
First-Order Logic on CPDA Graphs

Pawe l Parys?

University of Warsaw, Warsaw, Poland
parys@mimuw.edu.pl

Abstract. We contribute to the question about decidability of first-
order logic on configuration graphs of collapsible pushdown automata.
Our first result is decidability of existential FO sentences on configura-
tion graphs (and their ε-closures) of collapsible pushdown automata of
order 3, restricted to reachable configurations. Our second result is un-
decidability of the whole first-order logic on configuration graphs which
are not restricted to reachable configurations, but are restricted to con-
structible stacks. Our third result is decidability of first-order logic on
configuration graphs (for arbitrary order of automata) which are not re-
stricted to reachable configurations nor to constructible stacks, under an
alternative definition of stacks, called annotated stacks.

1 Introduction

Already in the 70’s, Maslov [1, 2] generalized the concept of pushdown automata
to higher-order pushdown automata (n-PDA) by allowing the stack to contain
other stacks rather than just atomic elements. In the last decade, renewed in-
terest in these automata has arisen. They are now studied not only as acceptors
of string languages, but also as generators of graphs and trees. Knapik et al. [3]
showed that trees generated by deterministic n-PDA coincide with trees gener-
ated by safe order-n recursion schemes (safety is a syntactic restriction on the
recursion scheme). Driven by the question of whether safety implies a semanti-
cal restriction to recursion schemes (which was recently proven [4, 5]), Hague et
al. [6] extended the model of n-PDA to order-n collapsible pushdown automata
(n-CPDA) by introducing a new stack operation called collapse (earlier, panic
automata [7] were introduced for order 2), and proved that trees generated by
n-CPDA coincide with trees generated by all order-n recursion schemes.

In this paper we concentrate on configuration graphs of these automata. In
particular we consider their ε-closures, whose edges consist of an unbounded
number of transitions rather than just single steps. The ε-closures of n-PDA
graphs form precisely the Caucal hierarchy [8–10], which is defined independently
in terms of MSO-interpretations and graph unfoldings. These results imply that
the graphs have decidable MSO theory, and invite the question about decidability
of logics in ε-closures of n-CPDA graphs.

? The author holds a post-doctoral position supported by Warsaw Center of Math-
ematics and Computer Science. Work supported by the National Science Center
(decision DEC-2012/07/D/ST6/02443).

Unfortunately there is even a 2-CPDA graph that has undecidable MSO
theory [6]. Kartzow showed that the ε-closures of 2-CPDA graphs are tree au-
tomatic [11], thus they have decidable first-order theory. This topic was further
investigated by Broadbent [12–15]. He proved that for order 3 (and higher) the
FO theory starts to be undecidable. This can be made more precise. Let nm-
CPDA denote an n-CPDA in which we allow collapse links only of one order m.
First-order theory is undecidable already on:

– nm-CPDA graphs restricted to reachable configurations,1 when n ≥ 3, and
3 ≤ m ≤ n, and the formula is Σ2, and

– nm-CPDA graphs restricted to reachable configurations,1 when n ≥ 4, and
2 ≤ m ≤ n− 2, and the formula is Σ1, and

– ε-closures2 of 32-CPDA graphs, when the formula is Σ2, and
– 3-CPDA graphs not restricted to reachable configurations (nor to stacks

which are constructible from the empty one by a sequence of stack operation).

On the other side, Broadbent gives some small decidability results:

– for n = 2, FO is decidable even when extended by transitive closures of
quantifier free formulae;

– FO is decidable on 32-CPDA graphs restricted to reachable configurations;
– Σ1 formulae are decidable on ε-closures of nn-CPDA graphs (for each n),

and of 32-CPDA graphs.

In the current paper we complement this picture by three new results (an-
swering questions stated by Broadbent). First, we prove that the existential
(Σ1) FO sentences are decidable on ε-closures of 3-CPDA graphs. This is almost
proved in [15]: it holds under the assumption that the 3-CPDA is luminous,
which means that after removing all order-3 collapse links from two different
reachable configurations, they are still different (that is, the targets of such links
are uniquely determined by the structure of the stack). We prove that each 3-
CPDA can be turned into an equivalent luminous one. The question whether
Σ1 formulae are decidable for nn−1-CPDA and nn,n−1-CPDA (allowing links of
orders n and n−1) where n ≥ 4, both with and without ε-closure, remains open.

Second, we prove (contrarily to the Broadbent’s conjecture) that first-order
logic is undecidable on 4-CPDA graphs not restricted to reachable configurations,
but restricted to stacks constructible from the empty one by a sequence of stack
operations (although not necessarily ever constructed by the particular CPDA in
question). Our reduction is similar to the one showing undecidability of 3-CPDA
graphs not restricted to reachable configurations nor to constructible stacks.

