
First-Order Logic on CPDA Graphs

Pawe l Parys?

University of Warsaw, parys@mimuw.edu.pl

Abstract. We contribute to the question about decidability of first-
order logic on configuration graphs of collapsible pushdown automata.
Our first result is decidability of existential FO sentences on configura-
tion graphs (and their ε-closures) of collapsible pushdown automata of
order 3, restricted to reachable configurations. Our second result is unde-
cidability of whole first-order logic on configuration graphs which are not
restricted to reachable configurations, but are restricted to constructible
stacks. Our third result is decidability of first-order logic on configura-
tion graphs (for arbitrary order of automata) which are not restricted to
reachable configurations nor to constructible stacks, under an alternative
definition of stacks, called annotated stacks.

1 Introduction

Already in the 70’s, Maslov ([1, 2]) generalized the concept of pushdown au-
tomata to higher-order pushdown automata (n-PDA) by allowing the stack to
contain other stacks rather than just atomic elements. In the last decade, re-
newed interest in these automata has arisen. They are now studied not only as
acceptors of string languages, but also as generators of graphs and trees. Knapik
et al. [3] showed that the class of trees generated by deterministic n-PDA coin-
cides with the class of trees generated by safe order-n recursion schemes (safety is
a syntactic restriction on the recursion scheme). Driven by the question whether
safety implies a semantical restriction to recursion schemes (which was recently
proven [4, 5]), Hague et al. [6] extended the model of n-PDA to order-n collapsi-
ble pushdown automata (n-CPDA) by introducing a new stack operation called
collapse (earlier, panic automata [7] were introduced for order 2), and proved
that trees generated by n-CPDA coincide with trees generated by all order-n
recursion schemes.

In this paper we concentrate on configuration graphs of these automata. In
particular we consider their ε-closures, whose edges consist of an unbounded
number of transitions rather than just single steps. The ε-closures of n-PDA
graphs form precisely the Caucal hierarchy [8–10], which is defined independently
in terms of MSO-interpretations and graph unfoldings. These results imply that
the graphs have decidable MSO theory, and invite the question about decidability
of logics in ε-closures of n-CPDA graphs.

? The author holds a post-doctoral position supported by Warsaw Center of Math-
ematics and Computer Science. Work supported by the National Science Center
(decision DEC-2012/07/D/ST6/02443).

Unfortunately there is even a 2-CPDA graph that has undecidable MSO
theory [6]. Kartzow showed that the ε-closures of 2-CPDA graphs are tree au-
tomatic [11], thus they have decidable first-order theory. This topic was farther
investigated by Broadbent [12–15]. He proved that for order 3 (and higher) the
FO theory starts to be undecidable. In fact it is undecidable already on (where
nm-CPDA denotes an n-CPDA in which we allow collapse links only of one order
m):

– nm-CPDA graphs restricted to reachable configurations,1 when n ≥ 3, and
3 ≤ m ≤ n, and the formula is Σ2, and

– nm-CPDA graphs restricted to reachable configurations,1 when n ≥ 4, and
2 ≤ m ≤ n− 2, and the formula is Σ1, and

– ε-closures2 of 32-CPDA graphs, when the formula is Σ2, and
– 3-CPDA graphs not restricted to reachable configurations (nor to stacks

which are constructible from the empty one by a sequence of stack operation).

On the other side, he gives some small decidability results:

– for n = 2, FO is decidable even when extended by transitive closures of
quantifier free formulae;

– FO is decidable on 32-CPDA graphs restricted to reachable configurations;
– Σ1 formulae are decidable on ε-closures of nn-CPDA graphs (for each n),

and of 32-CPDA graphs.

In the current paper we complement this picture by three new results (an-
swering questions stated by Broadbent). First, we prove that the existential
(Σ1) FO sentences are decidable on ε-closures of 3-CPDA graphs. This is almost
proved in [15]: it holds under the assumption that the 3-CPDA is luminous,
which means that after removing all order-3 collapse links from a two different
reachable configurations, there are still different (that is, the targets of such
links are uniquely determined by the structure of the stack). We prove that each
3-CPDA can be turned into an equivalent luminous one. The question whether
Σ1 formulae are decidable for nn−1-CPDA and nn,n−1-CPDA (allowing links of
orders n and n−1) where n ≥ 4, both with and without ε-closure, remains open.

Second, we prove (oppositely to the Broadbent’s conjecture) that first-order
logic is undecidable on 4-CPDA graphs not restricted to reachable configurations,
but restricted to stacks constructible from the empty one by a sequence of stack
operations (although not necessarily ever constructed by the particular CPDA
in question). Our reduction is very similar to the one showing undecidability of
3-CPDA graphs not restricted to reachable configurations nor to constructible
stacks.

Third, we prove that first-order logic is decidable (for each n) on n-CPDA
graphs not restricted to reachable configurations nor to constructible stacks,

1 Thus for their ε-closures as well.
2 For ε-closures, it does not change anything whether we restrict to reachable config-

urations or not.

2

when stacks are represented as annotated stacks. This is an alternative repre-
sentation of stacks of n-CPDA (defined independently in [16] and [17]), where
in an atomic element, instead of an order-k link, we keep an order-k stack; the
collapse operation simply recalls this stack stored in the topmost element. In
the constructible case, annotated and CPDA stacks amount to the same thing
(although the annotated variant offers some conveniences in expressing certain
proofs), but in the unconstructible case there is an important difference. Whilst
with an unconstructible CPDA stack each link is constrained to point to some
stack below its source, in an annotated stack it can point to an arbitrary stack,
completely unrelated to the original one. This shows up when we go back through
a pop edge: in the classical case links in the appended stack point (potentially
anywhere) inside our original stack, so we can use them to inspect any place in
the stack. On the other hand, in the annotated case we can append an arbitrary
stack, which does not give us any new information: in first-order logic we can
refer only locally to some symbols near the top of the stack.

2 Preliminaries

We give a standard definition of an n-CPDA, using the “annotated stack” repre-
sentation of stacks. We choose this representation because of Section 5, in which
we talk about all configurations with such stacks. For Sections 3 and 4 we could
choose the standard representation (with links as numbers) as well.

Given a number n (the order of the CPDA) and a stack alphabet Γ , we define
the set of stacks as the smallest set satisfying the following. If 1 ≤ k ≤ n and
s1, s2, . . . , sm for m ≥ 1 are (k − 1, n)-stacks, then the sequence [s1, s2, . . . , sm]
is a (k, n)-stack. If a ∈ Γ , and 1 ≤ k ≤ n, and s is a (k, n)-stack or s = [] (the
“empty stack”), then (a, k, sk) is a (0, n)-stack. We sometimes use “k-stack”
instead of “(k, n)-stack” when n is clear from the context or meaningless.

A 0-stack (a, l, t) is also called an atom; it has label lb((a, l, t)) := a and link
t of order l. In a k-stack s = [s1, s2, . . . , sm], the top of the stack is on the right.
We define |s| := m, called the height of s, and pop(s) := [s1, . . . , sm−1] (which
is equal to [] if m = 1). For 0 ≤ i ≤ k, topi(s) denotes the topmost i-stack of s.

An n-CPDA has the following operations on an (n, n)-stack s:

– popk, where 1 ≤ k ≤ n, removes the topmost (k − 1)-stack (undefined when
|topk(s)| = 1);

– push1
a,l, where 1 ≤ l ≤ n and a ∈ Γ , pushes on the top of the topmost 1-stack

the atom (a, l, pop(topl(s)));
– pushk, where 2 ≤ k ≤ n, duplicates the topmost (k − 1)-stack inside the

topmost k-stack;
– collapse, when top0(s) = (a, l, t), replaces the topmost l-stack by t (undefined

when t = []);
– rewa, where a ∈ Γ , replaces the topmost atom (b, l, t) by (a, l, t).

Denote the set of all these operations as Θn(Γ). Operation rewa is not always
present in definitions of CPDA, but we add it following [15].

3

A position is an n-tuple x = (pn, . . . , p1) of natural numbers. The atom at
position x in an n-stack s is the p1-th 0-stack in the p2-th 1-stack in ... in the
pn-th (n−1)-stack of s. We say that x is a position of s, if such atom exists. For
an n-stack s and a position x in s, we define s≤x as the stack obtained from s
by a sequence of pop operations, in which the topmost atom is at position x.

An (n, n)-stack s is called constructible if it can be obtained by a sequence of
operations in Θn(Γ) from a stack with only one atom (a, 1, []) for some a ∈ Γ . It
is not difficult to see that when restricted to constructible stacks, our definition
of stacks coincides with the classical one.

Proposition 2.1. Let s be a constructible n-stack, and x a position of an atom
(a, l, t) in s. Then t is a proper prefix of topl(s≤x), that is, t = [t1, . . . , tm] and
topl(s≤x) = [t1, . . . , tm′] with m < m′.

An n-CPDA A is a tuple (Σ,Π,Q, q0, Γ,⊥0, ∆,Λ), where Σ is a finite set of
transition labels;Π is a finite set of configuration labels;Q is a finite set of control
states containing the initial state q0; Γ is a finite stack alphabet containing the
initial stack symbol ⊥0; ∆ ⊆ Q × Γ × Σ × Θn(Γ) × Q is a transition relation;
Λ ⊆ Q× Γ ×Π is a predicate relation.

