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Abstract. We show that deterministic collapsible pushdown automata of second order
can recognize a language which is not recognizable by any deterministic higher-order push-
down automaton (without collapse) of any order. This implies that there exists a tree
generated by a second order collapsible pushdown system (equivalently: by a recursion
scheme of second order), which is not generated by any deterministic higher-order push-
down system (without collapse) of any order (equivalently: by any safe recursion scheme
of any order). As a side effect, we present a pumping lemma for deterministic higher-order
pushdown automata, which potentially can be useful for other applications.

1. Introduction

Already in the 70’s, Maslov ([15, 16]) generalized the concept of pushdown automata to
higher-order pushdown automata (n-PDA) by allowing the stack to contain other stacks
rather than just atomic elements. In the last decade, renewed interest in these automata has
arisen. They are now studied not only as acceptors of string languages, but also as generators
of graphs and trees. It was an interesting problem whether the class of trees generated by
n-PDA coincides with the class of trees generated by order-n recursion schemes. Knapik
et al. [11] showed instead that this class coincides with the class of trees generated by safe
order-n recursion schemes (safety is a syntactic restriction on the recursion scheme), and
Caucal [3] gave another characterization: trees of order n + 1 are obtained from trees of
order n by an MSO-interpretation of a graph, followed by application of unfolding.

Driven by the question whether safety implies a semantical restriction to recursion
schemes Hague et al. [6] extended the model of n-PDA to order-n collapsible pushdown
automata (n-CPDA) by introducing a new stack operation called collapse (earlier, panic
automata [12] were introduced for order 2), and proved that trees generated by n-CPDA
coincide with trees generated by all order-n recursion schemes. Let us mention that these
trees have decidable MSO theory [17], and that higher-order recursion schemes have close
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connections with verification of some real life higher-order programs [13]. Intuitively, the
collapse operation allows the removal of all stacks on which a copy of the currently topmost
stack symbol is present.

Nevertheless, it was still an open question whether these two hierarchies of trees are
possibly the same hierarchy? This problem was stated in [11] and repeated in other papers
concerning higher-order pushdown automata [12, 1, 17, 6]. A partial answer to this question
was given in [18]: there is a tree generated by a 2-CPDA which is not generated by any
2-PDA. We prove the following stronger property.

Theorem 1.1. There is a tree generated by a 2-CPDA (equivalently, by a recursion scheme
of order 2) which is not generated by any n-PDA, for any n (equivalently, by any safe
recursion scheme of any order).

This confirms that the correspondence between higher-order recursion schemes and
higher-order pushdown automata is not perfect. The tree used in Theorem 1.1 (after some
adaptations) comes from [11] and from that time was conjectured to be a good example.

In this paper we work with PDA which recognize words instead of generating trees.
While in general PDA used to recognize word languages can be nondeterministic, trees
generated by PDA closely correspond to word languages recognized by deterministic PDA.
Technically, we prove the following theorem, from which Theorem 1.1 follows.

Theorem 1.2. There is a language recognized by a deterministic 2-CPDA which is not
recognized by any deterministic n-PDA, for any n.

As a side effect, in Section 9 we present a pumping lemma for higher-order pushdown
automata. Although its formulation is not very natural, we believe it may be useful for some
other applications. Our lemma is similar to the pumping lemma from [21] (see Section 9
for some comments). Earlier, several pumping lemmas related to the second order of the
pushdown hierarchy were proposed [7, 5, 9].

This paper is an extended version of the conference paper [20]. The proof of Theorem
1.1 goes along the same line, but with essential differences in details. The part about
types (Section 7) was simplified slightly, in the cost of complicating other parts (which was
necessary since Theorem 7.3 is proven in a weaker form than in [20]).

1.1. Related Work. One may ask a similar question for word languages instead of trees: is
there a language recognized by a CPDA which is not recognized by any (nondeterministic)
PDA? This is an independent problem. The answer is known only for order 2 and is opposite:
one can see that in 2-CPDA the collapse operation can be simulated by nondeterminism,
hence 2-PDA and 2-CPDA recognize the same languages [1]. It is also an open question
whether all word languages recognized by CPDA are context-sensitive.

In [19] we prove that the collapse operation increases the expressive power of deter-
ministic higher-order pushdown automata with data. In this model of automata each letter
from the input word is equipped by a data value, which comes from an infinite set; these
data values can be stored on the stack and compared with other data values. In such setting
the proof becomes easier than in the no-data case considered in this paper.

One can consider configuration graphs of n-PDA and n-CPDA, and their ε-closures. We
know [6] that there is a 2-CPDA whose configuration graph has undecidable MSO theory,
hence which is not a configuration graph of an n-PDA, nor an ε-closure of such, as they all
have decidable MSO theory.
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Engelfriet [4] showed that the hierarchies of word languages and of trees generated by
PDA are strict (that is, for each n there is a language recognized by an n-PDA which is not
recognized by any (n−1)-PDA, and similarly for trees). In fact his proof works equally well
for these hierarchies for CPDA, once we know that the reachability problem for n-CPDA is
(n− 1)-EXPTIME complete (which follows from [14]).

2. Preliminaries

For natural numbers a, b, where b ≥ a − 1, by [a, b] we denote the set {a, . . . , b} (which is
empty if b = a− 1).

For any alphabet Γ (of stack symbols) we define a stack of order k (k-stack for short)
as an element of the following set Γk∗:

Γ0
∗ = Γ, Γ0

+ = Γ,

Γk∗ = (Γk−1
+ )∗, Γk+ = (Γk−1

+ )+ for k ≥ 1.

In other words, a 0-stack is just a single symbol, and a k-stack for k ≥ 1 is a (possibly
empty) sequence of nonempty (k − 1)-stacks. Top of a stack is on the right. The size of a

k-stack is just the number of (k − 1)-stacks it contains. For any sk ∈ Γk∗ and sk−1 ∈ Γk−1
+

we write sk : sk−1 for the k-stack obtained from sk by placing sk−1 at its end. The operator
“:” is assumed to be right associative, i.e. s2 : s1 : s0 = s2 : (s1 : s0).

When Γ is fixed, the stack operations of order k ≥ 1 are popk and pushkγ for each γ ∈ Γ.
We can apply them to a nonempty r-stack for r ≥ k, which gives:

• popk(sr : sr−1 : · · · : sk : sk−1) = sr : sr−1 : · · · : sk, i.e. we remove the topmost
(k − 1)-stack; it is defined only when the topmost k-stack contains at least two
(k − 1)-stacks;

• pushkγ(sr : sr−1 : · · · : s0) = sr : sr−1 : · · · : sk+1 : (sk : sk−1 : · · · : s0) : sk−1 : sk−2 :

· · · : s1 : γ, i.e. we duplicate the topmost (k − 1)-stack, and then we replace the
topmost 0-stack by γ.1

A deterministic word-recognizing pushdown automaton of order n (n-DPDA for short)
is a tuple (A,Γ, γI , Q, qI , F, δ) where A is an input alphabet, Γ is a stack alphabet, γI ∈ Γ
is an initial stack symbol, Q is a set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of
accepting states, and δ is a transition function which maps every element of Q×Γ into one
of the following objects:

• read(~q), where ~q : A→ Q is an injective function,
• (q, op) where q ∈ Q and op is a stack operation of order at most n.

The letter n is used exclusively for the order of pushdown automata.
A configuration of A consists of a state and of a nonempty n-stack, i.e. is an element

of Q × Γn+. The initial configuration consists of the initial state qI and of the n-stack
containing only one 0-stack, which is the initial stack symbol γI . We use the notation
πi((p1, . . . , pk)) = pi; in particular for a configuration c, π1(c) denotes its state, and π2(c)
its stack. Additionally, for a set X of tuples we define πi(X) to be {πi(p) : p ∈ X}.

We use a shorthand δ(c) for a configuration c to denote δ(π1(c), s0), where s0 is the
topmost 0-stack of c. A configuration d is a successor of a configuration c, if:

1In the classical definition the topmost symbol can be changed only when k = 1 (for k ≥ 2 it required
that γ = s0). We make this (not important) extension to have a uniform definition of pushk for all k.
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• δ(c) = read(~q), and d = (~q(a), π2(c)) for some a ∈ A, or
• δ(c) = (q, op), and d = (q, op(π2(c))).

Typically a configuration has exactly one successor. However when the transition is read(~q),
there are |A| successors. It is also possible that there are no successors: when the operation
is popk but there is only one (k − 1)-stack on the topmost k-stack.

Next, we define a run of A. For 0 ≤ i ≤ m, let ci be a configuration. A run R from c0

to cm is a sequence c0, c1, . . . , cm such that, for each i ∈ [1,m], ci is a successor of ci−1. We
set R(i) = ci and call |R| = m the length of R. The subrun R�i,j is ci, ci+1, . . . , cj . For runs
R,S with R(|R|) = S(0), we write R ◦ S for the composition of R and S which is defined
as expected. Sometimes we also consider infinite runs, such that the sequence c0, c1, c2, . . .
is infinite. However, unless stated explicitly, a run is finite.

The word read by a run is a word over the input alphabet A. For a run from a
configuration c to its successor d, it is the empty word if the transition between them is
of the form (q, op). If the transition is read(~q), this is the one-letter word consisting of the
letter a for which π1(d) = ~q(a) (this letter is determined uniquely, as f is injective). For a
longer run R this is defined as the concatenation of the words read by the subruns R�i−1,i for
i ∈ [1, |R|]. A run is accepting if it ends in a configuration whose state is accepting. A word
w is accepted by A if it is read by some accepting run starting in the initial configuration.
The language recognized by A is the set of words accepted by A.

2.1. Collapsible 2-DPDA. In Section 4 we also use deterministic collapsible pushdown
automata of order 2 (2-DCPDA for short). Such automata are defined like 2-DPDA, with
the following differences. A 0-stack contains now two parts: a symbol from Γ, and a
natural number, but still only the symbol (together with a state) is used to determine
which transition is performed from a configuration. The push1

γ operation sets the number

in the topmost 0-stack to the current size of the 2-stack (while push2
γ does not modify these

numbers). We have a new stack operation collapse. Its result collapse(s) is obtained from s
by removing its topmost 1-stacks, so that only k− 1 of them is left, where k is the number
stored in the topmost 0-stack of s (intuitively, we remove all 1-stacks on which the topmost
0-stack is present).

3. Relation between Word Languages and Trees

In this section we describe how word languages recognized by DPDA are related to trees
generated by PDA. Before seeing how Theorem 1.2 it implies Theorem 1.1, we need to
define how n-PDA are used to generate trees. We consider ranked, potentially infinite
trees. Beside of the input alphabet A we have a function rank : A→ N; a tree node labelled
by some a ∈ A has always rank(a) children.

Automata used to generate trees are defined like DPDA or DCPDA (in particular they
are deterministic as well), with the difference that they do not have the set of accepting
states, and that instead of the read(~q) transitions, there are branch(a, q1, q2, . . . , qrank(a))
transitions, for a ∈ A, and for pairwise distinct states q1, q2, . . . , qrank(a) ∈ Q. If the transi-
tion from c is δ(c) = branch(a, q1, q2, . . . , qrank(a)), in a successor d of c we have π2(d) = π2(c)
and π1(d) = qi for some i ∈ [1, rank(a)] (in particular c has no successors if rank(a) = 0).

Let T (A) be the set of all configurations c of A reachable from the initial one, such that
a branch transition should be performed from c. If there is a configuration of A reachable
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from the initial one, from which there is no run to a configuration from T (A), by definition
A does not generate any tree. Otherwise, a tree generated by A has runs from the initial
configuration to a configuration from T (A) as its nodes. A node R is labelled by a ∈ A such
that δ(R(|R|)) = branch(a, q1, q2, . . . , qrank(a)). A node S is its i-th child (1 ≤ i ≤ rank(a)),
if S is the composition of R and a run S′ which uses a branch transition only in its first
transition, and π1(S′(1)) = qi. Notice that the graph obtained this way is really an A-
labelled ranked tree.

We will now see how Theorem 1.1 follows from Theorem 1.2. Let L ⊆ A∗ be the
language recognized by a 2-DCPDA A which is not recognized by any n-DPDA, for any
n (L exists by Theorem 1.2). First, we transform A into a 2-DCPDA B, recognizing L
as well, such that each configuration of B reachable from the initial one has a successor.
Observe that the only reason why in A there may be configurations with no successors is
that it wants to empty a stack using a pop operation. To avoid such situations, B should
have some bottom-of-stack marker on the bottom of each 1-stack, and on the bottom of the
2-stack (a 1-stack containing only the marker). Thus B starts with the marker as the initial
stack symbol, performs push2 and push1, placing the original initial stack symbol. Then
whenever A blocks because it wants to empty a stack, in B the bottom-of-stack marker is
uncovered; in such situation B starts some loop with no accepting state. There is also a
technical detail, that a pop operation which would block A, in B can enter an accepting
state; to overcome this problem, every pop operation ending in an accepting state should
first end in some auxiliary, not accepting state, from which (if the bottom-of-stack marker
is not seen) an accepting state is reached.

Next, we create a tree-generating 2-CPDA C, which generates a tree over the alpha-
bet B = {X,Y, Z}, where rank(X) = |A| and rank(Y ) = rank(Z) = 1. It is obtained
from B in two steps. First, we replace each transition read(~q) of B by the transition
branch(X, ~q(a1), ~q(a2), . . . , ~q(a|A|)), where A = {a1, . . . , a|A|}. Then, in each transition we
replace the resulting state q by its auxiliary copy q, and from q (for any topmost stack
symbol) we perform transition branch(Y, q) if q was accepting, or transition branch(Z, q)
if q was not accepting (this way, after each step of the original automaton, we perform a
transition branch(Y, ·) or branch(Z, ·)). Notice that from each configuration of C reachable
from the initial one, there exists a run to a configuration from T (C), as required by the
definition of a tree-generating CPDA. Let tC be the tree generated by C.

Finally, suppose that tC can also be generated by some n-PDA D (without collapse).
From D we create a word-recognizing n-DPDA E . We replace each transition of the form
branch(X, q1, q2, . . . , q|A|) of D by the transition read(~q), where ~q(ai) = qi. We replace

each transition branch(Y, q) of D by the transition (p, push1
γ) for a fresh accepting state p

and some stack symbol γ; from (p, γ) we perform the transition (q, pop1) (thus we replace
branch(Y, q) by a pass through an accepting state). The same for a branch(Z, q) transition,
but the fresh state p is not accepting.

Notice that E recognizes L; this contradicts our assumptions about L, so tC is not
generated by any n-PDA. Indeed, take any word w ∈ L. We have an accepting run of B
which reads w and starts in the initial configuration. This run corresponds to a run of C,
that is to a path p in tC from the root to a Y -labelled node. Letters of w tell us which
child the path p chooses in X-labelled nodes: if i-th letter of w is aj , then from the i-th
X-labelled node of p, the path continues to the j-th child. This path p corresponds also
to a run of D, so to a run of E . This run starts in the initial configuration, ends with an
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accepting state, and reads w; thus E accepts w. Similarly, each word accepted by E is also
accepted by B.

We also recall that a tree is generated by a recursion scheme of order 2 if and only if
it is generated by a 2-CPDA [6], and that a tree is generated by a safe recursion scheme
of order n if and only if it is generated by an n-PDA [11]; this implies the “equivalently”
parts of Theorem 1.1.

4. The Separating Language

In this section we define a language U which can be recognized by a 2-CPDA, but not by
any n-DPDA, for any n. It is a language over the alphabet A = {[, ], ?, ]}. For a word
w ∈ {[, ], ?}∗ we define stars(w). Whenever in some prefix of w there are more closing
brackets than opening brackets, stars(w) = 0. Also when in the whole w we have the
same number of opening and closing brackets, stars(w) = 0. Otherwise, let stars(w) be the
number of stars in w before the last opening bracket which is not closed. Let U be the set
of words w]stars(w)+1, for any w ∈ {[, ], ?}∗ (i.e. these are words w consisting of brackets and
stars, followed by stars(w) + 1 sharp symbols).

It is known that languages similar to U can be recognized by a 2-CPDA (e.g. [1]), but
for completeness we briefly show it below. The collapsible 2-CPDA will use three stack
symbols: X (used to mark the bottom of 1-stacks), Y (used to count brackets), Z (used
to mark the bottommost 1-stack). The initial symbol is X. The automaton first pushes
Z, makes a copy of the 1-stack (i.e. push2), and pops Z (hence the first 1-stack is marked
with Z, unlike any other 1-stack used later). Then, for an opening bracket we push Y , for
a closing bracket we pop Y , and for a star we perform push2. Hence for each star we have a
1-stack and on the last 1-stack we have as many Y symbols as the number of currently open
brackets. If for a closing bracket the topmost symbol is X, it means that in the word read
so far we have more closing brackets than opening brackets; in this case we should accept
suffixes of the form {[, ], ?}∗], which is easy.

Finally the ] symbol is read. If the topmost symbol is X, we have read as many
opening brackets as closing brackets, hence we should accept one ] symbol. Otherwise,
the topmost Y symbol corresponds to the last opening bracket which is not closed. We
execute the collapse operation. It leaves the 1-stacks created by the stars read before this
bracket, except one (plus the first 1-stack). Thus the number of 1-stacks is precisely equal
to stars(w). Now we should read as many ] symbols as we have 1-stacks, plus one (after
each ] symbol we make pop2), and then accept.

