
Two-Way Cost Automata and Cost Logics over Infinite Trees ∗

Achim Blumensath †

TU Darmstadt
blumensath@mathematik.tu-

darmstadt.de

Thomas Colcombet
Université Paris Diderot

thomas.colcombet@liafa.univ-paris-
diderot.fr

Denis Kuperberg
University of Warsaw

denis.kuperberg@gmail.com

Paweł Parys ‡

University of Warsaw
parys@mimuw.edu.pl

Michael Vanden Boom
University of Oxford

michael.vandenboom@cs.ox.ac.uk

Abstract
Regular cost functions provide a quantitative extension of regular
languages that retains most of their important properties, such as
expressive power and decidability, at least over finite and infinite
words and over finite trees. Much less is known over infinite trees.

We consider cost functions over infinite trees defined by an
extension of weak monadic second-order logic with a new fixed-
point-like operator. We show this logic to be decidable, improving
previously known decidability results for cost logics over infinite
trees. The proof relies on an equivalence with a form of automata
with counters called quasi-weak cost automata, as well as results
about converting two-way alternating cost automata to one-way
alternating cost automata.

Categories and Subject Descriptors Theory of computation [Au-
tomata over infinite objects]

1. Introduction
Boundedness is a central notion arising in both mathematics and
computer science. Indeed, being able to determine the existence
of bounds is an important form of quantitative reasoning in many
contexts, ranging from verification to model theory.

Consider the following boundedness questions:

• Given a finite state automaton with some costly transitions,
is there a bound n such that any finite word accepted by the
automaton has an accepting run which takes these costly edges
at most n times?

∗ The research leading to these results has received funding from the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement no259454 and the project ANR 2010 BLAN 0202 02 FREC.
†Work partially supported by DFG grant BL 1127/2-1.
‡Work supported by the fellowship of the Foundation for Polish Science,
during the author’s post-doc stay at Université Paris Diderot.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603104

• Given some regular language L of finite words, is there a bound
n such that L∗ (consisting of any finite concatenation of words
from L) is equal to L0 ∪ L1 ∪ · · · ∪ Ln?
• Given a monadic second-order formula ϕ(X,x) positive in X ,

is there a bound n such that the least fixed point of ϕ over finite
words is always reached within n iterations?

We could add to this list many other questions like the star height
problem from language theory [11, 15–17], the boundedness prob-
lem for fixed points of monadic second-order formulae in model
theory [3, 4], the bounded repair problem in database theory [2],
and the resource bounded reachability problem in verification [20].
We could also consider these problems over different classes of
structures (like finite trees or infinite words). The theory of regu-
lar cost functions introduced in [9] (and developed in subsequent
papers) is a powerful extension of the theory of regular languages
that enables all of these boundedness questions to be decided in a
uniform way.

In the framework of cost functions, the notion of a language
is extended to the richer notion of a function from structures (like
words or trees) to N ∪ {∞}. The central decidability question is
whether a function is bounded by some n ∈ N over its domain (or
a regular subset of its domain). By identifying a language with its
characteristic function mapping structures in the language to 0 and
everything else to∞, these boundedness questions subsume clas-
sical language decision problems like universality and emptiness.

Like regular languages, these regular cost functions can be de-
scribed using a number of different formalisms. One way to define
these regular cost functions is using cost monadic logic, an exten-
sion of monadic second-order logic with an operator |X| ≤ N
which enables some limited reasoning about the cardinality of sets
(enough to distinguish notions of “large” and “small” for the pur-
poses of boundedness). These regular cost functions can also be
defined in terms of cost automata, which are traditional automata
enriched with a finite set of counters that can be incremented, reset,
or left unchanged on each transition, and are used to assign a value
from N ∪ {∞} to each input.

But the connections with regular languages do not end there.
Since the works of Rabin, Scott, and Büchi [7, 23, 24], there have
not been many attempts to extend the expressive power of the asso-
ciated formalisms beyond regular languages, while at the same time
keeping most of their good properties – closure, decidability, and
the equivalent presentations in terms of regular expressions, alge-
bra, automata, and logic. To the best of our knowledge, the theory
of regular cost functions is the only extension that achieves faithful

extensions of classical results (in terms of closure, decidability, and
equivalent presentations) over finite words [9, 10], infinite words
[19], and finite trees [13]. This unique position makes it an attrac-
tive framework, since it subsumes many classical results while al-
lowing further questions about boundedness to be answered.

Central open question
The central open question in the theory is whether it can also be
faithfully extended to infinite trees. In particular the question “can
we solve satisfiability of cost monadic logic over infinite trees?” –
the counterpart of the theorem of Rabin for monadic second-order
logic – is still open.

This paper can be seen as a step to close this gap, by showing
that there is a robust subclass of decidable cost functions over
infinite trees that have natural correspondences with cost logics and
cost automata.

Showing decidability of the full logic would help answer some
fundamental questions about language and automata theory that
have been open for decades. One of the motivating open problems
like this is the (nondeterministic) Mostowski index problem, or
parity index problem, which asks, given a regular language of
infinite trees and a set of priorities P , is there a nondeterministic
parity automaton that accepts this language using only priorities
P ? It turns out that this problem can be reduced to a boundedness
question for regular cost functions over infinite trees [12]. Being
able to solve this problem is useful, since the number of priorities
in a parity automaton (even more so than the number of states)
reflects how complicated the automaton is. Indeed, minimizing the
number of priorities is especially important in verification, because
model checking against a property described by a parity automaton
is essentially exponential in the number of priorities.

Thus, our desire to understand and solve cost logics over infinite
trees comes from a desire to close the gap in the theory of regular
cost functions, as well as a desire to solve some long-standing and
important problems in automata theory.

Weak and quasi-weak cost functions
In trying to solve the full logic, the weak fragment of cost monadic
logic (where second-order quantifiers range over finite sets only)
was a natural starting point for investigation. In [27], weak cost
monadic logic was shown to be decidable, and equivalent to a form
of weak alternating automata with counters.

However, weakness as defined for regular languages is not
canonical in the context of cost functions. Indeed, a new, richer
form of weakness emerged naturally in [18], in the form of quasi-
weak cost automata, that enjoy many of the good properties of
weak cost automata, but are strictly more expressive.

At the same time, there was a branch of work [3, 4] that sought
to study the boundedness problem for fixed point formulas, and it
turned out that the natural class of automata for problems like this
was the quasi-weak class.

Recently in [14], it was also shown that the quasi-weak class of
cost functions is strong enough to solve a special case of the weak
definability problem. The weak definability problem asks, given a
regular language of infinite trees, whether or not there is a weak au-
tomaton (equivalently, weak monadic second-order logic formula)
that captures the same language. Like the parity index problem,
the general version of this problem is open, and is of interest in
verification because the weakly definable languages constitute an
expressive but computationally feasible class of properties.

Thus, the quasi-weak class of cost functions emerged from a
variety of sources as an interesting subclass of regular cost func-
tions over infinite trees, with links to concrete decidable results and
natural logical questions. However, it was not known whether this
class corresponded to a natural extension of monadic second-order

logic. This paper addresses this question, and develops further tools
for understanding and working with cost logics over infinite trees.

Contributions
In this paper, we demonstrate that the class of quasi-weak cost
functions corresponds to natural cost logics.

• We characterize the class of quasi-weak cost functions in terms
of an extension of monadic second-order logic with a new form
of fixed points that allows only bounded unfolding.
• We describe an extension of the µ-calculus with this bounded

unfolding operator, and explain that the alternation-free frag-
ment of this logic also characterizes quasi-weak cost functions.
• We show how to translate a 2-way quasi-weak automaton (in

fact, any 2-way cost parity automaton) into an equivalent 1-
way automaton. This is the technical core of our contribution,
which is central to showing the equivalence of quasi-weak cost
automata and logic. Our translation differs from other similar
constructions in the context of regular languages in the sense
that the translation does not rely on a global positional deter-
minacy result in the underlying game, and instead uses only
local approximations of the two-way plays. Although the proof
is technical, we believe the ideas behind this construction may
be of independent interest, even outside of the theory of regular
cost functions.

Related work
This work builds on the classical results due to Rabin, Scott and
Büchi [7, 23, 24] about regularity for languages of words and trees,
both finite and infinite. It is also indebted to the work of Hashiguchi,
Leung, Simon and Kirsten [15, 17, 21, 25] on limitedness questions
(mainly in the context of solving the star height problem), and work
by Bojańczyk and Colcombet [5, 6] on MSO+U (another logic
related to boundedness).

Structure of this document
The article is organized as follows. In Section 2, we introduce
cost monadic logic, and its weak and quasi-weak fragments. We
then describe 2-way and 1-way alternating quasi-weak automata in
Section 3. In Section 4, our main results concerning equivalence
and decidability are given, and the essential ideas of the proof are
sketched. Finally, in Section 5 we mention some links with a cost
form of the µ-calculus that provide additional insight into the quasi-
weak class of cost functions.

Notation and conventions
A will denote a fixed finite alphabet. The set of finite and infinite
words over A is A∗ and Aω , respectively. The empty word is ε.
For simplicity we work primarily with infinite binary trees. Let
T = {0, 1}∗ be the unlabeled infinite binary tree. The set TA of
complete A-labeled binary trees consists of mappings t : T → A.
A branch π is a word {0, 1}ω .

2. Quasi-weak cost logic
2.1 Cost functions
We write N for the set of non-negative integers and N∞ for the
set N ∪ {∞} with the obvious ordering. Non-decreasing func-
tions N → N are called correction functions. We denote them
by α, β, Any such function is implicitly extended to N∞ by
α(∞) =∞.

Let E be a set and FE the set of functions E → N∞. For
f, g ∈ FE and a correction function α, we write f 4α g if
f ≤ α◦g (or if we are comparing single values n,m ∈ N, n 4α m

if n ≤ α(m)). We write f ≈α g if f 4α g and g 4α f . Finally,
f ≈ g (respectively, f 4 g) if f ≈α g (respectively, f 4α g)
for some α. Note that f 4 g holds if, and only if, f is bounded
over every set X ⊆ E over which g is bounded. The idea is that
the boundedness relation ≈ does not pay attention to exact values,
but does preserve the existence of bounds over all subsets of the
domain. A cost function over E is an equivalence class of FE/≈.
In practice, a cost function (denoted f, g, . . .) will be represented
by one of its elements inFE . In this paper,E will usually be TA and
functions defined by logics and automata will always be considered
as cost functions, i.e., up to ≈.

We can identify a language L with its characteristic function
χL mapping structures in the language to 0 and everything else to
∞. Note that for languages K and L, K ⊆ L iff χL 4 χK , so
deciding cost function equivalence subsumes language inclusion
testing in the classical setting.

Given two mathematical expressions E(x̄), F (x̄) denoting ele-
ments of N∞ and depending on variables x̄ (ranging over an im-
plicit domain clear from the context), we write E 4x̄ F to specify
that λx̄.E 4 λx̄.F where λx̄.E denotes the function mapping x̄ to
E(x̄) ∈ N∞. The relation ≈x̄ is defined accordingly.

2.2 Cost monadic logic
Cost monadic second-order logic (CMSO) was introduced in [8] as
a quantitative extension of monadic second-order logic. As usual,
the logic can be defined over any relational structure, but we restrict
our attention to CMSO over trees. In addition to first-order vari-
ables ranging over nodes of the tree and set variables ranging over
sets of nodes, CMSO uses a single additional variableN , called the
bound variable, which ranges over N.

The atomic formulae in CMSO are those from MSO (the mem-
bership relation x ∈ X and relations a(x, x1, x2) asserting that
a ∈ A is the label at position x with children x1, x2 from left to
right), as well as a new predicate |X| ≤ N where X is any set
variable and N is the bound variable. Arbitrary CMSO formulae
are built inductively by applying boolean connectives and by quan-
tifying (existentially or universally) over first-order or set variables.
We require that any predicates of the form |X| ≤ N appear pos-
itively in the formula (i.e., within the scope of an even number of
negations).

If we fix a value n forN , the semantics of |X| ≤ N is what one
would expect: the predicate holds iff the value of X has cardinality
at most n. If, however, no value for N is specified then a sentence
ϕ in cost monadic logic defines a function [[ϕ]] : TA → N∞
by [[ϕ]](t) := inf {n : t, n |= ϕ}, where we write t, n |= ϕ if t
satisfies ϕ when all occurrences of N take value n. Notice that
in case ϕ is a pure MSO-sentence (not containing the predicates
|X| ≤ N), [[ϕ]](t) is 0, if t satisfies the sentence ϕ, and ∞
otherwise.

The weak variant of CMSO (denoted WCMSO) restricts the
second-order quantification to finite sets, and has been studied
in [27].

2.3 Bounded expansion and quasi-weak cost monadic logic.
In this paper, we introduce a new logic called quasi-weak cost
monadic logic, QWCMSO, which extends WCMSO by a bounded
expansion operator µN . This operator takes a function F mapping
sets of nodes to sets of nodes which is monotonic (i.e., X ⊆ Y
implies F (X) ⊆ F (Y)), and it computes F (N), where F (0) = ∅
and F (`+1) = F (F (`)). We denote this value as µNX.F (X) in
order to make the name of the variable over which the construction
is performed explicit.

To add this operator to WCMSO, we define the following new
bounded expansion construct

x ∈ µNZ.{y : ϕ(y, Z)} ,
where x, y are first order variables, Z is a set variable and ϕ(y, Z)
is a formula that uses Z positively, i.e., every predicate of the form
z ∈ Z appears below an even number of negations. This operator
binds the variables y and Z, while it leaves x free. We also require
that any such bounded expansion construct appears positively in the
formula. The semantics are as one would expect: {y : ϕ(y, Z)} is
a set which depends on Z, and is thus subject to the application of
µNZ. The variable N used here is the same bound variable used
in the predicates |X| ≤ N . As before, the semantics associate to a
sentence the least n which can be substituted for all occurrences of
N and make the sentence true.

Example 1. Let A = {a, b}. We use the operator µN to define
a formula counting the maximal number of consecutive a’s on a
branch starting at the root, where root(w) identifies the root of the
tree:

∃w
[
root(w) ∧
w ∈ µNX.

{
x : ∃yz[b(x, y, z) ∨

(a(x, y, z) ∧ y ∈ X ∧ z ∈ X)]
}]
.

This is equivalent (in the sense of the ≈ relation) to the CMSO
formula

∀X.[downclose(X) ∧ ((∀x ∈ X)a(x))→ |X| ≤ N] ,

where downclose(X) asserts that X is closed under the ances-
tor relation and a(x) is shorthand for ∃y, z.a(x, y, z).