A configuration of A is a pair (q, s) where q is a control state and s is
an (n, n)-stack. Such a configuration satisfies a predicate b ∈ Π just in case
(q, lb(top0(s)), b) ∈ Λ. For c ∈ Σ, we say that A can c-transition from (q, s) to

(q′, θ(s)), written (q, s)
c−→ (q′, θ(s)), if and only if (q, lb(top0(s)), c, θ, q′) ∈ ∆.

For a language L over Σ we write (q, s)
L−→ (q′, s′) when (q′, s′) can be reached

from (q, s) by a sequence of transitions such that the word of their labels is in
L. The initial configuration of A is (q0,⊥), where ⊥ is the stack containing only
one atom which is (⊥0, 1, []).

We define three graphs with Π-labelled nodes and Σ-labelled directed edges.
The graph Gano(A) has as nodes all configurations, Gcon(A) only configurations
(q, s) in which s is constructible, and G(A) only configurations (q, s) such that

(q0,⊥)
Σ∗−−→ (q, s). In all cases we have a c-labelled edge from (q, s) to (q′, s′)

when (q, s)
c−→ (q′, s′). Assuming that ε ∈ Σ, we can define the ε-closure of a

graph G: it contains only those nodes of G which have some incoming edge not
labeled by ε, and two nodes are connected by a c-labelled edge (where c 6= ε)

when in G they are related by
ε∗c−−→. We denote the ε-closure of G(A) as G/ε(A).

We consider first-order logic (FO) on graphs as it is standardly defined, with
a unary predicate for each symbol in Π and a binary relation for each symbol in
Σ, together with a binary equality symbol. A formula is Σ1, if it is of the form
∃x1 . . . ∃xk.ϕ, where ϕ is without quantifiers.

3 Luminosity for 3-CPDA

The goal of this section is to prove the following theorem.

Theorem 3.1. Given a Σ1 first-order sentence ϕ and a 3-CPDA A, it is de-
cidable whether ϕ holds in G/ε(A).

4

In [15] (Theorem 5, and the comment below) this is proven under the restric-
tion to 3-CPDA A which are luminous. It remains to show that each 3-CPDA
A can be turned into a luminous 3-CPDA A′ for which Gε(A) = Gε(A′).

Let us recall the definition of luminosity. For an (n, n)-stack s, we write
stripln(s) to denote the (n, n)-stack that results from deleting all order-n links
from s (that is, changing atoms (a, n, p) into (a, n, []); of course we perform this
stripping also inside all links). An n-CPDA A is luminous whenever for every
two configurations (q, s), (q′, s′) in the ε-closure with stripln(s) = stripln(s′) it
holds s = s′.

For example, the two 2-stacks

[[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)], [(a, 1, []), (b, 2, s1)]] and

[[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)], [(a, 1, []), (b, 2, s2)]]

with s1 = [[(a, 1, []), (b, 1, [])]] and s2 = [[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)]]
become identical if the links are removed. Extra annotations would need to be
added to the stack to tell them apart without links.

We explain briefly why luminosity is needed in the decidability proof in [15].
The proof reduces the order of the CPDA by one (a configuration of an n-CPDA
is represented as a sequence of configurations in an (n− 1)-CPDA), in the cost
of creating a more complicated formula. This reduction allows to deal with the
operational aspect of links (that is, with the collapse operation). However, there
is also the problem of preserving identities, to which first-order logic is sensitive.
For this reason, the reduction would be incorrect, if by removing links from two
different configurations, suddenly they would become equal.

Let us emphasize that we are not trying to simulate the operational behavior
of links in a 3-CPDA after removing them. We only want to construct another
3-CPDA with the same G/ε, which still uses links of order-3, but such that
stripln(s) = stripln(s′) implies s = s′.

Our construction is quite similar to that from [15] (which works for such
n-CPDA which only have links of order n). The key idea which allows to extend
it to 3-CPDA which also have links of order 2, is to properly assign the value of
generation (see below) to atoms with links of order 2.

Fix a 3-CPDAA with a stack alphabet Γ . W.l.o.g. we assume thatA “knows”
what is the link order in each atom: Γ is divided into Γ1, Γ2, Γ3, so that in all
reachable configurations of A we only have atoms (a, k, t) for which a ∈ Γk.
We also assume that A does not perform collapse on links of order 1 (as it is
equivalent to pop1 repeated twice). We will construct a luminous 3-CPDA A′
with stack alphabet

Γ ′ = Γ × {1>, 1=, 1<} × {2>, 2=, 2<,¬2} × {3≥, 3<,¬3}.

To obtain luminosity, it would be enough to mark for each atom (in particular
for atoms with links of order 3), whether it was created at its position, or copied
from the 1-stack below, or copied from the 2-stack below. Of course we cannot do
this for each atom independently, since when a whole stack is copied, we cannot

5

change markers in all its atoms; thus some markers are needed also on top of
1-stacks and 2-stacks.

There is an additional difficulty that all markers should be placed as a func-
tion of a stack, not depending on how the stack was constructed (otherwise one
node in G/ε(A) would be transformed into several nodes in G/ε(A′)). Thus when

an atom is created by push1
a,l we cannot just mark it as created here, since equally

well identical atom could be copied from a stack below. However, an atom with
a link pointing to the 3-stack containing all the 2-stacks below cannot be a copy
from the previous 2-stack. We can also be sure about this for some atoms with
links of order 2, namely those whose link target already contains an atom with
such “fresh” link of order 3. For these reasons, for each k-stack s (for 0 ≤ k ≤ 2),
including s = [], we define gn(s), the generation of s:

gn([]) := 0,

gn([s1, . . . , sm]) := max(0, max
1≤i≤m

gn(si)),

gn((a, k, t)) :=

 |t|+ 1 if k = 3,
gn(t) if k = 2,
−1 if k = 1.

Intuitively, gn(s) is a lower bound for the height of the 3-stack of the CPDA in
the moment when s was modified last time (or created). For convenience, the
generation of an atom with a link of order 1 is smaller than the generation of
any k-stack for k > 0, and the generation of any atom with a link of order 3 is
greater than the generation of the empty stack.

For each constructible 3-stack s over Γ we define its marked variant mar(s),
which is obtained by adding markers at each position x of s as follows.

– Let i ∈ {1, 2} and r ∈ {>,=, <}, or i = 3 and r ∈ {≥, <}. If x is the topmost
position in its (i− 1)-stack (always true for i = 1), we put marker ir at x if

gn(pop(topi(s≤x))) r gn(topi−1(s≤x)).

– Assume that x is not topmost in its 1-stack, and the position directly above
it has assigned marker 1<. Let t be the atom just above x, and let y be the
highest position in s≤x such that gn(top2(s≤y)) < gn(t). We put marker 2r
at x if

gn(pop(top2(s≤y))) r gn(top1(s≤y));

– If no marker of the form 2r (or 3r) is placed at x, we put there ¬2 (respec-
tively, ¬3).

For example, the marker 2< is placed at the top of some 1-stack to say that
the generation of this 1-stack is greater than of all the 1-stacks below it, in the
same 2-stack.

In the second item, notice that y always will be found, even inside the top-
most 2-stack of s≤x (because s is constructible, the bottommost position of the

6

2-stack satisfies the inequality, since it has generation −1, and gn(t) > 0). In-
tuitively, when an atom from a new generation is placed above y, in y we keep
his 2r marker (notice that the formula is the same as in the first item). This
is needed to reproduce the 2r marker when y becomes again the topmost posi-
tion. Necessarily, the marker from y will be also present at positions x which are
copies of y. Notice however that when we remove an atom at position x using
pop1, and then we reproduce identical atom using push1

a,k, the 2r marker has to
be written there again (mar should be a function of the stack). For this reason
the x containing the 2r marker from y is not necessarily a copy of y: we store
the marker in the highest atom below an atom from the higher generation. See
Figure 1 for an example.

21<
2<

1>
2<

11<

1>
2=

1>
2>

11<

1>
2=

21<
2=

1>
2<

11<

1>
2=

21<
2=

11<
2<

1>
2=

21>
2<

31<

1>
2>

31=
2=

31<

1>
2>

1>

Fig. 1. An example 2-stack (one out of many in a 3-stack). It grows from left to right.
We indicate all 1r and 2r markers, as well as the generation of atoms (bold; no number
for generation −1). To calculate the 2< marker at positions (1, 3), (3, 3), and (4, 2)
we have used position (1, 3) as y. Observe the atom of generation 2 above an atom of
generation 3; this is possible for an atom with a link of order 2.

The key property is that the markers can be updated by a CPDA. We will
say that a CPDA defines a path if from each configuration there is at most one
transition available.

Lemma 3.2. Let θ ∈ Θn(Γ) be a stack operation. Then there exists a 3-CPDA
Aθ which defines a path, with stack alphabet Γ ′ and two distinguished states
q0, q1, such that for each constructible 3-stack s:

– if θ(s) exists, then there is a unique configuration with state q1 reachable by
Aθ from (q0,mar(s)); the stack in this configuration is mar(θ(s));

– if θ cannot be applied to s, no configuration with state q1 is reachable by Aθ
from (q0,mar(s)).

Additionally, Aθ does not use the collapse operation for θ 6= collapse.