In the remaining part of the paper we prove that any n-DPDA cannot recognize U ; in
particular all automata appearing in the following sections does not use collapse.

5. Overview of the Proof

Before we start the real proof, in this section we present its general structure, on the intuitive
level. Let us first see why U cannot be recognized by any 1-DPDA A. Consider the input
word

w1 = [?n1 [?n2 . . . [?nN [?mN+1 ]?mN ] · · · ?m1 ] ?m0 [

(where each bracket is matched, except the last opening bracket). Notice that stars(w1)
equals to the sum of all n1 and mi, so A after reading w1 has to store all these numbers in
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n1 n2 nN ...mN+1 mN... m0[ [[ [ [ ] ] ][

Figure 1: The stack of a 1-DPDA after reading word w1

its stack. Thus it first stores the number n1 on the stack (by repeating some stack symbol
n1 times), then it can mark that there was an opening bracket, then it stores n2, and so
on (see Figure 1); none of these numbers can be removed later. Now consider the prefix
w1,i of w1, which is cut just after the i-th closing bracket. Since A is deterministic, the
stack at the end of w1,i looks similarly: it is just shorter, but for sure it ends to the right of
the vertical line, which denotes the stack size after the last opening bracket. We see that
stars(w1,i) = n1 + · · · + nN−i. Thus when A sees a ] after w1,i, it has to remove (ignore)
the numbers above nN−i, and sum the rest. In particular it passes the vertical line in some
state qi. We see that for each i, at the moment of crossing this line the stack is the same
(everything to the right of the line is removed), only the state qi can differ. So in fact each
qi has to be different, since for each i we expect a different behavior. This is a contradiction
when N is greater than the number of states.

It follows that A is of order at least 2, and while reading w1 at some moment a push2

has to be performed, where in the topmost 1-stack we don’t remember some of the numbers
ni or mi (for example to recognize w1 after each ] we can perform a push2 and remove a
fragment of the 1-stack so that the matching opening bracket is on the top). But now we
can consider the word

w2 = w1 ?
n′1 w1 ?

n′2 . . . w1 ?
n′N w1?

m′N+1 ]?m
′
N ] · · · ?m′1 ] ?m

′
0 [ ,

where the numbers ni,mi in each copy of w1 are independent (so in fact each w1 is a different
word). Notice that each w1 ends by an unmatched opening bracket; they are matched by the
closing brackets at the end of w2. We can now almost repeat the previous reasoning. First,
stars(w2) equals to the sum of all numbers so they all have to be kept on the stack. Then,
we draw a line after reading the last w1 (that is, separating the 1-stacks created before that
moment from those created later). By the order-1 argument, some number from each w1 is
not present in the topmost 1-stack after reading this w1, so it cannot be present above the
line. Next, for each i we try to end the word already after the i-th closing bracket (among
those at the end of w2, not those inside words w1). When we have a ] after each of these
prefixes, we have to go below the line and behave differently (include a different subset of
those values which are not present above the line), so we have to cross the line in different
states. This is again a contradiction when N is greater than the number of states. By
induction we can continue like this, and nesting the words wn again we can show that for
each order of the DPDA there is a problem.

Although the above idea of the proof looks simple, formalizing it is not straightforward.
We have to deal with the following issues:

(1) Above we have argued why an 1-DPDA cannot deal correctly with the word w1.
But in fact we should consider any n-DPDA, and prove that it is impossible that
it stores all numbers from w1 inside one 1-stack. Then there arises a problem that
when crossing “the line” it is no longer true that the stack can only be of one form.
Indeed, the topmost 1-stack has one fixed form, but we can cross the line in a copy
of this 1-stack, with anything below this 1-stack. And even we can cross the line
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multiple times, in several copies of the 1-stack. Thus it is no longer true that the
number of states gives the number of ways in which we can visit a substack. The
ways of visiting a substack will be described by types of stacks, defined in Section
7. The key point is that there will be finitely many types for a fixed DPDA.

(2) Where exactly is a number stored in a stack? And where exactly “the line” should
be placed? This is not sharp, since a DPDA may delay some stack operations by
keeping information in its state, as well as it may temporarily create some fancy
redundant structures on the stack, which are removed later in the run. To deal
with this issue, in Section 8 we define milestone configurations. Intuitively, these
are configurations in which no additional garbage is present on the stack.

(3) Finally, why it will be wrong when, while reading the ] symbols, the automaton will
not visit a place where there is stored a number which is a part of stars(·)? Maybe,
accidentally, this number is equal to some other amount in the stack. Or maybe it
was propagated to some other region on the stack by some involved manipulations.
To overcome this difficulty, in Section 9 we prove a pumping lemma. It allows to
change any of the numbers in the input word, without altering too much the whole
stack. If some number (included in stars(·)) is changed, the DPDA has to enter
the part of the stack changed by the pumping lemma; otherwise it will incorrectly
accept after the same number of the ] symbols for two words with different stars(·).

6. The History Function, and Special Runs

We begin this section by defining positions and the history function. Then we define two
classes of runs which are particularly interesting for us, namely k-upper runs, and k-returns.

A position is a vector x = (xn, xn−1, . . . , x1) of n positive integers. The symbol at
position x in a configuration c (which is an element of the stack alphabet) is defined in the
natural way (we take the xn-th (n − 1)-stack of π2(c), then its xn−1-th (n − 2)-stack, and
so on; elements of stacks are numbered from bottom to top). We say that x is a position of
c if at position x there is a symbol in c.

For any run R and any position y of R(|R|), we define a position hist(R, y). Intuitively,
hist(R, y) is the (unique) position of R(0), from which the symbol was copied to y in R(|R|).
Precisely, hist(R, y) = y when |R| = 0. For a longer run R = S ◦T with |T | = 1 we define it
by induction. We take hist(R, y) = hist(S, y) if the last transition of R is read or performs

pop, as well as if the transition performs pushk and y is not in the topmost (k− 1)-stack of

R(|R|). If the last transition of R performs pushk and y is in the topmost (k − 1)-stack of
R(|R|), then hist(R, y) = hist(S, z), where z is equal to y with the (n− k+ 1)-th coordinate
decreased by 1 (i.e., z is the position of T (0) from which a symbol was copied to y). Notice
that (for technical convenience) hist works in this way also for the topmost position.

We observe that if two positions x and y of R(|R|) are in the same k-stack, for some
k, then their histories hist(R, x) and hist(R, y) are also in the same k-stack. Moreover, if x
is a position of the bottommost symbol in some k-stack, then hist(R, x) as well. Thus to
trace a history of a k-stack it is convenient to look at the history of its bottommost element.
For k ∈ [0, n], by topk(c) we denote the position of the bottommost symbol of the topmost
k-stack of c. In particular top0(c) is the topmost position of c.

For k ∈ [0, n], we say that a run R is k-upper if hist(R, topk(R(|R|))) = topk(R(0)); let
upk be the set of all such runs. Intuitively, a run R is k-upper when the topmost k-stack of
R(|R|) is a copy of the topmost k-stack of R(0), but possibly some changes were made to
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Table 1: Stack contents of the example run, and subruns being k-upper runs and k-returns

j π2(R(j)) {i : R�i,j ∈ up0} {i : R�i,j ∈ up1} {i : R�i,j ∈ ret1} {i : R�i,j ∈ ret2}
0 [ab][cd] {0} {0} ∅ ∅
1 [ab][cd][ce] {0, 1} {0, 1} ∅ ∅
2 [ab][cd][c] {2} {0, 1, 2} {0, 1} ∅
3 [ab][cd] {0, 3} {0, 3} ∅ {1, 2}
4 [ab][c] {4} {0, 3, 4} {0, 3} ∅
5 [ab][cd] {4, 5} {0, 3, 4, 5} ∅ ∅
6 [ab][c] {4, 6} {0, 3, 4, 5, 6} {5} ∅

it. Notice that upn contains all runs, upk ⊆ upl for k ≤ l, and for a run R ◦ S with S ∈ upk

it holds R ∈ upk ⇐⇒ R ◦ S ∈ upk.
For k ∈ [1, n], a run R is a k-return if

• hist(R, topk−1(R(|R|))) is the bottommost position of the second topmost (k − 1)-
stack2 of R(0), and
• R�i,|R| 6∈ upk−1 for all i ∈ [0, |R| − 1].

Let retk be the set of k-returns. Observe that retk ⊆ upk. Intuitively, R is an r-return when
the topmost r-stack of R(|R|) is obtained from the topmost r-stack of R(0) by removing its
topmost (r − 1)-stack (but not only in the sense of contents, but we require that really it
was obtained this way).

Example 6.1. Consider a DPDA of order 2. Below, brackets are used to group symbols in
one 1-stack. Consider a run R of length 6 in which π2(R(0)) = [ab][cd], and the operations
between consecutive configurations are:

push2
e, pop

1, pop2, pop1, push1
d, pop

1.

Recall that our definition is that a push of any order can change the topmost stack symbol.
The contents of the stacks of the configurations in the run, and subruns being k-upper
runs and k-returns are presented in Table 1. Notice that R is not a 1-return. In config-
uration R(0) symbol a is at position (1, 1) and symbol b is at position (1, 2). We have
hist(R�0,5, (2, 2)) = (2, 1). Notice that positions y in S(|S|) and hist(S, y) in S(0) do not
necessarily contain the same symbol, as for example at position (2, 2) in R(5) we have d
and at position (2, 1) in R(0) we have c.

6.1. Basic Properties of Runs. Next we state several easy propositions, which are useful
later, and also give more intuition about the above definitions.

Proposition 6.2. Let R be a k-upper run (where k ∈ [0, n]) such that R�i,|R| 6∈ upk for

each i ∈ [1, |R| − 1]. Then either

• the topmost k-stacks of R(0) and R(|R|) are equal; additionally for every position
x in the topmost k-stack of R(|R|), hist(R, x) is the corresponding position in the
topmost k-stack of R(0), or
• |R| = 1 and the only transition of R performs popr for r ≤ k, or pushrγ for r ≤ k.

2By the second topmost (k−1)-stack we always mean the (k−1)-stack just below the topmost (k−1)-stack,
in the same k-stack; in particular we require that the topmost k-stack has size at least 2.
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Proof. For |R| ≤ 1 we immediately fall into one of the possibilities. Otherwise, we look at
the history of the topmost k-stack of R(|R|). It is covered by the first operation of R, and
then it is not the topmost k-stack until R(|R|). Thus it remains unchanged (we have the
first possibility).

Next, we give four propositions about k-upper runs and k-returns.

Proposition 6.3. Let R be a k-upper run, where k ∈ [1, n]. Then R is (k−1)-upper if and
only if the size of the topmost k-stack of R(0) is not greater than the size of the topmost
k-stack of R(i) for each i ∈ [0, |R|] such that R�i,|R| ∈ upk.

Proposition 6.4. Let S ◦T be a (k− 1)-upper run in which T is k-upper, where k ∈ [1, n].
Then S is (k − 1)-upper.

Proposition 6.5. Let R be a run such that R�0,|R|−1 ∈ upk−1 and R�|R|−1,|R| ∈ upk, but

R 6∈ upk−1 (where k ∈ [1, n]). Then R is a k-return.

Proposition 6.6. Let R be a k-return, where k ∈ [1, n]. Then the topmost k-stack of R(0)
after removing its topmost (k−1)-stack is equal to the topmost k-stack of R(|R|). Addition-
ally for every position x in the topmost k-stack of R(|R|), hist(R, x) is the corresponding
position in the topmost k-stack of R(0).

Proof of Propositions 6.3-6.6. In all four propositions we have an k-upper run R, where
k ∈ [1, n] (where for Proposition 6.4 we take R = S ◦ T ). Let X denote the set of those
indices i ∈ [0, |R|] for which R�i,|R| is k-upper. For i ∈ X, let ri be the size of the topmost

k-stack of R(i), and let yi(r) be the bottommost position of the r-th (k − 1)-stack in the
topmost k-stack of R(i) (for r ∈ [1, ri]). We will see that for each i ∈ X and each r ∈ [1, ri]
it holds

hist(R�0,i, yi(r)) = y0

(
min({r} ∪ {rl : l ∈ X ∧ l < i})

)
. (6.1)

We prove (6.1) by induction on i. For i = 0 it is true. For the induction step consider the
smallest j ∈ X which is greater than i. The subrun R�i,j is in one of the forms described
by Proposition 6.2. For both of them we see that for each r ∈ [1, rj ] it holds

hist(R�i,j , yj(r)) = yi(min{r, ri}).
Together with the induction assumption for i, this implies equality (6.1) for j.

Observe that R is (k − 1)-upper if and only if hist(R, y|R|(r|R|)) = y0(r0). As we see
from (6.1), the right side holds if and only if r0 ≤ ri for each i ∈ X. This proves Proposition
6.3.

In order to prove Proposition 6.4, we suppose that R is (k− 1)-upper. Using the above
property, r0 ≤ ri for each i ∈ X. But R�i,|R| can be k-upper only for i ∈ X. Thus the same

property for S implies that S is (k − 1)-upper, as required.
As above, the assumptions of Proposition 6.5 imply that r0 ≤ ri for each i ∈ X \ {|R|},

but not for each i ∈ X. It follows that r0 = r|R|−1 = r|R|+ 1, since |r|R|−1− r|R|| ≤ 1. From
(6.1) we deduce that R is a k-return.

Finally suppose that R is a k-return. By the above, if R�i,|R| is not (k − 1)-upper for
some i ∈ X, then ri > rj for some j ∈ X such that j > i. By definition R�i,|R| is not

(k − 1)-upper for each i ∈ X \ {|R|}, thus ri > r|R| for each i ∈ X \ {|R|}. Thus equation
(6.1) implies that hist(R, y|R|(r)) = y0(r) for each r ∈ [1, r|R|]; moreover the history of
y|R|(r) never in the duration of R landed in the topmost (k − 1)-stack. It means that the
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topmost k-stack of R(|R|) consists of the r|R| bottommost (k − 1)-stacks of the topmost
k-stack of R(0), also in the sense of the history function. By the definition of a k-return,
hist(R, y|R|(r|R|)) = y0(r0 − 1), so r|R| = r0 − 1.

6.2. Characterization of Returns and Upper Runs. Next we give two lemmas, which
describe possible forms of upper runs and returns.

Proposition 6.7. A run R is k-upper (where k ∈ [0, n]) if and only if

(1) |R| = 0, or
(2) |R| = 1, and the only transition of R is read, or performs pushrγ for any r, or popr

for r ≤ k, or
(3) the first transition of R performs pushrγ for r ≥ k+ 1, and R�1,|R| is an r-return, or

(4) R is a composition of two nonempty k-upper runs.

Proof. The right-to-left implication is almost immediate; in Case (3) we use Proposition
6.6.

Concentrate on the left-to-right implication. If |R| = 0, then we have Case (1). Suppose
that |R| ≥ 1. Notice that the first transition, between R(0) and R(1), cannot perform popr

for r ≥ k + 1, as such operation removes the topmost k-stack of R(0), which contradicts
with the assumption that R is k-upper. Thus, if |R| = 1, then we have Case (2). Suppose
that |R| ≥ 2. If the first transition is read, or performs popr for r ≤ k, or pushrγ for r ≤ k,
then both R�0,1 and R�1,|R| are k-upper; we have Case (4). We can do the same when the
operation is pushrγ for r ≥ k + 1 and R�1,|R| is k-upper.

The remaining case is that the first operation is pushrγ for r ≥ k + 1 and R�1,|R| is

not k-upper. Notice that hist(R�0,1, y) = topk(R(0)) holds only for y = topk(R(1)) and

y = topk(R(0)). So, because R is k-upper and R�1,|R| is not k-upper, which by definition

means that hist(R, topk(R(|R|))) = topk(R(0)) and hist(R�1,R, top
k(R(|R|))) 6= topk(R(1)),

it has to be hist(R�1,R, top
k(R(|R|))) = topk(R(0)). Thus also hist(R�1,R, top

r−1(R(|R|))) =

topr−1(R(0)), which is the bottommost position of the second topmost (r − 1)-stack of
R(1). Let j be the smallest positive index for which R�j,|R| is (r − 1)-upper. Then

hist(R�1,j , top
r−1(R(j))) = topr−1(R(0)) and there is no i ∈ [1, j − 1] such that R�i,j is

(r − 1)-upper. Thus R�1,j is an r-return. If j = |R|, then we have Case (3). Suppose that
j < |R|. By Proposition 6.6, the only position y in the topmost (r − 1)-stack (even in the
topmost r-stack) of R(j) for which hist(R�0,j , y) = topk(R(0)) is y = topk(R(j)). Thus

R ∈ upk, and R�j,|R| ∈ upr−1 implies that R�j,|R| ∈ upk; we have Case (4).

Proposition 6.8. A run R is an r-return (where r ∈ [1, n]) if and only if

(1) |R| = 1, and the only transition of R performs popr, or

(2) the first transition of R is read, or performs popk for k < r, or pushkγ for k 6= r, and
R�1,|R| is an r-return, or

(3) the first transition of R performs pushkγ for k ≥ r, and R�1,|R| is a composition of a
k-return and an r-return.