3. Cost automata and games
In this section we introduce the model of automata used in this pa-
per: the alternating 1-way/2-way B-quasi-weak automata. We con-
sider classical parity automata over trees equipped with a finite set
of counters Γ that can be incremented ic, reset r, or left unchanged
ε (but whose values do no affect the flow of the automaton). Let
C := {ic, r, ε} be the alphabet of counter actions. Each counter
starts with value zero, and the value of a sequence of actions is
the supremum of the values achieved during this sequence. For in-
stance (ic)(ic)rε(ic)ε has value 2, ((ic)r)ω has value 1, and
(ic)r(ic)2r(ic)3r . . . has value ∞. The set ActΓ

P := CΓ × P
collects the counter actions for a finite set Γ of counters and some
finite set of priorities P . To an infinite sequence over ActΓ

P , we
assign the value ∞ if the maximum priority occurring infinitely
often in it is odd (i.e., if it does not satisfy the parity condition);
otherwise, the value is the supremum of the values achieved by the
counters (in case of several counters, we take the counter with the
maximal value).

Formally, an (alternating) two-way B-parity automaton over the
alphabet A is a tuple 〈Q,A, q0,Γ, P, δ〉 consisting of a finite set of
states Q, an initial state q0 ∈ Q, a finite set Γ of counters, a finite
set P of priorities, and a transition function

δ : Q× A→ B+({↑,↙,↘,	} ×ActΓ
P ×Q)

mapping a state and a letter to a positive boolean combination of
triples of the form (d, c, q). Such a triple encodes the instruction
to send the automaton to state q in direction d while performing
action c. The directions↙ and↘ move to the left or right child, ↑
moves to the parent, and 	 stays in place. We assume that δ(q, a)
is written in disjunctive normal form for all q and a. Without loss
of generality, we assume that the automaton never proceeds in
direction ↑ from the root of the tree.

Acceptance of an input tree t by a B-automaton A is defined in
terms of a game (A, t) between two players: Eve is in charge of

the disjunctive choices. She tries to minimize counter values and to
satisfy the parity condition. Adam, on the other hand, is in charge
of the conjunctive choices and tries to maximize counter values or
to sabotage the parity condition. As the transition function is given
in disjunctive normal form, each turn of the game consists of Eve
choosing a disjunct and Adam then selecting a single tuple (d, c, q)
from it. We assume that each disjunction is nonempty, and each
disjunct contains a tuple with direction other than ↑; in other words,
from every position there is some move (i.e., the automaton cannot
get stuck at the root).

A play of A on the tree t is a sequence

q0, (d1, c1, q1), (d2, c2, q2), . . .

compatible with t and δ, i.e., q0 is initial, and for all i ∈ N,
(di+1, ci+1, qi+1) appears in δ(qi, t(xi)) where xi is the node of
t after following the directions d1d2 . . . di starting from the root.
The value val(π) of a play π is the value of the sequence c1c2 . . .
as defined above. We will say that π is n-winning (for Eve) if
val(π) ≤ n.

A strategy for one of the players in the game (A, t) is a function
that returns the next choice given the history of the play. If this
function depends only on the current position in the game (rather
than the full history), then it is positional. Note that choosing a
strategy for Eve and a strategy for Adam fixes a play in (A, t). We
say that a play π is compatible with a strategy σ if there is some
strategy σ′ for the other player such that σ and σ′ together yield the
play π. A strategy for Eve is n-winning if every play compatible
with it is n-winning. We say that Eve n-wins the game if there is
some n-winning strategy for Eve. An automaton n-accepts a tree t
if Eve n-wins the game (A, t). We denote by [[A]] : TA → N∞ the
function given by [[A]](t) := inf {n : A n-accepts t} .

We will sometimes use automata that start from some position
other than the root. We will call such automata localized. For
localized automata, we use the notation [[A]]v(t) to specify the
node v the automaton starts at. We can also consider cost automata
with other well-known acceptance conditions. For instance, a B-
Büchi automaton is a B-parity automaton using priorities {1, 2}.
In this case, we often assume that priorities label states rather than
edges (always possible by adding intermediate states), and refer to
Büchi states (priority 2) and non-Büchi states (priority 1).

If every δ(q, a) uses only directions↙ and↘, then we call A
one-way. Moreover, if every δ(q, a) is of the form∨

i

(↙, ci, qi) ∧ (↘, c′i, q′i) ,

A is nondeterministic. For such a one-way nondeterministic au-
tomaton, we define a run to be the set of possible plays compatible
with some fixed strategy of Eve. Since the only choices of Adam
are in the branching, a run labels the entire binary tree with states,
and choosing a branch yields a unique play of the automaton. A run
is accepting if it is accepting on all branches, and the value assigned
to a run of a B-automaton is the supremum of the values across all
branches. For nondeterministic automata, the choices of Eve and
Adam in the game described above can be viewed as Eve picking
a transition (↙, ci, qi) ∧ (↘, c′i, q′i), and Adam choosing a direc-
tion (which uniquely determines which atom Adam picks from the
conjunction). Unless otherwise indicated, we assume automata to
be alternating.

Variants of weakness for cost automata
Weak alternating automata are Büchi automata with the restriction
that no cycle of the automaton visits both Büchi and non-Büchi
states (this is equivalent to the original definition in [22]). We
consider two variants of this classical notion of weakness for cost
automata. An alternating B-Büchi automaton is called

B-weak if in all cycles, either all states are Büchi, or no state is
Büchi,

B-quasi-weak if in all cycles that contain both a Büchi and a non-
Büchi state, there is a counter that is incremented and never
reset in this cycle.

The weakness property implies that every play in the game
associated with this automaton has to eventually stabilize, either
in a strongly connected component where all states are Büchi (so
the play is winning for Eve), or in a strongly connected component
where no state is Büchi (so the play is winning for Adam). In fact,
this stabilization occurs after at most |Q|-many changes of mode
between Büchi states and non-Büchi states (where Q is the set of
states of the automaton). These automata were studied in [27], and
have the same expressive power as WCMSO.

Similarly, the quasi-weakness property implies that any play
that does not stabilize after kn-changes of mode (for some constant
k depending on the automaton) has a counter with value greater
than n. Such plays cannot be n-winning for Eve, independent of
any other consideration. Quasi-weak automata were introduced in
[18]. They are strictly more expressive than weak automata (i.e.,
WCMSO), but not as expressive as general cost automata (and in
particular not as expressive as full CMSO).

Thus, the difference between these models is in the number
of allowed mode changes: unrestricted for B-Büchi automata;
bounded by some function of n for B-quasi-weak automata; and
bounded by some constant for B-weak automata.

4. Equivalences
4.1 The main theorem and the general approach
Our goal is to show the equivalence of the various models of quasi-
weak logics and automata we have introduced, as stated by the
following main theorem.

Theorem 2. Let f be a cost function over infinite trees. Then the
following statements are equivalent:

• f is recognizable by a 1-way B-quasi-weak automaton;
• f is recognizable by a 2-way B-quasi-weak automaton;
• f is definable in QWCMSO.

Moreover, the translations between these formalisms are effective.
We call such a cost function f a quasi-weak cost function.

Since f 4 g is decidable for functions f, g defined by 1-way
B-quasi-weak automata [18], we obtain the following decidability
result as a corollary.

Corollary 3. Given quasi-weak cost functions f and g over infinite
trees, it is decidable whether or not f 4 g.

We now describe our approach for proving Theorem 2. The
translation from B-quasi-weak automata to the logic is standard, so
we concentrate on the translation from QWCMSO to B-quasi-weak
automata, which goes via 2-way automata.

We use a well-known technique to enable automata to refer to
free set variables. Given t ∈ TA and sets of nodes E1, . . . , Ek, we
write (t, E1, . . . , Ek) for the tree over the alphabet A × {0, 1}k
obtained from t by labeling each node v by k bits of extra infor-
mation, the i-th bit being 1 if v ∈ Ei and 0 otherwise. First-order
variables are treated as singleton sets. Using this encoding, every
statement relating automata to logic can be used in a context with
free variables, so we can consider cost automataA that correspond
to formulae with free set variables X̄ . Given values Ē for these
variables, [[A]](t, Ē) denotes the evaluation of the automaton on
the tree (t, Ē).

As usual, translating formulae to automata amounts to showing
the closure of the automaton model under operations that simu-
late the constructions of the logic. For simulating disjunction and
conjunction, we must show closure under taking the minimum and
maximum (respectively) of the functions computed by B-quasi-
weak automata. This is obvious for alternating automata. B-quasi-
weak automata must also be provided for the atomic predicates. All
of this is standard.

There are three non-trivial constructs: weak existential quanti-
fiers, weak universal quantifiers, and bounded expansions. Essen-
tially, by adapting the proof from [27], one can show that 1-way
B-quasi-weak automata have the closure properties corresponding
to the weak quantifiers (it corresponds to the closure under weak
inf- and sup-projection of 1-way B-weak automata in [27]).

The natural way to deal with bounded expansion is to per-
form it on localized 2-way B-quasi-weak automata, so it remains
to show how to (i) translate a 1-way B-quasi-weak automaton into
a localized 2-way B-quasi-weak automaton (Section 4.3), (ii) con-
struct from this a localized 2-way B-quasi-weak automaton for the
bounded expansion (Section 4.2), and (iii) translate a (localized) 2-
way B-quasi-weak automaton into a 1-way B-quasi-weak automa-
ton (Section 4.4).

4.2 The bounded expansion operation on automata
The bounded expansion operator is applied to a formula ϕ(x, Y)
which is syntactically monotonic in Y . Testing if

z ∈ µNY.{x : ϕ(x, Y)}
can be viewed as a game which starts in node x = z with a given
value n for the number of iterations and that proceeds in turns as
follows:

• Eve chooses some set Y such that ϕ(x, Y) holds (if it is not
possible, she loses), then
• Adam chooses some element x ∈ Y (if it is not possible, he

loses), and the game proceeds to the next turn.

If the game exceeds n turns, Adam is declared the winner. It is
straightforward to check that Eve wins this game if and only if
z ∈ µNY.{x : ϕ(x, Y)} for N ≤ n.

We implement this idea by taking an automaton A equivalent
to ϕ(x, Y), and transforming it into a new automaton that simu-
lates the game. For A we take a localized 2-way B-quasi-weak au-
tomaton with one free variable Y . We assume priorities label states.
This automaton n-accepts a tree (t, Y) starting from position x if
t, n |= ϕ(x, Y) (in fact, modulo ≈).

The construction outputs a new localized 2-way B-quasi-weak
automaton B with no free variables, which n-accepts a tree t from
position x iff Eve wins the above game from initial position x. This
new automaton B has the same states, the same initial state, the
same priority function, and the same counters asA, along with one
additional counter, say, γ. The transition function δB is defined for
all states p and all letters a as:

δB(p, a) = δA(p, (a, 0)) ∨ [δA(p, (a, 1)) ∧ (, Iγ , q0)] ,

where Iγ resets all counters of A and increments the counter
γ. This transition function expresses that Eve is required to say
whether she uses the assumption that the current a-labelled posi-
tion, say y, belongs to the set Y . If she assumes it does not, she can
take the transition allowed in A for nodes not in Y (the first dis-
junct in the transition function above). If she assumes y ∈ Y (the
second disjunct), Adam and Eve can continue to play in the cur-
rent round according to δA(p, (a, 1)) (intuitively, this corresponds
to Adam checking that t, n |= ϕ(x, Y) truly holds). Otherwise,
Adam can ask to use y as his choice in the game by using the tran-
sition (, Iγ , q0). This advances one turn in the game, so the new

counter is incremented, all counters ofA are reset, and the automa-
ton A is restarted in state q0 at y.

Theorem 4. For every localized 2-way quasi-weak automaton A
with one free set variable, there exists a localized 2-way quasi-weak
automaton B with no free variables such that

[[B]]z(t) ≈t,z [[z ∈ µNX.{x : [[A]]x(X) ≤ N}]](t) .

4.3 From 1-way to localized 2-way
Translating a 1-way automaton into an equivalent 2-way automaton
is straightforward. The subtlety here is that we need to transform
a 1-way automaton that has a first-order variable x as input, i.e.,
reading the word (t, {x}) into a localized 2-way automaton that
starts from node x, but reads only t.

Theorem 5. For every 1-way B-quasi-weak automatonA with one
free first-order variable, there exists a localized 2-way B-quasi-
weak automaton A` with no free variables such that

[[A]](t, {x}) ≈t,x [[A`]]x(t) .

The difficulty here is that the automaton A over the input
(t, {x}) may cross the node x several times (on different plays),
and make use of the fact that x is labeled. This is problematic
since a localized automaton cannot remember this position, so the
automaton would not know if/when it returns to x.

This would not be a problem if A were nondeterministic. Un-
fortunately,A is alternating, and making it nondeterministic would
leave the class of quasi-weak automata (this situation occurs al-
ready for weakly definable languages). There is a known solution
to this problem (due to Muller, Saoudi, and Schupp [22]), which
is to make the automaton A nondeterministic, but only on a finite
portion of the tree containing both the root and x. We are able to ac-
complish this using machinery already present in the proof for the
closure of 1-way cost automata under the weak existential quanti-
fier.

4.4 From 2-way to 1-way
We now turn to the key technical contribution of the paper: trans-
forming 2-way B-quasi-weak automata into their 1-way version.
We remark that it is trivial to transform a localized 2-way B-quasi-
weak automaton into an equivalent non-localized one, so the local-
ized property is irrelevant here.

Before proceeding, let us briefly review the construction from
Vardi [28] that transforms a 2-way parity automaton A into an
equivalent 1-way parity automaton B (this result can also be de-
duced from other constructions like the unfolding or iteration). The
behavior of A on t can be represented as a parity game. By posi-
tional determinacy of parity games, Eve has a positional winning
strategy if A accepts t. Moreover, for any position x ∈ T , loops
(i.e., finite paths from x to x) in this strategy can be summarized by
their starting state, ending state, and maximum priority. The 1-way
version guesses a labeling of t with a positional strategy together
with these loop summaries, and then runs a 1-way deterministic
parity automaton that checks that the labeling is valid and that ev-
ery play consistent with the strategy satisfies the parity condition.
The loop summaries are used to avoid backtracking.

The above approach fails in our case for two reasons. First,
there is no known result of positional or finite memory determinacy
for the games produced by 2-way B-quasi-weak automata (the re-
sults are known for acyclic arenas like those produced by 1-way
B-quasi-weak automata [18], but the arenas produced by 2-way au-
tomata may be cyclic). Second, the construction described above
naturally outputs a nondeterministic automaton, and hence the out-
put automaton cannot be quasi-weak (since quasi-weak and weak
nondeterministic automata are strictly less expressive than their al-

ternating versions). Thus, we have to use a less direct approach to
prove the following theorem.