Third, we prove that first-order logic is decidable (for each n) on n-CPDA
graphs not restricted to reachable configurations nor to constructible stacks,
when stacks are represented as annotated stacks. This is an alternative repre-
sentation of stacks of n-CPDA (defined independently in [16] and [17]), where

1 Thus for their ε-closures as well.
2 For ε-closures, it does not change anything whether we restrict to reachable config-

urations or not.

2

in an atomic element, instead of an order-k link, we keep an order-k stack; the
collapse operation simply recalls this stack stored in the topmost element. In
the constructible case, annotated and CPDA stacks amount to the same thing
(although the annotated variant offers some conveniences in expressing certain
proofs), but in the unconstructible case there is an important difference. Whilst
with an unconstructible CPDA stack each link is constrained to point to some
stack below its source, in an annotated stack it can point to an arbitrary stack,
completely unrelated to the original one. This shows up when we go back through
a pop edge: in the classical case links in the appended stack point (potentially
anywhere) inside our original stack, so we can use them to inspect any place in
the stack. On the other hand, in the annotated case we can append an arbitrary
stack, which does not give us any new information: in first-order logic we can
refer only locally to some symbols near the top of the stack.

2 Preliminaries

We give a standard definition of an n-CPDA, using the “annotated stack” repre-
sentation of stacks. We choose this representation because of Section 5, in which
we talk about all configurations with such stacks. For Sections 3 and 4 we could
choose the standard representation (with links as numbers) as well.

Given a number n (the order of the CPDA) and a stack alphabet Γ , we define
the set of stacks as the smallest set satisfying the following. If 1 ≤ k ≤ n and
s1, s2, . . . , sm for m ≥ 1 are (k − 1, n)-stacks, then the sequence [s1, s2, . . . , sm]
is a (k, n)-stack. If a ∈ Γ , and 1 ≤ k ≤ n, and s is a (k, n)-stack or s = [] (the
“empty stack”, which, according to our definition, is not a stack), then (a, k, s)
is a (0, n)-stack. We sometimes use “k-stack” instead of “(k, n)-stack” when n is
clear from the context or meaningless.

A 0-stack (a, l, t) is also called an atom; it has label lb((a, l, t)) := a and link
t of order l. In a k-stack s = [s1, s2, . . . , sm], the top of the stack is on the right.
We define |s| := m, called the height of s, and pop(s) := [s1, . . . , sm−1] (which
is equal to [] if m = 1). For 0 ≤ i ≤ k, topi(s) denotes the topmost i-stack of s.

An n-CPDA has the following operations on an (n, n)-stack s:

– popk, where 1 ≤ k ≤ n, removes the topmost (k − 1)-stack (undefined when
|topk(s)| = 1);

– push1
a,l, where 1 ≤ l ≤ n and a ∈ Γ , pushes on the top of the topmost 1-stack

the atom (a, l, pop(topl(s)));
– pushk, where 2 ≤ k ≤ n, duplicates the topmost (k − 1)-stack inside the

topmost k-stack;
– collapse, when top0(s) = (a, l, t), replaces the topmost l-stack by t (undefined

when t = []);
– rewa, where a ∈ Γ , replaces the topmost atom (b, l, t) by (a, l, t).

Denote the set of all these operations as Θn(Γ). Operation rewa is not always
present in definitions of CPDA, but we add it following [15].

3

A position is an n-tuple x = (pn, . . . , p1) of natural numbers. The atom at
position x in an n-stack s is the p1-th 0-stack in the p2-th 1-stack in ... in the
pn-th (n−1)-stack of s. We say that x is a position of s, if such atom exists. For
an n-stack s and a position x in s, we define s≤x as the stack obtained from s
by a sequence of pop operations, in which the topmost atom is at position x.

An (n, n)-stack s is called constructible if it can be obtained by a sequence of
operations in Θn(Γ) from a stack with only one atom (a, 1, []) for some a ∈ Γ . It
is not difficult to see that when restricted to constructible stacks, our definition
of stacks coincides with the classical one.

Proposition 1. Let s be a constructible n-stack, and x a position of an atom
(a, l, t) in s. Then t is a proper prefix of topl(s≤x), that is, t = [t1, . . . , tm] and
topl(s≤x) = [t1, . . . , tm′] with m < m′.

An n-CPDA A is a tuple (Σ,Π,Q, q0, Γ,⊥0, ∆,Λ), where Σ is a finite set of
transition labels;Π is a finite set of configuration labels;Q is a finite set of control
states containing the initial state q0; Γ is a finite stack alphabet containing the
initial stack symbol ⊥0; ∆ ⊆ Q × Γ × Σ × Θn(Γ) × Q is a transition relation;
Λ ⊆ Q× Γ ×Π is a predicate relation.

A configuration of A is a pair (q, s) where q is a control state and s is
an (n, n)-stack. Such a configuration satisfies a predicate b ∈ Π just in case
(q, lb(top0(s)), b) ∈ Λ. For c ∈ Σ, we say that A can c-transition from (q, s) to

(q′, θ(s)), written (q, s)
c−→ (q′, θ(s)), if and only if (q, lb(top0(s)), c, θ, q′) ∈ ∆.