Proof. Let us analyze the right-to-left implication, which is easier. Case (1) is trivial. In
Case (2) we observe that for y being the bottommost position of the second topmost (r−1)-
stack of R(1), also hist(R�0,1, y) is the bottommost position of the second topmost (r − 1)-

stack of R(0) (it is important that k 6= r in the case of pushkγ). Thus hist(R, topr−1(R(|R|)))
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is the bottommost position of the second topmost (r − 1)-stack of R(0). Of course such
R is not (r − 1)-upper. Thus R is an r-return. In Case (3), let i be the length of the
first return, plus one (so the k-return ends in R(i)). Recall that k ≥ r. By Proposition
6.6, for y being the bottommost position of the second topmost (r − 1)-stack of R(i), also
hist(R�0,i, y) is the bottommost position of the second topmost (r− 1)-stack of R(0). Thus

hist(R, topr−1(R(|R|))) is the bottommost position of the second topmost (r − 1)-stack of
R(0). Of course R us not (r − 1)-upper. If R�j,|R| is (r − 1)-upper for some j ∈ [1, i], then

hist(R�j,i, y) = topr−1(R(j)) for y being the bottommost position of the second topmost
(r − 1)-stack of R(i). This implies that R�j,i is (k − 1)-upper (both for k > r and k = r),
which is impossible, as the R�1,i is a k-return. We conclude that R is an r-return.

Concentrate now on the left-to-right implication. Of course |R| ≥ 1. Notice that
the first operation, between R(0) and R(1), cannot be popk for k ≥ r + 1, as such op-
eration removes the topmost r-stack of R(0), which contradicts with the assumption that
hist(R, topr−1(R(|R|))) is in the topmost r-stack of R(0).

Suppose that the first operation of R is popr. In this situation hist(R�0,1, y) is the

bottommost position of the second topmost (r − 1)-stack of R(0) only if y = topr−1(R(1)).
Hence, because R is an r-return, hist(R�1,|R|, top

r−1(R(|R|))) = topr−1(R(1)), which means

that R�1,|R| is (r − 1)-upper. Thus |R| = 1; we have Case (1).

Next, suppose that the first operation is read, or popk for k ≤ r−1, or pushkγ for k ≤ r−1.
In this situation hist(R�0,1, y) is the bottommost position of the second topmost (r−1)-stack
of R(0) only if y is the bottommost position of the second topmost (r − 1)-stack of R(1).
Thus, because R is an r-return, hist(R�1,|R|, top

r−1(R(|R|))) is the bottommost position of

the second topmost (r − 1)-stack of R(1), so R�1,|R| is an r-return; we have Case (2).

Finally, suppose that the first operation of R is pushkγ for k ≥ r. Let s be the size of the
topmost k-stack of R(0). For each i ∈ [1, |R|] we look at the size of the k-stack containing
hist(R�i,|R|, top

r−1(R(|R|))). Recall that hist(R, topr−1(R(|R|))) is in the topmost k-stack

of R(0), so for i = 1 this is also the topmost k-stack and its size is s + 1. Suppose first
that this size is at least s + 1 for each i. Then R�1,|R| is (k − 1)-upper (Proposition 6.3).

Because R is an r-return, we know that R�1,|R| is not (r − 1)-upper (of course |R| > 1), so

k 6= r (in fact k > r). As R�1,|R| is (k−1)-upper, we know that hist(R�1,|R|, top
r−1(R(|R|)))

is in the topmost (k − 1)-stack of R(1), so it is the bottommost position of the second
topmost (r − 1)-stack of R(1). It follows that R�1,|R| is an r-return, and k 6= r (Case

(2)). The opposite possibility is that for some i ∈ [1, |R|], the size of the k-stack containing
hist(R�i,|R|, top

r−1(R(|R|))) becomes s. Fix the first such i. Then R�j,i is not (k− 1)-upper

for each j ∈ [1, i − 1] (Proposition 6.3), and hist(R�1,i, top
k−1(R(i))) is the bottommost

position of the second topmost (k − 1)-stack of R(1), thus the R�1,i is a k-return. By
Proposition 6.8, if hist(R�0,i, y) is the bottommost position of the second topmost (r − 1)-
stack of R(0), and if y is in the topmost k-stack, then it y has to be the bottommost position
of the second topmost (r − 1)-stack of R(i). Because the size of the k-stack containing
hist(R�i,|R|, top

r−1(R(|R|))) has changed size between R(i − 1) and R(i), it has to be the

topmost k-stack, so necessarily hist(R�i,|R|, top
r−1(R(|R|))) is the bottommost position of

the second topmost (r − 1)-stack of R(i). Thus R�i,|R| is an r-return.
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7. Types and Sequence Equivalence

In this section we assign to each configuration a type from a finite set. The slogan is that
configurations with the same topmost k-stacks and the same type are starting points of
similar k-upper runs. We start by an example.

Example 7.1. Consider a 3-DPDA that (while being in some state) can perform the
following 1-upper run: it executes pop1, push3, and then it starts analyzing the topmost
2-stack using pop1 and pop2; when a 0-stack containing a fixed stack symbol a is found, the
automaton performs pop3; the run ends in the same state as it begins. As an effect of this
run, the topmost 0-stack is removed, so this is indeed an 1-upper run. Notice that it can
be executed only when the topmost 2-stack contains the a symbol, and can be repeated as
long as the topmost 1-stack is nonempty. Consider now two configuration of this 3-DPDA,
having the same topmost 1-stack. If additionally the topmost 2-stack of both configuration
contains the a symbol, then from each of them we can start the 1-upper run described
above, and repeat it the same number of times.

Because a 1-upper run can arbitrarily modify the topmost 1-stack, we consider config-
urations having the same topmost 1-stack. The rest of the stack will be summed up in a
small piece of information, called type. In this example we only need to know whether there
is the a symbol in the topmost 2-stack (below the topmost 1-stack). In general, whenever
a 3-DPDA removes the topmost 1-stack and starts analyzing the stack below, next it has
to remove the whole topmost 2-stack (since we consider a 1-upper run). Thus for each
entering state (i.e. the state when removing the topmost 1-stack) we only need to know
the exit state (i.e. the state when removing the topmost 2-stack). For higher orders the
situation is slightly more complicated, but similar.

There is also a second goal of this section. Suppose that we have a sequence of con-
figurations, all having the same topmost k-stack and the same type. Then, as said above,
from each of then we can execute a similar k-upper run. But, typically, these k-upper runs
will be prefixes of some accepting runs. We want to determine whether such accepting runs
can read an unbounded number of ] symbols, or not. (For technical reasons, we consider
n-returns instead of accepting runs.)

For this section we fix an n-DPDA A with stack alphabet Γ, state set Q, and input
alphabet A that contains a distinguished symbol ]. Moreover we fix a morphism ϕ : A∗ →M
into a finite monoid M . For a run R reading a word w, by ϕ(R) we denote ϕ(w), and by ](R)
we denote the number of sharps in w. The goal of the morphism is to describe when two
upper runs read a similar word: we want to distinguish input words evaluating to different
elements of M .

Recall that when both R ◦ S and S are k-upper runs, then R is k-upper as well. It
follows that any nonempty k-upper run R can be uniquely represented as a composition
of the maximal number of nonempty k-upper runs R1 ◦ · · · ◦ Rr: we keep on cutting off
suffixes which are k-upper (notice that infixes or even prefixes of Ri can be k-upper, but
suffixes do not). We will be comparing k-upper runs using the following definition of being
(k, ϕ)-parallel.

Definition 7.2. Let R = R1◦· · ·◦Rr and S = S1◦· · ·◦Ss be k-upper runs decomposed into
the maximal number of nonempty k-upper runs. We say that R and S are (k, ϕ)-parallel
when r = s, and for each i ∈ [1, r] it holds ϕ(Ri) = ϕ(Si) and the topmost k-stacks of Ri(0)
and Si(0) are equal, as well as the topmost k-stacks of Rr(|Rr|) and Sr(|Sr|). Additionally
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two runs R, S of length 0 are (k, ϕ)-parallel when the topmost k-stacks of R(0) and S(0)
are equal. When saying that two runs are (k, ϕ)-parallel we implicitly mean that they are
k-upper.

Notice that if runs R and S are (k, ϕ)-parallel, and R is divided in any way into k-upper
runs R = R′1◦· · ·◦R′m, then S can be as well divided into k-upper runs S = S′1◦· · ·◦S′m such
that for each i ∈ [1,m] it holds ϕ(R′i) = ϕ(S′i) and the topmost k-stacks of R′i(0) and S′i(0)
are equal, as well as the topmost k-stacks of R′m(|Rm|) and Sm(|Sm|). Indeed, on one hand,
each nonempty R′i can be further subdivided into k-upper runs of the finest decomposition.
On the other hand, for each empty R′i we can insert an empty S′i into the sequence for S.

As already mentioned, to each configuration c we will assign its (A, ϕ)-type (simply
called type when A and ϕ are fixed), that comes from a finite set. Before giving a definition,
we state two theorems which describe required properties of our types.

Theorem 7.3. Let R be a k-upper run, where k ∈ [0, n], and let c be a configuration having
the same (A, ϕ)-type and the same topmost k-stack as R(0). Then from c we can start a
run that is (k, ϕ)-parallel to R.

Beside of types, we will also define an equivalence relation over infinite sequences of
configurations of A, called (A, ϕ)-sequence equivalence, which has finitely many equivalence
classes. The goal is to specify whether the number of ] symbols read by a run constructed
in Theorem 7.3 is big or small. However instead of having “big” and “small” numbers, we
say whether their sequence is bounded or unbounded. This is made precise in the following
theorem.

Theorem 7.4. Let R ◦ R′ be a run in which R is k-upper and R′ is an n-return, where
k ∈ [0, n]. Let c1, c2, . . . and d1, d2, . . . be infinite sequences of configurations which are
(A, ϕ)-sequence equivalent, and in which all configurations have the same (A, ϕ)-type and
the same topmost k-stack as R(0). Then for each i there exist runs Si ◦ S′i from ci, and
Ti ◦T ′i from di in which Si and Ti are (k, ϕ)-parallel to R, and S′i and T ′i are n-returns such
that ϕ(S′i) = ϕ(T ′i ) = ϕ(R′), and such that either the sequences ](S1 ◦ S′1), ](S2 ◦ S′2), . . .
and ](T1 ◦ T ′1), ](T2 ◦ T ′2), . . . are both bounded, or both unbounded.

The n-returns in Theorem 7.4 should be understood as accepting runs. Indeed, in
Section 10 we increase by 1 the order of an arbitrary (n − 1)-DPDA, and we add a popn

operation just before reaching an accepting state; after such modification, a run is accepting
if and only if it is an n-return. This trick is performed only for uniformity of presentation:
instead of considering accepting runs as a separate concept, we see them as a special case
of returns (and returns are used anyway).

One may be puzzled by the fact that Theorem 7.3 talks about a k-upper run, while
Theorem 7.4 about a k-upper run composed with an n-return. This difference is application-
driven: the first theorem needs to be used without an n-return, while the second one with
an n-return. In fact Theorem 7.3 is true also with an n-return at the end, and Theorem 7.4
also without an n-return.

Example 7.5. Consider the 3-DPDA and the 1-upper run from Example 7.1, with the
difference that now whenever a b symbol is removed from the stack during the analyzes of
the topmost 2-stack, the DPDA reads the ] symbol from the input. Additionally suppose
that when the topmost 1-stack becomes empty (a bottom-of-stack symbol is uncovered), the
DPDA performs pop3; this pop3 will serve as the 3-return R′. Then basically we need two
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equivalence classes of sequences of configurations (recall that only for sequences with the
same topmost 1-stack the relation is meaningful): such that the number of b symbols in the
topmost 2-stacks in the configurations is bounded, and such that this number is unbounded.
Depending on this fact, the runs will read a bounded or unbounded number of sharps. Of
course in general we need more classes than just two (“bounded” and “unbounded”), because
e.g. another 1-upper run (having a different image under ϕ) might read one sharp per each
c symbol found on the stack (instead of the b symbols).

The rest of this section is devoted to defining types and sequence equivalence, and
proving Theorems 7.3 and 7.4. This is independent from the rest of the paper.

7.1. Definition of Types. The types considered here are similar to stack automata from
e.g. [2], as well as to intersection types of Kobayashi (e.g. [13]). Notice however that we
extend them by a productive/nonproductive flag, which is not present there. This flag is
essential for our proof, since we want to estimate the number of ] symbols read by our runs,
not just to determine existence of some kind of runs. On the other hand in [20] we were
using types that were directly describing returns (while here returns correspond to using an
assumption); these types were more complicated.

We will be labeling stacks by run descriptors. To label a k-stack sk, where k ∈ [0, n],
we can use a run descriptor from a set T k. The sets T k are defined inductively as follows:

T k = Q× P(M × T n)× P(M × T n−1)× · · · × P(M × T k+1)× {np, pr},
where P(X) denotes the power set of X. We use lowercase Greek letters (σ, τ, . . . ) to
denote elements of T k, uppercase Greek letters (Ψ,Φ, . . . ) to denote subsets of M × T k,
and uppercase Greek letters with a tilde (Ψ̃, Φ̃, . . . ) to denote subsets of T k; to all of them
we often attach k in superscript.

A run descriptor in T k is of the form σ = (p,Ψn,Ψn−1, . . . ,Ψk+1, f). Such run descrip-
tor σ assigned to some k-stack sk describes a run which starts in a configuration with state
p and topmost k-stack sk. It “can be used” only when the stack tn : tn−1 : · · · : tk+1 : sk

in this configuration is such that for each i ∈ [k + 1, n] to the i-stack ti we have assigned
π2(Ψi). As expected, an assumption (m, τ) ∈ Ψi will be used when the stack ti will be
uncovered. The run descriptor τ also describes a run from such configuration d; it will be
used as a suffix of the run from c = (p, tn : tn−1 : · · · : tk+1 : sk). The run from c to d
which uncovers ti is an i-return. The monoid element in m describes the word w read by
the return: m = ϕ(w).

There is also the f component of σ; it says whether the run descriptor is productive
(pr) or nonproductive (np). Intuitively, the run descriptor σ is productive if sk is itself
responsible for reading some ] symbols. It means that either some reading of a ] symbol is
performed “inside sk”, or some productive assumption from some Ψi is used at least twice
(which also increases the number of ] symbols read, since some reading described by this
productive assumption will be repeated). Thanks to this flag, we can estimate the number
of ] symbols read, by calculating the number of productive run descriptors used.

We slowly come to the definition of types, before which we need some auxiliary notions.
By Tnp and Tpr we denote the subsets of

⋃
0≤k≤n T k having respectively np or pr on the last

coordinate. For m ∈M and Ψ ⊆M×T k we use the notation m◦Ψ for {(m·m′, σ) : (m′, σ) ∈
Ψ}. Having a run descriptor σ = (p,Ψn,Ψn−1, . . . ,Ψk+1, f), for i ∈ [k + 1, n] by assi(σ) we
denote the set of assumptions Ψi, and by redi(σ) we denote the “reduced” run descriptor
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(p,Ψn,Ψn−1, . . . ,Ψi+1, g) ∈ T i in which g = np if and only if f = np and π2(Ψj) ⊆ Tnp for
each j ∈ [k + 1, i]; to p we refer as the state of σ.

We first define a composer, which is used to compose run descriptors corresponding to
smaller stacks into run descriptors corresponding to greater stacks.

Definition 7.6. Consider a tuple (Φk,Φk−1 . . . ,Φl; Ψk; f), where 0 ≤ l < k ≤ n, Φi ⊆
M×T i for each i ∈ [l, k], Ψk ⊆M×T k, and f ∈ {np, pr}. Such a tuple is called a composer
if:

• Φi =
⋃
{m ◦ assi(σ) : (m,σ) ∈ Φl} for each i ∈ [l + 1, k],

• Ψk = {(m, redk(σ)) : (m,σ) ∈ Φl}, and |π2(Ψk)| = |π2(Φl)| (which means that each

σ ∈ π2(Φl) gives a different redk(σ)), and
• f = np if and only if π2(assi(σ)) ∩ π2(assi(τ)) ⊆ Tnp for each i ∈ [l + 1, k] and each

σ, τ ∈ π2(Ψl) such that σ 6= τ .

Next, we define when a run descriptor σ from T 0 can be assigned to a 0-stack γ. This
is the case when we can derive a statement γ ` σ, that is when there exists a derivation
tree for γ ` σ. In such situation, γ ` σ is called the conclusion of the derivation tree D,
and σ is called the run descriptor of D and is denoted rd(D).

Definition 7.7. We define the set of derivation trees as the smallest set satisfying the
following conditions. Let p be a state, and γ a 0-stack.

(1) A pair (γ, p) is a derivation tree for γ ` (p, ∅, ∅, . . . , ∅, np).
(2) Suppose that δ(γ, p) = read(~q) and that D′ is a derivation tree for γ ` τ , where the

state of τ is ~q(a) for some a ∈ A. Denote Φi = ϕ(a) ◦ assi(τ) for i ∈ [1, n]. Then
(p,D′) is a derivation tree for γ ` (p,Φn,Φn−1, . . . ,Φ1, f), where f = np if and only
if τ ∈ Tnp and a 6= ].