Theorem 6. Given an alternating 2-way B-parity automaton A2,
there effectively exists an alternating 1-way B-parity automatonA1

such that

[[A2]](t) ≈t [[A1]](t) .

Moreover, if A2 is quasi-weak, then A1 is also quasi-weak.

The proof consists of four steps.
(1) We first describe a way to summarize the history of a play of

A2. The idea is that the summary of a play collapses loops (finite
paths that start and end at the same position in the tree) in this play
to a single move described by a global action. This global action
records the maximum priority, and (for each counter) whether the
counter was reset at least once, incremented at least once but not
reset, or left unchanged.

We then prove that Eve always has a summary-dependent strat-
egy, i.e., a strategy where Eve’s choices depend only on the sum-
mary of the history of the play rather than the full history of the
play.

Lemma 7. Assume that A2 n-accepts a tree t for some n ∈ N.
Then Eve has an α(n)-winning summary-dependent strategy, for α
independent of t.

This summary-dependent strategy is constructed from an arbitrary
n-winning strategy for Eve. In case there are several loops in the
original strategy with the same summary, the summary-dependent
strategy chooses the loop in which the counters had the greatest
value, and then continues from there. This ensures that the counter
values in the resulting summary-dependent strategy will not grow
too much (and in fact are bounded by α(n) for some correction
function α independent of the input tree). The parity condition will
also be satisfied, since replacing loops by other loops having the
same maximal priority, does not change whether or not the play is
winning. We give the details of this proof in the next subsection.

(2) We construct a new alternating 2-way automatonA1.5 which
never goes up (but may stay in the same node). It is not a B-
parity automaton because it uses a more complicated acceptance
condition, described below.

In general, the automaton A1.5 simulates the run of A2 on
some t. However, when A2 wants to go down from some node x,
Eve has to make some declarations about the two parts of the rest
of the game: the part of the game before returning to x (i.e., the part
in the subtree of t below x), and the part after returning to x (which
may visit the children of x again). For the first part she gives a set
D of constraints, that is of pairs (c, q) that assert that there is a play
compatible with her strategy which returns to x, finishing in state q
and performing global action c. To describe the second part, Eve
declares another set Cc,q of constraints for each pair (c, q) ∈ D.
This set Cc,q describes the different ways her plays could go up to
the parent of x if she returns to x in state q after performing global
action c. In other words, Eve is declaring relevant information about
loops and upward moves, to help us simulate the operation of A2

without actually moving upwards in t.
Indeed, after Eve makes these declarations, Adam can decide

to verify either the part after a loop (in which case he stays in the
same node) or he can decide to verify the assumptions about a loop
(in which case he moves down in the tree). Later, when A2 wants
to go up, we just check whether the current summary and state are
in the previously declared set of constraints, and immediately win
or lose in A1.5 based on this.

What is the winning condition ofA1.5? WheneverA1.5 directly
simulates A2, we output the same actions. When A1.5 follows
some declared loop with global action c, we just output c. The

sequence of actions output in this way should be bounded by a
number n. But this is not enough, since it does not bound the values
on paths of A2 which go up in the tree. To deal with such paths,
whenever A1.5 moves down, we also output Eve’s declarations
after coming back from a loop (based on the sets Cc,q for each
(c, q) ∈ D described above). We can view these declarations as
a graph. The graph connects the pairs responsible for returning to
a node x with the pairs describing moves up to the parent of x;
an edge in the graph is labeled by the global action of such a path
going up. At each moment when we go down in A1.5 we output a
slice of such a graph, and the winning condition requires that in the
whole graph constructed from such slices, each path should have
value bounded by n. As mentioned earlier, this ensures that the
value coming from upward paths in the plays consistent with Eve’s
strategy is also bounded.

Notice that in this construction, Eve must make the same dec-
larations after coming up from two loops that have the same sum-
mary. Thus, to show thatA2 andA1.5 are equivalent, it is important
that Eve has a summary-dependent strategy in A2, as obtained in
point (1).

(3) To replace our winning condition by a B-parity condition,
we form a product ofA1.5 with an automaton recognizing the win-
ning condition of A1.5. Usually, such a construction would use a
deterministic automaton. Unfortunately, cost automata cannot al-
ways be determinized [8] so this is not possible. However, ev-
ery cost automaton can be made “history-deterministic”, which is
enough to ensure that it can be run on every branch of the game tree
of A1.5 without causing conflicts. We refer the interested reader to
[8].

(4) Finally, we eliminate from A1.5 moves using the 	 direc-
tion. For each state q, letter a, and goal set G of downward moves,
we consider a local game G(q, a,G) describing the local (di-
rection) moves that are possible before moving downwards. Down-
ward moves are terminal positions in the game: they are winning if
they are in the goal setG, and losing otherwise. It can be shown that
it is decidable whether Eve wins such a game. The idea is to trans-
form this B-parity game into a game with a Streett winning condi-
tion, and solve the resulting Streett game using standard methods
(see [26] for more details). The desired 1-way automaton A1 has
the same input alphabet, set of states, set of counters, and initial
state as A1.5. For a state q and input letter a, its transition function
is defined as follows: Eve chooses a goal set G such that she wins
in G(q, a,G); then Adam chooses any transition (d, c, q′) ∈ G and
performs it.

Combining steps (1)–(4), we obtain an alternating 1-way B-
parity automaton A1 that is equivalent to the original alternating
2-way B-parity automaton A2 (up to ≈). A closer examination of
the construction shows that quasi-weakness is preserved.

4.5 Summary-dependent strategies (Proof of Lemma 7)
As mentioned earlier, it is an open problem whether in each B-
parity game that is n-winning for Eve, she has a finite memory
strategy that is α(n)-winning, for some correction function α that
is independent of the size of the game. In this section, we seek to
prove a weaker property, saying that there exists a strategy which
depends only on a summary of the play (Lemma 7).

Let A2 = 〈Q,A, q0,Γ, δ〉 be a 2-way B-parity automaton. The
transition function δ has type

Q× A→ B+({↑,↙,↘,	} ×Act ×Q) .

The set of actions Act gathers counter actions and parity ranks:
Act = C × {i, i + 1, . . . , j}, where C = {ic, ε, r}Γ and i ≤
j are natural numbers. For simplicity, we will assume that the
automaton A2 satisfies the following conditions.

• We assume that the counter actions are hierarchical, which
means that when some counter is incremented or reset, then
simultaneously all counters with higher numbers are reset, i.e.,
every action is of the form

(ε, . . . , ε, r, . . . , r) or (ε, . . . , ε, ic, r, . . . , r) .

It is known that every B-parity automaton can be converted into
an equivalent one using only hierarchical actions [8].
• We assume that our alphabet is a product A = A′×{0, 1}, and

that each input tree t has the root marked by 1 in the second
coordinate; additionally we assume that A2 never tries to go in
the ↑ direction from the root of the tree. This assumption does
not decrease the generality of the result.
• We assume that the states in A2 can be partitioned as follows.

d-states q ∈ Qd for d ∈ {↑,↙,↘} are such that for all
a ∈ A, δ(q, a) is a single transition performing action ε in
direction d.

Universal states q ∈ Q∧ are such that for all a, δ(q, a)
is a conjunction of transitions staying in the same node
(direction).

Existential states q ∈ Q∨ are such that for all a, δ(q, a)
is a disjunction of transitions staying in the same node
(direction).

Moreover, we assume that in the game (A2, t) (for each tree t),
there is some move possible from each position, and between
each pair of positions there is at most one move. It is always
possible to achieve this normal form, by using additional inter-
mediate states.

We are now ready to analyze the operation of A2. The set of
actions Act in the transition function is naturally equipped with a
product operation, describing the global action of a sequence of
actions. This product is defined component-wise: on the part from
{i, i+ 1, . . . , j}, it corresponds to the maximum of the priorities,
and on the part from {ic, ε, r}, it corresponds to the maximum
according to the order ε ≤ ic ≤ r. Therefore, if c and c′

are actions in Act , we can talk about the resulting action cc′.
We use the symbol ε also to denote the neutral element of this
product, that is ((ε, . . . , ε), i). We define the value of a finite
sequence of counters as the maximum value of any counter in any
moment while executing this sequence of actions. Recall that the
value of an infinite sequence of actions takes into account also the
parity condition. When we have a path whose edges are labeled by
actions, we define the global action or the value of this path as the
global action or the value of the sequence of actions on this path.

Notice that the global action contains all pertinent information
about priorities, but loses some information about counter values,
namely the value of a path, since for instance icn is contracted
to ic. This means that we will have to be able to retrieve this
information in some way when doing such a contraction.

We must now define a summary of a play. Formally, let

q0, (d1, c1, q1), (d2, c2, q2), . . . , (dm, cm, qm)

be an initial fragment of a play in the game (A2, t). Let xi be the
node in the tree after following the directions d1d2 . . . di start-
ing from the root. The summary starts from q0. Then for i =
1, 2, . . . ,m we proceed as follows. If xi−1 is such that all xj for
j ≥ i are proper descendants of xi−1, then we simply append
(di, ci, qi) to the summary. Otherwise, let j ≥ i be the small-
est index for which xj = xi−1. Then to the summary we append
(x, cici+1 . . . cj , qj) (on the second coordinate we have the prod-
uct of the actions), and we continue generating the summary from
i := j+1. For example if d1 . . . d7 =↙↙↙↑↑	↙, the summary

is

q0, (↙, c1, q1), (x, c2c3c4c5, q5), (, c6, q6), (↙, c7, q7) .

Notice that in a summary we never use the ↑ direction.
A strategy (of Eve) is called summary-dependent if the choices

of Eve depend only on the summary of the history of the play.
We will show that it is enough to consider summary-dependent
strategies.

We are now ready to prove the following strengthening of
Lemma 7:

Assume that A2 n-accepts a tree t for some n ∈ N. Then
Eve has an (n+ 1)k-winning summary-dependent strategy,
where k is the number of hierarchical counters in A2.

Proof. Let t be an A-labeled binary tree, and σ an n-winning
strategy in the game (A2, t). Let tσ be the strategy tree describing
all plays compatible with σ. Each node of tσ is labeled by a position
in (A2, t), which is a pair: a node of t and a state. Recall that, due
to our normalization of A2, two consecutive positions of the game
determine the action of the move between these positions. To each
node x of tσ we assign a tuple vσ(x) = (n1, . . . , n|Γ|) of values of
the counters after performing the actions on the path from the root
of tσ to x. We will be comparing such tuples lexicographically.
For a summary η = q0, (d1, c1, q1), . . . , (dm, cm, qm) we define
node(η) to be the node of t reachable by following the directions
d1d2 . . . di starting from the root (where xcorresponds to staying
in the same node).

First, some summaries η = q0, (d1, c1, q1), . . . , (dm, cm, qm)
are assigned a node g(η) of tσ , labeled by (node(η), qm) This is
done by induction on m. If m = 0, as g(η) we just take the root of
tσ . Otherwise, let η′ := q0, (d1, c1, q1), . . . , (dm−1, cm−1, qm−1).
If g(η′) is not defined, we also leave g(η) undefined. Otherwise,
assume first that dm 6= x. If g(η′) has a child y labeled by
(node(η), qm) (by our normalization assumption, there is at most
one such child), we take g(η) := y. Otherwise, we leave g(η) un-
defined. The other possibility is that dm = x. Consider the set Y
of all descendants y of g(η′) which are labeled by (node(η), qm),
such that all nodes on the path from g(η′) to y, excluding g(η′)
and y, are labeled by proper descendants of node(η), and that the
path from g(η′) to y has global action cm. As g(η) we take a node
y ∈ Y such that vσ(y) = maxz∈Y vσ(z), where the max-operator
refers to the lexicographic order. If there are multiple nodes y ∈ Y
with maximal vσ(y), we can take any of them. If Y is empty, we
leave g(η) undefined. Observe that in both cases, g(η) (if defined)
is a descendant of g(η′), and the global action of the path from
g(η′) to g(η) is cm.

Next, we construct a summary-dependent strategy ρ. When the
history of the play has summary η, we simply look at the node g(η),
and we move in the same way as σ. Notice that g(η) is labeled by
our current position, so this move is legal. If g(η) is undefined,
we can move in any way; we will see below that when playing
according to ρ we will never reach such situation.

It remains to see that ρ is winning. Take any play π =
q0, (d1, c1, q1), (d2, c2, q2), . . . consistent with ρ. Let πi be the
prefix of π of length i, and let ηi be its summary. For each i, let yi
denote the child of g(ηi−1) such that the transition from g(ηi−1) to
yi is (di, ci, qi). Such a node exists (assuming that g(ηi−1) is de-
fined): recall that the position after πi−1 is the same as in g(ηi−1);
either it is a position of Eve and (di, ci, qi) is the move to the only
child of g(ηi−1), or it is a position of Adam and we have children
corresponding to all moves from this position.

Now, by induction on i > 0 we will show that g(ηi) is defined,
and that vσ(g(ηi)) ≥ vσ(yi). Let

q′0, (d
′
1, c
′
1, q
′
1), . . . , (d′m, c

′
m, q

′
m) := ηi ,

η′ := q′0, (d
′
1, c
′
1, q
′
1), . . . , (d′m−1, c

′
m−1, q

′
m−1) .

We have two possibilities. First assume that d′m 6= x. Then we
simply have ηi−1 = η′, and we see that g(ηi) = yi. The other
possibility is that d′m = x. Then η′ is a prefix of ηi−1, so g(ηi−1)
(and yi) is a descendant of g(η′), and the global action of path from
g(η′) to yi is c′m. This means that yi belongs to the set Y used to
define g(ηi). So g(ηi) is defined, and vσ(g(ηi)) ≥ vσ(yi).

Next, we observe the value of counter k. Consider k-tuples
vk(x) which are defined as vσ(x), but contain only the values of
the first k counters. Notice that vσ(x) ≤ vσ(y) implies vk(x) ≤
vk(y). If ci increments counter k, then all counters with smaller
numbers are not changed (recall that in A2 we only have hierar-
chical actions), so vk(g(ηi−1)) < vk(yi) ≤ vk(g(ηi)). And if the
k-th counter is not changed by ci, then all counters with smaller
numbers are unchanged as well, so vk(g(ηi−1)) = vk(yi) ≤
vk(g(ηi)). We have only (n + 1)k tuples with k values between
0 and n. This means that in π we cannot have a fragment where the
k-th counter is incremented more than (n + 1)k times and never
reset. Thus the value of the counter is always at most (n+ 1)k.

