Variants of Collapsible Pushdown Systems

Pawet Parys*

University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland, parys@mimuw.edu.pl

—— Abstract

We analyze the relationship between three ways of generating trees using collapsible pushdown
systems (CPS’s): using deterministic CPS’s, nondeterministic CPS’s, and deterministic word-
accepting CPS’s. We prove that (for each level of the CPS and each input alphabet) the three
classes of trees are equal. The nontrivial translations increase n — 1 times exponentially the size
of the level-n CPS. The same results stay true if we restrict ourselves to higher-order pushdown
systems without collapse. As a second contribution we prove that the hierarchy of word languages
recognized by nondeterministic CPS’s is infinite. This is a consequence of a lemma which bounds
the length of the shortest accepting run. It also implies that the hierarchy of e-closures of
configuration graphs is infinite (which was already known). As a side effect we obtain a new
algorithm for the reachability problem for CPS’s; it has the same complexity as previously known
algorithms.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases collapsible pushdown systems, determinization, infinite hierarchy, shrink-
ing lemma, reachability

1 Introduction

Already in the 70’s, Maslov ([14, 15]) generalized the concept of pushdown automata to
higher-order pushdown automata and studied such devices as acceptors of string languages.
In the last decade, renewed interest in these automata has arisen. They are now studied also
as generators of graphs and trees. Knapik et al. [12] showed that the class of trees generated
by deterministic level-n pushdown systems coincides with the class of trees generated by
safe level-n recursion schemes,! and Caucal [8] gave another characterization: trees on level
n + 1 are obtained from trees on level n by an MSO-interpretation of a graph, followed
by application of unfolding. Carayol and Wohrle [7] studied the e-closures of configuration
graphs of level-n pushdown systems and proved that these graphs are exactly the graphs
in the n-th level of the Caucal hierarchy. Driven by the question whether safety implies
a semantical restriction to recursion schemes (which was recently proven [17]), Hague et
al. [10] extended the model of level-n pushdown systems to level-n collapsible pushdown
systems (n-CPS’s) by introducing a new stack operation called collapse. They showed that
the trees generated by such systems coincide exactly with the class of trees generated by all
higher-order recursion schemes and this correspondence is level-by-level.

We compare three ways of generating trees using CPS’s of some level n. We consider here
edge-labelled, unranked, and unordered trees. In the classical definition of a tree-generating
CPS we take a deterministic CPS. Moreover it is typically assumed that every nonempty
run (from some reachable configuration) using only e-transitions can be extended into a run

* The author is partially supported by the Polish Ministry of Science grant nr N N206 567840.
1 Safety is a syntactic restriction on the recursion scheme.

@@@@ © Pawel Parys;
G licensed under Creative Commons License NC-ND

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Variants of Collapsible Pushdown Systems

reading also some letter.? We call such CPS strongly deterministic (see Definition 2.11). To
generate a tree, we unfold the configuration graph of the strongly deterministic CPS S into
a tree, and we contract all e-labelled edges. We can also say that we take the e-closure of
the configuration graph, and then we unfold it into a tree. Denote this tree T'(S), and the
class of all such trees as T'rees’,. Notice that in such a tree each node has, for each letter,
at most one outgoing edge labelled by that letter. Trees having this property will be called
deterministic.

But we can do the same (i.e. take the e-closure of the configuration graph, and then
unfold it into a tree) for nondeterministic CPS’s. In general such trees can be very strange,
e.g. can contain a node which has infinitely many successors. We restrict ourselves only to
CPS’s generating deterministic trees. This class of trees will be called Trees%;. Notice that
whether a tree is deterministic is only a property of the tree, not the system generating it;
of course nondeterministic systems can also generate deterministic trees (the configuration
graphs can contain big parts consisting of only e-transitions, containing many loops and
nondeterministic choices, but they are whole contracted to one node in the e-closure). Nev-
ertheless, we prove that every such tree can be also generated by a strongly deterministic
system of the same level. In other words, there is an easy syntactic condition saying whether
a tree generated by a CPS can be also generated by a strongly deterministic CPS.

» Theorem 1.1. Let S be an n-CPS, such that T(S) is deterministic. Then there exists a
strongly deterministic n-CPS S’ such that T(S) = T(S'). System S’ has size n — 1 times
exponential in the size of S, and can be computed in such time.

Determinization results are always important, because deterministic automata are, col-
loquially speaking, simpler and have better properties. For example a strongly deterministic
system can be easily simulated: having a configuration one can just run the system to see
which letters can be read next. For general (nondeterministic) systems this is much more
difficult, as by principle there can be arbitrarily long runs reading just one letter, so we do
not know when to stop. Other reason is that it is easier to prove that a tree is not generated
by a deterministic system, than that a graph is not generated by any (nondeterministic)
system. To be more precise, consider our result [11] showing that the hierarchy of graphs
generated by CPS’s is strict, i.e. that for each n there is a graph generated by an (n+1)-CPS
(i.e. which is the e-closure of its configuration graph) which is not generated by any n-CPS.
We perform there a pumping construction which says that in a long enough run there is a
fragment which (in some sense) can be repeated arbitrarily many times, and this leads to a
contradiction. The problem is when this fragment does not read any letter; then repeating
it does not change the path in the e-closure. To avoid such situation a very sophisticated
analysis is performed, which causes a technical complication of the proof. However using
the result of this paper we could just show that the unfolding of this graph is not gener-
ated by a deterministic system of level n, which would significantly simplify the proof. For
deterministic systems it is enough to perform the pumping in a simple form: repeating ar-
bitrarily many times a fragment not reading a letter is impossible in a deterministic system,
so automatically by repeating some fragment of a run we obtain longer and longer paths in
the e-closure.

We also consider CPS’s as word acceptors (such CPS’s are given together with a set of
final states). Let us recall that no determinization is possible for word languages: it is known

2 Sometimes this assumption is dropped (and then in the generated tree all branches of e-labelled edges
which do not lead to a non-e edge are replaced by a L-labelled edge). Because our definition is more
restrictive, our results become stronger.

Pawet Parys

that nondeterministic systems recognize more languages than deterministic ones (even if we
are allowed to increase the level). However we show that every deterministic system can
be converted into a strongly deterministic one, in which additionally from each reachable
configuration there exists an accepting run.

» Theorem 1.2. Let S be a deterministic n-CPS with final states F', used as word acceptor.
Then there exists a strongly deterministic n-CPS 8" with final states F' such that it recog-
nizes the same language as (S, F), and from every reachable configuration of S’ there is an
accepting run (unless the language is empty). System S’ has size n — 1 times exponential in
the size of S, and can be computed in such time.

This can be equivalently stated for trees. Let Pref(S, F') be the tree whose nodes are all
prefixes of words accepted by the CPS S with final states F', and let T'rees} be the class of
all such trees. If from every reachable configuration of S there is an accepting run, we have
Pref(S,F) = T(S). Thus thanks to the above theorem we have Trees? C Trees?t,. For
the opposite implication it is enough to assume that every state is final (then every path of
T(S) is accepted). Thus we obtain equality of the three classes of trees.

» Corollary 1.3. For each n € N we have Treest, = Treesy, = Trees}.

All our results still hold if we restrict ourselves to systems without collapse (i.e. then
the resulting systems also do not use collapse). Let us notice that Theorem 1.2 can be also
easily deduced (but probably without the bound on the size of the new automaton) from
a theorem [4] saying that collapsible pushdown systems are closed under logical reflection.
We however believe that our proof is simpler (and it gives also Theorem 1.1 which cannot
be obtained using logical reflection).

As a second contribution we prove that the hierarchy of word languages recognized by
(nondeterministic) CPS’s is infinite.

» Theorem 1.4. For each n € N there is a language recognized by a pushdown system
(without collapse) of level 2n 4+ 1 which is not recognized by any n-CPS.

Our example language from Theorem 1.4 can be also used to show that the hierarchies of
graphs (i.e. e-closures of configuration graphs) and of trees are infinite. However we already
know [11] that these two hierarchies are not only infinite but in fact strict, i.e. that for
each n there is a tree generated by a level-(n + 1) pushdown system without collapse which
is not generated by any n-CPS, and similarly for e-closures of configuration graphs. The
strictness of the hierarchy of word languages recognized by higher-order pushdown systems
without collapse follows from the Damm’s paper [9]. Similar results for the hierarchy of
word languages recognized by CPS’s were missing so far (this is stated as an open problem
in [5]).

The strictness results for tree and graph hierarchies are obtained using a pumping lemma.
This lemma essentially says that if an automaton has a very long run, then it also has
arbitrarily long runs. Such arbitrarily long runs can be then transformed into arbitrarily
long paths in the trees or graphs. However for the word languages hierarchy such lemma is
useless: the problem is that in a nondeterministic system such longer and longer runs can
all read the same word. We instead need a shrinking lemma, which would allow to shorten
a run. We prove the following lemma, which is good for this purpose.