For a language L over Σ we write (q, s)
L−→ (q′, s′) when (q′, s′) can be reached

from (q, s) by a sequence of transitions such that the word of their labels is in
L. The initial configuration of A is (q0,⊥), where ⊥ is the stack containing only
one atom which is (⊥0, 1, []).

We define three graphs with Π-labelled nodes and Σ-labelled directed edges.
The graph Gano(A) has as nodes all configurations, Gcon(A) only configurations
(q, s) in which s is constructible, and G(A) only configurations (q, s) such that

(q0,⊥)
Σ∗−−→ (q, s). In all cases we have a c-labelled edge from (q, s) to (q′, s′)

when (q, s)
c−→ (q′, s′). Assuming that ε ∈ Σ, we can define the ε-closure of a

graph G: it contains only those nodes of G which have some incoming edge not
labeled by ε, and two nodes are connected by a c-labelled edge (where c 6= ε)

when in G they are related by
ε∗c−−→. We denote the ε-closure of G(A) as G/ε(A).

We consider first-order logic (FO) on graphs as it is standardly defined, with
a unary predicate for each symbol in Π and a binary relation for each symbol in
Σ, together with a binary equality symbol. A formula is Σ1, if it is of the form
∃x1 . . . ∃xk.ϕ, where ϕ is without quantifiers.

3 Luminosity for 3-CPDA

The goal of this section is to prove the following theorem.

Theorem 2. Given a Σ1 first-order sentence ϕ and a 3-CPDA A, it is decidable
whether ϕ holds in G/ε(A).

4

In [15] (Theorem 5, and the comment below) this is proven under the restric-
tion to 3-CPDA A which are luminous. It remains to show that each 3-CPDA
A can be turned into a luminous 3-CPDA A′ for which G/ε(A) = G/ε(A′).

Let us recall the definition of luminosity. For an (n, n)-stack s, we write
stripln(s) to denote the (n, n)-stack that results from deleting all order-n links
from s (that is, changing atoms (a, n, p) into (a, n, []); of course we perform this
stripping also inside all links). An n-CPDA A is luminous whenever for every
two configurations (q, s), (q′, s′) in the ε-closure with stripln(s) = stripln(s′) it
holds s = s′.

For example, the two 2-stacks

[[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)], [(a, 1, []), (b, 2, s1)]] and

[[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)], [(a, 1, []), (b, 2, s2)]]

with s1 = [[(a, 1, []), (b, 1, [])]] and s2 = [[(a, 1, []), (b, 1, [])], [(a, 1, []), (b, 2, s1)]]
become identical if the links are removed. One has to add extra annotations to
the stack to tell them apart without links.

We explain briefly why luminosity is needed in the decidability proof in [15].
The proof reduces the order of the CPDA by one (a configuration of an n-CPDA
is represented as a sequence of configurations in an (n− 1)-CPDA), at the cost
of creating a more complicated formula. This reduction allows to deal with the
operational aspect of links (that is, with the collapse operation). However, there
is also the problem of preserving identities, to which first-order logic is sensitive.
For this reason, the reduction would be incorrect, if by removing links from two
different configurations, suddenly they would become equal.

Let us emphasize that we are not trying to simulate the operational behavior
of links in a 3-CPDA after removing them. We only want to construct another
3-CPDA with the same G/ε, which still uses links of order-3, but such that
stripln(s) = stripln(s′) implies s = s′.

Our construction is quite similar to that from [15] (which works for such
n-CPDA which only have links of order n). The key idea which allows to extend
it to 3-CPDA which also have links of order 2, is to properly assign the value of
“generation” (see below) to atoms with links of order 2.

Fix a 3-CPDAA with a stack alphabet Γ . W.l.o.g. we assume thatA “knows”
what is the link order in each atom, and that it does not perform collapse on
links of order 1. We will construct a luminous 3-CPDA A′ with stack alphabet

Γ ′ = Γ × {1>, 1=, 1<} × {2>, 2=, 2<,¬2} × {3≥, 3<,¬3}.

To obtain luminosity, it would be enough to mark for each atom (in particular
for atoms with links of order 3), whether it was created at its position, or copied
from the 1-stack below, or copied from the 2-stack below. Of course we cannot do
this for each atom independently, since when a whole stack is copied, we cannot
change markers in all its atoms; thus some markers are needed also on top of
1-stacks and 2-stacks.

There is an additional difficulty that all markers should be placed as a func-
tion of a stack, not depending on how the stack was constructed (otherwise

5

one node in G/ε(A) would be transformed into several nodes in G/ε(A′)). Thus

when an atom is created by push1
a,l we cannot just mark it as created here, since

equally well an identical atom could be copied from a stack below. However, an
atom with a link pointing to the 3-stack containing all the 2-stacks below cannot
be a copy from the previous 2-stack. We can also be sure about this for some
atoms with links of order 2, namely those whose link target already contains an
atom with such “fresh” link of order 3. For these reasons, for each k-stack s (for
0 ≤ k ≤ 2), including s = [], we define gn(s), the generation of s:

gn([]) := 0,

gn([s1, . . . , sm]) := max(0, max
1≤i≤m

gn(si)),

gn((a, k, t)) :=

 |t|+ 1 if k = 3,
gn(t) if k = 2,
−1 if k = 1.