It remains to verify the parity condition. We can construct the
summary also for the infinite play π; it is an infinite sequence η =
q′0, (d

′
1, c
′
1, q
′
1), (d′2, c

′
2, q
′
2), Consider the (unique) sequence

j0, j1, j2, . . . such that ηji is the prefix of η of length i (in other
words, ji is the length of the prefix π that yields the summary ηji
of length i). Notice that the global action of the fragment of π
between the ji−1-th and ji-th step has global action c′i, and also
the path from g(ηji−1) to g(ηji) has global action ci. It follows
that the maximal priority appearing infinitely often in π is the same
as in the branch of tσ containing all g(ηji). All branches of tσ are
winning, so this priority is even.

5. The mu-calculus view of quasi-weakness
In this section, we look at quasi-weakness from the point of view of
the µ-calculus. This section is independent of the rest of the paper.
We assume the reader to have some familiarity with the µ-calculus
(see, e.g., [1]).

It is well-known that µ-calculus is equivalent to alternating au-
tomata. The simplicity of the corresponding translations implies
that many properties can be expressed equally well at the automa-
ton level and at the logic level. For instance, the structure of the ac-
ceptance condition of the automaton is tightly related to the nesting
structure of fixed points in µ-calculus formulae: least fixed points
correspond to odd priorities, and greatest fixed points to even prior-
ities. Moreover, the number of priorities in the automaton reflects
the nesting of µ and ν operators in the formula. As a special case
that we are particularly interested in, the alternation free fragment
of µ-calculus (see below) corresponds exactly to weak alternating
automata. We can extend some of these relationships to cost func-
tions.

Let us recall the definition of the µ-calculus. We assume an
infinite set of variablesX,Y, Z, . . . ranging over sets of nodes. The
semantics of a µ-calculus formula with free variables X̄ is given by
a monotonic function from tuples of sets indexed by X̄ to sets. The
following constructs are allowed. There are modal operators that
consist here of constant modalities a, for all letters a, and successor
modalities X(E,F). A modality of the first kind, evaluates to the
set of nodes carrying the letter a, while a modality of the second
kind returns, given sets of nodes E and F , the set of nodes such
that the left child is in E and the right child in F . We also have
boolean operators ∨, ∧, ¬ and fixed point operators. The least fixed

point µX.F (X, V̄) is the least set E such that E = F (E, V̄) and
the greatest fixed point νX.F (X, V̄) is the greatest such set. Every
µ-calculus formula with free variables X̄ evaluates to a mapping
from a tree t and a tuple of sets of nodes indexed by X̄ to a set of
nodes.

The µN -calculus extends µ-calculus in a way similar to CMSO,
meaning that the semantics of a formula is parametrized by some
non-negative integer n. So a µN -calculus formula n-evaluates to a
function. One adds the new construct µNX.ψ(X) which evaluates
to F (n)

n , assuming that ψ n-evaluates to Fn for all n (where F (n)

is defined as in Section 2.3).
Given a µN -calculus formulaψ without free variables, it defines

a function TA → N∞ by

[[ψ]](t) = inf {n : ψ n-evaluates to E with ε ∈ E} ,
where ε is the root of t.

Example 8. Let A := {a, b}. The formula

µNX.(b ∨ (a ∧ X(X,X))

computes the maximum number of consecutive a’s that occur on
some branch starting in the root (the same cost function as Exam-
ple 1). The idea is that we can start evaluating at the root. If the cur-
rent node is a-labelled, then both successors are forced to “loop”
back to X , and continue as before. Because the fixed point oper-
ator corresponding to X is a µN , we count these unfoldings. The
least number of unfoldings that are needed is exactly the maximum
number of consecutive a’s on some branch starting in the root.

Now consider the formula

µNX.νY.[(b ∧ X(Y, Y)) ∨ (a ∧ X(X,X))]

which computes the maximum number of a’s (not necessarily con-
secutive) that occur on some branch. As above, an a-labelled node
forces a loop back on X for both successors, and these unfoldings
are counted. However, when a b-labelled node is encountered the
successors loop back to Y . This fixed point variable Y corresponds
to a ν operator, so these unfoldings are not counted, and indeed can
be taken infinitely many times. Because the ν operator is nested
inside of µN , looping back on Y does not “reset” the count of the
number of unfoldings we have used for X , so this formula com-
putes the desired cost function.

Finally, the formula

µNX.νY.[(b ∧ (X(Y,>) ∨ X(>, Y))) ∨
(a ∧ (X(X,>) ∨ X(>, X)))]

computes the minimal number of a’s that occur on some branch
(> is an abbreviation for νZ.Z). This is similar to the previous
example, except that only a single branch is picked out during the
evaluation of the formula (intuitively, the branch with the minimum
number of a’s).

So far, we have described µN -calculus in its most general form,
which is equivalent to B-parity automata. However, we are inter-
ested in the quasi-weak form of such automata. The nice thing
about µ-calculus is that, again, quasi-weakness has a natural inter-
pretation. Renaming bound variables, we may ensure that no vari-
able is used in two distinct fixed points (µ, ν or µN) in a formula.
Then the scope of the variable is the set of nodes of the formula
(seen as a tree) that are below the fixed-point operator binding the
variable, and above some use of the variable. If the variable is in-
troduced with a µ (resp. ν or µN), we call it a µ-scope (resp. a
ν-scope or a µN -scope). A µN -calculus formula is

weak if no ν-scope intersects a µ-scope, and no µN -scope simul-
taneously intersects a µ-scope and a ν-scope,

quasi-weak if no ν-scope intersects a µ-scope.

Note that for µ-calculus formulae without µN operators, the two
definitions coincide. The classical equivalence between automata
and µ-calculus formulae carries over without surprise to cost func-
tions (the proofs are essentially the same).

Theorem 9. In terms of recognizing cost functions,

• B-parity automata are effectively equivalent to µN -formulae,
• B-weak automata are effectively equivalent to weak µN -

formulae,
• B-quasi-weak automata are effectively equivalent to quasi-

weak µN -formulae.

What is interesting about these notions is that the definition of
quasi-weakness is significantly simpler than the one of weakness.
Moreover, the definition for a quasi-weak µN -formula is the stan-
dard definition of the alternation-free fragment of the µ-calculus.
This supports the fact that, in the cost setting, quasi-weakness is
the correct counterpart to the notion of weakness from the classical
setting.

6. Conclusion
We have described some natural logics that correspond to the class
of quasi-weak cost functions over infinite trees, a robust and natu-
ral class of cost functions. Along the way, we have developed some
technical tools, like summary-dependent strategies and the conver-
sion of 2-way cost automata to 1-way cost automata.

Overall, the hope is that these results and tools may eventually
prove useful for solving full cost monadic logic over infinite trees,
and for solving challenging boundedness questions like the parity
index problem and weak definability problem.

References
[1] A. Arnold and D. Niwiński. Rudiments of µ-Calculus, volume 146 of

Studies in Logic and The Foundations of Computer Science. North-
Holland, 2001.

[2] M. Benedikt, G. Puppis, and C. Riveros. Regular repair of specifica-
tions. In LICS, pages 335–344. IEEE Computer Society, 2011. ISBN
978-0-7695-4412-0.

[3] A. Blumensath, M. Otto, and M. Weyer. Decidability Results for the
Boundedness Problem. Logical Methods in Computer Science. to
appear.

[4] A. Blumensath, M. Otto, and M. Weyer. Boundedness of Monadic
Second-Order Formulae over Finite Words. In Proc. 36th Int. Col-
loquium on Automata, Languages and Programming, ICALP, Part II,
LNCS 5556, pages 67–78, 2009.

[5] M. Bojańczyk. A bounding quantifier. In J. Marcinkowski and A. Tar-
lecki, editors, CSL, volume 3210 of LNCS, pages 41–55. Springer,
2004. ISBN 3-540-23024-6.

[6] M. Bojańczyk and T. Colcombet. Bounds in ω-regularity. In LICS,
pages 285–296. IEEE Computer Society, 2006.

[7] J. R. Büchi. Weak second-order arithmetic and finite automata.
Z. Math. Logik Grundlagen Math., 6:66–92, 1960.

[8] T. Colcombet. Regular cost functions over words, 2009. Manuscript
at http://www.liafa.jussieu.fr/~colcombe/.

[9] T. Colcombet. The theory of stabilisation monoids and regular cost
functions. In ICALP (2), volume 5556 of LNCS, pages 139–150.
Springer, 2009. ISBN 978-3-642-02929-5.

[10] T. Colcombet. Regular cost functions, part i: Logic and algebra over
words. Logical Methods in Computer Science, 9(3), 2013.

[11] T. Colcombet and C. Löding. The nesting-depth of disjunctive mu-
calculus. In CSL, volume 5213 of LNCS, pages 416–430. Springer,
2008. ISBN 978-3-540-87530-7.

[12] T. Colcombet and C. Löding. The non-deterministic Mostowski hier-
archy and distance-parity automata. In L. Aceto, I. Damgard, L. A.

Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz,
editors, ICALP (2), volume 5126 of LNCS, pages 398–409. Springer,
2008. ISBN 978-3-540-70582-6.

[13] T. Colcombet and C. Löding. Regular cost functions
over finite trees. In LICS, pages 70–79. IEEE Com-
puter Society, 2010. ISBN 978-0-7695-4114-3. Online at
http://www.liafa.jussieu.fr/~colcombe/.

[14] T. Colcombet, D. Kuperberg, C. Löding, and M. Vanden Boom. De-
ciding the weak definability of büchi definable tree languages. In
S. R. D. Rocca, editor, CSL, volume 23 of LIPIcs, pages 215–230.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013. ISBN 978-
3-939897-60-6.

[15] K. Hashiguchi. Limitedness theorem on finite automata with distance
functions. J. Comput. Syst. Sci., 24(2):233–244, 1982.

[16] K. Hashiguchi. Relative star height, star height and finite automata
with distance functions. In J.-É. Pin, editor, Formal Properties of
Finite Automata and Applications, volume 386 of LNCS, pages 74–
88. Springer, 1988. ISBN 3-540-51631-X.

[17] D. Kirsten. Distance desert automata and the star height problem. ITA,
39(3):455–509, 2005.

[18] D. Kuperberg and M. Vanden Boom. Quasi-weak cost automata: a
new variant of weakness. In S. Chakraborty and A. Kumar, edi-
tors, FSTTCS, volume 13 of LIPIcs, pages 66–77. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011. ISBN 978-3-939897-34-7.
Online at http://www.liafa.jussieu.fr/~dkuperbe/.

[19] D. Kuperberg and M. Vanden Boom. On the expressive power of cost
logics over infinite words. In A. Czumaj, K. Mehlhorn, A. M. Pitts, and
R. Wattenhofer, editors, ICALP (2), volume 7392 of Lecture Notes in
Computer Science, pages 287–298. Springer, 2012. ISBN 978-3-642-
31584-8.

[20] M. Lang. Resource-bounded reachability on pushdown systems. Mas-
ter’s thesis, RWTH Aachen University, 2011.

[21] H. Leung. On the topological structure of a finitely generated semi-
group of matrices. Semigroup Forum, 37:273–287, 1988.

[22] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata. The
weak monadic theory of the tree, and its complexity. In L. Kott, editor,
ICALP, volume 226 of LNCS, pages 275–283. Springer, 1986. ISBN
3-540-16761-7.

[23] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969. ISSN 0002-
9947.

[24] M. O. Rabin and D. Scott. Finite automata and their decision prob-
lems. IBM J. Res. Dev., 3(2):114–125, Apr. 1959. ISSN 0018-8646. .
URL http://dx.doi.org/10.1147/rd.32.0114.

[25] I. Simon. Limited subsets of a free monoid. In FOCS, pages 143–150.
IEEE, 1978.

[26] W. Thomas. Languages, automata, and logic. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 389–455. Springer, 1997.

[27] M. Vanden Boom. Weak cost monadic logic over infinite trees. In
F. Murlak and P. Sankowski, editors, MFCS, volume 6907 of LNCS,
pages 580–591. Springer, 2011. ISBN 978-3-642-22992-3.

[28] M. Y. Vardi. Reasoning about the past with two-way automata. In
K. G. Larsen, S. Skyum, and G. Winskel, editors, ICALP, volume 1443
of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.
ISBN 3-540-64781-3.

A. From 2-way automata to 1-way automata
In this section, we provide the details for the proof of Theorem 6.

We will write B-2PA for two-way B-parity alternating automata,
and B-1PA for the one-way variant.

Given a B-2PA A2 = 〈Q,A, q0,Γ, δ〉, we want to build an
equivalent B-1PA. The transition function δ has type Q × A →
B+({↑,↙,↘,	} × Act × Q). The set of actions Act gathers
counter actions and parity ranks: Act = C × {i, i + 1, . . . , j},
where C = {ic, ε, r}Γ and i ≤ j ∈ N.

We assume A2 satisfies the assumptions described in Sec-
tion 4.5.

A.1 Construction of new automaton
As an intermediate step, before building the B-1PA equivalent to
A2, we create an automatonA1.5. It will be allowed to go down or
stay in the same node, but it will never go up. Moreover it will have
a more complicated winning condition than the B-parity condition.
Namely, a label of a transition will be not just a vector of counter
actions, but a fragment of a graph, whose edges are labeled by
counter actions. The winning condition will say that each path in
the graph (created from parts output by each transition) should have
bounded value.

We first explain the principle of the automaton A1.5. Whenever
A2 wants to go down from some node x, the rest of the game
consists of two parts: the part in the subtree, before going up to x,
and the part after coming back to x (notice that in the second part,
the automaton might want to go down again). In such a situation
Eve will declare her expectations about the two parts. Namely, for
the first part she gives a set D of constraints, that is of pairs (c, q)
such that there is a play compatible with her strategy which returns
to x, finishing in state q and performing global action c. To describe
the second part, for each such pair (c, q) ∈ D, Eve also declares
a set Cc,q of constraints of the same form, now it describes how
plays can go up to the parent of x. Later, whenever A2 wants to go
up, we just check whether our action and state are in the previously
declared set of constraints, and we immediately win or lose.

Now we construct the automaton A1.5 = 〈Q′,A, q′0,Γ, δ′〉. Its
state set is Q′ := Q × P(Const) ∪ {win, lose}, where Const =
Act×Q is the set of constraints. The initial state is q′0 := (ε, q0, ∅).
In a pair (q, C), q is the state of A2, and C is the set of constraints
declared by Eve for the current node. Transitions will be labeled
by pairs from Act ×Graph , where Graph := P(Const ×Act ×
Const). An element G ∈ Graph can be seen as a bipartite graph
with edges labeled by Act : its nodes are two copies of Const , and
a triple (α, d, β) ∈ G means that there is a d-labeled edge to α in
the first copy from β in the second copy. These graphs will be used
to trace values of paths (of the original automaton) going up in a
tree.