(3) Suppose that δ(γ, p) = (q, popk), and that τk ∈ T k is a run descriptor with state q.
Then (γ, p, τk) is a derivation tree for

γ ` (p, assn(τk), assn−1(τk), . . . , assk+1(τk), {(1M , τk)}, ∅, . . . , ∅, np).

(4) Suppose that δ(γ, p) = (q, pushkα), and that D′ is a derivation tree for α ` τ ,
where the state of τ is q. Denote Ψi = assi(τ) for i ∈ [1, n]. Suppose also that
(Φk,Φk−1, . . . ,Φ0; Ψk; f) is a composer, and D is a set of derivation trees, all having
the stack element γ in their conclusion, and such that {rd(E) : E ∈ D} = π2(Φ0)
and |D| = |π2(Φ0)|. Let

Υi =

 Ψi for i ∈ [k + 1, n],
Φi for i = k,
Ψi ∪ Φi for i ∈ [1, k − 1].

Then (γ, p,D′,D) is a derivation tree for γ ` (p,Υn,Υn−1, . . . ,Υ1, g), where g = np
if and only if f = np and {τ} ∪ π2(Φ0) ⊆ Tnp and π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each
i ∈ [1, k − 1].

The depth of a derivation tree D, denoted depth(D), is defined naturally: it is 0 in
Cases (1) and (3), 1 + depth(D′) in Case (2), and 1 + max(depth(D′),maxE∈D depth(E)) in
Case (4).

Notice that in Case (4), the composer is uniquely determined by the derivation tree.
Indeed, Ψk and π2(Φ0) are fixed by D′ and D; the set Φ0 has to contain those pairs

(m, τ) ∈M × π2(Φ0) for which (m, redk(τ)) ∈ Ψk, and Φ0 fixes all other Φi.
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We will annotate our stack using sets of derivation trees. An annotated k-stack is a
k-stack over an extended alphabet, whose elements are pairs (γ,D), where γ ∈ Γ and D
is a set of derivation trees having conclusions with the stack symbol γ, and different run
descriptors (that is, rd(D) = rd(E) for D,E ∈ D implies D = E). Annotated stacks will
be denoted using boldface letters, often with their order written in the superscript: s0, t5,
etc. The projection of each letter in an annotated k-stack sk into the Γ coordinate will be
denoted by st(sk).

We also define the type of an annotated k-stack, which is a subset of T k:
type((γ,D)) = {rd(D) : D ∈ D}, type([ ]) = ∅,

type(sk : sk−1) = {redk(σ) : σ ∈ type(sk−1)}.
We always want to annotate stacks in a consistent way. Intuitively, when a run descrip-

tor assigned to some stack element requires some assumptions, then the part of the stack
which is below has to deliver annotations fulfilling this assumption. Moreover, all annota-
tions have to be useful. To formalize this, we define below when an annotated k-stack sk is
well-formed (in the sequel we only consider well-formed annotated stacks).

Definition 7.8. Each annotated 0-stack, and the empty annotated k-stack for each k ≥ 1,
are always well-formed. An annotated k-stack sk : sk−1 is well-formed if both sk and sk−1 are
well-formed, and type(sk) =

⋃
σ∈type(sk−1) π2(assk(σ)), and |type(sk : sk−1)| = |type(sk−1)|.

An annotated stack s is called singular if |type(s)| = 1. When an annotated n-stack sn

is singular, we define conf(sn) to be the configuration (q, st(sn)), where q is the state of the
only run descriptor in type(sn).

It is useful to have a notation for the topmost k-stack of an annotated stack s; we denote
it as topk(s), hoping that it will not be confused with topk(c), the bottommost position of
the topmost k-stack in a configuration c.

As the type of a configuration c, denoted typeA,ϕ(c), we take the union of type(top0(sn))
over all well-formed singular annotated n-stacks sn such that conf(sn) = c,

typeA,ϕ(c) =
⋃
{type(top0(sn)) : sn well-formed, conf(sn) = c}.

We see a direct connection between the well-formedness property and composers.

Proposition 7.9. Let 0 ≤ l < k ≤ n, let s = sk : sk−1 : · · · : sl be an annotated k-stack
in which each si is well-formed, and let Ψk ⊆ M × T k. The following two conditions are
equivalent:

• there exists a composer (Φk,Φk−1, . . . ,Φl; Ψk; f) such that π2(Φi) = type(si) for each
i ∈ [l, k], and
• s is well-formed and π2(Ψk) = type(s).

Example 7.10. Consider the 1-DPDA A with stack alphabet {a}, state set {q1, q2, q3},
and transitions

δ(q1, a) = (q2, pop
1), δ(q2, a) = (q3, pop

1), δ(q3, a) = (q1, push
1
a),

and the trivial monoid {1}. Denote

γi = (qi, np), σi = (qi, ∅, np) for i ∈ {1, 2, 3},
ρ3 = (q3, {(1, γ3)}, np), τi = (qi, {(1, γi+1)}, np) for i ∈ {1, 2}.
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Then Di = (a, qi) for i ∈ {1, 2, 3} is a derivation tree for a ` σi, and Ei = (a, qi, γi+1)
for i ∈ {1, 2} is a derivation tree for a ` τi, and F3 = (a, q3, E1, {E2}) is a derivation tree
for a ` ρ3. Notice that a ` σ3 can be also derived using derivation trees (a, q3, D1, ∅) and
(a, q3, E1, {D2}). For this 1-DPDA we can derive only nonproductive run descriptors, so
also types of annotated stacks contain only nonproductive run descriptors. For this reason
we cannot use a derivation tree for a ` (q2, {(1, (q3, pr))}, np) in any well-formed annotated
1-stack, although such derivation tree exists. An example well-formed annotated 1-stack is
[(a, ∅), (a, {D3}), (a, {F3}), (a, {E2})], having type {γ2}.

To each nonempty 1-stack s we can add annotations in a well-formed way, so that to
the topmost 0-stack we assign {D1} or {D2} or {D3}, whichever we want. If |s| ≥ 2, then
we can also have there {E1} or {E2} or {F3}. Thus typeA,ϕ((qi, [a])) = {σi} for i ∈ {1, 2, 3},
and for any 1-stack s having at least two a’s, typeA,ϕ((qi, s)) = {σi, τi} for i ∈ {1, 2} and
typeA,ϕ((q3, s)) = {σ3, ρ3}.

When Ψ̃ is a subset of the type of a well-formed annotated k-stack s, we can remove
some of the annotations in s in order to obtain a well-formed annotated k-stack s�

Ψ̃
whose

type is Ψ̃. We do this by induction:

• For k = 0, we restrict the set of derivation trees in s to those trees whose run

descriptor is in Ψ̃.
• The type of the empty stack is empty, so we need not to restrict it in any way.

• For s = sk : sk−1, we restrict sk−1 to the set Φ̃ containing those σ ∈ type(sk−1) for

which redk(σ) ∈ Ψ̃, and we restrict sk to
⋃
σ∈Φ̃

π2(assk(σ)).

7.2. Annotated runs. In this subsection we describe how run descriptors are connected
with runs.

Definition 7.11. Let s = sn : sn−1 : · · · : s0 be a well-formed singular annotated n-stack,
where s0 = (γ, {D}). We define the successor of s.

(1) If D = (γ, p), then s has no successor.
(2) If D = (p,D′), then the successor is sn : sn−1 : · · · : s1 : (γ, {D′}).
(3) If D = (γ, p, τk), then the successor is sn : sn−1 : · · · : sk.
(4) Suppose that D = (γ, p,D′,D). Let α, k, Ψi, Φi be as in Definition 7.7(4). In this

situation, the successor of s is

sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}),

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D).

Comparing this definition with Definitions 7.7 (and using Proposition 7.9 in Case (4)),
we directly see that the successor t of s, if exists, is well-formed, and that conf(t) is a
successor of conf(s) (in the considered automaton). An annotated run R is a sequence
s0, . . . , sm of well-formed singular n-stacks in which si is the successor of si−1 for each
i ∈ [1,m]. By replacing each si by conf(si) we obtain a run st(R).

Notice that an annotated stack s may have less successors than conf(s). Even more:
not every run is of the form st(R) for some annotated run R (this is because the push in
Case (4) leaves the same annotations in the original substack as in the copied substack, up
to a restriction, but later different annotations may be needed in these substacks).
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A priori there might exist an infinite annotated run. As we will see below, this is im-
possible: always after some number of steps we reach an annotated stack with no successors
(Case (1)). Moreover we show that the number of ] symbols read by the run can be esti-
mated by the number of productive run descriptors in the annotations of s. For this reason,
to each well-formed annotated stack s we assign three natural numbers: low(s), high(s),
and len(s). The first two of them will give a lower and an upper bound on the number of ]
symbols read by our run, and the last will give an upper bound on the length of the run.

Definition 7.12. For positive integers m1, . . . ,mk we define pow(m1, . . . ,mk) by induction
on k:

pow() = 1, and pow(m1,m2, . . . ,mk) = (1 +m1)pow(m2,...,mk) − 1.

Definition 7.13. For a well-formed annotated k-stack s we define natural numbers low(s),
high(s), and len(s) by induction on the structure of s.

• If s = (γ,D), we take

low(s) = |type(s) ∩ Tpr|,

high(s) =
∏

D∈D : rd(D)∈Tpr

Cdepth(D), and

len(s) =
∏
D∈D

Cdepth(D),

where Cz is defined inductively:

C0 = 2, and Cz+1 = (2|T 0|)n · (Cz)|T
0|+1.

• We take low([ ]) = 0 and high([ ]) = len([ ]) = 1.
• If s = sk : sk−1, we take

low(s) =
∑

σ∈type(sk−1)

(
low(sk�π2(assk(σ))) + low(sk−1�{σ})

)
,

high(s) =
∏

σ∈type(sk−1)

pow
(
high(sk�π2(assk(σ))), high(sk−1�{σ})

)
, and

len(s) =
∏

σ∈type(sk−1)

pow
(
len(sk�π2(assk(σ))), len(sk−1�{σ})

)
.

Example 7.14. Recall from Example 7.10 the 1-DPDA and the annotated stack s1 =
[(a, ∅), (a, {D3}), (a, {F3}), (a, {E2})]. Its successors are consecutively:

[(a, ∅), (a, {D3}), (a, {F3})],
[(a, ∅), (a, {D3}), (a, {E2}), (a, {E1})],
[(a, ∅), (a, {D3}), (a, {E2})],
[(a, ∅), (a, {D3})],

the last of which has no more successors. It holds low(s1) = 0, high(s1) = 1 (no productive
run descriptors at all), and

len(s1) = pow(pow(pow(1, C0), C1), C0) = 2C0·C1·C0 − 1.
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Example 7.15. Consider the 1-DPDA A with input alphabet {]}, stack alphabet {a},
state set {q1, q2}, and transitions

δ(q1, a) = read(~q) for ~q(]) = q2, δ(q2, a) = pop1(q1),

and the trivial monoid {1}. Then we have four well-formed annotated stacks with conf(si) =
(q1, [aa]):

s0 = [(a, ∅), (a, {D0})] where D0 = (a, q1),

s1 = [(a, ∅), (a, {D1})] where D1 = (q1, (a, q2)),

s2 = [(a, {D0}), (a, {D2})] where D2 = (q1, (a, q2, (q1, np))),

s3 = [(a, {D1}), (a, {D3})] where D3 = (q1, (a, q2, (q1, pr))).

We have type(s0) = {(q1, np)} and type(si) = {(q1, pr)} for i ∈ {1, 2, 3}. The maximal
annotated runs starting in these stacks are of length zero, one (only read), two (read and
pop1) and three (read, pop1 and read). We see that

low(s0) = 0, low(s1) = low(s2) = 1, low(s3) = 2,

high(s0) = 1, high(s1) = high(s2) = pow(1, C1), high(s3) = pow(C1, C1).

The required properties of the three numbers are described by the following lemma.

Lemma 7.16. Let R be an annotated run. It holds

low(R(0)) ≤ ](st(R)) + low(R(|R|)),
high(R(0)) ≥ ](st(R)) + high(R(|R|)), and

len(R(0)) ≥ |R|+ len(R(|R|)).

In our proofs we need some (in)equalities regarding the pow function.

Proposition 7.17. The following is true for all positive integers:

pow(a1, . . . , ak, pow(b1, . . . , bl)) = pow(a1, . . . , ak, b1, . . . , bl), (7.1)

pow(a1, . . . , ak, pow(c0, c1, . . . , cl), b1, . . . , bl) ≤
≤ pow(a1, . . . , ak, c0, b1c1, . . . , blcl), (7.2)

pow(a1, . . . , ai−1, a
x
i , ai+1, . . . , ak−1, ak) ≤ pow(a1, . . . , ak−1, xak) for i < k, (7.3)

pow(a1, . . . , ak−1, ak) + 1 ≤ pow(a1, . . . , ak−1, ak + 1), (7.4)

pow(a1, . . . , ak) · pow(b1, . . . , bk) ≤ pow(a1b1, . . . , akbk). (7.5)

Heading toward the proof of Lemma 7.16, we first observe an auxiliary property.

Proposition 7.18. Let s be a well-formed annotated stack. If type(s) ⊆ Tnp then low(s) = 0
and high(s) = 1; otherwise low(s) ≥ 1 and high(s) ≥ 2.

Proof. By induction on the structure of s; we analyze Definition 7.13. Notice that type(sk :
sk−1) ⊆ Tnp if and only if type(sk) ∪ type(sk−1) ⊆ Tnp, assuming that sk : sk−1 is well-
formed.
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Next, we observe how the functions interplay with composing annotated stacks.

Lemma 7.19. Let 0 ≤ l < k ≤ n, let (Φk,Φk−1, . . . ,Φl; Ψk; f) be a composer, and let
s = sk : sk−1 : · · · : sl be a well-formed annotated k-stack such that type(si) = π2(Φi) for
each i ∈ [l, k]. In this situation

k∑
i=l

low(si) ≤ low(s), (7.6)

k∑
i=l

low(si) < low(s) if f = pr, (7.7)

pow
(
high(sk), high(sk−1), . . . , high(sl+1),

∣∣T 0
∣∣n · high(sl)

)
≥ high(s), (7.8)

pow
(
high(sk), high(sk−1), . . . , high(sl+1), high(sl)

)
≥ high(s) if f = np, (7.9)

pow
(
len(sk), len(sk−1), . . . , len(sl+1),

∣∣T 0
∣∣n · len(sl)

)
≥ len(s). (7.10)

Proof. Directly from Definition 7.13 it follows that for any well-formed annotated stack t
it holds

low(t) =
∑

σ∈type(t)

low(t�{σ}),

high(t) =
∏

σ∈type(t)

high(t�{σ}), and

len(t) =
∏

σ∈type(t)

len(t�{σ}).

Expanding the definition of low, we see that

low(s) = low(sl) +

k∑
i=l+1

∑
σ∈π2(Φl)

low(si�π2(assi(σ))).

For each i ∈ [l + 1, k] it holds type(si) =
⋃
{π2(assi(σ)) : σ ∈ π2(Φl)}, so

low(si) =
∑

τ∈type(si)

low(si�{τ}) ≤
∑

σ∈π2(Φl)

∑
τ∈π2(assi(σ))

low(si�{τ}) =
∑

σ∈π2(Φl)

low(si�π2(assi(σ))).

Altogether it gives Inequality (7.6).
For Inequality (7.7) observe that if f = pr, then for some i ∈ [l + 1, k], some τ ∈

Tpr appears in π2(assi(σ)) for two different σ ∈ π2(Φl). Thus some positive component
low(si�{τ}) appears in two sums

∑
τ∈π2(assi(σ)) low(si�{τ}), so the inequality becomes strict.

For i ∈ [l+ 1, k] and σ ∈ π2(Φl) denote H i
σ = high(sk�π2(assk(σ))). Using Inequality (7.5)

we obtain

high(s) =
∏

σ∈π2(Φl)

pow
(
Hk
σ , H

k−1
σ , . . . ,H l+1

σ , high(sl�{σ})
)
≤

≤ pow
( ∏
σ∈π2(Φl)

Hk
σ ,

∏
σ∈π2(Φl)

Hk−1
σ , . . . ,

∏
σ∈π2(Φl)

H l+1
σ , high(sl)

)
. (7.11)
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Now observe for each i ∈ [l + 1, k] that∏
σ∈π2(Φl)

H i
σ ≤

∏
σ∈π2(Φl)

high(si) = (high(si))|π2(Ψk)| ≤ (high(si))|T
0|.

The last inequality is true, because |π2(Ψk)| ≤ |T k| ≤ |T 0|. Using Inequality (7.3) we move
the |T 0| exponents (there is at most n of them) into the last argument of pow and we obtain
Inequality (7.8):

high(s) ≤ pow
(
(high(sk))|T

0|, (high(sk−1))|T
0|, . . . , (high(sl+1))|T

0|, high(sl)
)
≤

≤ pow
(
high(sk), high(sk−1), . . . , high(sl+1), |T 0|n · high(sl)

)
.