Intuitively, gn(s) is a lower bound for the height of the 3-stack of the CPDA
at the moment when s was last modified (or created). For convenience, the
generation of an atom with a link of order 1 is smaller than the generation of
any k-stack for k > 0, and the generation of any atom with a link of order 3 is
greater than the generation of the empty stack.

For each constructible 3-stack s over Γ we define its marked variant mar(s),
which is obtained by adding markers at each position x of s as follows.

– Let i ∈ {1, 2} and r ∈ {>,=, <}, or i = 3 and r ∈ {≥, <}. If x is the topmost
position in its (i− 1)-stack (always true for i = 1), we put marker ir at x if

gn(pop(topi(s≤x))) r gn(topi−1(s≤x)).

– Assume that x is not topmost in its 1-stack, and the position directly above it
has assigned marker 1<. Let t be the atom just above x, and let y be the high-
est position in s≤x (in the lexicographic order) such that gn(top2(s≤y)) <
gn(t). We put marker 2r at x if

gn(pop(top2(s≤y))) r gn(top1(s≤y));

– If no marker of the form 2r (or 3r) is placed at x, we put there ¬2 (respec-
tively, ¬3).

– Recall that when the atom at x is (a, l, t), then t is a proper prefix of
topl(s≤x). We attach the markers in t so that this property is preserved,
than is in the same way as in topl(s≤x).

For example, the marker 2< is placed at the top of some 1-stack to say that
the generation of this 1-stack is greater than of all the 1-stacks below it, in the
same 2-stack.

In the second item, notice that y always will be found, even inside the topmost
2-stack of s≤x. Intuitively, when an atom from a new generation is placed above
y, in y we keep his 2r marker. This is needed to reproduce the 2r marker when

6

y again becomes the topmost position. Necessarily, the marker from y will be
also present at positions x which are copies of y. Notice however that when we
remove an atom at position x using pop1, and then we reproduce an identical
atom using push1

a,k, the 2r marker has to be written there again (mar should be
a function of the stack). For this reason the x containing the 2r marker from y
is not necessarily a copy of y: we store the marker in the highest atom below an
atom from the higher generation. See Figure 1 for an example.

21<
2<

1>
2<

11<

1>
2=

1>
2>

11<

1>
2=

21<
2=

1>
2<

11<

1>
2=

21<
2=

11<
2<

1>
2=

21>
2<

31<

1>
2>

31=
2=

31<

1>
2>

1>

Fig. 1. An example 2-stack (one out of many in a 3-stack). It grows from left to right.
We indicate all 1r and 2r markers, as well as the generation of atoms (bold; no number
for generation −1). To calculate the 2< marker at positions (1, 3), (3, 3), and (4, 2)
we have used position (1, 3) as y. Observe the atom of generation 2 above an atom of
generation 3; this is possible for an atom with a link of order 2.

The key property is that the markers can be updated by a CPDA. We will
say that a CPDA defines a path if from each configuration there is at most one
transition available.

Lemma 3. Let θ ∈ Θn(Γ) be a stack operation. Then there exists a 3-CPDA Aθ
which defines a path, with stack alphabet Γ ′ and two distinguished states q0, q1,
such that for each constructible 3-stack s:

– if θ(s) exists, then there is a unique configuration with state q1 reachable by
Aθ from (q0,mar(s)); the stack in this configuration is mar(θ(s));

– if θ cannot be applied to s, no configuration with state q1 is reachable by Aθ
from (q0,mar(s)).

Additionally, Aθ does not use the collapse operation for θ 6= collapse.

Proof (sketch). This is a tedious case analysis. In most cases we just have to
apply a local change of markers. For a push, we update markers in the previously
topmost atom (depending on markers which were previously there), then we
perform the push, and then we update markers in the new topmost atom. For
popk or collapse, we perform this operation, and then we update markers in the
atom which became topmost, depending on markers in this atom, and in the
atom which was topmost previously.

There is one exception from this schema, during such push1
a,k operation which

increases the generation of the topmost 1-stack, but not of the topmost 2-stack.

7

In this situation in the previously topmost atom we should place a 2r marker,
the same as in the atom just below the bottommost atom having the highest
generation in the 2-stack. This information is not available locally; to find this
atom (and the marker in it), we copy the topmost 2-stack (push3), we destruc-
tively search for this atom (which is easy using the markers), and then we remove
the garbage using pop3. ut

Lemma 4. Let s and s′ be constructible 3-stacks such that stripln(mar(s)) =
stripln(mar(s′)). Then s = s′.