For an action c ∈ Act and set of constraints C ⊆ Const we
define C�c := {(c′, q) : (cc′, q) ∈ C}, which describes how C is
modified after performing action c. We have a graph corresponding
to such a shift, which is Gc := {((cc′, q), ε, (c′, q) : (c′, q) ∈
Const}.

Transitions from a pair ((q, C), a) are defined as follows.

• For q ∈ Q∨ with δ(q, a) =
∨
i∈I(, ci, qi), let δ′((q, C), a) :=∨

i∈I(, (ci, Gci), (qi, C�ci)).

• For q ∈ Q∧ with δ(q, a) =
∧
i∈I(, ci, qi), let δ′((q, C), a) :=∧

i∈I(, (ci, Gci), (qi, C�ci)).

• For q ∈ Q↓ with δ(q, a) = (d, ε, q′), Eve chooses a set of
constraints D ⊆ Const , and for each (c, p) ∈ D she also
chooses a set of constraints Cc,p ⊆ C�c. Then one possibil-
ity of Adam is to move to (d, (ε,G), (q′, D)), where G :=

{((cc′, p′), c′, (c, p)) : (c, p) ∈ D, (c′, p′) ∈ Cc,p}. More-
over, for each (c, p) ∈ D Adam can move to (, (c,Gc), (p, Cc,p))).

• For q ∈ Q↑ with δ(q, a) = (↑, ε, q′), we win immediately if
(ε, q′) ∈ C, otherwise we lose immediately. Formally, this is
realized by a transition to state win or lose, in which we have
a loop labeled by (((ε, . . . , ε), i), Gε), where i is, respectively,
even or odd.

It remains to define when a play is n-winning. A play gives
us an infinite sequence of pairs (c1, G1), (c2, G2), First, we
require that c1, c2, . . . has value at most n (which includes that the
maximal priority appearing infinitely often is even). Moreover we
define a graph whose nodes are N × Const . There is an edge to
(i − 1, α) from (i, β) labeled by c if (α, c, β) ∈ Gi. We require
that for any finite path in this graph, its value does not exceed n.

A.2 From strategy in A2 to strategy in A1.5

In this section we prove the equivalence of A2 and A1.5 in one
direction, as described by the following lemma.

Lemma 10. Assume that Eve has an n-winning summary-dependent
strategy in (A2, t) for some tree t. Then A1.5 n-accepts t.

Fix a tree t, and an n-winning summary-dependent strategy σ
in the game (A2, t). Let tσ be the strategy tree describing all plays
compatible with σ. To prove the lemma we have to construct an
n-winning strategy ρ in (A1.5, t).

We are particularly interested in fragments of plays called re-
turns. We say that a fragment (infix) π of a play of (A2, t) is a
return when the node in which π ends is the parent of the node in
which π starts, and a proper ancestor of all nodes visited by π in
between. Moreover, when the global action of such π is c, and it
ends in state p, we say that it is an (c, p)-return. For a node x of tσ ,
and for constraint α ∈ Const we define a set ret(x, α) as contain-
ing all descendants y of x such that the path from x to y describes
an α-return.

Recall that a strategy assigns a choice of Eve to every initial
fragment of a play, ending in a position of Eve. Simultaneously
with defining the strategy ρ, to every initial fragment π of a play
consistent with the already defined part of ρ, we will assign a node
xπ in tσ . While doing this, we will ensure that when π ends in
position (v, (q, C)), then xπ is labeled by (v, q), and for each β
such that ret(xπ, β) is nonempty, it holds β ∈ C (invariant 1).
Moreover, for every extension π′ of π by one transition labeled by
(co, Go), consistent with the strategy ρ being defined, the following
additional invariants will hold:

2. xπ′ is a proper descendant of xπ , and

3. co is the global action of the path from xπ to xπ′ , and

4. if (α, c, β) ∈ Go, then for each y′ ∈ ret(xπ′ , β) there exists
y ∈ ret(xπ, α) which is a descendant of y′ and such that the
path from y′ to y has global action c (allowing y′ = y when
c = ε); moreover, if c 6= ε, the set ret(xπ′ , β) is nonempty.

We proceed by induction on the length of π. We take the root
of tσ as xπ for π of length 0. Now, take π such that xπ is already
defined, and ρ is already defined for all plays shorter than π. Let
(q, C) be the state of the position at the end of π. We have several
possibilities:

• Assume that q ∈ Q∨. Then there is exactly one child of
xπ , reached by some transition (, c, q′). In this situation in
ρ after π we use the transition (, (c,Gc), (q′, C�c)). Let π′

be the extension of π by this transition. We define xπ′ to be
the only child of xπ . Because the global action between xπ
and xπ′ is c, and because they are labeled by the same node
of t, we have ret(xπ′ , (c′, p)) ⊆ ret(xπ, (cc′, p)) for each c′

and p. So, if the first set is nonempty, also the second one is
nonempty. By the induction assumption (invariant 1 for xπ),
(cc′, p) ∈ C, so (c′, p) ∈ C�c, which gives invariant 1 for xπ′ .
The next two invariants are trivial. In Gc we only have edges of
the form ((cc′, p), ε, (c′, p)). Again because ret(xπ′ , (c′, p)) ⊆
ret(xπ, (cc′, p)), we can simply take y′ = y in the last invariant.
The last part of this invariant is irrelevant, since in Gc we have
only edges labeled by ε.
• Assume that q ∈ Q∨. There is Adam’s turn. Consider any

extension π′ of π by one transition, which is of the form (
, (c,Gc), (q

′, C�c)). Then also xπ has a child, to which the
transition (, c, q′) is performed. We take this child as xπ′ . The
invariants are satisfied, as in the previous case.
• Assume that q ∈ Q↓. In this situation Eve chooses D to be the

set of all constraints α such that ret(x′, α) is nonempty, where
x′ is the only child of xπ . Then for each α ∈ D we fix any
yα ∈ ret(x′, α). Eve chooses Cα to be the set of all constraints
β for which ret(yα, β) is nonempty.
Let first π′ be the extension of π by the first possible choice of
Adam, that is by the transition (d, (ε,G), (q′, D)). We define
xπ′ := x′. By definition, whenever ret(xπ′ , α) is nonempty
then α ∈ D, which gives invariant 1. The next two invari-
ants are trivial. Now take any edge of G, it is of the form
((cc′, p′), c′, (c, p)) where (c, p) ∈ D and (c′, p′) ∈ Cc,p.
First we see that ret(xπ′ , (c, p)) is nonempty by definition ofD.
Then, take any y′ ∈ ret(xπ′ , (c, p)). Notice that the summary
of the play described by the path to y′ and to yc,p is the same;
namely this is the summary of the path to xπ , with (x, c, p)
appended. Thus, because σ is summary-dependent, the sub-
trees of σ rooted in y′ and in yc,p are isomorphic. In particu-
lar, because ret(yc,p, (c′, p′)) is nonempty, also ret(y′, (c′, p′))
is nonempty. Because the global action between xπ and y′ is
c, and because they are labeled by the same node of t, we
have ret(y′, (c′, p′)) ⊆ ret(xπ, (cc′, p′)). Thus any element
y ∈ ret(y′, (c′, p′)) ⊆ ret(xπ, (cc′, p′)) witnesses the last in-
variant.
Next, let π′ be the extension of π by some of the other possible
choices of Adam, namely by a transition (, (c,Gc), (p, Cc,p))
for some (c, p) ∈ D. We define xπ′ := yc,p. Invariants 2-3 are
easily satisfied, since yc,p ∈ ret(x′, (c, p)). Invariants 1 and 4
are true for the same reasons as in the case q ∈ Q∨: again we
have graph Gc, and the global action between xπ and xπ′ is c,
and they are labeled by the same node of t.
• Assume that q ∈ Q↑. Let q′ be the state of the only child x′ of
xπ . Notice that x′ ∈ ret(xπ, (ε, q′)), and by invariant 1 for xπ
we have (ε, q′) ∈ C. Thus the game continues to state win.

This finishes the definition of the strategy ρ. Consider now any
(infinite) play π consistent with ρ. We have to show that π is n-
winning. Let (c1, G1)(c2, G2), . . . be the sequence of labels on
the transitions of π, and let πi be the prefix of π of length i. As
already observed, π never enters the lose state. When π does not
enter the win state, in tσ we have an infinite path containing all xπi

(invariant 2), and each ci is the global action of the path between
xπi−1 and xπi . By contracting counter actions, we cannot increase
the maximal value of a counter; additionally, the maximal priority
appearing infinitely often stays the same. Since each path in tσ is
n-winning, we obtain that c1, c2, . . . has value at most n. When
π at some moment enters the win state, we have the same for the
prefix before this moment, so the counter values do not grow above
n; then we loop in the win state, using transitions with even priority,
which does not change the counters.

Next, consider the graph defined by the sequence G1, G2,
Take any (finite) path in this graph; we have to show that its value

does not exceed n. We need not consider paths which start by an ε-
labeled edge (adding such edges does not change the value). Denote
the nodes on our path by (m,βm), (m − 1, βm−1), . . . , (k, βk).
By the last part of invariant 4 for xπm , we can find some ym ∈
ret(xπm , βm). Then by using invariant 4 for xπi+1 we show for
each i = m − 1, . . . , k that there is some descendant yi ∈
ret(xπi , βi) of yi+1, such that the global action of the path from
yi+1 to yi is the label of the edge from (i, βi) to (i + 1, βi+1)
in our graph. Since the value of the path from ym to yk does not
exceed n, the same holds for our path in the graph. This finishes
the proof of Lemma 10.

A.3 From strategy in A1.5 to strategy in A2

In this section, we construct a strategy in A2 based on a winning
strategy in A1.5. Notice that the winning condition in A1.5 bounds
the value of summaries of prefixes of a play (the first coordinate
of labels), and the value of fragments of a play going only up (the
graph coordinate of labels). In the next section we see that these
conditions imply that the value of the whole play is bounded. The
result of this section is summarized in the following lemma.

Lemma 11. Assume that A1.5 n-accepts t. Then there exists a
strategy ρ in the game (A2, t) such that for each play π consistent
with ρ:

• for each prefix π′ of π, the sequence of actions in the summary
of π′ has value at most n, and
• for each infix of π which is of the form π1π2 . . . πm, where each
πi is a return with global action ci, the sequence c1, c2, . . . , cm
has value at most n+ 1, and
• the maximal priority appearing infinitely often in the labels of

transitions in π is even.

Fix a tree t, and an n-winning strategy σ in the game (A1.5, t).
Let tσ be the strategy tree describing all plays compatible with σ.
We will construct a strategy ρ in the game (A2, t), which will be
summary-dependent.

First, to each node x of tσ , except nodes labeled by state win,
we will assign a summary s(x). The definition is by induction
on the level of x (i.e., the length of the path from the root to x).
To the root of tσ we assign the empty summary q0. Then take
a node x for which s(x) is defined, and its child y. Let (q, ·) be
the state labeling x, and let (d, (c, ·), (q′, ·)) be the transition used
to reach y from x. When q ∈ Q↓, and d =	, as s(y) we take
s(x), (x, c, q′); otherwise as s(y) we take s(x), (d, c, q′). Notice
that when q ∈ Q↑, the state of y is win, so we need not define s(y).
It is easy to see that s(x) 6= s(x′) for x 6= x′.

Next we observe (property (*)) that when x is labeled by state
(q, C), and ππ′ is a partial play such that π has summary s(x) and
π′ is a (c′, p′)-return for (c′, p′) ∈ C, then the summary of ππ′ is
equal to s(z) for some node z. Again, we make induction on the
level of x. For x being the root this is trivial, since C is empty.
Take now a node x for which this property holds, and its child y.
Let (q, C) be the state labeling x, and let (d, (c, ·), (q′, C′)) be
the transition used to reach y from x. Let also ππ′ be a partial
play such that π has summary s(y), and π′ is a (c′, p′)-return for
(c′, p′) ∈ C′. The first case is that q ∈ Q↓ and d =	, or that
q ∈ Q∨ ∪ Q∧. Then π = π1π2, where π1 has summary s(x)
and π2π

′ is a (cc′, p′)-return. Because (c′, p′) ∈ C′ ⊆ C�c, it
holds (cc′, p′) ∈ C. By the induction assumption the summary
of π1π2π

′ is equal to s(z) for some node z, which is what we
want. The other case is that q ∈ Q↓, and d ∈ {↙,↘}. Then the
summary of ππ′ is s(x), (x, c′, p′). Notice that C′ is equal to the
set D guessed by Eve in the node x. By definition of A1.5, the
assumption (c′, p′) ∈ C′ implies that there exists a child z of x to
which we go using transition (, (c′, ·), (p′, ·)). To this z we have
assigned summary s(x), (x, c′, p′).

We define the strategy ρ as follows. Let η be the summary of the
history of the play after which Eve has to make a decision. We look
for the node x such that s(x) = η. If it does not exist, we move
in any way. If such x exists, we see that it is labeled by (v, (q, ·))
when we are in position (v, q); it has exactly one child, reached by
some transition (, (c, ·), (q′, ·)). Then in ρ we use the transition
(, c, q′).

We can see that for each partial play consistent with ρ, having
summary η, there exists a node x such that s(x) = η. Indeed, it
is true for the play of length 0. By induction, take some partial
play π ending in position (v, q), for which such x exists. Whenever
q ∈ Q∧ ∪ Q↓, and from (v, q) we have a transition (d, c, q′),
then x has a child reached by transition (d, (c, ·), (q′, ·)); the s(·)
of this child gives the summary of π extended by the transition
(d, c, q′). Similarly for q ∈ Q∨, but now x has only a child
corresponding to the transition chosen by Eve according to ρ. The
last case is that q ∈ Q↑; from (v, q) we have a transition (↑, ε, q′).
The one-step fragment performing this transition is a (ε, q′)-return.
Let (v, (q, C)) be the label of x; notice that (ε, q′) ∈ C, since
the successor of (v, (q, C)) is win (we do not reach lose by the
winning strategy σ). Thus, by the property (*) above, we can find y
whose s(y) is equal to the summary of π extended by the transition
(↑, ε, q′).

We observe that when the transitions used to reach some node
x of tσ are labeled by (c1, G1), . . . , (cm, Gm), then the sequence
of actions in the summary s(x) is also c1, . . . , cm; because σ is n-
winning, this sequence has value at most n. Since the summary of
each partial play consistent with ρ is of form s(x), this proves the
first statement of the lemma. Similarly we prove the last statement:
Consider the infinite summary η of some infinite play π consistent
with ρ. For each of its finite prefixes ηi we have a node xi such that
s(xi) = ηi. These nodes form an infinite, winning path in tσ , so
the maximal priority appearing infinitely often in the actions of η
(hence also of π) is even.