Now suppose that f = np. It implies, for each i ∈ [l + 1, k], that each τ ∈ π2(Φi) ∩ Tpr
belongs to the set π2(assi(σ)) only for one σ ∈ π2(Φl), so all the common factors are equal
to 1: ∏

σ∈π2(Φl)

H i
σ =

∏
σ∈π2(Φl)

∏
τ∈π2(assi(σ))

high(si�{τ}) =
∏

τ∈π2(Φi)

high(si�{τ}) = high(si).

By substituting this to Inequality (7.11) we obtain Inequality (7.9).
Inequality (7.10) is obtained in the same way as Inequality (7.8), as the definitions of

len and high differ only in the base case.

Proof of Lemma 7.16. It is enough to prove the lemma for annotated runs of length 1. Then
the result for longer runs follow by an immediate induction. Thus assume that |R| = 1,
and denote R(0) = sn : sn−1 : · · · : s0 with s0 = (γ, {D}). We have four cases, depending
on the shape of D.

Case 1. It is impossible that D is of the form (γ, p), since then R(0) would not have a
successor.

Case 2. Suppose that D = (p,D′). Then R(1) = sn : sn−1 : · · · : s1 : (γ, {D′}). The
difference between low(R(0)) and low(R(1)) is that in the former we add low(s0) where in
the latter low((γ, {D′})). Thus the required inequality about low can be restated as

low(s0) ≤ ](st(R)) + low((γ, {D′})).

It holds when rd(D) ∈ Tnp (we have low(s0) = 0). If rd(D) ∈ Tpr, then low(s0) = 1, and
either rd(D′) ∈ Tpr or the letter read by st(R) is ], so the right side is positive.

If rd(D) ∈ Tnp, then ](st(R)) = 0 and rd(D′) ∈ Tnp. In this case

high(R(0)) = pow(high(sn), high(sn−1), . . . , high(s1), 1) = ](st(R)) + high(R(1)).

If rd(D) ∈ Tpr, then using Inequality (7.4) we obtain

high(R(0)) = pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D)) ≥
≥ pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D′) + 1) ≥
≥ pow(high(sn), high(sn−1), . . . , high(s1), Cdepth(D′)) + 1 ≥
≥ ](st(R)) + high(R(1)).

In the same way we obtain the required inequality for len.
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Case 3. Suppose that D = (γ, p, τk). Then R(1) = sn : sn−1 : · · · : sk. Recall that
type(si) = π2(assi(rd(D))) = ∅ for i ∈ [1, k − 1], and |type(sk)| = 1, and ](st(R)) = 0.
Because low(s0) = 0, and high(s0) = 1, and len(s0) = C0 = 2, it holds

low(R(0)) =

n∑
i=0

low(si) =

n∑
i=k

low(si) = ](st(R)) + low(R(1)),

high(R(0)) = pow
(
high(sn), high(sn−1), . . . , high(sk), 1, . . . , 1

)
=

= pow
(
high(sn), high(sn−1), . . . , high(sk)

)
= ](st(R)) + high(R(1)),

len(R(0)) = pow
(
len(sn), len(sn−1), . . . , len(sk), 1, . . . , 1, 2

)
≥

≥ pow
(
len(sn), len(sn−1), . . . , len(sk), 1, . . . , 1, 1

)
+ 1 = 1 + len(R(1)).

as required.

Case 4. Suppose that D = (γ, p,D′,D). Let α and k be such that δ(γ, p) performs pushkα.
By Definition 7.7(4) we have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f) such that π2(Φ0) =
{rd(E) : E ∈ D}. It holds Ψk = assk(rd(D′)), and π2(Φi) =

⋃
E∈D π2(assi(rd(E))) for

i ∈ [1, k], and ](st(R)) = 0. Denote also Ψi = assi(rd(D′)) for i ∈ [1, k − 1]. It holds

R(1) = sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}),

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D).
From Lemma 7.19 we obtain the following inequality, that is strict if f = pr:

k∑
i=1

low(si�π2(Φi)) + low((γ,D)) ≤ low(tk), (7.12)

Because type(sk) = π2(Φk) and type(si) = π2(Ψi) ∪ π2(Φi) for i ∈ [1, k − 1], it holds

low(sk) = low(sk�π2(Φk)), and

low(si) ≤ low(si�π2(Ψi)) + low(si�π2(Φi)) for i ∈ [1, k − 1].

Moreover, if for some i ∈ [1, k − 1] we have π2(Ψi) ∩ π2(Φi) 6⊆ Tnp, then the appropriate
inequality is strict (since the positive component corresponding to τ ∈ π2(Ψi)∩π2(Φi)∩Tpr
appears in both low’s on the right side, and only once on the left side). We apply these
inequalities to the definition of low(R(0)); next we substitute Inequality (7.12); we obtain

low(R(0)) ≤
n∑

i=k+1

low(si) +

k−1∑
i=1

low(si�π2(Ψi)) +

k∑
i=1

low(si�π2(Φi)) + low(s0) ≤

≤
n∑

i=k+1

low(si) +
k−1∑
i=1

low(si�π2(Ψi)) + low(tk)− low((γ,D)) + low(s0) =

= low(R(1))− low((α, {D′}))− low((γ,D)) + low(s0) ≤ low(R(1)) + low(s0).

If {rd(D′)} ∪ π2(Φ0) 6⊆ Tnp, the last inequality is strict, as we have removed negative com-
ponents. Because low(s0) ≤ 1, if some on the above inequalities was strict, we can remove
low(s0), and we obtain low(R(0)) ≤ low(R(1)), as required. On the other hand, if none
of these inequalities was strict, we have π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each i ∈ [1, k − 1], and
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f = np, and {rd(D′)} ∪ π2(Φ0) ⊆ Tnp; from Definition 7.7(4) it follows that in this case
rd(D) ∈ Tnp, so low(s0) = 0 and we obtain the required inequality as well.

Next, we prove the inequality for high. Denote

ai = high(si) for i ∈ [k + 1, n],

ai = high(si�π2(Ψi)) for i ∈ [1, k − 1],

bi = high(si�π2(Φi)) for i ∈ [1, k].

Suppose first that rd(D) ∈ Tnp. Then {rd(D′)} ∪ π2(Φ0) ⊆ Tnp and f = np; we have
high(s0) = high((γ,D)) = high((α, {D′})) = 1. Moreover π2(Ψi) ∩ π2(Φi) ⊆ Tnp for each
i ∈ [1, k − 1]; thus we have

high(si) = ai · bi for i ∈ [1, k − 1]. (7.13)

Because f = np, from Lemma 7.19 we know that

pow(bk, bk−1, . . . , b1, high((γ,D))) ≥ high(tk).

Using Equalities (7.13), then Inequality (7.2), and then the above inequality, we obtain

high(R(0)) = pow(an, an−1, . . . , ak+1, bk, ak−1bk−1, ak−2bk−2, . . . , a1b1, 1) ≥
≥ pow(an, an−1, . . . , ak+1, pow(bk, bk−1, . . . , b1, 1), ak−1, ak−2 . . . , a1, 1) ≥

≥ pow(an, an−1, . . . , ak+1, high(tk), ak−1, ak−2, . . . , a1, 1) = high(R(1)).

Next, suppose that rd(D) ∈ Tpr. Then Lemma 7.19 gives us the inequality

pow
(
bk, bk−1, . . . , b1, |T 0|n · high((γ,D))

)
≥ high(tk). (7.14)

By definition it holds

high(s0) = Cdepth(D) = (2|T 0|)n · (Cdepth(D)−1)|T
0|+1 ≥

≥ 2k−1 · |T 0|n · Cdepth(D′) ·
∏
E∈D

Cdepth(E) ≥

≥ 2k−1 · |T 0|n · high((α, {D′})) · high((γ,D)).

Using Inequality (7.3) we replace 2k−1 in the last argument of pow by 2 in the k−1 previous
arguments; then we observe that for each i ∈ [1, k − 1] we have (high(si))2 ≥ aibi; then we
use Inequality (7.2), and finally Inequality (7.14):

high(R(0)) ≥ pow
(
high(sn), high(sn−1), . . . , high(sk), (high(sk−1))2, (high(sk−2))2, . . . ,

(high(s1))2, |T 0|n · high((α, {D′})) · high((γ,D))
)
≥

≥ pow
(
an, an−1, . . . , ak+1, bk, ak−1bk−1, ak−2bk−2, . . . , a1b1,

|T 0|n · high((α, {D′})) · high((γ,D))
)
≥

≥ pow
(
an, an−1, . . . , ak+1, pow

(
bk, bk−1, . . . , b1, |T 0|n · high((γ,D))

)
,

ak−1, ak−2, . . . , a1, high((α, {D′}))
)
≥

≥ pow(an, an−1, . . . , ak+1, high(tk), ak−1, ak−2, . . . , a1, high((α, {D′}))) =

= high(R(1)).

The inequality for len can be proved in a very similar way as that for high in the case
rd(D) ∈ Tpr.
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7.3. Relating Upper and Lower Bounds. It is meaningful to consider the functions low
and high because they are closely related: one is bounded if the other is bounded.

Proposition 7.20. There exists a function H : N → N such that for each configuration c
and each run descriptor σ ∈ typeA,ϕ(c) there exists a well-formed annotated n-stack s for

which type(top0(s)) = {σ}, and conf(s) = c, and high(s) ≤ H(low(s)).

Proof. Let d be a number such that for each derivation tree there exists a derivation tree
with the same conclusion and depth at most d; such a number exists, because there are
only finitely many possible conclusions. For each k ≥ 0 we define a function Nk : N → N,
and we take H = Nn. The definition is inductive: Nk(0) = 1, and for L > 0:

N0(L) = (Cd)
|T 0|,

Nk(L) =
(
pow(Nk(L− 1), Nk−1(L))

)|T k−1|
for k > 0,

where Cd is the constant from Definition 7.13.
By definition for each configuration c and each run descriptor σ ∈ typeA,ϕ(c) there exists

a well-formed annotated stack s such that type(top0(s)) = {σ} and conf(s) = c. W.l.o.g. we
can assume that all derivation trees in s have depth at most d: we can safely replace each
tree by another (smaller) tree having the same conclusion. Thus it is enough to prove that
for each well-formed annotated k-stack s, in which all derivation trees have depth at most
d, it holds high(s) ≤ Nk(low(s)).

Denote L = low(s). If L = 0 then high(s) = 1 = Nk(L), thanks to Proposition 7.18.
Suppose that L > 0. In this case we prove the thesis by induction on the structure of s.
For a stack s = (γ,D) of order 0 it holds

high(s) ≤
∏
D∈D

Cdepth(D) ≤ (Cd)
|T 0| = N0(L).

Next, consider a stack s = sk : sk−1. Recall that low(s) equals to the sum of low for
sk�π2(assk(σ)) and sk−1�{σ} over all σ ∈ type(sk−1). We have two cases. One possibility is

that low(sk�π2(assk(σ))) = L for some σ ∈ type(sk−1). Then low for all other considered
stacks is 0, so their high is 1. Using the induction assumption we obtain

high(s) ≤ pow(Nk(L), 1) ·
∏

τ∈type(sk−1)\{σ}

pow(1, 1) = Nk(L).

The opposite situation is that low(sk�π2(assk(σ))) ≤ L−1 for each σ ∈ type(sk−1). Observing

that Nk is monotone, by the induction assumption high(sk�π2(assk(σ))) ≤ Nk(L − 1) and

high(sk−1�{σ}) ≤ Nk−1(L) for each σ ∈ type(sk−1), so we obtain

high(s) ≤
∏

σ∈type(sk−1)

pow(Nk(L− 1), Nk−1(L)) ≤ Nk(L).
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7.4. Assumptions are used in returns. Our next goal is to formally prove that whenever
an assumption of a run descriptor is used in an annotated run, then we have a return.

Lemma 7.21. Let s = sn : sn−1 : · · · : s0 be a well-formed singular annotated n-stack,
where type(s0) = {σ}. If (m, ξ) ∈ assr(σ), then there exists an annotated run R starting in
s such that st(R) is an r-return, ϕ(st(R)) = m, and topr(R(|R|)) = sr�{ξ}.

Proof. We use induction on len(s). Thanks to Lemma 7.16 we can always use the induction
assumption for the successor of s. We have several cases depending on the shape of the
derivation tree D in s0 (that is, on the first operation in an annotated run starting in s).
We use the characterization of returns from Proposition 6.8.

Case 1. If D = (γ, p) then assr(σ) = ∅, so the assumptions cannot hold.

Case 2. Suppose that D = (p,D′). Then the successor t of s differs from s only in the
topmost 0-stack; the new topmost 0-stack has type {τ} such that assr(σ) = ϕ(a) ◦ assr(τ),
where a is the letter read by the step between conf(s) and conf(t). Consider an element m′

such that m = ϕ(a) ·m′ and (m′, ξ) ∈ assr(τ). By the induction assumption for t, there
exists an annotated run S starting in t such that st(S) is an r-return, ϕ(st(S)) = m′, and
topr(S(|S|)) = sr�{ξ}. Together with the step between s and t, it gives us an annotated run
as required.

Case 3. Suppose that D = (γ, p, τ), where τ ∈ T k. The successor of s is t = sn : sn−1 : · · · :
sk. Recall that assi(σ) = ∅ for i < k, so r ≥ k. If r = k, then (m, ξ) = (1, τ). In this case
the annotated run of length 1 satisfies the thesis. Otherwise r > k, and (m, ξ) ∈ assr(τ).
Then as well (m, ξ) ∈ assr(τ ′), where τ ′ is the run descriptor in the type of top0(sk). The
induction assumption for t gives us an annotated run S starting in t such that st(S) is an
r-return, ϕ(st(S)) = m, and topr(S(|S|)) = sr�{ξ}. Together with the step between s and t,
it gives us an annotated run as required.

Case 4. Suppose that D = (γ, p,D′,D). Let α, k, Ψi, Φi be as in Definition 7.7(4). The
successor of s is

t = sn : sn−1 : · · · : sk+1 : tk : sk−1�π2(Ψk−1) : sk−2�π2(Ψk−2) : · · · : s1�π2(Ψ1) : (α, {D′}),

where tk = sk�π2(Φk) : sk−1�π2(Φk−1) : · · · : s1�π2(Φ1) : (γ,D). If (m, ξ) ∈ Ψr and r 6= k, then

the induction assumption for t gives us an annotated run S starting in t such that st(S)
is an r-return, ϕ(st(S)) = m, and topr(S(|S|)) = sr�{ξ}; together with the step between s

and t, it gives us an annotated run as required. Otherwise (m, ξ) ∈ Φr and r ≤ k. Recall
that we have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f). The definition of a composer gives us
some (m1, τ) ∈ Φ0 and m2 ∈ M such that m = m1 ·m2 and (m2, ξ) ∈ assr(τ). Then we

have (m1, red
k(τ)) ∈ Ψk. The induction assumption for t and (m1, red

k(τ)) ∈ Ψk gives
us an annotated run S starting in t such that st(S) is a k-return, ϕ(st(S)) = m1, and
topk(S(|S|)) = tk�{redk(τ)}. Notice that

tk�{redk(τ)} = sk�π2(assk(τ)) : sk−1�π2(assk−1(τ)) : · · · : s1�π2(ass1(τ)) : (γ,D)�{τ}.

Recalling that r ≤ k, the induction assumption for S(|S|) and (m2, ξ) ∈ assr(τ) gives us
an annotated run T starting in S(|S|) such that st(T) is an r-return, ϕ(st(T)) = m2, and
topr(T(|T|)) = sr�{ξ}. The step between s and t composed with S and then with T gives
us an annotated run as required.
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7.5. Completeness of Types. In the previous subsection we have proved soundness of the
type system, which means that if a run descriptor is contained in the type of a configuration
then a corresponding run exists from this configuration. As usual, we need the opposite
direction (completeness) as well, that is having a run from a configuration, we want to imply
that the corresponding run descriptor is in the type of this configuration. While reversing
Lemma 7.21 we have to remember that not every run can be extended to an annotated run,
so in Lemma 7.22 we need to use standard runs.

Lemma 7.22. Let R be an r-return, and let ξ ∈ typeA,ϕ(R(|R|)). Then there exists a run
descriptor σ ∈ typeA,ϕ(R(0)) such that (ϕ(R), redr(ξ)) ∈ assr(σ).

We first state four auxiliary lemmas. These lemmas will be used also in the next
subsection.

Lemma 7.23. Let R be a run of length 1 whose transition is read, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(σ) = ϕ(R) ◦ assi(τ) for each i ∈ [1, n].

Proof. By definition of typeA,ϕ, there exists a well-formed annotated stack sn : sn−1 : · · · :
s1 : (γ, {D′}) which after removing annotations gives π2(R(1)), and such that rd(D′) = τ .
Well-formedness implies that type(si) = π2(assi(τ)) for each i ∈ [1, n]. When p is the state of
R(0), Definition 7.7(2) implies that D = (p,D′) is a derivation tree with conclusion γ ` σ,
where σ = (p,Φn,Φn−1, . . . ,Φ1, f) and Φi = ϕ(R) ◦ assi(τ) for each i ∈ [1, n]. Because
π2(assi(σ)) = π2(assi(τ)), the annotated stack sn : sn−1 : · · · : s1 : (γ, {D}) is well-formed,
so σ ∈ typeA,ϕ(R(0)).