Proof (sketch). We prove this by induction, so we can assume that s is equal to
s′ everywhere except its topmost atom. Only the situation when top0(s) has a
link of order 3 is nontrivial; then we have to prove that the generation of the
topmost atoms of s and s′ is the same. We notice that gn(top0(s)) = gn(top1(s)).
We have several cases. When the topmost atom is marked by 2=, its generation
is gn(pop(top2(s))), which is determined by the part below top0(s). When it is
marked by 2< and 3<, its generation is |s|. When it is marked by 2< and by
3≥, this atom was necessarily copied from the 2-stack below (and has the same
generation as the corresponding atom there). Finally, when it is marked by 2>,
this atom was necessarily copied from the 1-stack below (here, or in some 2-stack
below). ut

Having these two lemmas it is easy to conclude. We construct A′ from A
as follows. The initial stack of A′ should be mar(⊥). Whenever A wants to
apply a c-labelled transition with operation θ and final state q, A′ simulates
the automaton Aθ using ε-transitions, and then changes state to q using a c-
labelled transition. Then G/ε(A) is isomorphic to G/ε(A′): a configuration (q, s)
corresponds to (q,mar(s)). Moreover, by Lemma 4 the CPDA is luminous (notice
that the ε-closure contains only configurations with stack of the form mar(s)).

4 Unreachable Configurations with Constructible Stack

In this section we prove that the FO theory is undecidable for configuration
graphs without the restriction to reachable configurations, but when we allow
only constructible stacks (contrarily to the conjecture stated in [15]). On the
other hand, in the next section we show decidability when one also allows stacks
which are unconstructible. Let us recall that the FO theory is known [15] to be
undecidable, if one also allows stacks which are unconstructible, but for the clas-
sical definition of stacks (links represented as numbers, pointing to substacks).
Our proof goes along a similar line, but additional care is needed to ensure that
the stacks used in the reduction are indeed constructible. For this reason we
need to use stacks of order 4 (while [15] uses stacks of order 3).

To be precise, we prove our undecidability result for the graph Gcon(A),
where A is the 4-CPDA which has a single-letter stack alphabet {?}, one state,
and for each stack operation θ a θ-labelled transition performing operation θ.
Since there is only one state we identify a configuration with the (4, 4)-stack it
contains.

8

Theorem 5. FO is undecidable on Gcon(A).

We reduce from the first-order theory of finite graphs, which is well-known
to be undecidable [18]. A finite graph G = (V,E) consists of a finite domain V
of nodes over which there is a binary irreflexive and symmetric relation E of
edges. We will use the domain of Gcon(A) to represent all possible finite graphs.

First we observe that in first-order logic we can determine the order of the
link in the topmost atom. That is, for 1 ≤ k ≤ 4 we have a formula linkk(s)
which is true in configurations s such that top0(s) = (?, k, t) with t 6= []. The
formulae are defined by

linkk(s) :=
∧

1≤i<k

¬linki(s) ∧ ∃t.(s collapse−−−−→ t ∧ eqk(s, t)),

where eqk(s, t) states that s and t differ at most in their topmost k-stacks, that
is eq4(s, t) := true, and for 1 ≤ k ≤ 3,

eqk(s, t) := ∃u.(s popk+1

−−−−→ u ∧ t popk+1

−−−−→ u) ∨ (eqk+1(s, t) ∧ ¬∃u.(s popk+1

−−−−→ u)).

Next, we define two sets of substacks of a 4-stack s which can be easily ac-
cessed in FO. The set vis4(s) contains s and the stacks t for which in top3(s)
there is the atom (?, 4, t). The set vis3(s) contains s and the stacks t for which
pop(s) = pop(t) and in top2(s) there is the atom (?, 3, top3(t)). When s is con-
structible, the property that t ∈ visk(s) (for k ∈ {3, 4}) can be expressed by the
FO formula

visk(s, t) := ∃u.(u popk−−−→ s ∧ linkk(u) ∧ u collapse−−−−−→ t).

To every constructible 4-stack s we assign a finite graph G(s) as follows.
Its nodes are V := vis4(s). Two nodes t, u ∈ V are connected by an edge when
top0(v) = (?, 4, u) for some v ∈ vis3(t), or top0(v) = (?, 4, t) for some v ∈ vis3(u).

Lemma 6. For each non-empty finite graph G there exists a constructible (4, 4)-
stack sG (in the domain of Gcon(A)) such that G is isomorphic to G(sG).

Proof. Suppose that G = (V,E) where V = {1, 2, . . . , k}. The proof is by in-
duction on k. If k = 1, as sG we just take the (constructible) 4-stack consisting
of one atom (?, 1, []). Assume that k ≥ 2. For 1 ≤ i < k, let Gi be the sub-
graph of G induced by the subset of nodes {1, 2, . . . , i}, and let si := sGi be the
stack corresponding to Gi obtained by the induction assumption. We will have
pop4(sG) = sk−1, and top3(sG) = tk, where 3-stacks ti for 0 ≤ i ≤ k are defined
by induction as follows. We take t0 = []. For i > 0 we take take pop(ti) = ti−1,
and the topmost 2-stack of ti consists of one or two 1-stacks. Its first 1-stack is

[(?, 1, []), (?, 4, s1), (?, 4, s2), . . . , (?, 4, sk−1), (?, 3, t0), (?, 3, t1), . . . , (?, 3, ti−1)].