Proof (sketch). This is a tedious case analysis. In most cases we just have to
apply a local change of markers. For a push, we update markers in the previously
topmost atom (depending on markers which were previously there), then we
perform the push, and then we update markers in the new topmost atom. For
pop or collapse, we perform this operation, and then we update markers in the

7

atom which became topmost, depending on markers in this atom, and in the
atom which was topmost previously.

There is one exception from this schema, during such push1
a,k operation which

increases the generation of the topmost 1-stack, but not of the topmost 2-stack.
In this situation in the previously topmost atom we should place a 2r marker,
the same as in the atom just below the bottommost atom having the highest
generation in the 2-stack. This information is not available locally; to find this
atom (and the marker in it), we copy the topmost 2-stack (push3), we destruc-
tively search for this atom (which is easy using the markers), and then we remove
the garbage using pop3. ut

Lemma 3.3. Let s, s′ be constructible 3-stacks such that stripln(mar(s)) =
stripln(mar(s′)). Then s = s′.

Proof (sketch). We prove this by induction, so we can assume that s is equal to
s′ everywhere except its topmost atom. Only the situation when top0(s) has a
link of order 3 is nontrivial; then we have to prove that the generation of the
topmost atoms of s and s′ is the same. We notice that gn(top0(s)) = gn(top1(s)).
We have several cases. When the topmost atom is marked by 2=, its generation
is gn(pop(top2(s))), which is determined by the part below top0(s). When it is
marked by 2< and 3<, its generation is |s|. When it is marked by 2< and by
3≥, this atom was necessarily copied from the 2-stack below (and has the same
generation as the corresponding atom there). Finally, when it is marked by 2>,
this atom was necessarily copied from the 1-stack below (here, or in some 2-stack
below). ut

Having these two lemmas it is easy to conclude. We construct A′ from A
as follows. The initial stack of A′ should be mar(⊥). Whenever A wants to
apply a c-labelled transition with operation θ and final state q, A′ simulates
the automaton Aθ using ε-transitions, and then changes state to q using a c-
labelled transition. Then G/ε(A) is isomorphic to G/ε(A′): a configuration (q, s)
corresponds to (q,mar(s)). Moreover, by Lemma 3.3 the CPDA is luminous
(notice that the ε-closure contains only configurations with stack of the form
mar(s)).

4 Unreachable configurations with constructible stack

In this section we prove that the FO theory is undecidable for configuration
graphs without the restriction to reachable configurations, but when we allow
only constructible stacks (oppositely to the conjecture stated in [15]). On the
other hand, in the next section we show decidability when one allows also stacks
which are unconstructible. Let us recall that the FO theory was known [15]
to be undecidable, when one allows also stacks which are unconstructible, but
for the classical definition of stacks (links represented as numbers, pointing to
substacks). Our proof goes along a similar line, but additional care is needed to
ensure that the stacks used in the reduction are indeed constructible. For this
reason we need to use stacks of order 4 (while [15] uses stacks of order 3).

8

To be precise, we prove our undecidability result for graph Gcon(A), for the
4-CPDA A which has a single-letter stack alphabet {?}, one state, and for each
stack operation θ a θ-labelled transition performing operation θ. Since there is
only one state we identify a configuration with the (4, 4)-stack it contains.

Theorem 4.1. FO is undecidable on Gcon(A).

We reduce the first-order theory of finite graphs, which is well-known to be
undecidable [18]. A finite graph G = (V,E) consists of a finite domain V of
nodes over which there is a binary irreflexive and symmetric relation E of edges.
We will use the domain of Gcon(A) to represent all possible finite graphs.

First we observe that in first-order logic we can determine the order of the
link in the topmost atom. That is, for 1 ≤ k ≤ 4 we have a formula linkk(s)
which is true in configurations s such that top0(s) = (?, k, t) with t 6= []. The
formulae are defined by

linkk(s) :=
∧

1≤i<k

¬linki(s) ∧ ∃t.(s collapse−−−−→ t ∧ eqk(s, t)),

where eqk(s, t) states that s and t differ only in their topmost k-stacks, that is
eq4(s, t) := true, and for 1 ≤ k ≤ 3,

eqk(s, t) := ∃u.(s popk+1

−−−−→ u ∧ t popk+1

−−−−→ u) ∨ (eqk+1(s, t) ∧ ¬∃u.(s popk+1

−−−−→ u)).

Next, we define two sets of substacks of a 4-stack s which can be easily ac-
cessed in FO. The set vis4(s) contains s and the stacks t for which in top3(s)
there is the atom (?, 4, t). The set vis3(s) contains s and the stacks t for which
pop(s) = pop(t) and in top2(s) there is the atom (?, 3, top3(t)). When s is con-
structible, the property that t ∈ visk(s) (for k ∈ {3, 4}) can be expressed by the
FO formula

visk(s, t) := ∃u.(u popk−−−→ s ∧ linkk(u) ∧ u collapse−−−−−→ t).

To every constructible 4-stack s we assign a finite graph G(s) as follows.
Its nodes are V := vis4(s). Two nodes t, u ∈ V are connected by an edge when
top0(v) = (?, 4, u) for some v ∈ vis3(t), or top0(v) = (?, 4, t) for some v ∈ vis3(u).

Lemma 4.2. For each non-empty finite graph G there exists a constructible
(4, 4)-stack sG (in the domain of Gcon(A)) such that G is isomorphic to G(sG).

Proof. Suppose that G = (V,E) where V = {1, 2, . . . , k}. The proof is by in-
duction on k. If k = 1, as sG we just take the (constructible) 4-stack consisting
of one atom (?, 1, []). Assume that k ≥ 2. For 1 ≤ i < k, let Gi be the sub-
graph of G induced by the subset of nodes {1, 2, . . . , i}, and let si := sGi

be the
stack corresponding to Gi obtained by the induction assumption. We will have
pop4(sG) = sk−1, and top4(sG) = tk, where 3-stacks ti for 0 ≤ i ≤ k are defined

9

by induction as follows. We take t0 = []. For i > 0 we take take pop(ti) = ti−1,
and the topmost 2-stack of ti consists of one or two 1-stacks. Its first 1-stack is

[(?, 1, []), (?, 4, s1), (?, 4, s2), . . . , (?, 4, sk−1), (?, 3, t0), (?, 3, t1), . . . , (?, 3, ti−1)].

If (i, k) 6∈ E we only have this 1-stack; if (i, k) ∈ E, in top2(ti) we also have the
1-stack

[(?, 1, []), (?, 4, s1), (?, 4, s2), . . . , (?, 4, si)].

We notice that all substacks are available in visi: vis4(sG) contains stacks
s1, s2, . . . , sk−1, sG, and vis3(sG) contains all stacks obtained from sG by replac-
ing its topmost 3-stack by ti for some i ≥ 1. It follows that G(sG) is isomorphic
to G.

It is also easy to see that sG is constructible. We create it out of sk−1 by
performing push4 and appropriately changing the topmost 3-stack. Notice that
the bottommost 1-stack of top3(sk−1) starts with (?, 1, []), (?, 4, s1), (?, 4, s2), . . . ,
(?, 4, sk−2). We uncover this prefix using a sequence of pop operations. We ap-
pend (?, 4, sk−1) and (?, 3, t0) by push1

?,4 and push1
?,3. If (1, k) ∈ E, we create

the second 1-stack using push2 and a sequence of pop1. This already gives the
first 2-stack. To append each next (i-th) 2-stack, we perform push3; we remove
the second 1-stack if it exists using pop2; we append (?, 3, ti−1) using push1

?,3; if

necessary we create the second 1-stack using push2 and a sequence of pop1. ut

We have a formula stating that two nodes x, y of G(s) are connected by an
edge:

E(x, y) :=∃z.(vis3(x, z) ∧ link4(z) ∧ z collapse−−−−→ y)∨

∨ ∃z.(vis3(y, z) ∧ link4(z) ∧ z collapse−−−−→ x).

Given any sentence ϕ over finite graphs, we construct a formula ϕ′(s) by
replacing all occurrences of the atomic binary predicate xEy with the for-
mula E(x, y) from above, and relativising all quantifiers binding a variable x
to vis4(s, x). Then for each constructible (4, 4)-stack s, ϕ holds in G(s) if and
only if ϕ′(s) holds in Gcon(A). Thus ϕ holds in some finite graph if and only if
it holds in the empty graph or ∃s.ϕ′(s) holds in Gcon(A). This completes the
reduction and hence the proof of Theorem 4.1, since it is trivial to check whether
ϕ holds in the empty graph.

5 Unreachable configurations with annotated stack

In this section we prove decidability of first order logic in the graph of all con-
figurations, not restricted to constructible stacks.

Theorem 5.1. Given a first-order sentence ϕ and a CPDA A, it is decidable
whether ϕ holds in Gano(A).

10

For the rest of the section fix a CPDA A of order n, with stack alphabet
Γ . The key idea of the proof is that an FO formula can inspect only a small
topmost part of the stack, and check equality of the parts below. Thus instead
of valuating variables into stacks, it is enough to describe how the top of the
stack looks like, and which stacks below are equal. To formalize this we define
generalized stacks.