» Theorem 1.5. Let S be an n-CPS with set of states @ and stack alphabet T', given
together with a set of accepting states. Assume that there exists an accepting run of S.
Set expy(i) =i and expy (i) = 2Px(). Then there exists an accepting run of S of length
at most exp,,_1(8|QJ?|T).

Variants of Collapsible Pushdown Systems

As a third contribution we obtain two new algorithms which check whether the language
recognized by a CPS is nonempty (one can equivalently talk about reachability of a config-
uration having the state in a given set). One algorithm is extremely simple: it is enough
to check if there exists a run from the initial configuration to a configuration with accept-
ing state, whose length is bounded by the threshold from Theorem 1.5. Its complexity is
however (2n — 1)-NEXPTIME. In Section 4 we present another algorithm for the emptiness
problem, whose complexity is (n — 1)-EXPTIME.

The author is unaware of any result dealing with the emptiness problem directly. Of
course the emptiness problem is a special case of the p-calculus model-checking problem. A
direct solution of this problem uses parity games over configuration graphs of the systems
[10]. For such games one can (in a nontrivial way) reduce the level of the system by one,
increasing its size exponentially. This approach gives n-EXPTIME complexity for u-calculus
model checking (and in fact the problem is n-EXPTIME complete); however it is not difficult
to see that if we just consider emptiness, the complexity can be lowered to (n—1)-EXPTIME
(as the first reduction of level gives then only a polynomial blowup). There are several other
approaches to p-calculus model checking [16, 13, 18], which use equivalent characterizations
of collapsible pushdown systems by recursion schemes or Krivine machines. In contrast, our
algorithm analyzes directly possible behaviors of the system, works only for the emptiness
problem, and is simple.

Let us remark that an algorithm for the emptiness problem allows us also to check
whether a given word is accepted by a system, also in (n — 1)-EXPTIME: it is enough to
take the product of the given system with a finite automaton accepting only the one given
word.

Organization The strategy for proving our results is as follows. In Section 2 we give all
necessary definitions. We begin the proof by Section 3, where we show how Theorem 1.4
follows from Theorem 1.5. Then in Section 4 we define so-called types of stacks, which talk
about possible kinds of runs starting in a given configuration. We also present there (in
Subsection 4.1) the algorithm for the emptiness problem. Next, in Section 5 we say that the
pushdown systems can itself calculate the type of its current configuration. This already
gives us Theorem 1.2. Finally in Section 6 we say that the systems can not only calculate
the types, but also use them to choose some unique run (from some class of runs). This
gives us the determinization described by Theorem 1.1. As a side effect, in Subsection 6.1,
we obtain a bound on the length of runs described by types, which gives us Theorem 1.5.

2 Preliminaries

Collapsible pushdown systems of level n (in the following n is always assumed to be a fixed
natural number) are an extension of pushdown systems where we replace the stack by an
n-fold nested stack structure. For the manipulation of the higher-order stack, we have a
push and a pop operation for each stack level 1 < ¢ < n and a collapse operation. When
a new symbol is pushed onto the stack, we attach a copy of the stack to this symbol and
the collapse operation may replace the current stack with the stack attached to the topmost
symbol again, i.e. in some sense the collapse operation allows to jump back to the stack
where the current topmost symbol was created for the first time.

» Definition 2.1. Given a number n (the level of the system) and stack alphabet T', we
define the set of stacks as the smallest set satisfying the following.

Pawet Parys

If s1,82,...,8m are (k — 1)-stacks, where 1 < k < n, then the sequence [s1, S2, ..., $m] is
a k-stack. This includes the empty sequence (m = 0).
If s* is a k-stack, where 1 < k < n, and o € T, then (o, k, s*) is a O-stack.

For a k-stack s* and a (k—1)-stack s*~1 we write s* : s*~! to denote the k-stack obtained
by appending s*~1 on the end of s*¥. We write s2 : s : s° for s2: (s' : s0).

Let us remark that in the classical definition the stacks are defined differently: they
are not nested, the 0O-stack does not store the linked k-stack, just stores a natural number.
While performing the collapse operation, this number is used to find the stack pointed by
the link. Note that this is only a syntactical difference. Let us emphasize however that this
modification is essential to obtain a correct definition of “types” below: Our k-stack already
contains all stacks in the links, so looking at a k-stack we have the complete information
about it, and we can summarize it using a type from a finite set. On the other hand the
original k-stack has arbitrarily many numbers pointing to some stacks “outside”, and for
each of this numbers it is important how the target of the pointer looks like; thus already
the interface with the external world is arbitrarily big.

» Definition 2.2. We define stack operations as follows. We decompose a stack s of level
n into its topmost stacks s : s" 71 : ... : 5%, We have pop’(s) := s" : ---: siT! : s where
1 < i < n; the result is undefined if st is empty. For 2 < i < n we have pushi(s) =s" .
sl (st 80) 157l s9 The level-1 push is push;’k for a € I', 1 < k < n which
is defined by pushi’k(s) =" o520 (501 s%) 1 (ayk, s®). The collapse operation col’
(where 1 < i < n) is defined if the topmost O-stack is (a,,t'), and ¢ is not empty. Then it
is col’(s) := 5" : --- : 5"t . #%. Otherwise the collapse operation is undefined.

Pushdown systems only use n-stacks that can be created from the initial n-stack using
the stack operations. We call those n-stacks pushdown stores (pds).

» Definition 2.3. The initial n-stack L,, is the n-stack which contains only one 0-stack,
which is (1, 1,s'), where | € T is a special symbol, and s' is the empty 1-stack.> Some
n-stack s is a pushdown store (or pds), if there is a finite sequence of stack operations that
creates s from L.

» Definition 2.4. A collapsible pushdown system of level n (an n-CPS) is a tuple S =
(T,A,Q,qr,L,A), where ' is a finite stack alphabet containing the initial stack symbol
1, A is a finite input alphabet, Q) is a finite set of states, ¢ € @ is an initial state, and
ACExT x(AU{e}) x Q x OPP is a transition relation where OPJ" denotes the set of
stack operations. When saying that a transition goes from (¢,) € @ x I" we mean that it
has ¢ and « on the first two coordinates. A configuration is a pair (g, s) for a state ¢ and
an pds s. The initial configuration is (qr, L,).

Below our convention is that, whenever we have a system S, we assume that @ is its
set of states, A its input alphabet, and I" its stack alphabet. The size of an n-CPS is the
number of its transitions. Let us emphasize that, according to our definition, a configuration
of a pushdown system contains a pds, not an arbitrary n-stack.

» Definition 2.5. A run R of length m, from ¢g to ¢,,, is a sequence ¢g F% ¢ F%2 ... F%m ¢,
where ¢; = (g;, s;) are configurations and a;, € AU {e} are such that, for 1 <1 < m, there
exists a transition (g;—1,@;—1,a;, g;, op) such that the topmost stack symbol of s;_1 is a;_1
and s; = op(s;—1).

3 The choice of 1 is arbitrary, it can be any number from 1 to n.

Variants of Collapsible Pushdown Systems

» Definition 2.6. A labelled transition system (LTS) over alphabet A is an edge-labelled
directed graph with a distinguished initial node. More formally, it is (G, init, (Ey)aca),
where G is a set of nodes, init € G, and E, C G x G for each a € A. A configuration graph
of a CPS S is an LTS over alphabet A U {e}, which contains all reachable configurations of
S as nodes, and where (c,d) € E, when there is a run ¢ +* d of length 1.

By a tree we always mean an LTS which is a tree, i.e. in which every node is reachable
from the initial node by exactly one path.

» Definition 2.7. The e-closure of an LTS G = (G, init, (E,)qec aute}) over alphabet AU {e}
is the LTS (G, init, (E)qaca) Where

G :={init}U{d € G:3c € G (c,d) € E, for some a € A}

and two nodes ¢,d are connected by E! if there is a path in G from ¢ to d whose last
edge is labelled by a, and all earlier edges are labelled by e. The unfolding of an LTS
G = (G,init, (Eq)aca) is a tree (G',init, (E!)aca) where G’ contains all paths of G starting
in its initial node, and paths p; = ¢1ca ... ¢k and py = c1ca ... cpcgrq for (e, cxr1) € E, are
connected by E.

We denote the unfolding of the e-closure of the configuration graph of an CPS § by
T(S).

» Definition 2.8. The word read by a run ¢y F% ¢; F*2 ... % ¢, is obtained from
ajas .. .ap,, by dropping all appearances of €. We say that a word w is accepted by a CPS
S given together with a set of final states F' C @, if there exists a run of § reading w from
the initial configuration to a configuration whose state is final. The language recognized
by (S, F), denoted L(S, F), is the set of all words accepted by (S, F). The prefix tree of
L(S, F), denoted Pref(S,F), is (G, ¢, (Eq)aca) where G contains all prefixes of words from
L(S, F), and words w and wa (for a € A) are connected by E,.

» Definition 2.9. A system S = (I} 4,Q, qr, L, A) is called deterministic if A is a partial
function A: Q@ xI' x (AU {e}) — Q x OP{, and additionally from each (¢,a) € @ x I" we
either have only an e-transition, or only letter-labelled transitions.