It remains to check the second statement. For a node x, we
can define the graph G(x) in a similar fashion as the winning
condition of A1.5: Let (·, G1), . . . , (·, Gk(x)) be the labels of the
transitions on the path of tσ leading to x. Graph G(x) has as nodes
{0, 1, . . . , k(x)}×Const , and there is a c-labeled edge to (i−1, α)
from (i, β) iff (α, c, β) ∈ Gk(x). We will prove the following
property: if a partial run πxπ1π2 . . . πm is consistent with ρ, and
each πi is a (ci, pi)-return, and s(x) is the summary of πx, then
in G(x) there exists a path starting from (k(x), (c1, p1)), which
is labeled by a sequence obtained from c2, c3, . . . , cm by inserting
some ε actions. Notice that this property already gives the second
statement: because σ is n-winning, the value of any path in the
graph does not exceed n; inserting additional ε actions does not
change this value.

The above property is proved by induction on the level of x.
It is trivially true in the root of tσ , because when we are in the
root of t we cannot perform any return. Assume that the property
is true for some x, and take its child y. Let πyπ1π2 . . . πm be a
partial run consistent with ρ, such that each πi is a (ci, pi)-return,
and s(y) is the summary of πy . Let (d, c, q) be the last element
of s(y). We can represent πy = πxπ

′, where πx has summary
s(x). One possibility is that d ∈ {	, x}. Then the transition
between x and y is of the form (, (c,Gc), (q, ·)), and π′π1 is a
(cci, pi)-return. By the induction assumption in G(x) (hence also
inG(y)) there is a path from (k(x), (cc1, p1)) which is labeled by a
sequence obtained from c2, c3, . . . , cm by inserting some ε actions.
We can extend it using the edge ((cc1, p1), ε, (c1, p1)) ∈ Gc,
to obtain such path from (k(y), (c1, p1)). The other possibility is
that d ∈ {↙,↘}. Let z be the node for which s(z) is equal to
the summary of πyπ1. Notice that y and z are labeled by states
(q,D) and (p1, Cc1,p1), respectively, where D and Cc1,p1 are the

sets of constraints guessed by Eve in x. By property (*) we have
(c1, p1) ∈ D and (c2, p2) ∈ Cc1,p1 . Notice that c = ε and
π′π1π2 is a (c1c2, p2)-return. By the induction assumption inG(x)
(hence also in G(y)) there is a path from (k(x), (c1c2, p2)) which
is labeled by a sequence obtained from c3, c4, . . . , cm by inserting
some ε actions. In the graph labeling the transition from x to y we
have the edge ((c1c2, p2), c2, (c1, p1)), thus there is a path from
(k(y), (c1, p1)) as required.

A.4 Expanding loops
Lemma 11 gives us a strategy for A1.5 for which each play satisfy
three conditions. Now we want to show that such play is α(n)-
winning for some α(n), as described by the following lemma.

Lemma 12. Let π be a play in the game (A2, t) such that for some
n ∈ N:

• for each prefix π′ of π, the sequence of actions in the summary
of π′ has value at most n, and
• for each infix of π which is of the form π1π2 . . . πm, where each
πi is a return with global action ci, the sequence c1, c2, . . . , cm
has value at most n+ 1, and
• the maximal priority appearing infinitely often in the labels of

transitions in π is even.

Then π is α(n)-winning, for some correction function α not de-
pending on π.

We can analyze the behavior of each counter independently;
moreover, we do not have to care about the parity condition. Thus
below, when talking about actions, we think just about actions of a
single counter, that is ic or r or ε. We are first interested in values
of returns.

Lemma 13. Let π be a return with global action ic or ε such that
for some n, n′ ∈ N:

• for each proper prefix π′ of π, the sequence of actions in the
summary of π′ has value at most n, and
• for each suffix of π which is of the form π1π2 . . . πm, where

each πi is a return with global action ci, the sequence c1, c2, . . . , cm
has value at most n′.

Then π has value at most 2n+n′ .

Proof. We proceed by induction on the length of π. We have three
cases depending on the direction d used in the first transition of π.
When d =↑, the return is of length 1, so its value is at most 1.

Next, assume that d =	. Let c be the action of the first transi-
tion, and let πC be the suffix of π without the first transition. Notice
that πC is also a return, and that the summary of a prefix of πC , pre-
ceeded by the first transition, gives the summary of a prefix of π.
If c = ε, by the induction assumption πC has value at most 2n+n′ ,
hence π as well. If c = ic, we can use the induction assumption
even for n − 1 and n′; it says that πC has value at most 2n−1+n′ ,
hence π has value at most 2n−1+n′ + 1 ≤ 2n+n′ .

The last possibility is that d =↓. Then π = πAπBπC , where πA
performs one transition, and both πB and πC are returns. Recall
that πA has action ε. Let cB and cC be the global actions of πB
and πC , respectively. Notice that the summary of a prefix of πC ,
preceeded by (x, cB , ·), gives the summary of a prefix of π (we
have this also for the summary of a prefix of πB preceeded by the
first transition). On the other hand, each suffix of πB which is of
the form π1π2 . . . πm, where each πi is a return, can be extended
by the return πC to a suffix of π. Thus, if cB = ε, by the induction
assumption πC has value at most 2n+n′ , hence π as well, and if
cC = ε, by the induction assumption πB has value at most 2n+n′ ,
hence π as well. If cB = cC = ic, we can use the induction

assumption for n and n′ − 1 for πB , and for n− 1 and n′ for πC ;
then the value of π is as most 2n+n′−1 + 2n−1+n′ = 2n+n′ .

To deal with returns having global action r we need the fol-
lowing definition. For a sequence of actions, its head value is the
number of increments before the first reset, and its tail value is the
number of increments after the last reset (in both cases, we count
all increments when there are no resets).

Lemma 14. Let π be a return such that for some n, nH , nT ∈ N,
where nH , nT ≤ n:

• for each proper prefix π′ of π, the sequence of actions in the
summary of π′ has value at most n, and head value at most
nH , and
• for each suffix of π which is of the form π1π2 . . . πm, where

each πi is a return with global action ci, the sequence c1, c2, . . . , cm
has value at most n, and tail value at most nT .

Then π has value at most 22n+2, head value at most 2n+nH+1, and
tail value at most 2n+nT +1.

Proof. For returns with global action ic or ε the previous lemma
gives the result. Thus assume that π has global action r. As previ-
ously, we proceed by induction on the length of π. Again we have
three cases depending on the direction d used in the first transition
of π, and again the case d =↑ is trivial.

Assume that d =	. Let c be the action of the first transition,
and let πC be the suffix of π without the first transition. Then, if
c = ε, we can use the induction assumption for πC for n, nH , nT ;
if c = ic, for n, nH − 1, nT ; and if c = r, for n, n, nT . For
c = ε the induction assumption gives the result. In all cases the
tail value of π and πC is the same. For c = ic, the head value of
π is at most 2n+nH + 1 ≤ 2n+nH+1; the value of π is at most
max(2n+nH + 1, 22n+2) = 22n+2. For c = r, the head value of
π is 0, and the value of π and πC is the same.

Next, assume that d =↓. Then π = πAπBπC , where πA
performs one transition, and both πB and πC are returns. Let
cB and cC be the global actions of πB and πC , respectively.
If cB = ε, we can use the induction assumption for πC for
n, nH , nT ; if cB = ic, for n, nH − 1, nT ; and if cB = r,
for n, n, nT . Similarly, if cC = ε, we can use the induction
assumption for πB for n, nH , nT ; if cC = ic, for n, nH , nT − 1;
and if cC = r, for n, nH , n. When cB = ε or cC = ε, the
induction assumption gives the result. When cB = ic, the head
value of π is at most 2nH+n + 2n+nH = 2n+nH+1 (we use
the previous lemma for πB with nH as n and n as n′); the tail
value of π and πC is the same (since cC = r); the value of π is
at most max(2n+nH+1, 22n+2) = 22n+2. The case cC = ic is
symmetric. Finally, when cB = cC , the head value of π and πB is
the same; the tail value of π and πC is the same; the value of π is
at most max(22n+2, 2n+n+1 + 2n+n+1) = 22n+2.

Finally, we have a lemma saying what happens when we replace
single actions by sequences of actions.

Lemma 15. Let πshort be a sequence of actions on one counter of
value at most k. Let π be obtained from πshort by expanding each
action c into a sequence of global action c and value at most m.
Then the value of π is at most (k + 2)m.

Proof. We add special symbols $ in π to mark the frontiers between
each of these sequences. Let τ be an infix of π not containing resets,
and let n be the number of increments in τ . Before the first $ in τ ,
and after the last $ in τ (or when there are $ in τ) we have at most
m increments. Also between two consecutive $ in τ we have at
most m increments. But when there are some increments between
two consecutive $, this fragment was obtained by expanding an

increment in πshort. Thus we have at most k such fragments in τ .
We get that n (hence also the value of π) is at most (k + 2)m.

Now it is easy to conclude with the proof of Lemma 12. Take
any play π as in its assumptions, and concentrate on actions of one
counter. Notice that each infix of π which is a return, satisfies the
assumptions of Lemma 14 for n + 1 taken as n, nH , nT . Thus
the value of each return is at most 22n+4. By assumption, the
sequence of actions in the summary of π has value at most n.
To obtain π from its summary, we have to replace elements of
the form (x, c, q) by corresponding fragments of π. Each such
corresponding fragment consists of a transition going down (with
action ε), and a return with global action c. Thus, by Lemma 15,
the value of π is at most (n+ 2)22n+4.

A.5 Simplifying the winning condition
In this section, we want to construct a B-parity automaton A′1.5
based on the automaton A1.5 (which uses a more complex accep-
tance condition). For this we observe that the acceptance condition
can be recognized by a history-deterministic B-automaton. Infor-
mally, a non-deterministic automaton is history-deterministic if it
possible to choose deterministically the next transition of the au-
tomaton, basing on the already read prefix of the word (but not
necessarily only on the current state, as in deterministic automata).
It is known that B-automata cannot be determinized, but can be
made history-deterministic (see [8] for details).

Consider the cost function over Act × Graph , which maps a
word (c1, G1), (c2, G2), . . . into the smallest n such that c1, c2, . . .
has value at most n, and each path in the graph defined by
G1, G2, . . . (as in the winning condition of A1.5) has value at
most n. We want to construct a history-deterministic B-automaton
computing this function. The first part presents no difficulty: the
automaton just deterministically simulates the actions c1, c2, . . . ;
it has the same set of priorities asA1.5. In the second part, we want
to verify a safety condition: the value of any (finite) path does not
exceed n. Therefore it is sufficient to design an automaton recog-
nizing this function on finite words from Graph∗. It is easy to do
with a universal B-automaton: simply guess a backward path in the
graph, guessing at each step an edge (notice that it does not mat-
ter whether we execute a sequence of actions from the end). This
shows that the cost function we want to define is regular. So by [8],
there is a history-deterministic B-automaton computing this cost
function, up to some correction function. Moreover, this automa-
ton has to accept every prefix of the input word, so it has a safety
acceptance condition. By doing the product of the two automata
for these two parts, we obtain a history-deterministic B-automaton
Aacc computing our function.

Since Aacc is history-deterministic, we can take as A′1.5 the
product of A1.5 and Aacc (where Aacc just reads the labels of
transitions of A1.5). Due to history-determinism, the run of Aacc
on different branches of the game tree of A1.5 are the same on
the common prefix of the branches. Thus the product computes the
same cost function over infinite trees (up to a correction function)
as A1.5.

A.6 Eliminating local moves
Now, starting from the automaton A′1.5 = 〈Q′′,A, q′′0 ,Γ′, δ〉,
which does not use the ↑ direction, we will construct an equiva-
lent automatonA1 which is one-way, i.e. it does not use also the 	
direction.

As in the case of A2, we assume that states of A′1.5 are divided
into existential, universal, and d-states for d ∈ {↙,↘}. Let
Goal = P({↙,↘}×Act ×Q′′}. For each qs ∈ Q′′, each a ∈
A and eachG ∈ Goal we define a local game G(qs, a,G), which is
a B-parity game. Its positions are Act×Q′′∪{win, lose}. Positions

of (c, q) with q universal belong to Adam, the others to Eve. The
initial position is (ε, qs). Moves from a position (c, q) are defined
as follows:

• When q is existential or universal with δ(q, a) =
∨
i∈I(

, ci, qi) or δ(q, a) =
∧
i∈I(, ci, qi), for each i ∈ I we have a

move to (cci, qi), labeled by ci.
• For q is a d-state with δ(q, a) = (d, ε, q′), we have an ε-labeled

move to win when (d, c, q′) ∈ G; otherwise an ε-labeled move
to lose.

Position win is made winning, and lose losing, by appropriatelly
labeled loop.

In order to make our translation effective, we now observe that
it is decidable, whether Eve wins in such a game G(qs, a,G).
We describe briefly how we can turn the winning condition of
G(qs, a,G) into a Streett condition (see [26] for more details).
Let P0 be the parity condition from the game G(qs, a,G). For
every counter γ ∈ Γ, let Pγ be the following condition: if there
are infinitely many increments for γ, then there must be infinitely
many resets for γ. Taking the conjunction of P0 and all the Pγ
yields a Streett condition. Let GS be the corresponding Streett
game, obtained from G(qs, a,G), and equipped with this Streett
condition. A Streett game can be solved, and if it is winning for
Eve, she has a finite-memory strategy. Of course if Eve wins in
G(qs, a,G), she can also win in GS . On the other hand, if some
finite-memory strategy is winning in GS , it is also winning in
G(qs, a,G): whenever the position and the content of the memory
repeats, then each counter γ either was reset in between, or it was
not changed (otherwise, by repeating this fragment we obtain a play
consistent with the strategy with infinitely many increments and no
resets); thus the number of increments in a row is bounded by the
size of the memory times the size of the game.

Now we define the automaton A1. It has the same input alpha-
bet, set of states, set of counters, and initial state asA1.5. For a state
q and input letter a, its transition function is defined as follows:
Eve chooses a set G ∈ Goal such that she wins in G(q, a,G); then
Adam chooses any transition (d, c, q′) ∈ G and performs it.