If (i, k) 6∈ E we only have this 1-stack; if (i, k) ∈ E, in top2(ti) we also have the
1-stack

[(?, 1, []), (?, 4, s1), (?, 4, s2), . . . , (?, 4, si)].

9

We notice that vis4(sG) contains stacks s1, s2, . . . , sk−1, sG, and vis3(sG)
contains all stacks obtained from sG by replacing its topmost 3-stack by ti for
some i ≥ 1. It follows that G(sG) is isomorphic to G.

It is also easy to see that sG is constructible. We create it out of sk−1 by
performing push4 and appropriately changing the topmost 3-stack. Notice that
the bottommost 1-stack of top3(sk−1) starts with (?, 1, []), (?, 4, s1), (?, 4, s2), . . . ,
(?, 4, sk−2). We uncover this prefix using a sequence of popi operations. We
append (?, 4, sk−1) and (?, 3, t0) by push1

?,4 and push1
?,3. If (1, k) ∈ E, we create

the second 1-stack using push2 and a sequence of pop1. This already gives the
first 2-stack. To append each next (i-th) 2-stack, we perform push3; we remove
the second 1-stack if it exists using pop2; we append (?, 3, ti−1) using push1

?,3; if

necessary we create the second 1-stack using push2 and a sequence of pop1. ut

We have a formula stating that two nodes x, y of G(s) are connected by an
edge:

E(x, y) :=∃z.(vis3(x, z) ∧ link4(z) ∧ z collapse−−−−→ y)∨

∨ ∃z.(vis3(y, z) ∧ link4(z) ∧ z collapse−−−−→ x).

Given any sentence ϕ over finite graphs, we construct a formula ϕ′(s) by
replacing all occurrences of the atomic binary predicate xEy with the for-
mula E(x, y) from above, and relativising all quantifiers binding a variable x
to vis4(s, x). Then for each constructible (4, 4)-stack s, ϕ holds in G(s) if and
only if ϕ′(s) holds in Gcon(A). Thus ϕ holds in some finite graph if and only if
it holds in the empty graph or ∃s.ϕ′(s) holds in Gcon(A). This completes the
reduction and hence the proof of Theorem 5, since it is trivial to check whether
ϕ holds in the empty graph.

5 Unreachable Configurations with Annotated Stack

In this section we prove decidability of first order logic in the graph of all con-
figurations, not restricted to constructible stacks.

Theorem 7. Given a first-order sentence ϕ and a CPDA A, it is decidable
whether ϕ holds in Gano(A).

For the rest of the section fix a CPDA A of order n, with stack alphabet
Γ . The key idea of the proof is that an FO formula can inspect only a small
topmost part of the stack, and check equality of the parts below. Thus instead
of valuating variables into stacks, it is enough to describe how the top of the
stack looks like, and which stacks below are equal. When the size of the described
top part of the stack is fixed, there are only finitely many such descriptions. For
each quantifier in the FO sentence we will be checking all possible descriptions
of fixed size (of course the size of the described part has to decrease with each
next variable). To formalize this we define generalized stacks.

Consider the following operations on stacks:

10

– for each k ∈ {1, . . . , n} operation firstk(·) which takes a (k − 1)-stack s and
returns the k-stack [s],

– for each k ∈ {1, . . . , n} operation appk(·, ·) which takes a k-stack [s1, . . . , sm]
and a (k − 1)-stack s, and returns the k-stack [s1, . . . , sm, s],

– for each a ∈ Γ and k ∈ {1, . . . , n} operation cons(a, k, []) (without argu-
ments) which returns the 0-stack (a, k, []),

– for each a ∈ Γ and k ∈ {1, . . . , n} operation cons(a, k, ·) which takes a k-stack
s and returns the 0-stack (a, k, s).

We notice that stacks can be seen as elements of the free multisorted algebra
with these operations and no generators (we have n+ 1 sorts, one for each order
of stacks). In the proof we need elements of the free multisorted algebra with
these operations and some generators: for each sort k we have an infinite set of
constants, denoted xk1 , x

k
2 , Elements of this algebra will be called generalized

stacks. Thus a generalized stack is a stack in which we have replaced some prefixes
of some stacks by constants. Generalized stacks will be denoted by uppercase
letters.