» Definition 2.10. Let (G, init, (E,;)qca) be an LTS. We say that it is deterministic if for
each node ¢ and each a € A there is at most one d such that (c,d) € E,.

Notice that if a system S is deterministic, then also the tree T'(S) is deterministic;
however the opposite implication does not hold.

» Definition 2.11. We say that a deterministic CPS S is strongly deterministic if for some
set of dead states QQgie C @ it holds
in each reachable configuration with state ¢ and topmost stack symbol « each transition
from (g,) can be applied (i.e. we do not try to perform pop or col when it is impossible),
and
there are no transitions from (g,) for ¢ € Qg and any «, and
if ¢ is a reachable configuration whose state is not a dead state, there is a run from c

having some non-e-transitions.*

4 Thus there are no infinite runs reading no letters, and only configurations just after reading a letter
can have no successors; whether this is the case is determined by the state.

Pawet Parys

3 The hierarchy is infinite

In this section we prove that the hierarchy of word languages is infinite (Theorem 1.4) basing
on Theorem 1.5. We keep the notation exp,, from the statement of Theorem 1.5. For each
n € N consider the language

Ln = {lkOeXp"(k) ke N}

It is known that L,, can be recognized by a level-(n+1) pushdown system (without collapse);
see e.g. [2], example on pages 6-7, where a very similar pushdown system is constructed.
Thus Lg, can be recognized by a level-(2n 4+ 1) pushdown system.

Assume now that there exists an n-CPS S, which recognizes Lo,. Let @ be its set of
states, and T its stack alphabet. Choose k such that exp,, (k) > exps,,_;(8(k + 1)2|Q|?|T|).
We construct a system R which accepts only one word w = 1¥0*P22(%) je. the only word
from Lg, which has k letters 1. Such system can have the same stack alphabet as S, and
(k 4+ 1)|Q| states. Indeed, we make k + 1 copies of the set of states of S. System R works
like S, but whenever it reads the 1 letter, it passes to the next copy of the set of states. If
it is in the last copy, no more 1 letters can be read. And only the states from the last copy
(those which were accepting in S) are accepting. This way R accepts all words from the
language of & which contain k letters 1, which is what we want.

By Theorem 1.5 R has an accepting run of length at most exp,,,_;(8(k + 1)2|Q|?|T'|).
However this run reads |w| letters, so it has length at least |w| > exp,, (k). This is a
contradiction, as expy, (k) > exp,,,_;(8(k 4+ 1)2|Q|?|T'|). This finishes the proof of Theorem
1.4.

As a side remark we observe that the same proof works for the hierarchy of e-closures of
configuration graphs. Let G,, be the graph whose nodes are

{1%0™ : m < exp,,(k), k € N} U {1kOeXp"(k)ﬁ : k € N},

and a node w is connected with node wa by an edge labelled a (where a € {0,1,4}). We
know that graph G, is the e-closure of the configuration graph of a level-(2n+1) pushdown
system (similar to the one recognizing Ls,). On the other hand, Gs,, cannot be the e-closure
of the configuration graph of a level-n pushdown system. If such system exists, it can be
easily transformed into a word-accepting n-CPS recognizing Lo, ; it is enough to stop in an
accepting state instead of reading §. The same can be done for trees.

4 Types of stacks

For the rest of this section we fix some n-CPS §. The aim of this section is to assign to any
k-stack s* a type type(s*) that determines existence of some runs starting in a stack with
the topmost k-stack s*. In order to obtain Theorem 1.1 we are interested in runs in which
every transition except the last is labelled by e, and the last is labelled by a letter from A.
Additionally we want to know whether it can be further extended to read some next letter
(as otherwise we have to hold the system immediately to ensure strong determinism). For
this reason we fix a morphism ¢: (AU{e})* — M into a finite monoid M, which® applied to
a word w tells us for each a € A whether w € €*a and whether w € £*ae*A. The morphism
o will be applied to the word created from labels of a run, i.e. to the word read by a run,
but including all epsilons; for simplicity of notation we just say that we apply ¢ to a run.

5 The results about types hold for any morphism; this morphism is just what we need for Theorem 1.1.

Variants of Collapsible Pushdown Systems

The idea of defining types is present also in [11] (and in [17] for automata without col-
lapse). The novelty is that we bound here (see Subsection 6.1) the length of runs implied by
the type (the previous proof instead of giving such bound was using a nontrivial induction).
Moreover we define the types more carefully than in [11], so that their number is exponen-
tially smaller (and hence our algorithm for the emptiness problem is (n — 1)-EXPTIME,
not n-EXPTIME). On the other hand the types in [11] are much more general, as we char-
acterize here only accepting runs, while there much more sophisticated kinds of runs were
characterized; however the new proof can be easily generalized to those other kinds of runs.

The type of s* will be a set of run descriptors which come from a set 7% that will be
defined inductively from k = n to k = 0. A typical element of 7% has the form

o= (q,T", gt .,\I/k"'l,m,q’)

where ¢,¢’ € Q are states of S, U? are some types of i-stacks, and m € M. Let us explain
the intended meaning of such a tuple. We want to have o € type(s*) if and only if for all
stacks ", "1, ..., t**1 where ¥’ C type(t) there is a run evaluating to m under ¢, from
configuration (g, " : t"~1: ... : t*+1: s¥) to a configuration with state ¢’. In other words,
if we put o into type(s*) we make the following claim. If for each k + 1 < i < n we take an
i-stack ¢ that satisfies the claims made by ¥¢, then we will find a run evaluating to m that
starts in state ¢ and the stack obtained by putting s* on top of the sequence of t™ : - - : th+1
and ends in state ¢’. Let us mention that in order to obtain Theorem 1.1 we need not to
keep the state ¢’.

We first introduce the set 7% of possible run descriptors of level k (the possible types of
k-stacks are elements of P(7*)). We write P(X) for the power set of X, and P<;(X) for
{Y e P(X):|Y]| <1}.

» Definition 4.1. We define 7" = Q x M x @, and inductively for 0 < k <n — 1:
TF=Q x P<1(T") x (P(T") x P(T"?) x -+ x P(T")) x M x Q.

Notice that the n-th level is treated differently: we take P<1(7") instead of P(7™). This
is possible because an n-stack can be used only once (cannot be copied), so we need just
one run descriptor. The purpose for restricting to P<1(7™) is to decrease exponentially the
number of all run descriptors; for all other reasons a definition with P(7™) would be also
good.

Next, we state the intended meaning of run descriptors and types.

» Lemma 4.2, Let 0 <1 <n, and let c = (q,s" : s"~ 1 : ... : s!) be a configuration. The

following two conditions are equivalent:

1. there exists a run from c which evaluates to m under ¢ and ends in state ¢/,

2. type(s') contains a run descriptor (¢, U™, "=t .. WH m ¢') such that U' C type(s?)
forl4+1<i<n.

Let us remark that in Section 6 we strengthen the “2=-1” implication of the above lemma:
we not only say that the run exists, but we present a deterministic CPS which reconstructs
such run (arbitrarily choosing one of them), and we also bound the length of this run.

Now we come to the definition of types. We first define how types can be composed.
The intention of the next definition is that when W* is the type of a k-stack s¥, and WF—1
is the type of a (k — 1)-stack s*~1, then U¥ : U*~1 is the type of s* : sF~1.

» Definition 4.3. Let 1 < k < n, let UF be a subset of 7%, and U*~! a subset of
T+=1. Their composition, ¥* : Wk=1 is a subset of 7% containing all run descriptors

Pawet Parys

(g, 2, 3n= 1 L8R m) such that in WE—! there is a run descriptor (g, X", X771 ...,
Yh+HL Sk m, ') for which X% C Wk,

Like for stacks, we write U2 : Wl : W0 for W2 : (¥!: W), Notice that the composition of
types is monotone: if ¥ C ®* and W+~ C ®*~1 then also WF : UF~1 C ®F . F-1

Next, we are going to define a function cons. In fact, cons is defined as a fixpoint of a
sequence (cons,).en. For each z € N; each stack symbol « € T, each number 1 < K < n,
and each K C 7K we define a set cons; (a, K, EK) C 79, The intention is that if a run
descriptor (g, U™, Wn=1 .. Wl m ¢')is in the set cons,(a, K, ¥X), then there exists a run
evaluating to m, ending in state ¢, and starting in a configuration (q,s"™ : s"~%: ... : s0)
such that ¥’ is contained in the type of s and s° has symbol o and carries a link of level
K to a stack of type . When we enter the fixpoint cons(a, K, %) we will be able to
replace the “if-then” by an “if and only if”. For the “and only if” part, we need to know the
complete type; when we reach the fixpoint cons of the functions cons,, it will compute the

complete type.