Consider the following operations on stacks:

– for each k ∈ {1, . . . , n} operation firstk(·) which takes a (k − 1)-stack s and
returns the k-stack [s],

– for each k ∈ {1, . . . , n} operation appk(·, ·) which takes a k-stack [s1, . . . , sm]
and a (k − 1)-stack s, and returns the k-stack [s1, . . . , sm, s],

– for each a ∈ Γ and k ∈ {1, . . . , n} operation cons(a, k, []) (without argu-
ments) which returns the 0-stack (a, k, []),

– for each a ∈ Γ and k ∈ {1, . . . , n} operation cons(a, k, ·) which takes a k-stack
s and returns the 0-stack (a, k, s).

We notice that stacks can be seen as elements of the free multisorted algebra
with these operations and no generators (we have n+ 1 sorts, one for each order
of stacks). In the proof we need elements of the free multisorted algebra with
these operations and some generators: for each sort k we have an infinite set of
constants, denoted xk1 , x

k
2 , Elements of this algebra will be called generalized

stacks. Thus a generalized stack is a stack in which we have replaced some prefixes
of some stacks by constants. Generalized stacks will be denoted by uppercase
letters.

For each generalized stack S and each d ∈ N we define the set ts=d(S) of
stacks. These are substacks of S which are at “distance” exactly d from the top.
The definition is inductive: we take ts=0(S) := {S},

ts=1(S) :=

{T} if S = firstk(T),
{T,U} if S = appk(T,U),
∅ if S = cons(a, k, []),
{T} if S = cons(a, k, T),
∅ if S is a constant,

and ts=d+1(S) :=
⋃
T∈ts=d(S)

ts=1(T) for d ≥ 1. Moreover we define ts≤d(S) :=⋃
e≤d ts=e(S) and for d ∈ N ∪ {∞}, ts<d(S) :=

⋃
e<d ts=e(S).

A valuation is a (partial) function v mapping constants to stacks, preserving
the order. Such v can be extended to a homomorphism v mapping generalized
stacks to stacks. Obviously, to compute v(S) it is enough to define v only on
constants appearing in S.

In the logic we can talk also about equality of stacks, so we are interested in
valuations which applied to different generalized stacks give different stacks. This
is described by the ↪→d relation. Let S1, . . . , Sm (for m ≥ 0) be extended stacks,
and s1, . . . , sm stacks, and d ∈ N. Then we say that (S1, . . . , Sm) ↪→d (s1, . . . , sm)
if there exists a valuation v such that

– si = v(Si) for each i, and

11

– no element of
⋃
i ts<d(Si) is a constant (that is, all constants are at depth

at least d), and
– for each T,U ∈

⋃
i ts≤d(Si) such that v(T) = v(U), it holds T = U .

Example 5.2. Consider the following 2-stack:

s := [[(a, 1, []), (b, 1, []), (c, 1, [])], [(a, 1, []), (b, 1, []), (c, 1, [])]].

It can be written as:

app2
(

first2
(

app1(app1(first1(cons(a, 1, [])), cons(b, 1, [])), cons(c, 1, []))
)
,

app1(app1(first1(cons(a, 1, [])), cons(b, 1, [])), cons(c, 1, []))
)
.

It holds

(app2(first2(app1(x1, cons(c, 1, []))), app1(x1, cons(c, 1, [])))) ↪→2 (s),

where the valuation maps x1 into app1(first1(cons(a, 1, [])), cons(b, 1, [])). On the
other hand it does not hold (app2(first2(y1), app1(x1, cons(c, 1, [])))) ↪→2 (s); the
problem is that the two 1-stacks of s were equal, while they are different in this
generalized 2-stack. This shows that we cannot place all constants at one, fixed
depth.

When a formula (having already some generalized stacks assigned to its free
variables) starts with a quantifier, as a value of the quantified variable we want
to try all possible generalized stacks which are of the special form, as described
by the following definition. Let S1, . . . , Sm, Sm+1 (for m ≥ 0) be generalized
stacks, let d ∈ N, and d′ := d + 2d+1. We say that Sm+1 is d-normalized with
respect to (S1, . . . , Sm) if

– no element of ts<d(Sm+1) is a constant, and
– each element of ts=d(Sm+1) is
• a “fresh” constant, i.e. not belonging to

⋃
i≤m ts<∞(Si), or

• an element of
⋃
i≤m ts≤d′(Si), or

• an element of ts<d(Sm+1).

The key point is that for fixed S1, . . . , Sm there are only finitely many d-
normalized generalized stacks Sm+1 (up to renaming of fresh constants), so we
can try all of them. The next two lemmas say that to consider d-normalized
generalized stacks is exactly what we need.

Lemma 5.3. Let S1, . . . , Sm (for m ≥ 0) be generalized stacks, let s1, . . . , sm
and sm+1 be stacks, let d ∈ N and d′′ := d+2d+2. Assume that (S1, . . . , Sm) ↪→d′′

(s1, . . . , sm). Then there exists a generalized stack Sm+1 d-normalized with re-
spect to (S1, . . . , Sm) and such that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1).

Proof (sketch). Let d′ := d + 2d+1 (this is the d′ used in the definition in d-
normalization, and is smaller than d′′). Let v be a valuation witnessing that
(S1, . . . , Sm) ↪→d′′ (s1, . . . , sm), i.e. such that si = v(Si) for each i ≤ m. For
each stack s ∈ ts≤d(sm+1) we define by induction a generalized stack repl(s):

12

– if s ∈ ts<d(sm+1), we take

repl(s) :=

firstk(repl(t)) if s = firstk(t),
appk(repl(t), repl(u)) if s = appk(t, u),
cons(a, k, []) if s = cons(a, k, []),
cons(a, k, repl(t)) if s = cons(a, k, t);

– otherwise, if s = v(S) for some S ∈
⋃
i≤m ts≤d′(Si), we take repl(s) := S;

– otherwise, we take repl(s) := xs, where xs is a fresh constant.

At the end we take Sm+1 := repl(sm+1). It remains to check in detail that such
Sm+1 satisfies all parts of the definitions. Notice that there can exist stacks s
which are simultaneously in ts<d(sm+1) and ts=d(sm+1) (so it is not true that
we apply one of the last two cases to each stack at depth d). ut

Lemma 5.4. Let S1, . . . , Sm and Sm+1 (for m ≥ 0) be generalized stacks, let
s1, . . . , sm be stacks, let d ∈ N and d′′ := d+2d+2. Assume that (S1, . . . , Sm) ↪→d′′

(s1, . . . , sm), and that Sm+1 is d-normalized with respect to (S1, . . . , Sm). Then
there exists a stack sm+1 such that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1).

Proof (sketch). It is enough to map the constants appearing in Sm+1 but not in
Si for i ≤ m into “fresh” stacks, such that none of them is a substack of any
other nor of any si for i ≤ m (the latter is easy to obtain by taking these stacks
to be bigger than all si). ut

We also easily see that the atomic FO formulas can evaluated on the level of
generalized stacks related by the ↪→n+1 to the actual stacks.

Lemma 5.5. Let S, T be generalized n-stacks, and let s, t be n-stacks. Assume
that (S, T) ↪→n+1 (s, t). Then taking as input S and T (even not knowing s and
t) one can compute:

– lb(top0(s)), and
– whether s = t, and
– for any stack operation θ ∈ Θn(Γ), whether it holds θ(s) = t.

Using the last three lemmas we can check whether an FO sentence holds
in Gano(A). Indeed, for each quantifier we check all possible generalized stacks
which are d-normalized with respect to the previously fixed variables, for big
enough d (depending on the quantifier rank of the formula, so that the induction
works fine), and with atomic formulas we deal using Lemma 5.5.

References

1. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15 (1974) 1170–1174

2. Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission
12 (1976) 38–43

13

3. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In Nielsen, M., Engberg, U., eds.: FoSSaCS. Volume 2303 of Lecture Notes in
Computer Science., Springer (2002) 205–222

4. Parys, P.: Collapse operation increases expressive power of deterministic higher
order pushdown automata. In Schwentick, T., Dürr, C., eds.: STACS. Volume 9 of
LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011) 603–614

5. Parys, P.: On the significance of the collapse operation. In: LICS, IEEE (2012)
521–530

6. Hague, M., Murawski, A.S., Ong, C.H.L., Serre, O.: Collapsible pushdown au-
tomata and recursion schemes. In: LICS, IEEE Computer Society (2008) 452–461

7. Knapik, T., Niwinski, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars and
panic automata. In Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M., eds.: ICALP. Volume 3580 of Lecture Notes in Computer Science., Springer
(2005) 1450–1461

8. Caucal, D.: On infinite terms having a decidable monadic theory. In Diks, K.,
Rytter, W., eds.: MFCS. Volume 2420 of Lecture Notes in Computer Science.,
Springer (2002) 165–176

9. Cachat, T.: Higher order pushdown automata, the caucal hierarchy of graphs
and parity games. In Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.,
eds.: ICALP. Volume 2719 of Lecture Notes in Computer Science., Springer (2003)
556–569

10. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In Pandya, P.K., Radhakrishnan, J., eds.:
FSTTCS. Volume 2914 of Lecture Notes in Computer Science., Springer (2003)
112–123

11. Kartzow, A.: Collapsible pushdown graphs of level 2 are tree-automatic. Logical
Methods in Computer Science 9(1) (2013)

12. Broadbent, C.H.: On collapsible pushdown automata, their graphs and the power
of links. PhD thesis, University of Oxford (2011)