For each generalized stack S and each d ∈ N we define the set ts=d(S) of
stacks. These are substacks of S which are at “distance” exactly d from the top.
The definition is inductive: we take ts=0(S) := {S},

ts=1(S) :=


{T} if S = firstk(T),
{T,U} if S = appk(T,U),
∅ if S = cons(a, k, []),
{T} if S = cons(a, k, T),
∅ if S is a constant,

and ts=d+1(S) :=
⋃
T∈ts=d(S)

ts=1(T) for d ≥ 1. Moreover we define ts≤d(S) :=⋃
e≤d ts=e(S) and for d ∈ N ∪ {∞}, ts<d(S) :=

⋃
e<d ts=e(S).

A valuation is a (partial) function v mapping constants to stacks, preserving
the order. Such v can be generalized to a homomorphism v mapping generalized
stacks to stacks. Obviously, to compute v(S) it is enough to define v only on
constants appearing in S.

In FO we can also talk about equality of stacks, so we are interested in
valuations which applied to different generalized stacks give different stacks.
This is described by a relation ↪→d which is defined as follows. Let S1, . . . , Sm
(for m ≥ 0) be generalized stacks, and s1, . . . , sm stacks, and d ∈ N. Then we
say that (S1, . . . , Sm) ↪→d (s1, . . . , sm) if there exists a valuation v such that

– si = v(Si) for each i, and
– no element of

⋃
i ts<d(Si) is a constant (that is, all constants are at depth

at least d), and
– for each T,U ∈

⋃
i ts≤d(Si) such that v(T) = v(U), it holds T = U .

Example 8. Consider the following 2-stack:

s := [[(a, 1, []), (b, 1, []), (c, 1, [])], [(a, 1, []), (b, 1, []), (c, 1, [])]].

11

It can be written as:

app2
(

first2
(

app1(app1(first1(cons(a, 1, [])), cons(b, 1, [])), cons(c, 1, []))
)
,

app1(app1(first1(cons(a, 1, [])), cons(b, 1, [])), cons(c, 1, []))
)
.

It holds

(app2(first2(app1(x1, cons(c, 1, []))), app1(x1, cons(c, 1, [])))) ↪→2 (s),

where the valuation maps x1 into app1(first1(cons(a, 1, [])), cons(b, 1, [])). On the
other hand it does not hold that (app2(first2(y1), app1(x1, cons(c, 1, [])))) ↪→2 (s);
the problem is that the two 1-stacks of s were equal, while they are different
in this generalized 2-stack. This shows that we cannot just cut our stack at
one, fixed depth, and place constants in all places at this depth. In fact, for
some stacks, we need to place some constants exponentially deeper than other
constants. As a consequence, our algorithm will be nonelementary (we have to
increase d exponentially with each quantifier).

When a formula (having already some generalized stacks assigned to its free
variables) starts with a quantifier, as a value of the quantified variable we want
to try all possible generalized stacks which are of a special form, as described by
the following definition. Let S1, . . . , Sm, Sm+1 (for m ≥ 0) be generalized stacks,
let d ∈ N, and d′ := d + 2d+1. We say that Sm+1 is d-normalized with respect
to (S1, . . . , Sm) if

– no element of ts<d(Sm+1) is a constant, and

– each element of ts=d(Sm+1) is

• a “fresh” constant, i.e. not belonging to
⋃
i≤m ts<∞(Si), or

• an element of
⋃
i≤m ts≤d′(Si), or

• an element of ts<d(Sm+1).

The key point is that for fixed S1, . . . , Sm there are only finitely many d-
normalized generalized stacks Sm+1 (up to renaming of fresh constants), so we
can try all of them. The next two lemmas say that to consider d-normalized
generalized stacks is exactly what we need.

Lemma 9. Let S1, . . . , Sm (for m ≥ 0) be generalized stacks, let s1, . . . , sm and
sm+1 be stacks, let d ∈ N and d′′ := d + 2d+2. Assume that (S1, . . . , Sm) ↪→d′′

(s1, . . . , sm). Then there exists a generalized stack Sm+1 d-normalized with re-
spect to (S1, . . . , Sm) and such that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1).

Proof (sketch). Let d′ := d + 2d+1 (this is the d′ used in the definition in d-
normalization, and is smaller than d′′). Let v be a valuation witnessing that
(S1, . . . , Sm) ↪→d′′ (s1, . . . , sm), i.e. such that si = v(Si) for each i ≤ m. For
each stack s ∈ ts≤d(sm+1) we define by induction a generalized stack repl(s):

12

– if s ∈ ts<d(sm+1), we take

repl(s) :=


firstk(repl(t)) if s = firstk(t),
appk(repl(t), repl(u)) if s = appk(t, u),
cons(a, k, []) if s = cons(a, k, []),
cons(a, k, repl(t)) if s = cons(a, k, t);

– otherwise, if s = v(S) for some S ∈
⋃
i≤m ts≤d′(Si), we take repl(s) := S;

– otherwise, we take repl(s) := xs, where xs is a fresh constant.