It remains to prove that A1 and A1.5 are equivalent. Consider
some input tree t, and assume that Eve has an n-winning strategy σ
in (A1.5, t). Let tσ be its strategy tree. We will construct an n-
winning strategy ρ in (A1, t). While defining it, we keep track
of a node of tσ (labeled by the position at the end of our partial
play). To the empty partial play we assign the root of tσ . We
proceed by induction on the length of the partial play. Consider
some partial play, for which we want to define the behavior of ρ.
Let x be the corresponding node of tσ; let (vx, qx) be the label
of x, and ax the label of vx. We look for all descendants y of x
such that the path from x to y ends by a ↙ or ↘ direction, and
before uses only 	 direction. In ρ Eve takes as G the set of triples
(dy, cy, qy) for all such y, where dy is the direction used by the last
transition before y, cy is the global action of the path from x to y,
and qy is the state labeling y. Notice that the strategy σ, starting
from node x, is n-winning in the game G(qx, ax, G). Indeed, the
counters never exceed the value n, and we either always use the
	 direction and we continue along an infinite branch of tσ , or
we go down, and then we win by definition of G. Thus, choosing
such G is a legal move of Eve. When Adam chooses a transition
(d, c, q) ∈ G, to such a longer partial run we assign any node y for
which (dy, cy, qy) = (d, c, q). We see that the actions on any play
consistent with ρ are obtained as contractions of actions on some
play consistent with σ, so ρ is n-winning.

For the opposite direction, take an n-winning strategy σ in the
game (A1, t). Fix also N such that Eve N -wins in each local
game G(q, a,G) in which she can win for some N ′. The strategy
ρ in the game (A′1.5, t) is defined as follows. When we enter

some node v of t (and at the very beginning), we choose graph
G according to σ. Let a be the label of v, and let q be state at this
moment. Then we proceed according to the N -winning strategy in
the game G(q, a,G). When the play in this game enters the win
position, due to some transition (d, c, q′) ∈ G, we simulate in σ
the move of Adam using (d, c, q′), and we continue in the child
of v. Consider now some play π consistent with ρ; we will show
that it is (n + 2)N -winning. One possibility is that this play visits
infinitely many nodes of t. Then we have a corresponding play η
of (A1, t) consistent with σ. Notice that the sequence of actions
in π is obtained from the sequence of actions in η, by expanding
each action c into a sequence of global action c which is a partial
play in some local game, consistent with the N -winning strategy.
Since η is n-winning, and the partial plays have value at most N ,
by Lemma 15, π is (n+ 2)N -winning. The other possibility is that
after finitely many steps we stay forever in some local game; this
situation is analogous.

A.7 Putting the pieces together
By all the previous results, we obtain an B-1PA A1 which is
equivalent to A2.

Theorem 16. This construction preserves the quasi-weak property.

Proof. We want to show that if we start with a quasi-weak automa-
ton A2, this construction yields a quasi-weak automaton A1.

Consider a loop π1 in A1, which is a path from q′′ ∈ Q′′

to itself. In particular the Q component of Q′′, keeping track of
the state of the original automaton A2, has to be the same. This
means that π1 is a contraction of a loop π2 in A2, from q ∈ Q to
itself. If both priorities are seen in π1, then it is also the case in π2.
Therefore, there must be a counter γ which is incremented but not
reset in π2. This property is preserved by contraction of paths, so
γ is incremented but not reset in π1. We obtain that A1 is quasi-
weak.

B. From QWCMSO to B-quasi-weak automata
We now prove the remaining properties and translations which
were used in Section 4 to convert QWCMSO formulae to 1-way
B-quasi-weak automata.

B.1 Closure under weak inf-projection and weak
sup-projection

We first show that B-quasi-weak automata are closed under weak
inf- and weak sup-projection, the operations corresponding to
weak existential quantification and weak universal quantification
in QWCMSO.

Let A be a 1-way B-quasi-weak automaton over A′. Fix h :
A′ → A such that A′ ⊇ A and h(a) = a for a ∈ A. For a tree t′,
we write h(t′) for the relabeling of t′ according to h, and hfin(t′) =
t if only finitely many positions of t′ have labels in A′ \ A. For all
g : A′ → N∞ and op ∈ {inf, sup}, we define gop,hfin : A→ N∞
such that gop,hfin(t) := op {g(t′) : hfin(t′) = t}. This is called the
weak op-projection of f by h

We seek to constructAinf,hfin andAsup,hfin such that [[Aop,hfin]] ≈
[[A]]op,hfin . Because the relabeling only happens on a finite prefix
of the tree, the idea is to take an automaton which performs this
op-projection on finite trees, and run it on larger and larger pre-
fixes of the infinite tree, while also checking that there is an infinite
continuation of the original automaton A outside of the prefix.

We start with a lemma which allows us to take a regular cost
function over finite trees and construct cost automata over infinite
trees that compute the minimum or maximum value of this function
over all prefixes. This relies on non-trivial results about regular cost
functions over finite trees from [13].

Lemma 17. For every regular cost function f over finite trees,
there exists a nondeterministic B-reachability automaton Finf and
an alternating B-safety automaton Fsup such that [[Fop]](t) ≈αnd

op {f(t|P) : P is a prefix of t} over infinite trees t.

Proof. Let F be the nondeterministic B-automaton recognizing f
over finite trees [13]. The nondeterministic B-reachability automa-
ton recognizing the first function allows Eve to select a finite prefix
P of t and simulate F on this prefix. During the simulation, the
automaton outputs only priority 1. At a position on the frontier P ,
if the simulation ends in an accepting (respectively, rejecting) state
then the output is priority 2 (respectively, priority 1) for the remain-
der of the run. We call this a B-reachability automaton since any
play in a corresponding cost game starts in priority 1, and is trying
to reach a state where it can change to priority 2, and then output
priority 2 forever.

By [13, Theorem 12], every regular cost function over finite
trees can be recognized by both a nondeterministic B-automaton
and a nondeterministic S-automaton. Nondeterministic S-automata
are a dual form of cost automata that, roughly speaking, compute
the maximum value over all runs of the automaton (see [13] for
more information). Thus, for Fsup it makes sense to start from the
nondeterministic S-automaton for f and, using similar reasoning as
above, get a nondeterministic S-reachability automaton recogniz-
ing the second function. Using an adaptation of a standard dualiza-
tion procedure which switches conjunctions and disjunctions and
dualizes the priority function, this nondeterministic S-reachability
automaton can be converted into an alternating B-safety automaton
(again, by [13, Theorem 12]). We call this a B-safety automaton
since any play in a corresponding cost game starts in priority 2,
and is to trying to avoid reaching a state where it would change to
priority 1, and output priority 1 forever.

We will use this lemma to help construct the desired automata.
Let Aext be an automaton on finite trees over the alphabet

A′ × P(Q) which simulates A and checks that the state of A is
in the label at that position.

Let fop = [[Aext]]op,h (over finite trees) obtained using [13].
Then apply Lemma 17 to get automata Fop on infinite trees over
the alphabet A′ × P(Q).

Finally, letAop,hfin be the B-Büchi automaton over the alphabet
A such that on input t, Adam and Eve start by playing the game
induced by Fop, with Eve additionally responsible for choosing
annotations from P(Q). At any position corresponding to some
x ∈ T , Adam can challenge some q ∈ Q in the annotation selected
by Eve, and then the players switch to the game (Aq, tx), where
Aq isA starting from state q and tx is the subtree of t starting at x.
The output comes directly from the output from Fop and Aq (we
assume that Fop and Aq do not share counters).

Notice that Aop,hfin is still quasi-weak, since running Fop be-
fore launching copies of A does not introduce any cycles with
both priorities. It remains to show that it recognizes the weak op-
projection as desired.

Theorem 18. [[Aop,hfin]] ≈ [[A]]op,hfin

Proof. We give the proof for op = sup (the harder case, sinceFsup

is alternating rather than nondeterministic. Let B := Asup,hfin . Let
α = αnd from Lemma 17.

[[B]] 4α [[A]]sup,hfin . Assume [[A]]sup,hfin(t) ≤ n < ∞. Then
for all prefixes P , and for all relabellings on this prefix resulting in
t′ with hfin(t′) = t, [[A]](t′) ≤ n.

For each x ∈ T , let Qtx := {q ∈ Q : [[Aq]](tx) ≤ n}. Let σq,x
denote the strategy for Eve which witnesses [[Aq]](tx) ≤ n for
q ∈ Qx.

Fix some prefix P . For any relabeling on this prefix resulting in
t′ such that hfin(t′) = t, there is a strategy σ for Eve in (A, t′) such
that val(σ) ≤ n, and any play which ends in a position x on the
frontier of P must be in a state q ∈ Qx (otherwise, val(σ) > n).

Let t′ext be the tree over A′ × P(Q) such that t′ext(x) =
(t′(x), Qx). This means that [[Aext]](t

′
ext|P) ≤ n (this is wit-

nessed by σ|P). Since this is true for all such t′, this means that
[[Aext]]sup,h(text|P) ≤ n.

Since this is true for all prefixes P , [[Fsup]](text) ≤ α(n) by
Lemma 17, witnessed by some strategy σF .

We use this to construct a strategy for Eve in (B, t) witnessing
value at most α(n): initially, Eve selects the labels from P(Q)
at position x according to Qx, and uses her strategy from Fsup;
if Adam challenges some q at position x, then Eve switches to
strategy σq,x. Overall, the value is at most α(n).

[[A]]sup,hfin 4α [[B]]. Assume [[B]](t) ≤ n < ∞. Then there is
a strategy σB for Eve in (B, t) such that val(σB) ≤ n. Let Qx be
the set of all states q ∈ Q such that there is π ∈ σB which reaches
a position corresponding to x ∈ T with q in the label selected by
Eve. This implies that [[Aq]](tx) ≤ n for all q ∈ Qx, witnessed by
some strategy σq,x in (Aq, tx).

Because Fsup is alternating, Eve may not make the choices
of a label from P(Q) consistently in σB (i.e., Eve may select
different labels for two plays which reach position x). However, it
is straightforward to construct a new strategy σ′B for Eve in (B, t)
with val(σ′B) ≤ n where Eve plays as before, except now she
chooses the same label Qx at all game positions corresponding to
position x ∈ T . This label Qx is just the union of all of the labels
from P(Q) that Eve selected in some partial play in σB ending in
x. This means that if Adam challenges some q ∈ Qx, then σ′B can
duplicate Eve’s substrategy starting from any play in σB where she
included q in her label at x.

Let text(x) = (t(x), Qx). Since val(σ′B) ≤ n, [[Fsup]](text) ≤
n (witnessed by the restriction of σ′B to the Fsup part of the plays).
By Lemma 17, this means that for all prefixesP , [[Aext]]sup,h(text|P) ≤
α(n), witnessed by strategies σP .

Consider any tree t′ with hfin(t′) = t. Let P be the minimal
prefix such that t′ is identical to t outside of P . We construct a
strategy σ witnessing [[A]](t′) ≤ α(n). Within the prefix P , the
strategy σ plays annotations from P(Q) according to Qx, and
moves in A according to σP . Starting from the frontier of P ,
the strategy uses σq,x for the infinite continuation. Overall, the
value of this strategy is at most α(n) from the part using σP , and
at most n from the part using σq,x. Hence, overall, the value is
bounded by α(n). Because this is true for all t′ with hfin(t′) = t,
[[A]]sup,hfin(t) ≤ α(n) as desired.

B.2 The bounded expansion operator on automata
We now prove Theorem 4.

We start with a 2-way localized B-quasi-weak automatonA that
takes input (t,X) where t is a tree over the alphabet A, X is a
distinguished set of positions.

We assume that [[A]] is monotonic in X in the sense that for all
q ∈ Q and n ∈ N, if X ⊆ X ′ then {x : [[Aq]]x(t,X) ≤ n} ⊆
{x : [[Aq]]x(t,X ′) ≤ n} where Aq denotes A starting from state
q.

To help with the proof, we define the m-bounded expan-
sions of A on t ∈ TA such that X0

A,t,m = ∅ and Xi
A,t,m ={

x : [[A]]x(t,Xi−1
A,t,m) ≤ m

}
. Note that monotonicity of [[A]] im-

plies that Xi
A,t,m ⊆ Xj

A,t,m for i ≤ j.
Rewritten in terms of these bounded expansions, Theorem 4

says that the localized 2-way automaton B over the alphabet A de-
scribed in Section 4.2 satisfies [[B]]z(t) ≈t,z inf

{
m : z ∈ Xm

A,t,m
}

.

We recall the construction of B. The set of states is the same as
A, and the initial state of B is the initial state of A. In addition to
the counters from A we have one additional counter γ (which will
only be incremented and checked, and never reset). We say that we
start a fresh copy of A from some position x, if we

• move to the initial state of A,
• reset all counters in A, and
• perform ic on γ.

Given some input t and some starting position x, B starts a fresh
copy ofA at x, with Eve selecting labels over the extended alphabet
which are consistent with t: if t(y) = a then Eve can choose a
label of (a, 0) or (a, 1). If Eve chooses (a, 1) at y, then Adam is
allowed to challenge this choice by starting a fresh copy ofA from
y. The output is taken from the simulations of A, along with the
new counter actions from γ.

Lemma 19. For all positions x and for allm ∈ N, [[A]]x(t,Xn−1
A,t,m) ≤

m iff [[B]]x(t) has value at most n in counter γ and value at most
m in other counters.

Proof. Fix some position x and m ∈ N. We proceed by induction
on n. We write Xn−1

m for Xn−1
A,t,m. The base case for n = 1 is

straightforward (the base case is n = 1 rather than n = 0, since
the automaton starts with a fresh copy of A which immediately
increments γ).

Let n > 1 and assume that [[A]]x(t,Xn−1
m) ≤ m. Since

y ∈ Xn−1
m implies [[A]]y(t,Xn−2

m) ≤ m, the inductive hypothesis
implies that [[B]]y(t) has value at most n − 1 from counter γ and
value at most m from the other counters.

Consider the strategy in (B, t)x where Eve guesses the labeling
Xn−1
m and then plays according to her strategy in (A, t,Xn−1

m)x,
unless Adam challenges at some position y ∈ Xn−1

m and then Eve
uses her strategy from (B, t)y . It is not hard to check that this is
indeed a strategy in (B, t)x. Before a challenge from Adam, the
value from counter γ is at most 1 and the value from the other
counters is at most m. Overall, this means that the value of counter
γ is at most n and the value from the other counters is at most m
(recall that the other counters are reset when Adam challenges).

Next, assume that [[B]]x(t) has value at most n from counter
γ and value at most m from other counters. Let σ be the strategy
witnessing these values, and let σ1 be the restriction of σ to plays
where γ has value at most 1.

Recall that Eve is allowed to select labels over the extended
alphabet that are consistent with t. Let Y be the set of positions y
such that there is a play π in σ1 where Eve guesses a label for y in
A×{1}. BecauseA is alternating, Eve may not guess consistently
that the label for y is in A× {1}. However, by monotonicity of A,
marking extra positions with 1 cannot increase the value. Hence, it
must be the case that [[A]]x(t, Y) ≤ m.

The strategy σ also induces strategies (B, t)y for y ∈ Y such
that the value of counter γ is at most n − 1 and the value from
the other counters is at mostm. Hence, by the inductive hypothesis
[[A]]y(t,Xn−2

m) ≤ m for all y ∈ Y . This means that Y ⊆ Xn−1
m ,

so by monotonicity, [[A]]x(t,Xn−1
m) ≤ m as desired.