» Definition 4.4. Let z € N, let o € T, let 1 < K < n, and let 25 C 7K. For z = 0 we

define cons, (o, K,%%) = (). For z > 0 assume that cons,_; is already defined. We define

cons, (a, K, ¥X) as the set containing all run descriptors (go, ¥, ¥"~1, ..., Ut m/ ¢’) such

that

1. ¢ = qo and m’ = 1), is the identity element of M, or

2. S has a transition (qo, o, a, g1, pop*), m’ = ¢(a)m, and in ¥* there is a run descriptor
(qr, @™, &1 ... &1 m, ¢') such that ®* C ¥ for k+1 <i < n, or

3. S has a transition (qo, @, a, g1, col®), m/ = ¢(a)m, and in XX there is a run descriptor
(q, @™, @71 ... &K+ m ¢') such that &' C U’ for K +1<1i < n, or

4. S has a transition (qo, @, a, ql,push}j)k), m’ = ¢(a)m, and in cons,_1 (83, k, U¥) there is
a run descriptor (g1, ®", ®"71 ... ®! m, ¢') such that ® C ¥’ for 2 < i < n, and
d! C W' cons, (o, K, %K), or

5. S has a transition (qo, @, a, g1, pushk) where k > 2, m’ = ¢(a)m, and in cons,_; (o, K, B¥)
there is a run descriptor (g1, ®",®"~!,..., ®!,m,q’) such that &' C Wi for 1 <i<k—1
and for k+1<i<n,and ®* C Uk Uk=1..... ¥l cons, (a, K, XK).

Notice that the sequence cons, is monotone with respect to both z and £X: for &K C ¥/K
and each z € N we have cons, (o, K, %) C cons, 1 (o, K, ¥'%). Independent of z € N, the
domain and range of cons, are fixed finite sets whence there is some z,, € N such that
cons,__ = cons,___j. This fixpoint is denoted as cons. Next, we define types of stacks of
arbitrary level.

» Definition 4.5. We define type(s*) for each k-stack s* (for 0 < k < n) by induction on
the structure of s¥. Assume that k = 0 and s* = (o, K,tX) where a € I, 1 < K < n,
and t¥ is a K-stack such that type(t%) is already defined. In this case we set type(s*) =
cons (a, K, type(t¥)). Otherwise k > 1; if s* is empty, we set type(s”) = 0. Finally, assume
that k > 1 and s* = t* : t*~1 such that type(t*) and type(t*~!) are already defined. In this
case we set type(s¥) = type(t¥) : type(tF1).

Observe that type(s® : sk=1 ¢ ... 1 s!) = type(s¥) : type(s*~!) : --- : type(s!). From

Definition 4.3 it follows that we have (¢, X", X771, ..., SFHl m ¢/) € Uk . Uk=1 ... Wl if
and only if in W! there is a run descriptor (¢, X", X"~1 ... %1 m, ¢') such that ¥ C ¥?
for | +1 < ¢ < k. It follows that the second condition of Lemma 4.2 for one value of [
immediately implies this condition for all other values of [.

10

Variants of Collapsible Pushdown Systems

The proof of the “1=-2” implication of Lemma 4.2 is almost a straightforward induction
on the length of the run (we prove it for [= 0), and is contained in Appendix B (the proof is
in fact slightly complicated because we are using P<1(7") instead of P(7™) in the definition
of type, but these are just technical complications). The opposite implication follows from
[11], and also follows from the facts proved later in this paper: we not only prove that the
run (from item 1 of the lemma) exists, but we construct a deterministic CPS which simulates
some (arbitrarily chosen) such run.

Next, let us calculate the number of run descriptors.

» Proposition 4.6.

n . 1
YT <ITO < 5 XPr—1(41QP%).

k=1

4.1 The algorithm

Let us now describe the algorithm for the emptiness problem. By Lemma 4.2 there is an
accepting run from the initial configuration if and only if (qr, 0,0, ...,0,m,¢’) € cons(L, 1,0)
for any m and any accepting state ¢’, where g; is the initial state and L the initial stack
symbol (recall that the type of an empty stack is empty). Thus it is enough to calculate
the sets cons(a, K, XX) for all values of o, K, X¥. We do that directly from Definition 4.4.
Notice that it can be done in time polynomial in the size of 7° and in the number of triples
(o, K, 2K), which by Proposition 4.6 are n — 1 times exponential in the number of states,
and polynomial in the size of the stack alphabet.

Let us remark that in the same way we can check whether from any configuration (g, s)
there is an accepting run: it is enough to calculate type(s) (the algorithm is n — 1 times
exponential in the number of states, and polynomial in the size of the stack alphabet and
in the size of s).

5 Computing the types

In this section we show that a CPS can at each moment maintain the type of its current stack.
In fact the same can be done for any homomorphism, defined as follows. A stack algebra of
level n A = (A%, AL ... A™) over a stack alphabet I is an algebra which has n + 1 sorts (of
level 0,1,...,n) and for each 1 < k < n operations empty® : A¥, comp® : AF x AF—1 — Ak
(which we denote using the colon symbol), and cons(a, k,-) : A¥ — A° for each a € T. A
typical stack algebra of level n is the algebra of all stacks: in the sort of level k we have
stacks of level k; empty* returns an empty stack of level k, comp¥(s*, s*=1) = s* : s¥~1 puts
stack s*~! on top of stack s¥, and cons(a, k, s¥) constructs the 0-stack with label and a
link to s*. Notice that it is in fact the free algebra (without generators). But the set of all
run descriptors is also a stack algebra of level n: P(7T%) is the sort of level k, and the empty*
operation returns the empty set. Moreover type is the unique homomorphism between these
two algebras.

Let A = (A% A',... A™) be a finite stack algebra of level n (letter A is also used to
denote the input alphabet), and f the unique homomorphism from the algebra of stacks
to A. We define f-driven n-CPS’s as an extension of n-CPS’s which work as follows. The
transitions of an f-driven n-CPS are elements of

Q><A"><A”’1><-~~><A1><I‘><(U{k}xAk)xAxQxOPIC‘.
k=1

Pawet Parys

n—1.

From a configuration (q,s" : s -2 s': (a, k, t*)) we can perform a transition

(, F(s™), F(s" 1), f(sh) 0k, f(27), a0, op),

which reads letter a, changes state to ¢/, and performs operation op on the stack. In other
words, the set of transitions which can be applied to a configuration depend not only on
the state and the topmost stack symbol, but also on the values of f on all stacks s* (the
topmost i-stack with removed its topmost (i — 1)-stack) and on the stack ¢* (the stack to
which we have a link in the topmost 0-stack). The size of an f-driven n-CPS is the number
of its transitions.

We have the following lemma (which is very similar to Theorem 3 in [4]). It says that a
CPS can maintain the values of f applied to its current stack, so its transitions may depend
on these values (like it is for an f-driven CPS). The proof is not difficult: we just have to
keep in the topmost symbol of each substack (of any level) the value of f applied to this
substack.

» Lemma 5.1. Let S be a strongly deterministic f-driven n-CPS. Then there exists a strongly
deterministic n-CPS S’ such that T(S) = T(S'). For every F C Q we have L(S,F) =
L(S, F) (in particular 8" contains the states of S); if from every reachable configuration of
(8, F) there is an accepting run, the same holds for (S, F). The size of S’ is linear in the
size of S, and 8’ can be computed in such time.

The proof of Theorem 1.2 becomes now straightforward. Notice that, for an n-stack
s=s":8""1:... sl (a,k,tF), it is enough to know a and k and type(t¥) and type(s?)
for all 1 <4 < n in order to determine type(op(s)) for any stack operation op (for example
type(pop’ (s)) = type(s™) : type(s™ 1) : --- : type(s?), etc.). Moreover type(op(s)) determines
if there is an accepting run from configuration (g, op(s)) (by Lemma 4.2 taken for [= n such
run exists if and only if (¢,m,q") € type(op(s)) for some m and some ¢’ € F).5 Denote by

good(q, op) the set of those tuples

(type(s™), type(s™ 1), ..., type(s'), a, k, type(t"))

for which there is an accepting run from configuration (g,op(s)). Then from (S, F) we
construct a type-driven n-CPS (S, F'), in which from every reachable configuration there
is an accepting run, as follows. For each transition (g, «, a,q’,op) of S, to &’ we add those
transitions

(q, o, "=t Wl ok, 2* a, ¢, op)

for which (U™, ¥"=1 . WUl o k ¥*) € good(q',op). Soin S’ a transition will be performed
only if it leads to a configuration from which there is an accepting run. Moreover (S', F)
accepts the same words as (S, F) since we do not remove transitions of accepting runs.
By applying Lemma 5.1 we obtain from (S’, F) a deterministic n-CPS having the same
property.” Let us calculate the size (the number of transitions) of S’ (hence of the resulting n-
CPS). Notice that |7"| and |7"~!| are polynomial in the size of S, and |T¢| = |T*1[- 217"
for i <mn—11isn—1—1 times exponential in the size of S. In particular |7| is the greatest
and is n — 2 times exponential in the size of S. The transitions of &’ are defined for subsets
of 7%, hence their number is at most n — 1 times exponential in the size of S.

