from the previous lemma.

I Lemma B.3. Let A ⊆M ′ be such that when s ∈ A and r ≥J s then r ∈ A.3 Let v ∈ D+.
Then there exist factorization trees t1, . . . , tk with height at most (3|M ′| + 2)|A|, such that
the concatenation of their inputs gives v, and either k = 1, or all these trees have output
outside σ−1(A).

Proof. The proof is by induction on the size of A. The base case is that A is empty. Then
for each letter of v we construct a one-node tree with this letter as input. These trees are
of height 0, and they have outputs outside σ−1(A).

Next, assume that A is nonempty. Let J be some ≤J -minimal J -class in A; denote
A′ = A \ J . We apply the induction assumption for v and A′. We obtain factorization trees
t01, . . . , t

0
m of height at most (3|M ′|+2)|A′|, such that the concatenation of their inputs gives

v; we either have m = 1, or each t0i has output outside σ−1(A′). When m = 1, this already
concludes the thesis of the lemma; below we assume that m > 1.

We apply Lemma B.2 to w and J . We obtain factorization trees t11, . . . , t1n with height
at most 3|M ′|, such that the concatenation of their inputs gives w; whenever some t1i for i ∈
{1, . . . , n−1} has output in σ−1(J), then t1i+1 has output outside σ−1(J). Notice additionally
that the projection of the output of a factorization tree is ≤J than the projection of any letter
in its input (we have σ(pr(d1, d2)) = σ(d1)·σ(d2) ≤J σ(di) and σ(st(d1 . . . dk)) ≤J σ(st(d1))
by axioms (*) and (**)). Thus, since the letters of w are outside σ−1(A′), also the output
of each t1i is outside σ−1(A′). So we can strengthen the statement above: whenever some t1i
for i ∈ {1, . . . , n− 1} has output in σ−1(A), then t1i+1 has output outside σ−1(A).

Next, in the place of the i-th leaf in the sequence of trees t11, . . . , t1n we substitute the tree
t0i (notice that the label of this leaf and of the root of t0i is the same: it is the i-th letter of w).
In this way we obtain factorization trees t21, . . . , t2n of height at most (3|M ′|+ 2)|A′|+ 3|M ′|.
The concatenation of their inputs gives v, and whenever some t2i for i ∈ {1, . . . , n − 1} has
output in σ−1(A), then t2i+1 has output outside σ−1(A).

3 That is, M ′ \A is an ideal.

16 Satisfiability is Decidable for a Fragment of AMSO Logic on Infinite Words

Finally, when some t2i for i ∈ {1, . . . , n− 1} has output in σ−1(A), we merge it with t2i+1
using a binary node. The output of this new tree is outside σ−1(A) (notice that t 6∈ A implies
s · t 6∈ A, since t ≥J s · t). Similarly, if the last tree has output in σ−1(A), we merge it with
its predecessor (which is possibly already merged with its predecessor). After this merging
we obtain factorization trees t1, . . . , tk with height at most (3|M ′| + 2)|A′| + 3|M ′| + 2 ≤
(3|M ′|+ 2)|A|; the concatenation of their inputs is v. If we had n > 1, the output of each of
these trees is outside σ−1(A) (however it is possible that n = 1 and the only tree has output
in σ−1(A)). J

Notice that this lemma for A = M ′ implies immediately Theorem 7.5.

C Proof of Facts 7.3 and 7.6

Proof of Fact 7.3. Recall that we want to divide an arbitrary word w over a finite monoid
M ′ into fragments w = w1 . . . wk for k ≤ p2(3|M ′|) such that for each i either |wi| = 1,
or π(wi) is idempotent. We apply the standard factorization tree theorem (Theorem B.1,
where D = M ′ and st(e . . . e) = e) to w: we obtain a factorization tree with input w.
In this tree we identify those leaves and idempotent nodes which do not have idempotent
nodes as ancestors. They give a division of w into fragments w = w1 . . . wk. The fragments
corresponding to leaves have length 1; the fragments corresponding to idempotent nodes
evaluate to idempotents. Notice that above the considered nodes there are only binary
nodes, and the tree has height at most 3|M ′|, so there are at most p2(3|M ′|) fragments. J

Proof of Fact 7.6. Because A = E · A · E, we have A ≤J E. If A <J E we are done, so
assume that A ∼J E. Because E is idempotent, we have A = E ·A ·E = E ·E ·A ·E = E ·A,
and similarly A = A · E.

We have to define more relations. For elements r, s of a monoid, we write r ∼R s when
there exist u1, u2 such that r = s · u1 and s = r · u2. Symmetrically, we write r ∼L s when
there exist u1, u2 such that r = u1 ·s and s = u2 · r. We also define r ∼H s when r ∼R s and
r ∼L s. Lemma 3.5 of [18] says that r ∼J r · s implies r ∼R r · s; symmetrically, r ∼J s · r
implies r ∼L s · r. Moreover, Lemma 3.8 of [18] says that if H is an H-class such that for
some r, s ∈ H we have r · s ∈ H, then H is a group.

We apply the above facts to our case. Since E ∼J A = E · A, we have E ∼R A, and
since E ∼J A = A ·E, we have E ∼L A; thus E ∼H A. Because A = E ·A, the H-class of E
and A is a group. Notice that E is the neutral element of the group (the neutral element is
the only idempotent in a group). Since the group is finite, for some k > 1 we have Ak = E.
Because E ⊆ A, we have A = A · Ek−1 ⊆ A ·Ak−1 = E, so E = A. J

	Introduction
	Preliminaries
	From Logic to Tilings
	Monoids
	Decision Procedure
	Soundness
	Completeness
	Products
	Uniform Case
	Factorization Trees
	Final Argument

	Appendix to Section 3
	Factorization Trees
	Proof of Facts 7.3 and 7.6