13. Broadbent, C.H.: Prefix rewriting for nested-words and collapsible pushdown au-
tomata. [19] 153–164

14. Broadbent, C.H.: The limits of decidability for first order logic on CPDA graphs.
In Dürr, C., Wilke, T., eds.: STACS. Volume 14 of LIPIcs., Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012) 589–600

15. Broadbent, C.H.: On first-order logic and CPDA graphs. Accepted to Theory of
Computing Systems

16. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: A saturation method for
collapsible pushdown systems. [19] 165–176

17. Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In Rovan,
B., Sassone, V., Widmayer, P., eds.: MFCS. Volume 7464 of Lecture Notes in
Computer Science., Springer (2012) 566–577

18. Trachtenbrot, B.: Impossibility of an algorithm for the decision problem in finite
classes. Doklady Akad. Nauk. 70 (1950) 569–572

19. Czumaj, A., Mehlhorn, K., Pitts, A.M., Wattenhofer, R., eds.: Automata, Lan-
guages, and Programming - 39th International Colloquium, ICALP 2012, Warwick,
UK, July 9-13, 2012, Proceedings, Part II. In Czumaj, A., Mehlhorn, K., Pitts,
A.M., Wattenhofer, R., eds.: ICALP (2). Volume 7392 of Lecture Notes in Com-
puter Science., Springer (2012)

14

A Missing proofs for Section 3

We begin by a proposition which will be useful also in Appendix B

Proposition A.1. Let 2 ≤ k ≤ n, let s be a constructible (n, n)-stack, and x
a position in s. If in topk−1(s≤x) we have an atom (a, k, t), then either t =
pop(topk(s≤x)), or an atom (b, k, t) is also present in topk−1(popk(s≤x)).

Proof. It is enough to prove this lemma in the case when the atom (a, k, t) is
at position x; then the general statement follows immediately by taking as x
the position of this atom. The proof is by induction on the smallest length of
a sequence of operations used to construct s. Consider a stack u which can be
constructed using less operations, and such that s = θ(u) for some operation
θ. If x is present also in u, nothing below x is changed by the operation, so
the assumptions are satisfied also for u and x, so we can just use the induction
assumption (notice that the label of the atom at position x can be changed by a
rew operation). Otherwise, x was created in s by some push operation. If it was
push1

a,k, we have t = pop(topk(s≤x)). Otherwise it was pushi for some i. Then
x is in the topmost (i− 1)-stack of s, and the atom at this position was copied
from the corresponding position y in the topmost (i− 1)-stack of u. If i 6= k, we
conclude using the induction assumption for u and y (notice that pop(topk(s≤x))
and pop(topk(u≤y)) are identical). If i = k, we see that y (which contains the
atom (a, k, t)) is inside topk−1(popk(s≤x)). ut

An immediate consequence of this proposition (used for k = n = 3) is that
in the topmost 2-stack of a constructible (3, 3)-stack s there are no atoms with
generation strictly between gn(pop(s)) and |s|.

Proof (Lemma 3.2). If θ = rewa, no markers need to be changed. Otherwise, we
analyze separately each of the kinds of markers.

First observe that marker 1r at position x depends only on top1(t≤x). Thus,
at positions which are present in both s and θ(s), it is not affected by any of
the stack operations; moreover the markers are still set correctly inside a stack
copied by push2 or push3. We only have to set it correctly in a new atom created
by a push1

a,k operation. We have several cases. For k = 1 the pushed atom has
generation −1, which is smaller than gn(top1(s)), so we should put marker 1>
in the new atom. For k = 2 the pushed atom has generation gn(pop(top2(s))).
Its relation with gn(top1(s)) is described by the 2r marker in top0(mar(s)). The
relation should be reversed: for 2< we should put 1>, for 2= we should put 1=,
and for 2> we should put 1<. For k = 3 the pushed atom has generation |s|. If
top0(mar(s)) contains 3≥, we have |s| > |pop(s)| ≥ gn(pop(s)) ≥ gn(top2(s)) ≥
gn(top1(s)) (notice that the generation of an atom in a 3-stack cannot be greater
than the height of this stack), so we should put 1<. If top0(mar(s)) contains 3<,
the atom with the greatest generation in top2(s) could not be copied from the
2-stack below, so gn(top2(s)) = |s|. If additionally top0(mar(s)) contains 2>, we
have gn(top1(s)) < |s|, so we should put 1<. Otherwise (marker 3< and one of
2=, 2<) we have gn(top1(s)) = |s| and we should put 1=.

15

Next, concentrate on the 2r marker. First recall that, at a position x, the
marker depends only on top2(s≤x), and on the atom directly above x in its
1-stack (if such exists). Thus markers at positions present simultaneously in s
and θ(s) need not to be changed after operations push3, push2, pop3, pop2, and
collapse (both of order 2 or 3); after push3 the markers are still set correctly in
the copied stack.

Consider the push2 operation. In the new topmost position we should put
2> if top0(mar(s)) contains 2>; otherwise 2=. This is correct, since this marker
is intended to compare gn(top2(s)) = max(gn(pop(top2(s))), gn(top1(s))) with
gn(top1(s)), while the marker in top0(mar(s)) compares gn(pop(top2(s))) with
gn(top1(s)). Next, notice that the location of the ¬2 markers in the copied 1-
stack will be correct, since the 1< markers need not to be changed in the copy.
Next, take a position x in the newly created 1-stack, such that the atom directly
above it exists and has marker 1<; let x0 be the corresponding position in the
1-stack below. Then y (as in the definition of the markers) found for x cannot
be above x0 (the atom just above x0 has the same generation as t, the atom
just above x), so it will be the same as for x0. Thus the copied marker remains
correct.

After pop1 we only have to compute the marker in the topmost atom of
pop1(s). If in top0(mar(s)) we have marker 1> or 1=, we rewrite the 2r marker
from top0(mar(s)); in this case the generation of the topmost 1-stack remains
unchanged, since below top0(s) we have an atom with the same or higher gener-
ation. Similarly, if in top0(mar(s)) we have marker 2>, we rewrite it to the atom
which became topmost; removing an atom can only decrease the generation of the
topmost 1-stack, so it remains smaller than gn(pop(top2(s))). If in top0(mar(s))
we have markers 2= and 1<, we set the marker to 2>; the generation of the
topmost 1-stack decreases, so it becomes smaller than gn(pop(top2(s))). The
remaining case is when in top0(mar(s)) we have markers 2< and 1<. Then in
top0(pop1(mar(s))) we already had a 2r marker; we leave it there. Notice that,
due to the 2< and 1< markers, x will be found as y (in the definition of the 2r
marker at this position x), so this marker remains correct.

In the remaining case of push1
a,k we have to compute the 2r marker in the

atom which was topmost till now, and in the newly created topmost atom. Con-
centrate first on the newly created topmost atom. For k = 1 we just rewrite the
marker from top0(mar(s)): the new atom has generation −1, so the generation of
the topmost 1-stack remains unchanged. Assume that k = 2. Then the generation
of the new atom is equal to gn(pop(top2(s))). Thus if the marker in top0(mar(s))
is 2< or 2=, we rewrite it (the generation of the topmost 1-stack remains un-
changed); for 2> the marker becomes 2=. Finally, assume that k = 3. The
generation of the new atom is |s|, and gn(s) ≤ |s|. If top0(mar(s)) contains 2<,
we have gn(pop(top2(s))) < |s|, so we should use 2<. Also when top0(mar(s))
contains 3≥, we have gn(pop(top2(s))) ≤ gn(top2(s)) ≤ gn(pop(s)) < |s|, so we
should use 2<. Otherwise, top0(mar(s)) contains 3< and one of 2=, 2>; then
gn(pop(top2(s))) = |s| (because an atom copied from the lower 2-stack cannot
give the 3< relation), so we should use 2=.

16

Now we describe how to find the 2r marker in the atom below the topmost
one, after the push1

a,k operation. Let x be the position of this atom. As described
above, we can determine whether the new topmost atom will have the 1< marker
or not, so whether we should place some 2r marker at x, or just ¬2. Assume
that we should place some 2r. Then t (from the definition of the markers) will be
equal to top0(θ(s)). If k = 3 and marker 3≥ is present in top0(mar(s)), then t has
generation |s| while all atoms in s have smaller generation; thus y will be equal
to x, and we can just leave the 2r marker which was present in top0(mar(s)). If
k = 1, we cannot place marker 1< in the new topmost atom. If k = 2, we will
place marker 1< in the new topmost atom only if top0(mar(s)) contained marker
2>, so we have gn(t) = gn(pop(top2(s))) = gn(top2(s)). Similarly, if k = 3 and
marker 3< is present in top0(mar(s)), then we have gn(t) = |s| = gn(top2(s)).
In both these cases, the 2r marker at x should be the same as in the atom (which
has position y) just below the bottommost atom having generation gn(top2(s)).

To find this atom (and the marker in it), we copy the topmost 2-stack (push3),
we destructively search for this atom, and then we remove the garbage using
pop3. The searching works as follows. As long as the topmost atom is marked
by 2> or 2=, the bottommost atom with the highest generation is not in the
topmost 1-stack, so we apply pop2. If it is marked by 2<, we have to find the
bottommost atom with the highest generation in the topmost 1-stack. Thus we
just perform pop1, until we have an atom marked by 1<. Notice that there is no
such problem that some pop could not be executed due to empty stack: we start
this procedure only when some atom has a positive generation.