Lemma 7.24. Let R be a run of length 1 performing popk, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(σ) = assi(τ) for each i ∈ [k + 1, n], and

assk(σ) = {(1M , redk(τ))}.
Proof. Denote R(0) = (p, sn : sn−1 : · · · : s0); then π2(R(1)) = sn : sn−1 : · · · : sk. By
definition of typeA,ϕ, there exists a well-formed annotated stack sn : sn−1 : · · · : sk such

that type(sk) = {redk(τ)}, and st(si) = si for each i ∈ [k, n]. Well-formedness implies that
type(si) = π2(assi(τ)) for each i ∈ [k + 1, n]. For i ∈ [1, k − 1] let si be the well-formed
annotated i-stack such that type(si) = ∅ and st(si) = si (we annotate si by empty sets).

Finally, by Definition 7.7(3), D = (p, s0, redk(ξ)) is a derivation tree with conclusion s0 ` σ,
where

σ = (p, assn(τ), assn−1(τ), . . . , assk+1(τ), {(1M , redk(τ)}, ∅, . . . , ∅, np),

so s0 = (s0, {D}) has type {σ}. We observe that sn : sn−1 : · · · : s0 is well-formed, so
σ ∈ typeA,ϕ(R(0)).

Lemma 7.25. Let R be a run of length 1 performing pushkα, and let τ ∈ typeA,ϕ(R(1)).

Then there exists σ ∈ typeA,ϕ(R(0)) such that assi(τ) ⊆ assi(σ) for each i ∈ [1, n] \ {k}.
Proof. Before starting the actual proof, we observe that for each pair of well-formed anno-
tated stacks s, t such that st(s) = st(t) we can construct a well-formed annotated stack
s⊕ t whose type is type(s) ∪ type(t) and such that st(s⊕ t) = st(s). We construct s⊕ t by

induction on the structure of s. Denote Ψ̃ = type(t) \ type(s). If s is of order 0, then we
take s⊕ t = (γ,D ∪D′), where s = (γ,D) and t�

Ψ̃
= (γ,D′). If s = t = [ ], then s⊕ t = [ ]

is fine. If s = sj : sj−1 and t�
Ψ̃

= tj : tj−1, then as s ⊕ t we take (sj ⊕ tj) : (sj−1 ⊕ tj−1);
observe that it is well-formed, because the types of s and t�

Ψ̃
are disjoint.
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Denote R(0) = (p, sn : sn−1 : · · · : s1 : γ); then

π2(R(1)) = sn : sn−1 : · · · : sk+1 : (sk : sk−1 : · · · : s1 : γ) : sk−1 : sk−2 : · · · : s1 : α.

By definition of typeA,ϕ, there exists a well-formed annotated stack sn : sn−1 : · · · : s1 :

(α, {D′}) in which sk = tk : tk−1 : · · · : t1 : (γ,D), such that rd(D′) = τ and st(si) = si for
each i ∈ [1, n]\{k}, and st(ti) = si for each i ∈ [1, k]. Denote Ψi = assi(τ) for each i ∈ [1, n].
Well-formedness implies that type(si) = π2(Ψi) for each i ∈ [1, n], and, thanks to Proposition
7.9, there exists a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f) such that type(ti) = π2(Φi) for each
i ∈ [1, k] and {rd(E) : E ∈ D} = π2(Φ0). By Definition 7.7(4), D = (p, γ,D′,D) is a
derivation tree with conclusion γ ` σ, where

σ = (p,Ψn,Ψn−1, . . . ,Ψk+1,Φk,Ψk−1 ∪ Φk−1,Ψk−2 ∪ Φk−2, . . . ,Ψ1 ∪ Φ1, g).

We observe that the annotated stack

sn : sn−1 : · · · : sk+1 : tk : (sk−1 ⊕ tk−1) : (sk−2 ⊕ tk−2) : · · · : (s1 ⊕ t1) : (γ, {D})
is well-formed, so σ ∈ typeA,ϕ(R(0)).

Lemma 7.26. Let R be a run in which R�0,1 performs pushkα and R�1,|R| is a k-return,

let τ ∈ typeA,ϕ(R(|R|)), and let ρ ∈ typeA,ϕ(R(1)) be such that (ϕ(R), redk(τ)) ∈ assk(ρ).

Then there exists σ ∈ typeA,ϕ(R(0)) such that ϕ(R) ◦ assi(τ) ⊆ assi(σ) for each i ∈ [1, k].

Proof. Denote R(0) = (p, sn : sn−1 : · · · : s1 : γ); then π2(R(1)) is as in the previous
lemma, and the topmost k-stacks of R(0) and of R(|R|) are equal (due to Proposition
6.6). The definition of typeA,ϕ gives us a well-formed annotated k-stack uk such that

type(top0(uk)) = {τ} and st(uk) = sk : sk−1 : · · · : s1 : γ, and a well-formed annotated stack
sn : sn−1 : · · · : s1 : (α, {D′}) such that rd(D′) = ρ and st(si) = si for each i ∈ [1, n] \ {k},
and st(sk) = sk : sk−1 : · · · : s1 : γ. Denote Ψi = assi(ρ) for each i ∈ [1, n]. Well-formedness

implies that type(si) = π2(Ψi) for each i ∈ [1, n]. By assumption type(uk) = {redk(τ)} ⊆
π2(Ψk), so the annotated stack uk ⊕ sk has type π2(Ψk), similarly to sk, but additionally
τ ∈ type(top0(uk⊕sk)) (recalling the construction from the previous subsection, we see that
to uk⊕sk we take all annotations from uk and some annotations from sk). Denote uk⊕sk =
tk : tk−1 : · · · : t1 : (γ,D). By Proposition 7.9 we have a composer (Φk,Φk−1, . . . ,Φ0; Ψk; f)
such that type(ti) = π2(Φi) for each i ∈ [1, k] and {rd(E) : E ∈ D} = π2(Φ0). Because

τ ∈ Φ0 and (ϕ(R), redk(τ)) ∈ Ψk, it holds (ϕ(R), τ) ∈ Φ0, which implies ϕ(R)◦ assi(τ) ⊆ Φi

for each i ∈ [1, k]. By Definition 7.7(4), D = (p, γ,D′,D) is a derivation tree with conclusion
γ ` σ, where

σ = (p,Ψn,Ψn−1, . . . ,Ψk+1,Φk,Ψk−1 ∪ Φk−1,Ψk−2 ∪ Φk−2, . . . ,Ψ1 ∪ Φ1, g).

We observe that the annotated stack

sn : sn−1 : · · · : sk+1 : tk : (sk−1 ⊕ tk−1) : (sk−2 ⊕ tk−2) : · · · : (s1 ⊕ t1) : (γ, {D})
is well-formed, so σ ∈ typeA,ϕ(R(0)).
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Proof of Lemma 7.22. We use induction on the length of the r-return R. Proposition 6.8
gives us possible forms of R; we analyze these cases.

Suppose first that |R| = 1 and the only transition of R is performs popr. We take
σ from Lemma 7.24, where we take ξ as τ and r as k. By assumption ϕ(R) = 1M , so
(ϕ(R), redr(ξ)) ∈ assr(σ).

Next, suppose that R�1,|R| is an r-return, and the first transition of R is read, or performs

popk for k < r, or pushkα for k 6= r. The induction assumption for R�1,|R| gives us a run

descriptor τ ∈ typeA,ϕ(R(1)) such that (ϕ(R�1,|R|), red
r(ξ)) ∈ assr(τ), and Lemma 7.23 or

7.24 or 7.25, respectively, used for R�0,1 gives us a run descriptor σ ∈ typeA,ϕ(R(0)) such
that ϕ(R�0,1)◦assr(τ) ⊆ assr(σ) (where ϕ(R�0,1) may be nontrivial only when the transition
is read).

Finally, suppose that the first transition of R performs pushkα for k ≥ r and R�1,|R| =
S ◦ T for some k-return S and r-return T . The induction assumption for T gives us a
run descriptor τ ∈ typeA,ϕ(T (0)) such that (ϕ(T ), redr(ξ)) ∈ assr(τ), and the induction

assumption for S gives us a run descriptor ρ ∈ typeA,ϕ(R(1)) such that (ϕ(S), redk(τ)) ∈
assk(ρ). Using Lemma 7.26 for R�0,1 ◦S we obtain a run descriptor σ ∈ typeA,ϕ(R(0)) such
that ϕ(S) ◦ assr(τ) ⊆ assr(σ) (recalling that r ≤ k), so (ϕ(R), redr(ξ)) ∈ assr(σ).

7.6. Reproducing Upper Runs. Till now we were using types to describe returns from
a configuration, but thanks to the decomposition given by Proposition 6.7 we can also
describe r-upper runs. This is stated in the following lemma.

Lemma 7.27. Let R be an r-upper run (where r ∈ [0, n]), and let τ ∈ typeA,ϕ(R(|R|)).
Then there exists a run descriptor σ ∈ typeA,ϕ(R(0)) and a monotone function fR : N→ N
such that the following is satisfied. Let s be a well-formed annotated n-stack such that
type(top0(s)) = {σ} and the topmost r-stacks of conf(s) and of R(0) are equal. Then there
exists a well-formed annotated n-stack t such that type(top0(t)) = {τ}, and there exists a
run S from conf(s) to conf(t) which is (r, ϕ)-parallel to R, and

low(s) ≤ fR(](S) + low(t)), fR(high(s)) ≥ ](S) + high(t).

Before proving this lemma we observe that Theorem 7.3 follows from it immediately.
For this purpose the inequalities regarding low and high are redundant; they will be used
later to prove Theorem 7.4.

Proof of Theorem 7.3. Recall that we are given a k-upper run R, and a configuration c
having the same (A, ϕ)-type and the same topmost k-stack as R(0). Consider the run
descriptor τ = (π1(R(|R|)), ∅, . . . , ∅, np) and observe that τ ∈ typeA,ϕ(R(|R|)) (we annotate
the topmost 0-stack of π2(R(|R|)) by the derivation tree from Definition 7.7(1)). Applying
Lemma 7.27 we obtain a run descriptor σ ∈ typeA,ϕ(R(0)) = typeA,ϕ(c). Then we take any

well-formed annotated n-stack s such that type(top0(s)) = {σ} and conf(s) = c, existing by
the definition of typeA,ϕ. Since the topmost k-stacks of conf(s) and of R(0) are equal, from
the second part of Lemma 7.27 we obtain a run S as required.
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Proof of Lemma 7.27. The proof is by induction on the length of R. Proposition 6.7 gives
us possible forms of R; we analyze these cases.

If R has length 0, then we can take τ as σ and the identity function as fR; given s we
take it as t, and the run of length 0 from conf(s) as S.

Suppose that R has length 1, and its transition either is read or performs pushkα. Then
we take the identity function as fR, and we construct σ out of R and τ as in Lemma 7.23 or
Lemma 7.25, respectively. Next, we are given a well-formed annotated n-stack s such that
type(top0(s)) = {σ} and the topmost r-stacks of conf(s) and of R(0) are equal. As t we
take the successor of s, and as S the one-step run from conf(s) to conf(t). Comparing the
construction of σ in the proof of the mentioned lemmas with Definition 7.11, we see that
the successor of s indeed exists, and that type(top0(t)) = {τ}. Moreover, S performs the
same transition as R, and in the case of read it reads the same letter, so S is (r, ϕ)-parallel
to R. The inequalities follow from Lemma 7.16.

Next, suppose that R�0,1 performs pushkα and R�1,|R| is a k-return, where k ≥ r + 1.
This case is similar, but slightly more complicated. First, using Lemma 7.22, we construct
a run descriptor ρ ∈ typeA,ϕ(R(1)) such that (ϕ(R), redk(τ)) ∈ assk(ρ). As fR we take
the identity function, and we construct σ out of R, τ and ρ as in Lemma 7.26. When we
are gives s, we proceed as follows. Let u = un : un−1 : · · · : u0 be the successor of s.
Inspecting the proof of Lemma 7.26 we see that u indeed exists, and type(top0(u)) = {ρ},
and τ ∈ top0(uk). Lemma 7.21 gives us an annotated run S starting in u such that st(S) is
a k-return, ϕ(st(S)) = ϕ(R), and topk(S(|S|)) = uk�redk(τ). As S we take the composition

of the one-step run from conf(s) to conf(t) with the run st(S). By Proposition 6.6, the
topmost k-stacks of R(0) and of R(|R|) are equal, and the topmost k-stacks of S(0) and of
S(|S|) are equal; since k ≥ r + 1, the topmost r-stacks of R(|R|) and S(|S|) are equal as
well. Together with ϕ(S) = ϕ(R) this means that R and S are (r, ϕ)-parallel, because by
definition no prefix of a k-return can be (k − 1)-upper (r-upper). Again, the inequalities
follow from Lemma 7.16.

Next, suppose that R has length 1 and performs popk for k ≤ r. We construct σ out
of R and τ as in Lemma 7.24. Because τ ∈ typeA,ϕ(R(1)), we can construct a well-formed

annotated k-stack uk such that type(top0(uk)) = {τ}, and st(uk) is the topmost k-stack of
R(1). As fR we take a monotone function such that for each tuple (ak+1, . . . , an) of positive
integers it holds

fR(pow(an, an−1, . . . , ak+1, ak)) ≥ pow(an, an−1, . . . , ak+1, high(uk)),

and for each N ∈ N and each annotated k-stack sk such that st(sk) = st(uk) it holds

fR(N + low(uk)) ≥ N + low(sk).

Notice that for each H ∈ N there are finitely many tuples such that pow(an, an−1, . . . , ak) ≤
H (in particular none of ai may be greater than H). Recall also that low(sk) is equal to
the number of derivation trees with productive run descriptor annotating some 0-stack in
sk. So, although there are infinitely many annotated k-stacks sk, the value of low(sk) is
bounded by the number of 0-stacks in st(sk) times |T 0|. Thus such a function fR exists.

Then, we are given an annotated stack s = sn : sn−1 : · · · : s0. The successor of s
is t′ = sn : sn−1 : · · · : sk. It would be incorrect to take t′ as t: we only know that
type(topk(t′)) = {redk(τ)}, but we require that type(top0(t)) = {τ}. Instead, we take
t = sn : sn−1 : · · · : sk+1 : uk. The topmost r-stacks of conf(s) and R(0) are equal, and
k ≤ r, so st(uk) = st(sk), and the topmost r-stacks of conf(t) and R(1) are equal as well.
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As S we take the one-step run from conf(s) to conf(t); it is (r, ϕ)-parallel to R. Recalling
that ](S) = 0, and using Lemma 7.16 and the definition of fR we obtain

fR(low(t)) = fR

( n∑
i=k+1

low(si) + low(uk)
)
≥

n∑
i=k+1

low(si) + low(sk) = low(t′) ≥ low(s),

fR(high(s)) ≥ fR(high(t′)) = fR
(
pow

(
high(sn), high(sn−1), . . . , high(sk+1), high(sk)

))
≥

≥ pow
(
high(sn), high(sn−1), . . . , high(sk+1), high(uk)

)
= high(t).

Finally, suppose that R is a composition of shorter k-upper runs R1 and R2. The
induction assumption used for R2 and for τ gives us a run descriptor ρ ∈ typeA,ϕ(R2(0))
and a function f2. Then, the induction assumption used for R1 and for ρ gives us a run
descriptor σ ∈ typeA,ϕ(R(0)) and a function f1. As fR we take a monotone function
such that for each pair a, b of natural numbers it holds fR(a) ≥ f1(a) + f2(f1(a)) and
fR(a+ b) ≥ f1(a+ f2(b)).

Then, we are given a well-formed annotated n-stack s such that type(top0(s)) = {σ} and
the topmost r-stacks of conf(s) and of R(0) are equal. From the induction assumption for
R1 we obtain a well-formed annotated n-stack u such that type(top0(u)) = {ρ}, and a run
S1 from conf(s) to conf(u) being (r, ϕ)-parallel to R1. Then, from the induction assumption
for R2 we obtain a well-formed annotated n-stack t such that type(top0(t)) = {τ}, and a
run S2 from conf(u) to conf(t) being (r, ϕ)-parallel to R2. As S we take the composition of
S1 and S2; it is (r, ϕ)-parallel to R. Using the inequalities from the induction assumption
we obtain:

fR(](S) + low(t)) ≥ f1(](S1) + f2(](S2) + low(t)) ≥ f1(](S1) + low(u)) ≥ low(s),

fR(high(s)) ≥ f1(high(s)) + f2(f1(high(s)) ≥ ](S1) + f2(high(u)) ≥ ](S) + high(t).

7.7. Sequence Equivalence. In the final part of this section we define the sequence equiv-
alence, and we prove Theorem 7.4.