6 This is particular means that op can be applied to s: if op = popk (or colk) would result in an empty
k-stack, type(op(s)) would be empty.
7 In order to obtain strong determinism, an additional step has to be performed.

11

12

Variants of Collapsible Pushdown Systems

6 Reconstructing a run

In this section we sketch how Theorem 1.1 can be proved. Fix some n-CPS S (with states
@), for which T'(S) is deterministic. As a first step we would like to construct a deterministic
type-driven n-CPS R which would uniquely choose some run of § in the following sense.
System R has the same stack alphabet as S, and for each state ¢ € @ of S, system R also
has the state g, as well a state start, o for each a € A. Assume that S has a run whose labels
form a word from £*a (for some a € A), starting in a reachable configuration ¢ = (g, s), and
ending in a configuration d = (¢’, s’) (by determinism of T'(S), there is at most one such d
for given a and ¢). Then in R there is a run from (start, 4, s) to d using only e-transitions,
and not using states from @ (except its last configuration, which is d).

Assume we have such R.® Then we can construct a strongly deterministic type-driven
n-CPS &’ such that T'(S) = T(S’) as follows. Let G be the e-closure of the configuration
graph of §, and G its set of nodes; in other words G contains the initial configuration and all
configurations reachable by a run which ends by a non-e-transition. Let also H C G be its
subsets containing only those of them, from which there exists a run containing some non-¢-
transition (i.e. a run to another configuration from G). The set of configurations of §” which
have state from @) are exactly those from H. In particular the initial configuration of & and
S’ is the same. All non-e-transitions will be going from elements of H (i.e. configurations
with state from @). For each such configuration ¢ = (g, s), type determines the labels of
edges outgoing from c in G. Indeed, there is an edge from ¢ to some d € G labelled by some
a € A if and only if there is a run from ¢ whose labels form a word from e*a; thus if and
only if (q,m,q’) € type(s) for any element m which is the image of a word from £*a and for
any ¢'. Notice also that configuration d is unique for given ¢ and a, by determinism of T'(S).
Moreover, type determines whether d € H: this is the case when there is a run from ¢ whose
labels form a word from e*ac*A; thus when (g, m,q’) € type(s) for any element m which
the image of a word from e*ac*A and for any ¢’. In such situation we add an a-labelled
transition to the state start, , which does not change the stack (e.g. we make a push and
then a pop). Then the system will simulate deterministically some run to d, making only
e-transitions (this is already realized by R). Otherwise (for d € G\ H), we just make an
a-labelled transition to a dead state qg;e, from which there are no more transitions. This
way T'(S) = T(S'), and &' is strongly deterministic.

It remains to construct R. Let ¢ = (g,s™ : s" "1 :---: s%) be a configuration such that in
type(s®) we have a run descriptor o = (¢, U™, W"~1 ... Wl m ¢') such that ¢ C type(s’)
for 1 < i < n. Lemma 4.2 says that then there exists a run from ¢ which evaluates to m
under ¢ and ends in state ¢’. But how to simulate it using a type-driven CPS? It is easy to
perform some first step of such run; we just need to follow a transition used in Definition
4.4 to add o to type(s”). Moreover this leads to a configuration which again satisfies the
same condition, so we can repeat the same. When we reach a configuration in which the
first point of Definition 4.4 is used, we are done: we have finished the run.

The problem is that by such construction we can obtain an infinite run (e.g. a loop). The
reason why the “2=-1" implication of Lemma 4.2 holds is that cons is defined as the smallest
fixpoint, not any fixpoint. According to the definition of cons,, after a push operation it is
enough to use cons,_; both for the 0-stack which was topmost till now, and for the new
topmost 0-stack. Thus we should keep the maximal allowed value of z with each 0-stack,

8 In the actual construction R is slightly more complicated (we keep some additional information on the
stack).

Pawet Parys

and decrease this value for each push operation. Then for calculating the type of a bigger
stack we should only use this cons,_1, not whole cons.

There is also a technical difficulty that the values of z stored with each symbol have to
be reset everywhere to zo (recall that zo is a number for which cons = cons,_) when we
finally reach a configuration from G, and we want to run the simulation again. Of course
we cannot do this explicitly, but we can just put some marker on the stack, which denotes
that the value of z is 2z, everywhere below. Then above the marker we work as previously,
and we assume that bellow the marker all symbols have z,, on its second coordinate. More
precisely, we need a separate kind of marker for each level: in each k-stack we will mark
the bottommost (k — 1)-stack in which the z values are actual; we also need another kind
of marker to denote the 0-stacks in which the z values in the link are not actual.

» Example 6.1. Consider the 1-CPS having the following transitions.

(J—7Q1,a7q2,pUShl;,1) (xﬂql?nsaqlaPUSh:lc,l) (x,(h,f‘?afh,POPl)
(z,492,¢,q3,push, 1) (2,43,¢, g2, pop")

Then the types contain the following run descriptors (not all are shown).

(Q1a 0,e*a, q2) € ConS(J—7 1, Q)) (QQ7 {T}a e*a, QQ) € cons;;(x, 1, ®)
7= (q1,€"a, ¢2) € type([L]) o = (q2,€*a, qa) € type([Lz])
(q1,{7},e*a,q2) € consy(z,1,0) (g3,{7,0},e*a,q) € cons;(z,1,0)
(g3,{7},e*a, q2) € consy(x,1,0)

—

The key decision to take is in configuration (g3, [Lzz]). By just choosing the run descriptor
(g3, {7, 0},€*a, q2) from cons, for the smallest z (z = 1) we make pop! leading to (gz, [Lz]).
Now the only possibility is to use (g2, {7},c*a,¢2) € consz(z,1,0), and to perform pushi,’l.
If we just went to (g3, [Lzz]), we would fall into a loop. Also restricting z used in this
configuration (for the new topmost z) does not help. We should instead go to a configu-
ration (g3, [La’2']), where 2’ is a version of 2 which implies that only z < 2 can be used.
Then o ¢ type([L2']), so we cannot perform the pop! transition again. We have to use
(g3, {7}, €%a, g2) € consy(x,1,0), thus we perform push;m1 and we leave the loop.

6.1 Bound on the run length

Next we notice that the method described above not only guarantees that the obtained run
is finite, but also gives a concrete bound on its length. Let us repeat that in the system R,
which deterministically simulates one run of S, we keep with each stack symbol a natural
number z (which is between 0 and z.,). Whenever we perform some pushk operation, this
value is decreased in the topmost 0-stack, both in the original (k — 1)-stack and in its copy.
We want to argue that every run working like that will terminate. In order to obtain that
we define potential of a stack.

» Definition 6.2. Let 0 < k < n, and let s* be a k-stack over alphabet I' x {0,1, ...,z }.
We define a natural number pt(s*) (the potential of s*) by induction on the structure of s*.
When k = 0 and s* = ((a, 2), K, t¥), we take pt(s¥) = 22.
When k > 1 and s* is empty, we take pt(s*) = 0.
When k > 1 and s* = tF : t¥~1, we take

pt(sk) — pt(tk) + 2pt(tk*1).

13

14

Variants of Collapsible Pushdown Systems

It is not difficult to see that the potential is decreased by each operation (assuming that
the push operations behave as described above). Thus the length of the run reconstructed
by R is bounded by the potential of the starting configuration. If we forget about the system
R, we obtain the following strengthened version of the ‘2=-1” implication of Lemma 4.2 (for
l=mn).

» Lemma 6.3. Let ¢ = (q,) be a configuration of S, and let s be the stack over alphabet
I x{0,1,...,20} obtained from s by appending z~ to each stack symbol. Assume that
(g,m,q’) € type(s). Then there exists a run from c¢ which evaluates to m under p, ends in
state ¢', and has length at most pt(3s).

Let us conclude by a proof of Theorem 1.5. By assumption some accepting run exists
from the initial configuration (g, s;). By Lemma 4.2 this means that (¢;,m,q’) € type(sy)
for some m € M and some accepting state ¢’. Using the above lemma we obtain back an
accepting run, but now its length is bounded by the potential of the initial configuration.
Notice that the potential is n times exponential in z,,. Moreover z., is n—1 times exponential
in the number of states of the system, which follows from Proposition 4.6. Thus we obtain
an accepting run of length 2n — 1 times exponential in the size of the system; a precise
calculation gives the value written in Theorem 1.5.

7 Conclusions

Let us mention that the methods presented in this paper can be used in a much more general
context. In [11] we define types of stacks which characterize a lot of interesting kinds of runs,
called top*-non-erasing runs, pumping runs, k-returns, k-colreturns; additionally a general
definition is given, which allows to consider also other classes of runs having some properties.
To be concrete: we can consider for example a class of runs such that the topmost k-stack
at the end is equal to the topmost k-stack at the beginning, and is indeed obtained as its
copy. It is almost immediate to generalize the results of this paper to all these classes of
runs:

The number of run descriptors for these more general types is n — 1 times exponential.

The type function is still a homomorphism of stack algebras, so it can be computed by

the CPS, as in Section 5.