Finally, we describe how to update the 3r marker. After pop3, or a collapse
of order 3, these markers remain correct. After push3, the generation of the new
2-stack is the same as of the 2-stack below, so in the new topmost atom we
should put 3≥. Operation push2 does not change the generation of the topmost
2-stack, so we should just move the 3r marker from the previously topmost atom
(where we put ¬3) to the new topmost atom. Similarly, operation push1

a,k for

k = 1 or k = 2. On the other hand, operation push1
a,3 causes that the generation

of the topmost 2-stack becomes |s|, while gn(pop(s)) < |s|, so we should use the
3< marker in the new atom.

For operations pop2, pop1, and collapse of order 2, we have to determine
whether the generation of the topmost 2-stack decreases. If it does not decrease,
we should just move the 3r marker from the previously topmost atom to the
new topmost atom. If it decreases, necessarily it becomes smaller or equal to
gn(pop(s)) (in the topmost 2-stack we cannot have atoms of generation strictly
between gn(pop(s)) and |s|); in this case we should put the 3≥ marker. When
a pop2 is performed, the generation of the topmost 2-stack decreases if and
only if the topmost atom contained marker 2<. When a pop1 is performed, the
generation of the topmost 2-stack decreases if and only if the topmost atom
contained markers 2< and 1<. When a collapse of order 2 is performed, the
generation of the topmost 2-stack decreases if and only if the topmost atom
contained a marker 2> or 1> (notice that the generation of the topmost 2-stack
of θ(s) is the same as of the topmost atom of s). ut

17

Next we repeat the proof of Lemma 3.3 in more details. We start by an
auxiliary proposition.

Proposition A.2. Let s be a constructible (3, 3)-stack, and x a position in it
such that the atom at x has a link of order 3. Assume that gn(pop(top2(s≤x))) >
gn(top0(s≤x)). Then x is not in the bottommost 1-stack of its 2-stack, and the
atom at the corresponding position in the 1-stack below exists and has the same
generation as the atom at position x.

Proof. The proof is by induction on the smallest length of a sequence of opera-
tions used to construct s. Consider a stack t which can be constructed using less
operations, and such that s = θ(t) for some operation θ. If x is present also in
t, nothing below x is changed by the operation, so the assumptions are satisfied
also for t and x, so we can just use the induction assumption. Otherwise, x was
created in s by some push operation. It cannot be push1

a,3, since the created
atom would have the greatest generation in the whole s, which contradicts our
assumption. If x created by push2, we are done: atom at x is a copy of the corre-
sponding atom in the 1-stack below. The remaining case is that x was created by
push3. Then the 2-stack containing x and the topmost 2-stack of t are identical;
let y be the position corresponding to x in the topmost 2-stack of t. We conclude
using the induction assumption for t and y. ut

Lemma A.3. Let s, s′ be constructible 3-stacks such that stripln(mar(s)) =
stripln(mar(s′)), and the topmost atom of s (and s′) has a link of order 3, and
pop1(s) = pop1(s′). Then s = s′.

Notice that pop1(s) and pop1(s′) exist, since in constructible 3-stack the
bottommost atom of each 1-stack has a link of order 1.

Proof. It is enough to prove that gn(top0(s)) = gn(top0(s′)) (then the links in
the topmost atoms point to fragments of the stacks of the same size, which are
equal by the assumption pop1(s) = pop1(s′)).

First notice that gn(top0(s)) = gn(top1(s)) (e.g. by inspecting the proof of
Lemma 3.2 we see that an atom with a link of order 3 always has marker 1< or
1=, never 1>), and gn(top0(s′)) = gn(top1(s′)). We have several cases.

Assume first that the topmost atom (of s and of s′) is marked by 2=. Then
gn(top0(s)) = gn(pop(top2(s))), and we know that pop(top2(s)) = pop(top2(s′)).

Next, assume that the topmost atom is marked by 3< and by 2<. Then
necessarily its generation is |s|, both for s and for s′ (in the topmost 2-stack we
cannot have atoms of generation strictly between gn(pop(s)) and |s|).

The next case is when the topmost atom is marked by 3≥ and by 2<. Let
us consider the sequence of operations used to construct s; let t be the stack
at the moment when the atom which is now topmost was placed at its position
x. Notice that t≤x = s. The last operation before t, which created the atom,
could not be push1

a,3, since it would create an atom of generation |s|, while our
atom has smaller generation (due to the 3≥ marker). It could not be done by
a push2 operation as well, since the previous 1-stack has only atoms of smaller

18

generation (due to the 2< marker). It was thus done by a push3 operation, so the
generation of our atom is the same as of the corresponding atom in the 2-stack
below. And this atom is identical for s and for s′.

The remaining case is that the topmost atom is marked by 2>. Then the
atom at the topmost position of s has smaller generation than pop(top2(s)), so
using Proposition A.2 we obtain that the atom top0(s) has the same generation
as the corresponding atom in the 1-stack below. The same is true for s′, so we
are done. ut

Proof (Lemma 3.3). The proof is by induction on the number of atoms in s. If
s consists of only one atom (whose link by definition has order 1), we are done.
Otherwise, consider the operation θ which removes the topmost atom from s
(typically this is pop1, but we should use pop2 or pop3 to remove the only atom
from a 1-stack or a 2-stack). First, we will prove that θ(s) = θ(s′). To see this,
consider the automaton Aθ from Lemma 3.2, and its state q0. We start the
automaton simultaneously from (q0,mar(s)) and (q0,mar(s

′)). Observe that at
each moment the corresponding configurations (q, u) and (q′, u′) of these two
runs satisfy q = q′ and stripln(u) = stripln(u′). Indeed, this is true at the
beginning. At each moment the state and the topmost stack symbol are equal,
so the same transition will be used. This gives the equality q = q′ in the next
step; also the same operation will be applied to the two stacks, which implies
equality stripln(u) = stripln(u′) of obtained stacks (here it is important that
Aθ does not perform collapse; this is ensured by Lemma 3.2). It follows that
stripln(mar(θ(s))) = stripln(mar(θ(s′))). Since θ(s) and θ(s′) are constructible
3-stacks, and θ(s) has less atoms than s, by induction assumption we have θ(s) =
θ(s′).

Let (a, k, t) and (a, k, t′) be the topmost atom of s and s′, respectively. For
k = 3 we conclude that s = s′ using Lemma A.3. Otherwise the equality
stripln(mar(s)) = stripln(mar(s′)) implies that |t| = |t′|. Recall that (since
s is constructible) t is a proper prefix of topk(s), and t′ is a proper prefix of
topk(s′), of the same length, so they are equal due to θ(s) = θ(s′). ut

B Missing proofs for Section 4

Let us prove (for k ∈ {3, 4}) that t ∈ visk(s) if and only if in Gcon(A) it holds

∃u.(u popk−−−→ s ∧ linkk(u) ∧ u collapse−−−−−→ t).

Assume that t ∈ visk(s). One possibility is that t = s. Then as u we can take
push1

?,k(pushk(s)). Otherwise, by definition, s contains the atom (?, k, topk(t))

in its topmost (k − 1)-stack, so pushk(s) contains this atom in its topmost (k −
1)-stack as well; let x be its position. Then the formula is satisfied for u :=
(pushk(s))≤x. Notice that the stack u is constructible: it can be constructed

from pushk(s) by a sequence of pop operations.
Oppositely, assume that the formula is satisfied. Since linkk(u) holds and

t = collapse(u), we have top0(u) = (?, k, topk(t)), and for k = 3 additionally

19

pop4(u) = pop4(t) (which gives pop4(s) = pop4(t) since s = pop3(u)). We apply
Proposition A.1 to stack u and the position of the topmost atom in u. It gives
us that either topk(t) = pop(topk(u)) = topk(popk(u)), or there is an atom
(?, k, topk(t)) in topk−1(popk(u)). Because s = popk(u), either topk(t) = topk(s)
(so t = s), or there is an atom (?, k, topk(t)) in topk−1(s). By definition this
implies that t ∈ visk(s).

C Missing proofs for Section 5

Proof (Lemma 5.3). Let d′ := d + 2d+1. Let v be a valuation witnessing that
(S1, . . . , Sm) ↪→d′′ (s1, . . . , sm), i.e. such that si = v(Si) for each i ≤ m.
W.l.o.g. assume that v is defined only on the finitely many constants appearing
in all the Si. For each stack s let xs be a fresh constant of the same order as s
(that is, v is undefined for xs, and xs 6= xs′ for s 6= s′). We take w equal to v on
the constants on which v is defined, and such that w(xs) = s for each s.

For each stack s ∈ ts≤d(sm+1) we define a generalized stack repl(s), by in-
duction on the size of s (e.g. on |ts<∞(s)|):

– if s ∈ ts<d(sm+1), we take

repl(s) :=

firstk(repl(t)) if s = firstk(t),
appk(repl(t), repl(u)) if s = appk(t, u),
cons(a, k, []) if s = cons(a, k, []),
cons(a, k, repl(t)) if s = cons(a, k, t);

– otherwise, if s = w(S) for some S ∈
⋃
i≤m ts≤d′(Si), we take repl(s) := S;

– otherwise, we take repl(s) := xs.