Definition 7.28. Let (ci)
∞
i=1 be a sequence of configurations. We define stype((ci)

∞
i=1) ⊆ T 0

to be the set of such σ ∈ T 0 that there exists a sequence of well-formed annotated n-stacks
(si)
∞
i=1 for which type(top0(si)) = {σ} and conf(si) = ci for each i, and the sequence

(high(si))
∞
i=1 is bounded. We say that two sequences of configurations, (ci)

∞
i=1 and (di)

∞
i=1,

are (A, ϕ)-sequence equivalent when it holds stype((ci)
∞
i=1) = stype((di)

∞
i=1).

Proof of Theorem 7.4. Let ξ = (π1(R′(|R′|)), ∅, . . . , ∅, np); we see that ξ ∈ typeA,ϕ(R′(|R′|)).
Lemma 7.22 applied to R′ and ξ implies that typeA,ϕ(R′(0)) contains a run descriptor τ
such that (ϕ(R′), redn(ξ)) ∈ assn(τ). Then, Lemma 7.27 applied to R and τ gives us a run
descriptor σ ∈ typeA,ϕ(R(0)) and a function fR. We have two cases.

Case 1. Suppose first that σ ∈ stype((ci)
∞
i=0) = stype((di)

∞
i=0). Then we have a sequence of

annotated n-stacks (si)
∞
i=1 such that type(top0(si)) = {σ} and conf(si) = ci for each i, and

the sequence (high(si))
∞
i=1 is bounded. Recall that the topmost k-stacks of ci and of R(0)

are equal, for each i. We use the second part of Lemma 7.27 for the annotated stack si.
We obtain a well-formed annotated n-stack ti such that type(top0(ti)) = {τ}, and a run
Si from ci to conf(ti) being (k, ϕ)-parallel to R such that fR(high(si)) ≥ ](Si) + high(ti).
Next, for each i we apply Lemma 7.21 for ti and for the pair (ϕ(R′), redn(ξ)). We obtain
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an annotated run S′i starting in ti such that st(S′i) is an n-return, ϕ(st(S′i)) = ϕ(R′),
and type(S′i) = {redn(ξ)}. Let S′i = st(S′i), and ui = S′i(|S′i|). Thanks to Lemma 7.16,
high(ti) ≥ ](S′i) + high(ui). Because (high(si))

∞
i=0 is bounded, we see that the sequence

(](Si ◦ S′i))∞i=0 is bounded as well.
We perform the same construction for (di)

∞
i=0, obtaining runs Ti ◦T ′i from di, such that

(](Ti ◦ T ′i ))∞i=0 is bounded.

Case 2. This is the opposite case: we suppose that σ 6∈ stype((ci)
∞
i=0). For each i we have

σ ∈ type(ci); using Proposition 7.20 we construct a well-formed annotated n-stack si such
that type(top0(si)) = {σ} and conf(si) = ci, and high(si) ≤ H(low(si)) for a function H not
depending on i. Our assumption ensures that (high(si))

∞
i=1 is unbounded, so (low(si))

∞
i=1 is

unbounded as well. We construct the runs exactly in the same way as in Case 1, but this
time we concentrate on the opposite inequalities. For each i it holds low(si) ≤ fR(](Si) +
low(ti)) ≤ fR(](Si ◦ S′i) + low(ui)). Additionally low(ui) = 0, because by construction
type(ui) = {redn(ξ)} ⊆ Tnp. It follows that (](Si ◦ S′i))∞i=0 is unbounded, and similarly
(](Ti ◦ T ′i ))∞i=0.

8. Milestone Configurations

In this section we define so-called milestone configurations and we show their basic proper-
ties. The intuitions are as follows. Consider a long run reading only stars. Looking globally,
the stack grows (or remains unchanged). However locally, some parts of the stack might be
constructed, and few steps later removed. In order to handle this behavior, we concentrate
on these configurations of the run in which the stack is minimal (in appropriate sense) and
will not be destroyed later; they will be called milestone configurations.

The idea of considering milestone configurations comes from [8], but our definition
is slightly different (namely, their definition is relative to a run, which can be arbitrary,
while our definition is absolute, we always consider the run reading only stars). For this
section we fix an n-DPDA A with stack alphabet Γ and with input alphabet A containing
a distinguished symbol denoted ? (star).

Definition 8.1. We say that a configuration c is a milestone (or a milestone configuration)
if there exists an infinite run R from c reading only stars, and an infinite set I of indices
such that 0 ∈ I, and R�i,j ∈ up0 for each i, j ∈ I, i ≤ j.

Example 8.2. Consider a DPDA of order 3. Suppose that there is a run which begins in
a stack [[aa]], and performs forever the following sequence of operations, in a loop:

push2
a, push

3
a, pop

1, push3
a, pop

2, push3
a.

Then the topmost 2-stack is alternatively: [aa] or [aa][aa] or [aa][a]. This run does not
read any symbols, so it is a degenerate case of an infinite run which reads only stars.
Configurations with topmost 2-stack [aa] are milestones (and no other configurations in
this run). To obtain a less degenerate case, we may consider a loop of transitions as above,
but containing additionally a read transition; when a star is read, the loop continues (we do
not care what happens when any other symbol is read). Then again configurations having
[aa] as the topmost 2-stack are milestones.
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If c is a milestone, R the (unique) infinite run from c reading only stars, and I a set like
in the definition of a milestone, then for each i ∈ I the configuration R(i) is a milestone as
well. The following lemma shows that in fact the set I can contain all i for which R(i) is a
milestone.

Lemma 8.3. Let R be a run between two milestone configurations which reads only stars.
Then R is 0-upper.

Proof. We prove by induction on n−k, where k ∈ [0, n], that each run R as in the lemma is
k-upper. Trivially each run is n-upper. Now suppose that the thesis holds for some k > 0,
and take a run R between two milestone configurations which reads only stars. Let S be
the infinite run staring in R(0) which reads only stars (since R(0) is a milestone, the run is
really infinite); R is its prefix. Notice that we can find a milestone S(i) such that i ≥ |R|
and S�0,i is (k − 1)-upper (it can be even 0-upper): it is enough to take any i ≥ |R| from
the infinite set I from Definition 8.1. From the induction assumption we know that S�|R|,i
is k-upper. We conclude that S�0,|R| = R is (k − 1)-upper using Proposition 6.4 for run
S�0,|R| ◦ S�|R|,i.

Another important property is that in a very long run reading only stars we can find
a milestone configuration. What “very long” means of course depends on the size of the
configuration where the run starts.

Lemma 8.4. Let l ∈ [1, n]. There exists a function β : Γl∗ → N, assigning a number to an
l-stack, having the following property. Let R be a run which reads only stars, and let y be
a position of R(|R|). Let sl be the l-stack of R(0) containing hist(R, y). Suppose that there
exist at least β(sl) indices i such that position hist(R�i,|R|, y) is in the topmost l-stack of

R(i). Then for some i, configuration R(i) is a milestone and position hist(R�i,|R|, y) is in

the topmost l-stack of R(i).

Corollary 8.5. Let R be an infinite run reading only stars. Then, for infinitely many i the
configuration R(i) is a milestone.

Proof. To obtain a first milestone configuration, it is enough to use Lemma 8.4 for l := n
and for the prefix of R of length β(π2(R(0))). We repeat this procedure for the remaining
suffix of R.3

In the remaining part of the section we prove Lemma 8.4. Our proof strategy is as fol-
lows. The indices i for which hist(R�i,|R|, y) is in the topmost l-stack give us a decomposition
of an infix of R into many l-upper runs. As a first step, consecutively for k = l−1, l−2, . . . , 0
we construct a decomposition of an infix of R into many k-upper runs. Then, among the
borders of the constructed 0-upper runs we find two configurations having the same type.
Using Theorem 7.3 we can replicate the 0-upper run between them into arbitrarily many
consecutive 0-upper runs, proving that these two configurations are milestones.

The division of an infix of R into a k-upper run will be described using k-advancing
sets, defined as follows. Assuming that R is fixed, a set Ik ⊆ [0, |R|] is called k-advancing if

∅ 6= Ik = {i ∈ [min Ik,max Ik] : R�i,max Ik ∈ upk}.

Notice that when min Ik ≤ i ≤ j ∈ Ik, we have i ∈ Ik if and only if R�i,j is k-upper. In
other words, a k-advancing set not only gives us a decomposition into k-upper runs, but also

3There exists a direct proof of this corollary, not presented here, which is much easier than the proof of
Lemma 8.4.
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these k-upper runs cannot be farther subdivided into shorter k-upper runs. The following
auxiliary lemma describes our induction step.

Lemma 8.6. Let k ∈ [1, n], and N ∈ N. There exists a function fkN : N → N, having

the following properties. Let R be a run which reads only stars, and Ik a k-advancing set.
Suppose that |Ik| ≥ fkN (r), where r is the size of the topmost k-stack of R(min Ik). Then

there exists a (k − 1)-advancing subset Ik−1 ⊆ Ik of size at least N , such that the topmost
k-stack of R(min Ik−1) is one of (k − 1)-stacks in the topmost k-stack of R(min Ik).

Proof. We prove the lemma by induction on N . For N = 1 we can take fk1 (r) := 1, and
then Ik−1 := {min Ik}. Let now N ≥ 2. We take

fkN (r) := 1 +
r∑

m=1

fkN−1(m+ 1).

Fix some R and Ik satisfying the assumptions. Let a := min Ik. By ri we denote the size
of the topmost k-stack of R(i) (for each i ∈ Ik).

For each j ∈ Ik denote

mj := min{ri : i ∈ Ik ∧ i ≤ j}.
Notice that 1 ≤ mj ≤ r (because ra = r) and that mj ≥ mj′ for j ≤ j′. From the formula

for fkN (r) we see that for some m we have at least fkN−1(m+ 1) + 1 indices j ∈ Ik such that
mj = m. Choose some such m; let b be the first index such that mb = m, and e the last
such index. We have m = rb.

Let c be the next index after b which is in Ik (of course c ≤ e). Notice that rc ≤ rb+1 =
m+ 1; this follows from Proposition 6.2 used for run R�b,c. Thus we have

|Ik ∩ [c, e]| ≥ fkN−1(m+ 1) ≥ fkN−1(rc).

We use the induction assumption for Ik ∩ [c, e]. We obtain a (k − 1)-advancing subset
Jk−1 ⊆ Ik ∩ [c, e] of size at least N − 1. We take

Ik−1 := {i ∈ [b,min Jk−1] : R�i,max Jk−1 ∈ upk−1} ∪ Jk−1.

We easily see that Ik−1 is (k−1)-advancing (we add to Jk−1 exactly these indices for which
the appropriate run is (k − 1)-upper). Because ri ≥ rb for each i ∈ Ik ∩ [b, e], Proposition
6.3 implies that R�b,max Jk−1 is (k− 1)-upper. Thus Ik−1 in addition to the N − 1 elements

of Jk−1 contains at least one additional element b.
Finally, we show that the topmost k-stack of R(b) is one of (k−1)-stacks in the topmost

k-stack of R(a). For each i ∈ Ik ∩ [a, b − 1] we have ri > rb, so, due to Proposition 6.3,
run R�i,b is not (k − 1)-upper. This means that the topmost (k − 1)-stack of R(b) was
not modified since R(a). On the other hand R�a,b is k-upper, thus, indeed, the topmost
(k − 1)-stack of R(b) is one of the (k − 1)-stacks in the topmost k-stack of R(a).

While using Theorem 7.3 we need to ensure that the replicated run reads only stars.
For this reason, let ϕ : A∗ →M be a morphism into a finite monoid, which checks whether
a word consists only of stars. Our second auxiliary lemma will be used to conclude the
proof of Lemma 8.4.

Lemma 8.7. Let S be a nonempty 0-upper run reading only stars, in which S(|S|) has the
same (A, ϕ)-type and the same topmost stack symbol as S(0) (where ϕ as above). Then
S can be extended into a run S ◦ T ◦ U reading only stars, where T and U are nonempty
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0-upper runs, and U(|U |) has the same (A, ϕ)-type and the same topmost stack symbol as
U(0). As a consequence, S(0) is a milestone.

Proof. First, we observe that for each r ∈ N we can construct a composition S1 ◦ · · · ◦ Sr of
r nonempty 0-upper runs, reading only stars, in which S1 = S. For r = 1 this is trivially
true. Suppose that we have such composition for some r. Then Theorem 7.3 applied to
this composition and to S(|S|) gives us a composition S′1 ◦ · · · ◦ S′r of r nonempty 0-upper
runs, reading only stars, starting from S(|S|). Together with S at the beginning, they give
a longer composition as required.

Take such a composition for r equal to the number of stack symbols times the number
of (A, ϕ)-types, plus two. Then we can find two indices i, j ∈ [2, r] with i < j for which
Sj(|Sj |) has the same (A, ϕ)-type and the same topmost stack symbol as Si(|Si|). Skipping
the part after Sj , we obtain a composition S ◦ T ◦ U as required.

We can repeat the same construction for U , and append two more nonempty 0-upper
runs, out of which the second has equal (A, ϕ)-type and topmost stack symbol at its two
ends. Continuing this forever, we obtain an infinite run reading only stars, divided into
0-upper runs. Since it starts in S(0), this configuration is a milestone.

Proof of Lemma 8.4. Fix some l-stack sl. Let N0 be equal to the number of stack symbols
times the number of (A, ϕ)-types, plus one, where again ϕ checks whether a word consists
only of stars. For k ∈ [1, l] we take Nk = fkNk−1

(rk), where rk is the maximal size of a k-stack

which appears in sl, and fkNk−1
is the function from Lemma 8.6. We define β(sk) := Nk.

Now take a run R and a position y in R(|R|), such that the assumptions of the lemma
are satisfied. First, for each k ∈ [0, l] we want to construct a k-advancing set Ik of size at
least Nk, such that the topmost k-stack of R(min Ik) is one of the k-stacks in sl.

As I l we take the set of those indices i for which position hist(R�i,|R|, y) is in the topmost

l-stack of R(i). It is immediate from the definitions that I l is l-advancing (notice that the
history of y always lands in the same l-stack as the history of the bottommost position
from the l-stack of y). By assumption |I l| ≥ β(sl) = Nl. Moreover, the topmost l-stack
of R(min I l) was not modified from the beginning of the run (as it was not the topmost
l-stack), so this l-stack is the same as the l-stack of R(0) containing hist(R, y), which is sl.

Then by induction on l − k, we construct Ik−1 out of Ik using Lemma Lemma 8.6.
Notice that the size of the topmost k-stack of R(min Ik) is at most rk, so we can indeed
obtain Ik−1 of size at least Nk−1.

Finally, we observe that in I0 we can find two indices i, j with i < j such that R(j)
has the same (A, ϕ)-type and the same topmost stack symbol as R(i). Lemma 8.7 applied
to R�i,j proves that R(i) is a milestone. By construction i ∈ I0 ⊆ · · · ⊆ I l, so position
hist(R�i,|R|, y) is in the topmost l-stack of R(i).

9. Pumping Lemma

In this section we present a pumping lemma, which can be used to change the number of
stars read in some place of a run, without changing too much the rest of the run. For this
section we fix an n-DPDA A with input alphabet A containing a ? symbol. We also fix a
morphism ϕ : A∗ →M into a finite monoid.

We start by an intuitive explanation of the pumping lemma. In the situation which
we consider, we have a milestone configuration from which we start runs that first read
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Figure 2: An example configuration at the end of a run of a 2-DPDA, and an analogous
configuration after pumping. The 2-stack grows from left to right. White symbols
were already present in R(0); dark gray symbols were created while reading stars
at the beginning of R; light gray symbols were created later.

some number of stars, and later also other symbols. One possibility is that most of these
runs are k-upper (for some k), except maybe some runs reading a small number of stars
at the beginning. Then we will be unable to use our pumping lemma, but we gain the
knowledge that our run is k-upper. The opposite situation is that there are runs from this
configuration which are not k-upper and read arbitrarily many stars at the beginning; our
pumping lemma talks about this situation. Consider such a run R of a 2-DPDA, whose
last configuration is depicted on the left of Figure 2. It starts in a milestone, so its initial
fragment that reads only stars is basically 0-upper. This means that the automaton builds
on top of the stack of R(0) (depicted in white), without modifying it; also in the copies
of the topmost 1-stack the original part is not modified (the automaton can inspect this
part, but then it has to be removed). We consider a run which is not 0-upper, so later,
when we start reading other symbols than stars, the “white part” of the topmost 1-stack is
uncovered; its content is the same as in R(0). By assumption there exists a run from the
same configuration which reads more (arbitrarily many) stars at the beginning, and is not
0-upper. When it uncovers the “white part” of the topmost 1-stack, this part is exactly the
same as in the original run, so these runs can continue in the same way. This is depicted
on the right of the figure.

Next, we state our pumping lemma. For uniformity of presentation, we refer there to
(−1)-upper runs, with the assumption that no run is (−1)-upper.

Theorem 9.1 (Pumping lemma). For each milestone configuration c there exists a number
pb(c) having the following property. Let R ◦ R′ be a run starting in c, where R is not
(k − 1)-upper and reads a word beginning with at least pb(c) stars, and R′ is k-upper.
In such situation, for each l ∈ N there exists a run S ◦ S′ starting in c, and such that
ϕ(S) = ϕ(R), and S reads a word beginning with at least l stars, and S′ is (k, ϕ)-parallel to
R′.