We can deterministically reconstruct runs of that kind, like in Section 6.

The length of such runs can be bounded like in Lemma 6.3.
Observe that most of these classes of runs cannot (at least in any natural way) be defined
using p-calculus in the configuration graph.

Techniques similar to ours were used independently in a recent paper [3]. Moreover some
of our results can be deduced from another independent work [6].

Future work. One open question is whether the hierarchy of word languages recognized by
collapsible pushdown systems is strict (if every two its levels are different). Notice that we
only show that the hierarchy is infinite (that there are infinitely many different levels). One
possible way to obtain the strictness would be to show that if two levels coincide, then all
higher levels have to coincide (however we do not see any easy reason for that). A second
way would be to improve the bounds given in our proof.

It is also an open problem whether these languages are context-sensitive.

A second direction would be to extend our approach of testing emptiness to the u-
calculus model checking problem (and obtain a simple algorithm for that problem, which
uses collapsible pushdown systems directly).

Pawet Parys

Another interesting question is about the relation between the classes of word languages

recognized by collapsible and non-collapsible pushdown systems. It is known that on level
2 these classes coincide [1] (unlike for trees and graphs); nevertheless the conjecture is that
for higher levels these classes are different.

—— References

1

10

11

12

13

14

15

16

17
18

K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2
for string languages. In V. Sassone, editor, FoSSaCS, volume 3441 of Lecture Notes in
Computer Science, pages 490-504. Springer, 2005.

A. Blumensath. On the structure of graphs in the Caucal hierarchy. Theor. Comput. Sci.,
400(1-3):19-45, 2008.

C. Broadbent, A. Carayol, M. Hague, and O. Serre. A saturation method for collapsible
pushdown systems. To appear in ICALP, 2012.

C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion schemes and logical
reflection. In LICS, pages 120-129. IEEE Computer Society, 2010.

C. H. Broadbent and C.-H. L. Ong. On global model checking trees generated by higher-
order recursion schemes. In L. de Alfaro, editor, FOSSACS, volume 5504 of Lecture Notes
in Computer Science, pages 107-121. Springer, 2009.

A. Carayol and O. Serre. Collapsible pushdown automata and labeled recursion schemes.
Equivalence, safety and effective selection. To appear in LICS, 2012.

A. Carayol and S. Woéhrle. The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In P. K. Pandya and J. Radhakrishnan, editors,
FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages 112-123. Springer,
2003.

D. Caucal. On infinite terms having a decidable monadic theory. In K. Diks and W. Ryt-
ter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science, pages 165-176.
Springer, 2002.

W. Damm. The IO- and Ol-hierarchies. Theor. Comput. Sci., 20:95-207, 1982.

M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS, pages 452-461. IEEE Computer Society, 2008.

A. Kartzow and P. Parys. Strictness of the collapsible pushdown hierarchy. CoRR,
abs/1201.3250, 2012.

T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
M. Nielsen and U. Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes in Computer
Science, pages 205-222. Springer, 2002.

N. Kobayashi and C.-H. L. Ong. Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. In S. Albers, A. Marchetti-Spaccamela, Y. Matias,
S. E. Nikoletseas, and W. Thomas, editors, ICALP (2), volume 5556 of Lecture Notes in
Computer Science, pages 223-234. Springer, 2009.

A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170-1174, 1974.

A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38-43,
1976.

C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS, pages 81-90. IEEE Computer Society, 2006.

P. Parys. On the significance of the collapse operation. Accepted to LICS 2012, 2012.

S. Salvati and I. Walukiewicz. Krivine machines and higher-order schemes. In L. Aceto,
M. Henzinger, and J. Sgall, editors, ICALP (2), volume 6756 of Lecture Notes in Computer
Science, pages 162-173. Springer, 2011.

15

16

Variants of Collapsible Pushdown Systems

A Variants of definitions

Our definition of a CPS of level n deviates from the original one from [10] in several aspects.

1. Instead of storing links which control the collapse operation, we store the content of the
stack where the link points to. Note that this is only a syntactical difference.

2. Instead of having one collapse operation whose level is controlled by the topmost element
of the stack, we have one collapse operation for each stack level. Note that we can
simulate a classical system by extending the stack alphabet so that the stack symbol
stores also the level of the stack stored in the 0-stack; then it depends on the topmost
symbol which collapse operation should be used.

3. Finally, for reasons of uniformity, the definition of the push}m operation differs from
the original one. If we apply this operation to a stack s we do not create a link to the
topmost 1-stack s of s but to pop!(s'). Thus, the effect of using a collapse of level
1 in the original definition is always equal to the effect of applying pop' while in our
definition it is always equal to the effect of applying pop® twice. Nevertheless, we can
simulate every system of the original definition by simulating collapse of level one with
a pop! operation directly.

Due to these observations, it should be clear that every n-CPS according to our definition can

be converted to an “original” n-CPS, and vice versa, without changing any of its properties

considered in this paper. Thus our theorems stay true for the original definition of an n-CPS.

Let us also mention that CPS’s are often used to generate terms (ordered, ranked, node-
labelled trees) instead of edge-labelled trees. The reason is that higher-order recursion
schemes (to which CPS’s are equivalent) generate terms. However the definition of generat-
ing a tree by a CPS is much more natural when we consider edge-labelled trees. Of course
our theorems can be restated using terms, as there is only a syntactical difference, however
this would be artificial.

B Implication “1=2" of Lemma 4.2

Proof of the “1=2" implication of Lemma 4.2. The main technical difficulty is that we
have to ensure that the n-th level component of our run descriptors has size at most one
(otherwise the lemma follows directly from the definition). To deal with this, we mark the
runs with some additional information. Let us introduce some notation: we say that a run
R is described by a run descriptor (g, m,q’) € T™ if the state of the first configuration of R
is ¢, the state of the last configuration of R is ¢/, and R evaluates to m under .

Let R be a run. We assign to it a marked run R. The idea is that in R we store with each
n-stack what will be the run descriptor describing the suffix of R after this n-stack becomes
the whole stack of a configuration (or that this n-stack will never be used as the whole stack).
Thus to each n-stack (in the stacks of R) we assign an element of P<;(7™). To perform
this marking we should think about stacks as elements of the free stack algebra (i.e. terms),
rather than sequences of elements. In stacks of R (which we called marked stacks) instead

"=1 we have a composition s" :q s"~! for each 2 € P<1(7™). For

of one composition s” : s
example, having an n-stack ((e" :q, $1) :q, S2) i, S3 (Where € denotes the empty n-stack,
and s1, 89,83 are (n — 1)-stacks), the whole stack is marked by 3, (€" :q, 1) :q, S2 is
marked by Qo, and €" :, s1 is marked by Qj; the empty n-stack is always marked by 0.
Below, we omit the subscript 2 from the composition, if it is not important.

Let us describe again more precisely how the markings are assigned to n-stacks. Consider
some configuration ¢ of R, and some n-stack in c. We look for the first configuration d of R

when this n-stack becomes the whole stack of d (but precisely this n-stack, not some other

Pawet Parys

n-stack identical to it); let o be the run descriptor describing the suffix of R from d. Then
in R we mark this n-stack (in the configuration corresponding to ¢) by {o}. If such d does
not exists, we mark this n-stack by (). In particular the whole n-stack of ¢ is marked by
the run descriptor describing the suffix of R starting in ¢. Let us emphasize that R is not a
run of some system; it is just R with some markings added to the stacks (in particular by
removing all markings from R we obtain R).

The key observation is that when some n-stack becomes the whole stack of a configura-
tion, then no other copy of this stack is present (this is obvious, as a term cannot contain
itself as a subterm). Thanks to this we have good properties of the markings for consecutive
configurations, as described below. Let s = s : 5”71 : ... : s% and t be stacks of two con-
secutive configurations in E, and op the operation performed between these configurations.

If op = pop* or op = col®, every n-stack present in both s and t is marked by the same

set (in particular for & = n this includes the whole ¢, as it is taken from s).

If op = push”®, then

mgt Tl (R g g2 50y g gk g0

where for 0 < i < k — 1, the i-stacks &%, 5% are obtained from s’ by replacing some
markings in it by 0.

srosnlo 082 (B s0) s, where 8 = s? for i # k, and
the k-stack linked in u® and 5% are obtained from s* by replacing some markings in it

by 0.

If op = push}lﬂk, then ¢t =

Next, we define types for marked stacks (i.e. stacks of R), by induction on their structure.
Let s* be a marked k-stack for some 0 < k < n. If k = 0 and s = (a, K,t5) we set
type™ (s*) = cons(a, K, type™(t%)). Otherwise k > 1. If s* is empty, we set type™(s¥) = (.
If k <nand sk =% : t*71 we set type™(s*) = type™(t¥) : type™(t*~1). But for k = n and
sk =tk 1 t*71 we set type™(s¥) = (type™(tF) : type™(tF~1)) N Q.