At the end we take Sm+1 := repl(sm+1). Notice that the second case in the
definition does not introduce ambiguity: there is at most one such S since
(S1, . . . , Sm) ↪→d′′ (s1, . . . , sm) holds, and d′ ≤ d′′.

First observe that repl is a bijection between ts≤d(sm+1) and ts≤d(Sm+1)
preserving depth, and that w is the inverse bijection, that is for e ≤ d it
holds ts=e(Sm+1) = {repl(s) | s ∈ ts=e(sm+1)}, and for s ∈ ts≤d(sk+1) it holds
w(repl(s)) = s.

It follows that no element of ts<d(Sm+1) is a constant (since we use the
first rule of the definition of repl for s ∈ ts<d(sm+1)). Consider an element of
ts=d(Sm+1); it is of the form repl(s) for some s ∈ ts=d(sm+1). If the first case of
the definition of repl(s) is used (s ∈ ts<d(sm+1)), we have repl(s) ∈ ts<d(Sm+1).
In the second case we have repl(s) ∈

⋃
i≤m ts≤d′(Si). In the last case, repl(s) =

xs is a constant not belonging to
⋃
i≤m ts<∞(Si). It follows that Sm+1 is d-

normalized with respect to (S1, . . . , Sm).
The fact that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1) will be witnessed

by valuation w. It still holds si = w(Si) for i ≤ m; we also have sm+1 =
w(Sm+1). No element of

⋃
i≤m+1 ts<d(Si) is a constant. It remains to prove

for T,U ∈
⋃
i≤m+1 ts≤d(Si) such that w(T) = w(U) that it holds T = U . It

20

is true by assumption when T,U ∈
⋃
i≤m ts≤d(Si). We also have this when

T,U ∈ ts≤d(Sm+1), since w is a bijection on ts≤d(Sm+1). Thus assume that T ∈⋃
i≤m ts≤d(Si) and U ∈ ts≤d(Sm+1) (the fourth, remaining case is symmetric).

In this case U = repl(w(U)) = repl(w(T)) (assuming that w(T) = w(U)), so we
should prove that T = repl(w(T)). For our inductive proof it is important to
consider the parameter

r(T) := |{t ∈ ts≤d(sm+1) | w(T) ∈ ts<∞(t)}|,

that is the number of stacks in ts≤d(sm+1) which contain w(T) as a substack. It
is enough to prove the following statement

Let T be a generalized stack such that w(T) ∈ ts≤d(sm+1) and T ∈⋃
i≤m ts≤d+r(T)(Si). Then T = repl(w(T)).

This is proved by induction on the structure of T . First observe that r(T) ≤
|ts≤d(sm+1)| ≤ 2d+1 (since sm+1 can be seen as a tree, in which each node has
at most two children, and we count the nodes at distance at most d from the
root), so d+r(T) ≤ d′ ≤ d′′. One case is that w(T) ∈ ts<d(sm+1). Notice that T is
not a constant (there are no constants in

⋃
i≤m ts<d′′(Si) ⊇

⋃
i≤m ts≤d+r(T)(Si)).

To fix attention consider the case that T is of the form firstk(S) for some S; the
other cases (appk(S,U), cons(a, k, []), cons(a, k, S)) are similar. We have w(T) =
firstk(w(S)), and w(S) ∈ ts≤d(sm+1). Moreover r(S) > r(T), because stacks
containing w(T) as substack also contain w(S), and w(S) itself contains w(S)
but not w(T); thus S ∈

⋃
i≤m ts≤d+r(S)(Si). From the induction assumption we

obtain S = repl(w(S)), so

T = firstk(S) = firstk(repl(w(S))) = repl(firstk(w(S))) = repl(w(T))

(in the third equality we use that w(T) ∈ ts<d(sm+1)). The other case is that
w(T) 6∈ ts<d(sm+1). Then repl(w(T)) = T , because we use the second case in
the definition of repl. ut

Proof (Lemma 5.4). Let d′ := d + 2d+1. Let v be a valuation witnessing that
(S1, . . . , Sm) ↪→d′′ (s1, . . . , sm), i.e. such that si = v(Si) for each i ≤ m.
W.l.o.g. assume that v is defined only on the finitely many constants appearing
in all the Si. We will extend v to a valuation w defined also on constants appear-
ing in Sm+1. The key point is to map each of these constants into a stack which
does not appear anywhere else. One way of realizing that is the following. Let N
be a “big” number, such that ts=N (si) = ∅ for each i ≤ m, and ts=N (Sm+1) = ∅.

21

Consider the following stacks (for some fixed a ∈ Γ):

t00 := (a, 1, []),

t01 = (a, 1, [t00]),

tki := [tk−1i] for k ∈ {1, . . . , n}, i ∈ {0, 1},
u0j := (a, 1, [tk−10 , . . . , tk−10︸ ︷︷ ︸

2N+j

]) for j ∈ N,

ukj := [tk−10 , . . . , tk−10︸ ︷︷ ︸
2N+j

, tk−11] for k ∈ {1, . . . , n}, j ∈ N.

For each constant xk (of order k) appearing in Sm+1 but not in any Si for i ≤ m,
we define w(xk) to be some ukj , different for each constant.

We take sm+1 := w(Sm+1). By assumption si = w(Si) for each i ≤ m + 1,
and no element of ts≤d(Si) is a constant, and for each T,U ∈

⋃
i≤m ts≤d(Si)

such that w(T) = w(U) it holds T = U . As in the previous proof, we define

r(U) := |{t ∈ ts≤d(sm+1) | w(U) ∈ ts<∞(t)}|,

We will prove that for each T ∈
⋃
i≤m ts≤d′+r(U)(Si) and U ∈ ts≤d(Sm+1)

such that w(T) = w(U) it holds T = U (in particular it holds for all T ∈⋃
i≤m ts≤d(Si), and even for T ∈

⋃
i≤m ts≤d′(Si)). This is proved by induction

on the structure of U . Assume first that U ∈ ts<d(Sm+1). Then U is not a con-
stant. To fix attention consider the case that U is of the form firstk(U ′) for some
U ′ ∈ ts≤d(Sm+1); the other cases (app, cons) are similar. Notice that r(U) <
r(U ′) ≤ 2d+1. In particular T ∈

⋃
i≤m ts<d′′(Si), so T is not a constant. Due to

w(T) = w(U) we have T = firstk(T ′) for some T ′ such that w(T ′) = w(U ′). Since
T ′ ∈

⋃
i≤m ts≤d′+r(U ′)(Si), by induction assumption we have T ′ = U ′, which

implies T = U . Another case is that U ∈
⋃
i≤m ts≤d′(Si) ⊆

⋃
i≤m ts≤d′′(Si).

Then we have T = U thanks to (S1, . . . , Sm) ↪→d′′ (s1, . . . , sm). Because of d-
normalization, the only remaining case is that U is a constant not appearing in
any Si for i ≤ m. But then w(U) is one of ukj , so it cannot be equal to w(T) (we
have ts=N (w(U)) 6= ∅ = ts=N (w(T))).

Finally, we prove that for each T,U ∈ ts≤d(Sm+1) such that w(T) = w(U)
it holds T = U . This is again induction on the structure of T (or U). One pos-
sibility is that both T,U are in ts<d(Sm+1). Then these are not constants, so
they use the same constructors (thanks to w(T) = w(U)), e.g. T = firstk(T ′)
and U = firstk(U ′) with w(T ′) = w(U ′) (similarly for app and cons). We have
T ′, U ′ ∈ ts≤d(Sm+1), so induction assumption implies T ′ = U ′ which gives
T = U . Other possibility is that T ∈

⋃
i≤m ts≤d′(Si). Then T = U by the previ-

ous paragraph; similarly when U ∈
⋃
i≤m ts≤d′(Si). Thanks to d-normalization,

the only remaining case is that one of T,U , say U , is a constant not appearing in
any Si for i ≤ m. Then w(U) = ukj for some j, k. Assume first that ts<∞(T) also
contains a constant not appearing in any Si for i ≤ m. If T itself is such a con-
stant, we necessarily have T = U . If this constant appears as a proper substack

22

of T , some uk
′

j′ is a proper substack of ukj , which is impossible by construction of
these stacks. The opposite case is that ts<∞(T) does not contain such constants.
Then w(T) is “smaller” than ukj . More precisely, we have ts=N (T) = ∅; in T at
depth < N there might be some constants which are replaced in w(T) by some
stacks; these stacks are however substacks of some si, so their ts=N is empty,
and thus ts=2N (w(T)) = ∅ 6= ts=2N (ukj).

This proves that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1). ut

Proof (Lemma 5.5). Let v be a valuation such that s = v(S) and t = v(T). We
recall that there are no constants in S or T on depth ≤ n. Hence, for 0 ≤ k ≤ n,
we can find an extended k-stack Sktop ∈ ts≤n−k(S) such that v(Sktop) = topk(s):

Sntop := S,

Sktop :=

{
U if Sk+1

top = firstk+1(U),

U ′ if Sk+1
top = appk+1(U,U ′)

for k < n.