Let us mention that another pumping lemma for higher-order pushdown automata
appears in [21]. There are several differences between these two lemmas. An advantage
of the lemma in [21] is that it gives a precise value for pb(c), in terms of the size of c.
Moreover, it works not only for deterministic PDA, but also for nondeterministic PDA in
which the ε-closure of the configuration graph is finitely-branching. On the other hand, the
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pumping lemma in [21] is only given for k = 0. Additionally, it just says that the length
of the word read by the run increases, not necessarily the number of stars at its beginning.
The pumping lemma from [21] was generalized to collapsible pushdown automata in [10].

In the rest of the section we present a proof of Theorem 9.1. Its essence is as described
above: we consider the moment when the run stops to be (k−1)-upper. On possibility is as
depicted in Figure 2: this happens during a popk operation; our topmost k-stack becomes
equal to the topmost k-stack of R(0) with its topmost (k − 1)-stack removed. This can
also happen during a popr operation for some r ≥ k. Then we can obtain another topmost
k-stack, but altogether we have only finitely many possibilities. At least one of these
possibilities happens for runs reading arbitrarily large number of stars at the beginning;
we can stick to this possibility. Next, when we change the number of stars read at the
beginning, we still land in a configuration having the same topmost k-stack as in the original
run, when the run stops to be (k− 1)-upper; from this configuration we can mimic the rest
of the original run. When k < n − 1, the type of the rest of the stack is important as
well (the latter fragment of the run can perform returns visiting interiors of our stack; the
existence of such returns is described by the type). This is not a problem, since the type
comes from a finite set, so we can assume that it is fixed as well.

The most difficult part of the proof is to show that indeed when the run stops to be
(k − 1)-upper, there are only finitely many possible shapes for the topmost k-stack. This
is shown in Corollary 9.3. It bases on Lemma 9.2, in which we analyze the situation just
after reading the stars.

Lemma 9.2. For each milestone configuration c, and for k ∈ [1, n], there exists a finite set
Sk(c) of k-stacks having the following property. Let R be a run starting in c and reading
only stars. Let x be the bottommost position of the topmost (k − 1)-stack in some k-stack
of R(|R|). If hist(R, x) 6= topk−1(c), then the k-stack of R(|R|) containing x is in Sk(c).

Proof. Let X (c) be the set containing all k-stacks of c, and additionally the topmost k-stack
of c with its topmost (k − 1)-stack removed. Let Sk(c) contain all k-stack which can be
obtained from a k-stack sk ∈ X (c) by applying at most β(sk) of push and pop operations,
where β is the function from Lemma 8.4.

Fix a run R from c which reads only stars. We say that a k-stack of some configuration
R(i) is c-clear, if hist(R�0,i, x) 6= topk−1(c) for x being the bottommost position of the
topmost (k − 1)-stack in the considered k-stack of R(i). Our goal is to show that every
c-clear k-stack of R(|R|) is in Sk(c).

Let us fix some c-clear k-stack of R(|R|), let y be its bottommost position. Consider
the smallest index i for which this k-stack (more precisely the k-stack of R(i) containing
hist(R�i,|R|, y)) is c-clear in R(i). We claim that this k-stack of R(i) is in X (c). Indeed, either

i = 0 and it is one of the k-stacks of c, or the k-stack of R(i−1) containing hist(R�i−1,|R|, y)
is not c-clear. In the latter case, this k-stack becomes c-clear in the next configuration, so
necessarily this is the topmost k-stack, and the operation between these configurations is
popk. We see that R�0,i−1 is (k − 1)-upper, and R�0,i is not (k − 1)-upper. Proposition 6.5
implies that R�0,i is a k-return, and Proposition 6.6 implies that the topmost k-stack of
R(i) is equal to the topmost k-stack of c with its topmost (k − 1)-stack removed; thus it
belongs to X (c).

Let sk be the k-stack of R(i) containing hist(R�i,|R|, y) (where i as above). Observe
that a k-stack can be changed only when it is the topmost k-stack. If there exist at most
β(sk) indices j ∈ [i, |R|] such that position hist(R�j,|R|, y) is in the topmost k-stack of R(j),
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then the k-stack of R(|R|) containing y can be obtained from sk by applying at most β(sk)
of push and pop operations, so it is in Sk(c). Suppose to the contrary that there are more
than β(sk) such indices j. Then we can use Lemma 8.4 for R�i,|R|; it gives us an index j

such that configuration R(j) is a milestone and position hist(R�j,|R|, y) is in the topmost

k-stack of R(j). Because both c and R(j) are milestones, we know that R�0,j is 0-upper,

thanks to Lemma 8.3. One case is that i = 0; then hist(R, y) 6= topk(c) (since the k-stack of c
containing hist(R, y) is c-clear), so R�0,j is not k-upper, thus even more it cannot be 0-upper.

Otherwise, as already observed, R�0,i is not (k − 1)-upper and hist(R�i,|R|, y) = topk(R(i)),

which implies that R�i,j is k-upper. But R�0,j is (k − 1)-upper, so this contradicts with
Proposition 6.4 applied for R�0,i ◦R�i,j .

Corollary 9.3. For each milestone configuration c there exists a finite set S(c) of config-
urations having the following property. Let k ∈ [0, n], let R be a run starting in c, and let
r ∈ [0, |R|] be such that R�0,r reads only stars. Suppose that R is not (k − 1)-upper, but
for each i ∈ [r, |R| − 1] either R�0,i is (k − 1)-upper or R�i,|R| is not k-upper. Then we can

find a configuration d ∈ S(c) having the same (A, ϕ)-type and the same topmost k-stack as
R(|R|).

Proof. There are only finitely many possible values of a (A, ϕ)-type of a configuration. Thus
it is enough to show, for each k, that there are only finitely many possible topmost k-stacks
over all configurations R(|R|) satisfying the assumptions. For k = 0 this is trivial as 0-stack
contains just one symbol. Suppose that k ≥ 1. We have two cases.

First suppose that R�i,|R| is k-upper for some i ∈ [r, |R|−1]; fix the greatest such index

i. Then by assumption R�0,i is (k − 1)-upper, but R is not. This is possible only when
i = |R| − 1 (thanks to Proposition 6.2 used for R�i,|R|). Proposition 6.5 says that R is

necessarily a k-return. Thus the topmost k-stack of R(|R|) is equal to the topmost k-stack
or R(0) with its topmost (k− 1)-stack removed (Proposition 6.6). Thus the content of this
k-stack is fixed.

The other case is that R�i,|R| is not k-upper for every i ∈ [r, |R| − 1]. This means that

the topmost k-stack of R(|R|) is an unchanged copy of some k-stack of R(r). As R is not
(k−1)-upper, this k-stack of R(r) is c-clear, and by Lemma 9.2 it is in the finite set Sk(c).

Proof of Theorem 9.1. Consider the infinite run P starting at the milestone configuration
c and reading only stars. Consider first the degenerate case when in P only finitely many
stars are read. As pb(c) we take their number, plus one. Then the thesis is satisfied trivially,
as there is no run starting in c which reads a word beginning with pb(c) stars. So for the
rest of the proof suppose that P reads infinitely many stars.

Let S(c) be the set from Corollary 9.3 (used for c). For each i ≥ 1 we define the set
Ti ⊆ [0, n]× S(c)×M as follows. A triple (j, d,m) belongs to Ti if and only if there exists
a run R from c such that the word read by R begins with (at least) i stars, and ϕ(R) = m,
and R(|R|) has the same (A, ϕ)-type and the same topmost j-stack as d. By definition
Ti+1 ⊆ Ti (for each i), and there are only finitely many possible sets, so from some moment
every Ti is the same. As pb(c) we take a positive number such Ti = Tpb(c) for each i ≥ pb(c).

Consider now a run R ◦R′ starting in c, where R is not (k− 1)-upper and reads a word
beginning with at least pb(c) stars, and R′ is k-upper, for some k ∈ [0, n]. Consider also a
number l. Our goal is to construct a run S◦S′ starting in c and such that ϕ(S) = ϕ(R), and
S reads a word beginning with at least l stars, and S′ is (k, ϕ)-parallel to R′. W.l.o.g. we
can assume that l ≥ pb(c). Let r be an index such that R�0,r reads exactly pb(c) stars.
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W.l.o.g. we can assume that there is no i ∈ [r, |R| − 1] such that R�0,i is not (k − 1)-upper
and R�i,|R| is k-upper (if such i exists, we move the subrun R�i,|R| to R′, that is we use the

pumping lemma for R�0,i ◦ (R�i,|R| ◦ R′), and then in the resulting S′ we find the subrun

(k, ϕ)-parallel to R�i,|R| and we move it back to S).
We use Corollary 9.3 for R and r; its assumptions are satisfied thanks to our w.l.o.g. as-

sumption. We obtain some d ∈ S(c) which has the same (A, ϕ)-type and the same topmost
k-stack as R(|R|). It means that (k, d, ϕ(R)) ∈ Tpb(c). Because Tpb(c) = Tl, there exists a
run S from c such that the word read by S begins with (at least) l stars, and ϕ(S) = ϕ(R),
and S(|S|) has the same (A, ϕ)-type and the same topmost k-stack as R(|R|).

Finally, we use Theorem 7.3 for R′ in order to obtain an accepting run S′ that starts
in S(|S|) and is (k, ϕ)-parallel to R′.

10. Why U Cannot Be Recognized?

In this section we prove that language U cannot be recognized by a deterministic higher-
order pushdown automaton of any order. Notice that our techniques presented in previous
sections were quite general (not too much related to the U language). We believe that
they can be useful for other purposes, to analyze behavior of some automata (in particular
automata whose main objective is to count and compare the number of times a symbol
appears on the input).

Of course our proof goes by contradiction: suppose that for some n we have an (n− 1)-
DPDA recognizing U . We construct an n-DPDA A which works as follows. First it performs
a pushn operation. Then it simulates the (n − 1)-DPDA (not using the pushn and popn

operations). When the (n− 1)-DPDA is going to accept, A performs a popn operation and
afterwards accepts. Clearly, A recognizes U as well. Such normalization allows us to use
Theorem 7.4, as in A every accepting run is an n-return.

Fix a morphism λ : A∗ →M into a finite monoid M , which checks whether a word is of
the form ]∗ (some number of ] symbols), or of the form ?∗]?∗ (a closing bracket surrounded
by some number of stars), or of neither of these two forms. This means that for words
u, v being of different form we have λ(u) 6= λ(v). Let N be the number of equivalence
classes of the (A, λ)-sequence equivalence relation, times the number of (A, λ)-types, plus
one. Consider the following words:

w0 = [

wk+1 = wNk ]N [ for k ∈ [0, n− 1],

where the number in the superscript (in this case N) denotes the number of repetitions of
a word. For a word w, its pattern is a word obtained from w by removing its letters other
than brackets (leaving only brackets). Fix a morphism ϕ : A∗ →M such that from its value
ϕ(w) we can deduce

• whether the word w contains the ] symbol, and
• whether the pattern of w is longer than |wn|, and
• the exact value of the pattern of w, whenever this pattern is not longer than |wn|.

We fix a run R, and an index z(w) for each prefix w of wn, such that the following
holds. Run R begins in the initial configuration. Between R(0) and R(z(ε)) only stars are
read. For each prefix w of wn, the configuration R(z(w)) is a milestone. Just after z(w),
the run R reads pb(R(z(w))) stars, where pb is the function from Theorem 9.1 used for
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Figure 3: Illustration of runs appearing in the proof (where N = 4, x = 1, y = 3). Recall
that stars can appear between letters of the words.

morphism ϕ. If w = va (where a is a single letter), the word read by R between R(z(v))
and R(z(w)) consists of a surrounded by some number of stars. Of course such run R exists:
we read stars until we reach a milestone (succeeds thanks to Corollary 8.5), then we read
as many stars as required by the pumping lemma, then we read the next letter of wn, and
so on (because A accepts U , it will never block).

It will be important to analyze relations between configurations R(z(v)) for some pre-
fixes v of wn. In order to avoid complicated subscripts, for any prefixes v, w of wn we denote
〈v, w〉 := R�z(v),z(w).

By construction of A, for every prefix v of wn the run 〈v, wn〉 is (n − 1)-upper (as we
never perform a popn operation before reading some ] symbol). This contradicts with the
following key lemma (taken for k = n− 1 and u = ε).

Lemma 10.1. Let k ∈ [−1, n− 1], and let u be a word such that uwk+1 is a prefix of wn.
Then there exist a prefix v of wk+1 such that 〈uv, uwk+1〉 is not k-upper.

Proof. The proof is by induction on k. For k = −1 this is obvious, as no run is (−1)-upper.
Let now k ≥ 0. Figure 3 might be helpful in finding different runs present in the proof

below. Suppose that the thesis of the lemma does not hold. Then for each prefix v of wk+1

the run 〈uv, uwk+1〉 is k-upper. From this we get the following property ♥.

Let v′ be a prefix of wk+1, and v a prefix of v′. Then 〈uv, uv′〉 is k-upper.

By the induction assumption (where uwi−1
k is taken as u), for each i ∈ [1, N ] there exist

a prefix vi of wk such that 〈uwi−1
k vi, uw

i
k〉 is not (k − 1)-upper. As 〈uwik, uwNk 〉 is k-upper

(property ♥), from Proposition 6.4 we know that 〈uwi−1
k vi, uw

N
k 〉 cannot be (k − 1)-upper

as well.
Now we are ready to use the pumping lemma (Theorem 9.1). For each i ∈ [1, N ] we use

it for 〈uwi−1
k vi, uw

N
k 〉◦ 〈uwNk , uwk+1〉. Recall from the definition of R that the word read by

〈uwi−1
k vi, uw

N
k 〉 begins with such a number of stars that the pumping lemma can be used.

For each number l we obtain a run Si,l ◦S′i,l, such that ϕ(Si,l) = ϕ(〈uwi−1
k vi, uw

N
k 〉), and Si,l

reads a word beginning with at least l stars, and S′i,l is (k, ϕ)-parallel to 〈uwNk , uwk+1〉; let

di,l = Si,l(|Si,l|). Notice that the run R�0,z(uwi−1
k vi)

◦ Si,l, starts in the initial configuration,

ends in di,l, and reads a word having pattern uwNk .
Because there are finitely many possible (A, λ)-types, we can assume that typeA,λ(di,l) =

typeA,λ(di,j) for each i ∈ [1, N ] and each l and j. Indeed, we can choose (for each i
separately) some value of typeA,λ(di,l) which appears infinitely often, and then we take the
subsequence of only these di,l which give this value.
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Since there are more possible indices i ∈ [1, N ] than the number of classes of the (A, λ)-
sequence equivalence relation, times the number of (A, λ)-types, there have to exist two
indices x, y with 1 ≤ x < y ≤ N such that typeA,λ(dx,1) = typeA,λ(dy,1), and the sequences
dx,1, dx,2, . . . and dy,1, dy,2, . . . are (A, λ)-sequence equivalent. From now we fix these two
indices x, y. Furthermore, because S′i,l is (k, ϕ)-parallel to 〈uwNk , uwk+1〉 for each i ∈ [1, N ]
and each l, we know that the topmost k-stacks of all dx,l and of all dy,l are equal.

Let R′ be a prefix of S′x,1 which is (k, ϕ)-parallel to 〈uwNk , uwNk ]N−x〉. Notice that R′

consists of N − x runs, each of which is k-upper and reads a word of the form ?∗]?∗ (a
closing bracket surrounded by some number of stars). Let also R′′ be an n-return starting
in R′(|R′|) reading only ] symbols (because A recognizes U , there is an accepting run R′′

from R′(|R′|) reading only ] symbols; by construction of A, it is an n-return).
Finally we use Theorem 7.4 for λ (as ϕ), sequences dx,1, dx,2, . . . (as c1, c2, . . . ) and

dy,1, dy,2, . . . (as d1, d2, . . . ), and for run R′ ◦ R′′.4 As noticed above (in particular because
R′(0) = dx,1), the configurations R′(0) and dx,l and dy,l for each l all have the same (A, λ)-
types and topmost k-stacks. Thus the assumptions of the theorem are satisfied. For each
l, we obtain runs Sl (from dx,l) and Tl (from dy,l). The word read by any of these runs
contains N − x closing brackets with some number of stars around them, and after them
some number of ] symbols.

The runs R�0,z(uwx−1
k vx) ◦ Sx,l ◦ Sl and R�

0,z(uwy−1
k vy)

◦ Sy,l ◦ Tl for each l have pattern

uwNk ]N−x. In this pattern the last opening bracket which is not closed is the last bracket
of the x-th wk after u. Recall that configurations dx,l were obtained by pumping inside the
x-th wk, so before this bracket; for l→∞ the number of stars inserted there is unbounded.
From the definition of the language U it follows that the sequence ](S1), ](S2), . . . has to
be unbounded. On the other hand, configurations dy,l were obtained by pumping inside
the y-th wk, so after the last opening bracket which was not closed (as y > x). For each
l the number of stars before this bracket is the same. From the definition of the language
U it follows that the sequence ](T1), ](T2), . . . has to be constant, hence bounded. This
contradicts with the thesis of Theorem 7.4, which says that either both these sequences are
bounded or both unbounded.
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