Trivially (thanks to monotonicity of cons and of composition) we have type™(s*) C
type(m(s¥)) for any marked k-stack s*, where 7(s*) is the k-stack obtained from s* by
removing the markings. Notice also that type™(s™) for any n-stack has at most one element.

Assume now that R is a run described by a run descriptor (go, m’, ¢') (which means that
the first state of R is qq, the last state is ¢/, and R evaluates to m’ under ¢). Let R be a
marked run corresponding to R, and let (qo,s™ : s"7 ! : --- : %) be its first configuration.
We will prove that then

(g0, type™ (s™), type™ (s 1), ..., type™(s'),m/, ¢) € type(s®).

Then the thesis of the lemma for [= 0 follows immediately, and, as observed below Definition
4.5, this gives us the thesis of the lemma for any [. Similarly, the above implies for any
0 <1 < n property denoted (*):

(0, type™ (s™), type™ (s" 1), type™ (s"1), m/, ¢') € type(s' 1 571180,

We make an induction on the length of R. The rest of the proof is completely straight-
forward and just analyzes all cases of our definitions. Denote s° = (a, K,t¥), and LK =
type™ (), and U! = type™(s?) for 1 < i < n, and p = (qo, Y™, ¥~ ... Wl m/ ¢'). We
want to prove that p € cons(a, K, 2%).

If R has length 0, we have ¢y = ¢/, and m’ = 1,4, so by point 1 of Definition 4.4 we obtain
p € cons(a, K, %X). The opposite case is that R has positive length. Let (qo, @, a, g1, 0p) be
the transition used in the first step of R, let d be the configuration of R after this transition,

17

18

Variants of Collapsible Pushdown Systems

and let S be the suffix of R without the first step. We have m’ = ¢(a)m, where m is the
image of S under . We have four cases according to the operation op.

Assume first that op = pop”. Then d = (g1,s™ : s~ ' : -+ : s¥). From the induction
assumption for the shorter run S and from property (*) for [= k we know that

(qu, O™, w1 O m) € TP

By point 2 of Definition 4.4 we obtain that p € cons(a, K, X).

Next, assume that op is a collapse operation. As the link in s° is of level K, necessary
op =col®. Then d = (q1,5™ : s" 1 : -+ : $5K+1 ¢t/ From the induction assumption for S
and from property (*) for I = K we know that

(Qh \Iln; \Ilnila AR \IIKJrlvqu,) € EK

By point 3 of Definition 4.4 we obtain that p € cons(a, K, ©X).

Next, assume that op = pushj . Then d = (g1, 5" : 5"t 1 -+ : 521 (51 : s°) : u) where
u® = (B,k,5%), and 5@ = s for i # k, and ¥, 3% are obtained from s* by replacing some
markings in it by (). Denote ®! = type™(s*) for 2 < i < n, and ®* = type(5' : s"). Notice
that ® C ¥ for 2 < i < n, and ®' C ¥ : cons(a, K, XK), and type™(u’) C cons(3, k, U¥)
(because by replacing some markings by (), we can only remove some run descriptors from
type™). From the induction assumption for S we know that

(g, @™, "1 ... ®' m, q¢) € type™(u’) C cons(B, k, UF).

By point 4 of Definition 4.4 (taken for a very big z for which cons,_; = cons) we obtain
that p € cons(a, K, ¥K).
Finally, assume that op = pushk. Then

bR (Rl g2 50 g g2 50,

d=(q1,5" : s
where for 0 < i < k — 1, the i-stacks &%, 5 are obtained from s’ by replacing some markings
in it by (. Denote ®* = ¥’ for k+1 <1i < n, and ®F = type™(s¥ : 571 : 5572:35%) and
' = type™(§%) for 1 < i < k—1. Notice that ®* C Wi for 1 <i < k—1andfor k+1<i<mn,
and that ®% C Wk : Wk=1. W' : cons(a, K, ¥K), and type™(5°) C cons(a, K, ¥X). From
the induction assumption for S we know that

(qr, @, 0", @' m, ¢) € type™(3%) C cons(a, K,).

By point 5 of Definition 4.4 (taken for a very big z for which cons,_; = cons) we obtain
that p € cons(a, K, X5). <

C Computing the types

In this section we prove Lemma 5.1. To simplify the construction, we allow allow the system
to perform a new operation called rew,, for each a € I'. Operation rew,, applied to a stack
s, returns s with the symbol in its topmost 0-stack replaced by « (the link in the topmost
0-stack is not changed). It is easy to eliminate operations rew, from the system.

» Proposition C.1. Let S be a strongly deterministic n-CPS using rew operations. Then there
exists a strongly deterministic n-CPS S’ not using rew operations such that T'(S) = T(S’).
For every F C @ we have L(S, F) = L(S', F) (in particular S’ contains the states of S); if
from every reachable configuration of (S, F') there is an accepting run, the same holds for
(S8, F). The size of &’ is linear in the size of S, and &’ can be computed in such time.

Pawet Parys

Proof. Each O-stack will be represented in &’ by two 0-stacks: the lower one will be respon-
sible for keeping the link, and the upper one for keeping the symbol. Thus from the initial
configuration we push another initial stack symbol on the stack. Every pop! is replaced by
a sequence of two pop! (i.e. we perform a pop! to some fresh auxiliary state, from which
the only transition again performs pop!). Every push}l’k is replaced by a sequence of two
push;k. Every col® is replaced by a sequence of pop! and col”. Every rew, is replaced by a
sequence of pop' and push}],l. When the original transition was labelled by a letter from A,
the first of the two operations will be labelled by this letter, and the second will be labelled
by €. However if the original transition leads to a dead state, we have to perform only the
first operation of these two (or just any operation) and block in this dead state.” <

Lemma 5.1 is generalized as follows to systems using rew operations.

» Lemma C.2. Let S be a strongly deterministic f-driven n-CPS using rew operations.
Then there exists a strongly deterministic n-CPS S’ such that T(S) = T(S'). For every
F C Q we have L(S,F) = L(S', F) (in particular 8" contains the states of S); if from every
reachable configuration of (S, F) there is an accepting run, the same holds for (S', F). The
size of 8" is linear in the size of S, and 8’ can be computed in such time.

Proof. Let A = (A% Al ... A™) be the finite stack algebra of level n to which homomor-
phism f leads. The stack alphabet of &’ will be

I"=A"x A" P x ... x A xT' x (O{k}xAk).
k=1

For any stack s over alphabet I, let 7(s) be the stack over alphabet I' obtained from s by
dropping from every symbol coordinates other than I". System S’ will have all states @ of
S, and some auxiliary states which are only needed as intermediate states for sequences of
operations.

We want to preserve the following properties (*) for each reachable configuration (g, s)
of §:

1. for each O-stack s = (a, K,t¥) of s, the last two coordinates of a are K and f(m(tX)),
and
2. for each 1 < k < n, and each stack t = ¢" : --- : t¥ : t*~1 which can be obtained from

s by applying some number of pop’ operations for j > k (possibly for different j), the

topmost symbol of t*~1 stores f(w(t¥)) on the appropriate coordinate.

Thus every 0-stack stores the value of f for the stack which is in the link, and if this O-stack
is the topmost in some (k — 1)-stack, it stores the value of f for the k-stack below. Notice
that for some O-stacks some of the coordinates are not used (their value is meaningless).
However in the topmost symbol of the whole stack all coordinates are set properly. Thus
having property (*) the system &’ “knows” which transition of the f-driven CPS S can be
performed from a configuration, basing only on the state and the topmost stack symbol.

Tt is easy to ensure property (*) for the initial configuration by just appropriately choosing
the initial stack symbol. Whenever S performs some stack operation, we perform the same
operation in &', and then we have to update the values of f stored in the symbols. Observe
however that we only need to appropriately set the values of f in the topmost stack symbol;

9 As otherwise from the auxiliary configuration there would be no run having a non-e-transition, what
is required by the definition of strong determinism.

19

20

Variants of Collapsible Pushdown Systems

for all other stack symbols property (*) remains true.l® Assume that the topmost stack

symbol before the operation was (U™, W"~1 ... Wl o K, %K), After an operation op is

performed, we proceed as follows.

1. Assume that op = rewg. Then we replace the appropriate coordinate by 3: we perform
rewg for g/ = (U, 01 0l g K, 5K).

2. Assume that op = pop* or op = col®, and the topmost stack symbol after the opera-
tion is (@7, ®"~1 ... &1 3 L,QL). Then we should replace it (using rew operation) by
(On, =l Wkt ok okl @l B, L, Q). Indeed, op changes only the topmost
k-stack, so the values W? for 4 > k + 1 are as before that operation. On the other hand
values ®° for i < k correctly describe the topmost k-stack by property (*).

3. Assume that op = push” for k > 2. Then we should replace the topmost symbol (using
rew) by (U7, wn=l @kl @k wh-l @l o K BK) where ®F = Wk gkl
Ul : cons(a, K,¥K). Indeed, we only need to update the value of f for the topmost
k-stack with its topmost (k — 1)-stack removed; it becomes ®F.