For 1 ≤ k ≤ n we can also find Skpop ∈ ts≤n−k+1(S) or Skpop = [] such that

v(Skpop) = pop(topk(s)):

Skpop :=

{
[] if Sktop = firstk(U),
U if Sktop = appk(U,U ′).

Additionally, S0
top is of the form app(aS , lS , Slink) where Slink ∈ ts≤n+1(S) or

Slink = []. Observe that aS is the label of the topmost atom in S. Similarly, we
can define T ktop, T

k
pop, Tlink, aT , lT , starting from T instead of S.

The key property of the ↪→n+1 relation which we exploit here is that for
U,U ′ ∈ ts≤n+1(S) ∪ ts≤n+1(T) we have v(U) = v(U ′) if and only if U = U ′.
In particular s = v(S) = v(T) = t if and only if S = T . Now we consider each
possible operation as θ.

We observe that t = popk(s) if and only if pop(topi(s)) = pop(topi(t)) for
i ∈ {k+1, . . . , n}, and pop(topk(s)) = topk(t); this can be expressed equivalently
as Sipop = T ipop for i ∈ {k + 1, . . . , n}, and Skpop = T ktop.

When a collapse operation is performed from s, it is of order lS . Thus we have
t = collapse(s) if and only if pop(topi(s)) = pop(topi(t)) for i ∈ {lS + 1, . . . , n},
and the link target in top0(s) is toplS (t); this holds if and only if Sipop = T ipop for

i ∈ {lS + 1, . . . , n}, and Slink = T lStop (in particular Slink 6= []).
We have t = rewa(s) if and only if pop(topi(s)) = pop(topi(t)) for i ∈

{1, . . . , n}, and lb(top0(t)) = a, and the links (including the link order) in top0(s)
and in top0(t) are the same; this holds if and only if Sipop = T ipop for i ∈ {1, . . . , n},
and aT = a, and Slink = Tlink.

We have t = pushk(s) if and only if s = popk(t) and topk−1(s) = topk−1(t);
thus to the (reversed) conditions for popk we add that Sk−1top = Sk−1top .

Finally, t = push1
a,k(s) holds if and only if s = pop1(t), and lb(top0(t)) = a,

and the link in top0(t) is pop(topk(s)); the latter two conditions can be expressed
as aT = a and Tlink = Skpop. ut

23

Now we prove that there are only finitely many d-normalized generalized
stacks, up to renaming of constants. For that, fix some order on the set of
constants of each order k: xk1 , x

k
2 , We say that a generalized stack Sm+1 is

fully d-normalized with respect to (S1, . . . , Sm) if it is d-normalized with respect
to (S1, . . . , Sm), and a constant xkj is used in Sm+1 only when either it was used

in some Si for i ≤ m, or all constants xk1 , . . . , x
k
j−1 are also used in Sm+1.

Lemma C.1. Let S1, . . . , Sm be extended stacks, and let d ∈ N. Then there are
finitely many generalized stacks Sm+1 which are fully d-normalized with respect
to (S1, . . . , Sm).

Proof. We will bound the size of Sm+1. The condition that Sm+1 is fully d-
normalized determines which fresh constants can be used, so there are only
finitely many Sm+1 of fixed size.

Fix some Sm+1 which is d-normalized with respect to (S1, . . . , Sm). LetN ≥ 1
be such that

⋃
i≤m ts=N (Si) = ∅. We define

r(T) := |{U ∈ ts≤d(Sm+1) | T 6∈ ts<∞(U)}|.

We will prove for T ∈ ts≤d(Sm+1) that ts=N+r(T)(T) = ∅. This is proved by
induction on the structure of T . First case is that T ∈

⋃
i≤m ts<∞(Si). Then by

definition of N we have ts=N+r(T)(T) = ∅. Second case is that T is a constant;
then as well ts=N+r(T)(T) = ∅. According to the definition of d-normalization,
the only remaining case is that T ∈ ts<d(Sm+1). Assume for example that T =
firstk(T ′) (the cases of app and cons are similar). By induction ts=N+r(T ′)(T

′) =
∅. We conclude that ts=N+r(T)(T) = ∅ since r(T) > r(T ′) (stacks not containing
T ′ as substack also do not contain T , and T ′ itself contains T ′ but not T).

In particular ts=N+r(Sm+1)(Sm+1) = ∅, so as well ts=N+2d+1(Sm+1) = ∅, since

r(Sm+1) ≤ 2d+1. ut

Next, we describe in details the decision procedure. Assume that in the logic
we only have the existential quantifier, the ∧ and ¬ connectives, and atomic
formulae. For a formula ϕ we define a number d(ϕ) as follows:

d(ϕ) =

n+ 1 if ϕ atomic,
max(d(ψ1), d(ψ2)) if ϕ = ψ1 ∧ ψ2,
d(ψ) if ϕ = ¬ψ,
d(ψ) + 2d(ψ)+2 if ϕ = ∃x.ψ.

Next, we will define a procedure Checkm,A(ϕ, q1, S1, . . . , qm, Sm), which re-
turns True or False, and whose arguments are states q1, . . . , qm, extended stacks
S1, . . . , Sm, and an FO formula ϕ(x1, . . . , xm). The procedure will be such that
for any stacks (s1, . . . , sm) such that (S1, . . . , Sm) ↪→d(ϕ) (s1, . . . , sm), it holds
Gano(A) ` ϕ((q1, s1), . . . , (qm, sm)) if and only if Checkm,A(ϕ, q1, S1, . . . , qm, Sm)
returns True. Then we can evaluate a sentence ϕ by just calling Check0,A(ϕ),
since it holds () ↪→d(ϕ) (). We define the procedure as follows, by induction on
the structure of ϕ:

24

– If ϕ = ¬ψ we just negate Checkm,A(ψ, q1, S1, . . . , qm, Sm).
– If ϕ = ψ1 ∧ψ2 we return True if and only if Checkm,A(ψi, q1, S1, . . . , qm, Sm)

returns True for some i ∈ {1, 2}. This is correct since (S1, . . . , Sm) ↪→d(ϕ)

(s1, . . . , sm) implies (S1, . . . , Sm) ↪→d(ψi) (s1, . . . , sm) (thanks to d(ψi) ≤
d(ϕ)).

– Assume that ϕ = (xi = xj). Notice that (S1, . . . , Sm) ↪→d(ϕ) (s1, . . . , sm)
implies (Si, Sj) ↪→n+1 (si, sj). We check whether si = sj using Lemma 5.5,
and whether qi = qj .

– Assume that ϕ = (xi
c−→ xj). We should return True if for some transition

(qi, a, c, θ, qj) of A it holds a = lb(top0(si)) and sj = θ(si). We check this for
all transitions using Lemma 5.5 (again we use that (Si, Sj) ↪→n+1 (si, sj)).

– Assume that ϕ = b(xi) for some predicate b of A. We should return True if for
some triple (qi, a, b) in the predicate relation of A it holds a = lb(top0(si)).
We check this for all triples using Lemma 5.5, observing that (Si, Si) ↪→n+1

(si, si).
– Finally, assume that ϕ = ∃xi+1.ψ (w.l.o.g. we assume that the variable is

called xi+1). Then we return True if for some state qm+1 and for some gener-
alized stack Sm+1 which is fully d(ψ)-normalized with respect to (S1, . . . , Sm)
procedure Checkm+1,A(ψ, q1, S1, . . . , qm, Sm, qm+1, Sm+1) returns True. Re-
call that due to Lemma C.1 there are only finitely many Sm+1 to check. To
see that this is correct take some stacks s1, . . . , sm such that (S1, . . . , Sm)
↪→d(ϕ) (s1, . . . , sm). Assume first that Checkm,A(ϕ, q1, S1, . . . , qm, Sm) re-
turns True, so that there exists a state qm+1 and a generalized stack Sm+1

which is fully d(ψ)-normalized with respect to (S1, . . . , Sm), and such that
Checkm+1,A(ψ, q1, S1, . . . , qm, Sm, qm+1, Sm+1) returns True. Then Lemma
5.4 gives us a stack sm+1 such that

(S1, . . . , Sm, Sm+1) ↪→d(ψ) (s1, . . . , sm, sm+1).

By induction assumption Gano(A) ` ψ((q1, s1), . . . , (qm, sm), (qm+1, sm+1)),
which implies that Gano(A) ` ϕ((q1, s1), . . . , (qm, sm)). Oppositely, assume
that Gano(A) ` ϕ((q1, s1), . . . , (qm, sm)), so that there exists a configuration
(qm+1, sm+1) such that Gano(A) ` ψ((q1, s1), . . . , (qm, sm), (qm+1, sm+1)).
Then Lemma 5.3 gives us a generalized stack Sm+1 which is d(ψ)-normalized
with respect to (S1, . . . , Sm), and such that

(S1, . . . , Sm, Sm+1) ↪→d(ψ) (s1, . . . , sm, sm+1).

Notice that we can safely (it does not influence the ↪→d(ψ) relation and the
d(ψ)-normalization) rename constants in Sm+1 which do not appear in any
Si for i ≤ m; thus w.l.o.g. we can assume that Sm+1 is fully d(ψ)-normalized.
By induction assumption Checkm+1,A(ψ, q1, S1, . . . , qm, Sm, qm+1, Sm+1) re-
turns True, so also Checkm,A(ϕ, q1, S1, . . . , qm, Sm) returns True.

25