In particular, [[A]]x(t,Xm−1
A,t,m) ≤ m iff [[B]]x(t) ≤ m, which

is enough to conclude that [[B]]x(t) ≈t,x inf
{
m : x ∈ Xm

A,t,m
}

as
desired. We remark that the correction function at this step is just
the identity function (it computes exactly the same function).

B.3 From 1-way to localized 2-way
Next, we prove Theorem 5.

Let A be a 1-way B-quasi-weak automaton over some alphabet
A′×{0, 1}, where there is a single distinguished position xmarked

using the extended alphabet. As usual, A starts its computation
from the root. We want a variant of this automaton over the alphabet
A′ (i.e., on a tree with no position marked) that when started from
position x recognizes the same cost function.

We do this by constructing a 2-way B-quasi-weak automaton
A` over the alphabet A′ such that for all positions x, the value
of A` on t ∈ TA′ when starting at position x is equivalent to the
value of A on the tree t marked at position x and starting at the
root. We will write this as [[A`]]x(t) ≈t,x [[A]](t, x) where [[A`]]x
denotes the value of A` when the computation starts at position x.
We write (A, t, x) for the game where A acts on the tree t marked
with position x but starting at the root, and (A`, t)x for the game
where A` acts on t starting at position x.

Let Aext be the automaton over finite trees over the alphabet
A′ × {0, 1} × P(Q) that simulates A, but also ensures that the
state of A at position y is contained in the third component of the
label at y. There is a nondeterministic version Aext,nd on finite
trees which is equivalent up to some αnd by [13].

We now describe the operation of A` on input t starting at
position x. Let τ be the path from the root to x. The idea is that
Eve can move upwards from x to the root by guessing labels from
P(Q) and simulating an accepting run of Aext,nd in reverse on τ
(a special case of a finite tree). At any point, Adam is allowed to
launch a copy of the original automatonA downwards, starting in a
state from the label in P(Q) selected by Eve, on any path different
from τ .

More formally, consider the game at a position corresponding to
y ∈ T on the path upwards from x to the root (in particular, when
the game starts at position x). For y 6= x, let yd be the successor of
y which is on this path. At such a position y, Eve selects a state q,
a transition (q, (t(y), 0), (c0, q0), (c1, q1)) ∈ ∆ext,nd of Aext,nd,
and a label P ∈ P(Q) such that the following conditions hold:

• if y = ε, then q is initial for Aext,nd;
• if y = x, then q is accepting for Aext,nd;
• if y 6= x, then Eve selected qd in her previous move.

Adam then selects the direction. If he moves upwards, the out-
put is cd and the play continues as above from the parent of y.
Otherwise, Adam selects some q′ ∈ P , and Eve and Adam switch
to playing the game (A, t, x) starting from position (q′, y) (for the
first move after switching to this game, there is an additional re-
striction that Adam must choose a direction d such that yd is not
on τ). The output comes from the (partial) run of Aext,nd on τ
and/or a play from A. We assume counters are not shared between
Aext,nd and A.

Lemma 20. [[A]](t, x) ≈t,x [[A`]]x(t).

Proof. We must show that this construction preserves the value.
[[A`]]x(t) 4αnd [[A]](t, x) for αnd coming from Aext,nd de-

scribed above. Assume [[A]](t, x) ≤ n < ∞, witnessed by strat-
egy σ. Let Qy = {q ∈ Q : [[Aq]](ty) ≤ n}. Let text be the tree
such that text(y) = (t(y), b, Qy) where b = 1 if y = x and 0
otherwise. Consider the finite branch τ from the root to x. Then
[[Aext,nd]](text|τ) ≤ αnd(n). We can use this to construct a strat-
egy in (A`, t)x in which Eve plays labelsQy and the accepting run
of Aext,nd on text|τ while on τ , and switches to strategy σ outside
of τ . Overall, the value would be at most αnd(n) as desired.

[[A]](t, x) 4α [[A`]]x(t) for α(n) = αnd(n) + n. Assume
[[A`]]x(t) ≤ n <∞, witnessed by strategy σ`.

Consider the play which stays on path τ from x to the root. This
play induces labels Qy for each y on τ , and an accepting run of
Aext,nd on the finite tree τext with τext(y) = (t(y), b, Qy) such
that b is 1 if y = x and 0 otherwise (and τext is undefined outside

of τ). This play has value at most n, so this means there is a strategy
σext in (Aext, τext) of value at most αnd(n).

The strategy σ` also induces strategies σq,y in the game (A, t)
starting from (q, y) for all y on τ and all q ∈ Qy .

By combining the strategy σext (ignoring the labels fromP(Q))
with the strategies σq,y , we can construct a strategy in (A, t)
starting from (q0, ε) (i.e., starting from the root). Overall, this
strategy must have value at most αnd(n) +n, so [[A]](t) ≤ α(n) +
n.

C. From B-quasi-weak automata to QWCMSO
We prove the remaining part of Theorem 2, writing a QWCMSO
formula that describes the operation of a 1-way B-quasi-weak au-
tomaton.

For the restriction to B-weak automata, we can write a formula
in WCMSO.

Theorem 21 ([27]). For every B-weak automaton A over the
alphabet A, there exists effectively a formula ψ(x) in WCMSO and
a correction function αw such that for all t ∈ TA and all positions
v ∈ T , [[A]](tv) ≈αw [[ψ(x)]](t, v) where tv denotes the subtree of
t rooted at position v.

In general, the formula is in QWCMSO.

Theorem 22. For every B-quasi-weak automatonA over alphabet
A, there exists effectively a formula ψ(x) in QWCMSO and a
correction function α such that for all t ∈ TA and all positions
v ∈ T , [[A]](tv) ≈α [[ψ(x)]](t, v) where tv denotes the subtree of t
rooted at position v.

Proof. We assume that A has a counter γalt dedicated to counting
alternations in priorities (in a quasi-weak automaton, a counter
like this can always be added without changing the cost function
computed). We also assume that for each state q ∈ Q, there exists
some action c such that for all a ∈ A, any move in δ(q, a) has
action c. This means we can think of priorities and counter actions
labeling states, rather than edges, in the automaton.

We proceed by induction on the number j of states that have
some target according to δ that is not a sink state (q is a sink state if
there exists c such that for all a ∈ A, δ(q, a) = (0, c, q)∧(1, c, q)).

We claim that [[A]](tv) ≈αj [[ψ(x)]](t, v) for α0(n) = αw(n)
and αj(n) = (n+ 1)(αw(n) + αj−1(n)) + 1.

Assume j = 0. Then from the initial state q0, A must send
copies only to sink states, so A is weak (there is at most one
alternation in priority). Then we can apply Theorem 21 to write
a formula in WCMSO as desired.

Now assume j > 0. Let qj be the initial state. If qj has only sink
state targets then we proceed as in the previous case. Otherwise, let
q1, . . . , qj be the states that do not have sink state targets.

The goal is to decompose the operation of A into an initial
weak part Aj that is allowed to use any state but stops when
it would alternate priorities, and quasi-weak parts A1, . . . ,Aj−1

where it can use any state but stops if it would enter qj . We can use
Theorem 21 to write a formula for the first part, and the inductive
hypothesis to write a formula for the second part. We then write
a formula combining these, looping back to the weak part if the
automaton wants to enter qj in the quasi-weak part. We use the
bounded expansion operator to handle this looping back because
γalt is incremented in each loop.

LetAj denote the automaton that takes input (t, xj , Xj , Xj−1, . . . , X1)
where t ∈ TA (so this is an automaton over the alphabet A ×
{0, 1}j+1), and simulates A starting from the position xj . More-
over, if counter γalt is incremented in state qi in position y, then
the transition function sends the automaton from qi to an accepting
sink state (respectively, rejecting sink state) if y ∈ Xi (respec-

tively, y /∈ Xi). Notice that Aj is weak, so we can get a WCMSO
formula ψj(x, xj , Xj , . . . , X1) for it using Theorem 21.

Likewise, for 1 ≤ i ≤ j − 1, let Ai denote the automaton that
takes input (t, z,Xj). This automaton simulates A starting from
state qi and the position z. Moreover, if the automaton is in state qj
in position y, then the transition function sends the automaton from
qj to an accepting sink state (respectively, rejecting sink state) if
y ∈ Xj (respectively, y /∈ Xj). Because the targets of qj are now
sink states, the inductive hypothesis can be applied to Ai to get a
formula ψi(z,Xj) for it.

Let ψ′(xj , Xj) := ψj(xj , Xj , Xj−1, . . . , X1)[ψi(y,Xj)/y ∈
Xi : 1 ≤ i ≤ j − 1], so ψ′ is the result of substituting ψi(y,Xj)
for any statement of the form y ∈ Xi in ψj . The desired formula is

ψ(x) := x ∈ µNXj .
{
xj : ψ′(xj , Xj)

}
.

To help with the proof, we define the m-bounded expan-
sions of ψ′ on t ∈ TA such that X0

ψ′,t,m = ∅ and Xi
ψ′,t,m ={

x : [[ψ′]](t,Xi−1
ψ′,t,m, x) ≤ m

}
. Note that monotonicity implies

that Xi
ψ′,t,m ⊆ X

j
ψ′,t,m for i ≤ j.

Let αmj (n) = (m+1)(αw(n)+αj−1(n))+1, and we proceed
with the proof.

[[ψ(x)]](t, v) 4αj [[A]](tv). We prove a slightly stronger result:
if [[A]](tv) ≤ n < ∞ and has γalt values of at most m ≤ n
witnessed by some strategy σ, then v ∈ Xm+1

ψ′,t,αn
j (n). The result

follows since [[A]](tv) ≤ n < ∞ with γalt at most n implies that
v ∈ Xn+1

ψ′,t,αn
j (n) ⊆ X

αn
j (n)

ψ′,t,αn
j (n), so [[ψ(x)]](t, v) ≤ αnj (n) =

αj(n).
If m = 0, then γalt is never incremented, so σ can be viewed as

a strategy in Aj of value at most n on input (t, v,Xj , . . . , X1) for
any choice ofXi, and in particular forXi = ∅ for all 0 ≤ i ≤ j. By
Theorem 21, this means that [[ψj(xj , Xj , . . . , X1)]](t, v, ∅, . . . , ∅) ≤
αw(n) ≤ αnj (n). Since ψj is monotonic in X1, . . . , Xj , this
means that v ∈ X1

ψ′,t,αn
j (n).

Now let m > 0. For each π ∈ σ, let π′ denote the restriction
of π to a prefix τ0τ of π such that γalt is 0 on τ0, γalt is strictly
greater than 0 on τ , and if qj appears, then it only occurs as the
final move in τ . In other words, τ0 represents part of a play in
Aj and τ represents the continuation of this play in some Ai for
1 ≤ i ≤ j − 1. Note that τ may be infinite if the play never returns
to state qj after τ0. Let σ′ denote the strategy obtained by restricting
each play π ∈ σ as described above.

Let X ′i be the set of positions u such that there is some π′ =
τ0τ ∈ σ′ such that τ0 ends in position u in state qi. Let X ′j denote
the set of positions u such that there is some π′ = τ0τ ∈ σ′ such
that τ ends in state qj in position u.

The strategy σ′ witnesses [[Aj]](t, v,X ′j , . . . , X ′1) ≤ n and
[[Ai]](t, u,X ′j) ≤ n for all u ∈ X ′i , so we have [[ψj(xj , Xj , . . . , X1]](t, v,X ′j , . . . , X

′
1) ≤

αw(n) and [[ψi]](t, u,X
′
j) ≤ αj−1(n).

Moreover, for all u ∈ X ′j , it must be the case that [[A]](tu) ≤ n
and has value at mostm−1 for γalt (otherwise, it would contradict
the initial assumption that [[A]](tw) ≤ n and has value at most
m for γalt). By the inductive hypothesis, this means that X ′j ⊆
Xm
ψ′,t,αn

j (n).
Putting this together, [[ψ′(xj , Xj)]](t, v,X

′
j) ≤ αw(n) +

αj−1(n) ≤ αnj (n), so by monotonicity, [[ψ′(xj , Xj)]](t, v,X
m
ψ′,t,αn

j (n)) ≤
αnj (n), so v ∈ Xm+1

ψ′,t,αn
j (n) as desired.

[[A]](tv) 4αj [[ψ(x)]](t, v). We prove a slightly stronger result:
if v ∈ Xm

ψ′,t,n for n < ∞ and m ≤ n, then [[A]](tv) ≤ αmj (n).
The result follows since [[ψ(x)]](t, v) ≤ n < ∞ implies that
v ∈ Xn

ψ′,t,n and thus [[A]](tv) ≤ αnj (n) = αj(n).
We proceed by induction on m.

Assume v ∈ X1
ψ′,t,n. Then it must be the case that [[ψ′]](t, v, ∅) ≤

n. But this means there must be some X ′1, . . . , X ′j−1 such that
[[ψj(t, v, ∅, X ′j−1, . . . , X

′
1)]] ≤ n and [[ψi(y,Xj)]](u, ∅) ≤ n for

all u ∈ X ′i . Hence, [[Aj]](t, v, ∅, X ′j−1, . . . , X
′
1) ≤ αw(n) and

[[Ai]](t, u, ∅) ≤ αj−1(n) for all u ∈ X ′i . Because Xj = ∅,
we know that Ai never returns to state qj (otherwise, the value
would be ∞). This means that any suffix of a finite play from
(Aj , t, v, ∅, X ′j−1, . . . X

′
1) starting in position v and ending in po-

sition u in state qi, can be extended with a play in (Ai, t, u) to yield
a play in (A, tv) of value at most αw(n) + αj−1(n) ≤ α1

j (n).
Hence, there is a strategy for A of value at most α1

j (n) on tv .
Now assume v ∈ Xm+1

ψ′,t,n, so [[ψ′]](t, v,Xm
ψ′,t,n) ≤ n. As in the

previous case, we can construct an initial part of a strategy forA by
extending plays from Aj with plays from some Ai. The difference
here is thatAi may return to state qj at a position u. If it does, then
it must be the case that u ∈ Xm

ψ′,t,n by definition ofAi (otherwise,
it would contradict [[ψ′]](t, v,Xm

ψ′,t,n) < ∞). Thus, in order to
construct a full strategy for A, we continue plays from u by using
the strategy given by the inductive hypothesis that witnesses for all
u ∈ Xm

ψ′,t,n, [[A]](tu) ≤ αmj (n). This results in plays of value at
most αw(n) + αj−1(n) + αmj (n) ≤ αm+1

j (n) for A on tv .