At the end we take Sm+1 := repl(sm+1). It remains to check in detail that such
Sm+1 satisfies all parts of the definitions. Notice that there can exist stacks s
which are simultaneously in ts<d(sm+1) and ts=d(sm+1) (so it is not true that
we apply one of the last two cases to each stack at depth d). ut

Lemma 10. Let S1, . . . , Sm and Sm+1 (for m ≥ 0) be generalized stacks, let
s1, . . . , sm be stacks, let d ∈ N and d′′ := d+2d+2. Assume that (S1, . . . , Sm) ↪→d′′

(s1, . . . , sm), and that Sm+1 is d-normalized with respect to (S1, . . . , Sm). Then
there exists a stack sm+1 such that (S1, . . . , Sm, Sm+1) ↪→d (s1, . . . , sm, sm+1).

Proof (sketch). It is enough to map the constants appearing in Sm+1 but not in
Si for i ≤ m into “fresh” stacks, such that none of them is a substack of any
other nor of any si for i ≤ m (the latter is easy to obtain by taking these stacks
to be bigger than all si). ut

We also easily see that the atomic FO formulae can evaluated on the level of
generalized stacks related by the ↪→n+1 to the actual stacks.

Lemma 11. Let S, T be generalized n-stacks, and let s, t be n-stacks. Assume
that (S, T) ↪→n+1 (s, t). Then taking as input S and T (even not knowing s and
t) one can compute:

– lb(top0(s)),
– whether s = t, and
– for any stack operation θ ∈ Θn(Γ), whether it holds θ(s) = t.

Using the last three lemmas we can check whether an FO sentence holds
in Gano(A). Indeed, for each quantifier we check all possible generalized stacks
which are d-normalized with respect to the previously fixed variables, for big
enough d (depending on the quantifier rank of the formula, so that the induction
works fine), and we deal with atomic formulae using Lemma 11.

References

1. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15 (1974) 1170–1174

2. Maslov, A.N.: Multilevel stack automata. Problems of Information Transmission
12 (1976) 38–43

13

3. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In Nielsen, M., Engberg, U., eds.: FoSSaCS. Volume 2303 of Lecture Notes in
Computer Science., Springer (2002) 205–222

4. Parys, P.: Collapse operation increases expressive power of deterministic higher
order pushdown automata. In Schwentick, T., Dürr, C., eds.: STACS. Volume 9 of
LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011) 603–614

5. Parys, P.: On the significance of the collapse operation. In: LICS, IEEE (2012)
521–530

6. Hague, M., Murawski, A.S., Ong, C.H.L., Serre, O.: Collapsible pushdown au-
tomata and recursion schemes. In: LICS, IEEE Computer Society (2008) 452–461

7. Knapik, T., Niwinski, D., Urzyczyn, P., Walukiewicz, I.: Unsafe grammars and
panic automata. In Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M., eds.: ICALP. Volume 3580 of Lecture Notes in Computer Science., Springer
(2005) 1450–1461

8. Caucal, D.: On infinite terms having a decidable monadic theory. In Diks, K.,
Rytter, W., eds.: MFCS. Volume 2420 of Lecture Notes in Computer Science.,
Springer (2002) 165–176

9. Cachat, T.: Higher order pushdown automata, the caucal hierarchy of graphs
and parity games. In Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.,
eds.: ICALP. Volume 2719 of Lecture Notes in Computer Science., Springer (2003)
556–569

10. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In Pandya, P.K., Radhakrishnan, J., eds.:
FSTTCS. Volume 2914 of Lecture Notes in Computer Science., Springer (2003)
112–123

11. Kartzow, A.: Collapsible pushdown graphs of level 2 are tree-automatic. Logical
Methods in Computer Science 9(1) (2013)

12. Broadbent, C.H.: On collapsible pushdown automata, their graphs and the power
of links. PhD thesis, University of Oxford (2011)

13. Broadbent, C.H.: Prefix rewriting for nested-words and collapsible pushdown au-
tomata. In Czumaj, A., Mehlhorn, K., Pitts, A.M., Wattenhofer, R., eds.: ICALP
(2). Volume 7392 of Lecture Notes in Computer Science., Springer (2012) 153–164

14. Broadbent, C.H.: The limits of decidability for first order logic on CPDA graphs.
In Dürr, C., Wilke, T., eds.: STACS. Volume 14 of LIPIcs., Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012) 589–600

15. Broadbent, C.H.: On first-order logic and CPDA graphs. Accepted to Theory of
Computing Systems

16. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: A saturation method for
collapsible pushdown systems. In Czumaj, A., Mehlhorn, K., Pitts, A.M., Watten-
hofer, R., eds.: ICALP (2). Volume 7392 of Lecture Notes in Computer Science.,
Springer (2012) 165–176

17. Kartzow, A., Parys, P.: Strictness of the collapsible pushdown hierarchy. In Rovan,
B., Sassone, V., Widmayer, P., eds.: MFCS. Volume 7464 of Lecture Notes in
Computer Science., Springer (2012) 566–577

18. Trachtenbrot, B.: Impossibility of an algorithm for the decision problem in finite
classes. Doklady Akad. Nauk. 70 (1950) 569–572

14