4. Assume that op = pushévj. Then we need not to perform rew, as we can just write

the correct symbol using the push operation. The symbol which we should push is
(On, =t W2 @l 35 W) where ®! = Ul : cons(a, K, ¥K). Indeed, we make the
changes only in the topmost 1-stack; the topmost 1-stack with its topmost O-stack re-
moved now grows by the old topmost 0-stack; the link in the topmost 0-stack points to
the (previously) topmost j-stack with its topmost (j — 1)-stack removed, so its image
under f is U7,

This way we simulate exactly system S, and we keep track of the values of f. Like
previously, when the original transition was labelled by a letter from A, the first of the two
operations will be labelled by this letter, and the second will be labelled by €. However if the
original transition leads to a dead state, we have to perform only the first operation of these
two and block in that state. Notice that &’ has only at most two times more transitions
than S. Finally, we eliminate rew operations from S’ using Proposition C.1. |

D Proof of Proposition 4.6

Proof of Proposition 4.6. We first prove that 2|7%| < exp,,_;_,(4|Q|?) for 0 <k <n—1.
Indeed, for k = n — 1 we have 2|7"| = 2|Q[(|Q| + 1) < 4|Q|?. Then we proceed by induction
(observe that 2z < 2* for any z):

2 TH1 = 2|T% x P(TH)| = 2T*| - 27" < 2271 < eap,_4(41QP).
Notice that |77 < |77 !,and for 1 <k <n —1
2|7k < 27| TF| = |7%).
By adding these inequalities for each k we get

n—1 n—1 n
77 +2) |TH <D ITH, so Y |TH <|T°).
k=1 k=0 k=1

10 Here it is important that all symbols of a k-stack except the topmost one keep only internal information
about this k-stack; thus copying a k-stack invalidates only the information in its topmost symbol.

Pawet Parys

E Reconstructing a run

In this section we construct a system R described in Section 6.

Fix some n-CPS § = (I, A,Q, qr, L, A). Recall that in Section 4 we have defined a
morphism ¢ : (AU {e})* — M (the same construction works for any morphism into a finite
monoid M). Whenever we consider functions type and cons, they are used to calculate types
with respect to S (not with respect to any of the constructed systems). System S gives us
some number z, for which cons = cons,_ . For some f we will construct a deterministic
f-driven system R (using rew operations) with stack alphabet I'g = T x ... (i.e. product
of T' with some set) and set of states Qr 2 Q U {starty ,, : ¢ € Q,m € M). For any stack s
over I'g, let m(s) be the stack over alphabet I obtained from s by leaving in every symbol
only the first coordinate. Our goal is to obtain the following lemma.

» Lemma E.1. Let ¢ = (starty ., s) be a configuration of R such that (q¢,m,q") € type(n(s))
for some ¢'. Then there exists a run of R from ¢ to some (¢',s") such that in S there is a
run from (q,7(s)) to (¢’,7(s")) which evaluates to m under .

We construct R in two steps. First we construct a system R’ which only works correctly
if started with a stack s of a special form. In the second step we remove this restriction.

Let IV =T x {0,1,..., 200 }. Stacks over alphabet I'" are called annotated stacks. For any
annotated stack s, let w(s) be the stack over alphabet T" obtained from s by leaving in every
symbol only the first coordinate. Next, we define the type type® of an annotated k-stack,
being again a subset of 7%. The only difference comparing with types of normal stacks is
that for a 0-stack containing number z we take cons, instead of cons.

» Definition E.2. We define type®(s*) for each annotated k-stack s* (for 0 < k < n) by
induction on the structure of s*. Assume that k = 0 and s* = ((q, 2), K, tX) where a € T,
z€N,1< K <n,and t¥ is an annotated K-stack such that type®(t¥) is already defined.
In this case we set

type®(s¥) = cons, (a, K, type” (t")) .

Otherwise k > 1; if s* is empty, we set
type®(s*) = 0.

Finally, assume that & > 1 and s* = t* : t*=1 such that type®(t*) and type®(t*~1) are
already defined. In this case we set

type®(s*) = type®(t*) : type®(t* 7).
We will define a deterministic type®-driven n-CPSR’' = (I",0,Q’, q1, (L, 200), A’) (using

rew operations), where Q' 2 Q U (Q x M), such that the following lemma holds. Then in
Subsection E.2 we construct R basing on R'.

» Lemma E.3. Let ¢ = ((q,m),s) be a configuration of R’ such that every symbol in s has
Zoo O its second coordinate. Assume that (q,m,q') € type(mw(s)) for some q'. Then there
exists a run of R’ from ¢ to some (¢',s') such that in S there is a run from (q,7(s)) to
(¢',m(s")) which evaluates to m under .

This is an immediate consequence of the next two lemmas.

» Lemma E.4. Let ¢ = ((¢,m),s) be a configuration of R’ such that (q,m,q’") € type®(s)
for some q'. Then either there exists an infinite Tun from c, or there exists a Tun from c to
some (¢',s") such that in S there is a run from (q,7(s)) to (¢’,7(s")) which evaluates to m
under .

21

22

Variants of Collapsible Pushdown Systems

» Lemma E.5. Every run of R’ has finite length.

Proof of Lemma E.3. Because cons = cons,__, and because every symbol of s has z,, on its
second coordinate, we see that type(m(s)) = type®(s). So we can use Lemma E.4; it gives us
a run which either satisfies the thesis or is infinite. The second case is excluded by Lemma
E.5. <

Before we will define R’, for every operation op (for stacks over I') we define its annotating
variant op (for annotated stacks) as follows:

pop" = pop*,

col 1:colk,

pushg (s" + "1 e st ((,2), K tK)) = pushig, gy p(s™ 0 st e st
(o, 2z — 1), K, t5)); it is undefined if z = 0,

pushk(sn sl st (o 2), KO tR)) = push®(s™ s 57 sh s ((a, 2—1), K EK));

it is undefined if z = 0.

Let us now describe the transitions of R’. There will be no transitions from states from
Q. Fix some argument of the transition function (where the state is from @ x M)

v = ((qo,m’),Q",anl, O (o, 2), K, EK,E).

We arbitrarily choose one run descriptor o = (g, ", U™, ..., W' m/, ¢) € cons, (a, K, %K)
such that U C O for 1 < ¢ < n; if there is no such run descriptor, there will be no transi-
tions from 7. In particular we have z — 1 > 0, as consg(a, K, ¥¥) = (). We analyze which
point of Definition 4.4 caused that o is in cons, (a, K, ©¥) (if there are several such points,
we just choose one of them). If this is point 1 (i.e. go = ¢’ and m' = 1), in R’ we change
the state to ¢’ and we do not change the stack (i.e. we set A'(y) = (¢',rew(q,z))). Any
other point gives us a transition (qo,a,a,q1,0p) € A such that for some m € M it holds
m/ = ¢(a)m. If op is pop® or col® we simply set A'(v) = (q1,0p). If op = push}ik, in R we
change the state to ¢, and perform rew(, ._) followed by push%ﬁg_l)’,C (i.e. A’'(y) performs
rew(q,.—1) and goes to some fresh auxiliary state, from which pushéﬁz_l), i is performed to
state q1). If op = push” (for k > 2), in R’ we change the state to ¢; and perform reW(q,-—1)
followed by op. Notice that in any case R’ simulates the annotating operation op on the
current stack.
Next we prove that R’ defined above satisfies Lemmas E.4 and E.5.

Proof of Lemma E.4. This lemma follows immediately from the construction of R’. The
proof below is quite technical, because the definition of types is long, but nothing difficult
happens here. Let ¢ = ((qo,m’), s) be a configuration of R’ such that (go,m’,q’) € type®(s)
for some go. Decompose s = s : "1 :...: 5! ((a, 2), K,). By definition of type® (and
of the composition of types) the above implies that in cons_ (a, K, type®(tX)) there is a run
descriptor o = (go, U™, U*~1 ... Wl m’ ¢') such that U? C type?(s’) for 1 < i < n. Let
us concentrate on this run descriptor o which was chosen in the above construction of A’
(where 2 = type?(s?) for 1 < i < n, and ©& = type?(tX)). The construction of A’ also fixes
some point of Definition 4.4 which causes that o is an element of cons, (a, K, type®(tX)).

1. If it was point 1, we have go = ¢’ and m’ = 1,;. The next configuration of R’ is (¢, s),

and the run run to this configuration satisfies the thesis.

2-5. In any of points 2-5, the construction of A’ also fixes some transition (qo, a, a, g1, 0p) € A

and an element m € M such that m’ = ¢(a)m. It also gives us (if op can be applied
to s) a run of R, of length one or two, to the configuration ((¢1,m),0p(s)). Below we

Pawet Parys

show that (q1,m,q’) € type®(op(s)), and in the case of pop and col that op can be really
applied to s.

2. If op = pop¥, in U¥ there is a run descriptor 7 = (qr, @™, ®" 1 .. .7<I>k+1,m,q’) such
that ® C W for k+ 1 < i < n. In particular s* is nonempty (as empty stacks have
empty types), so we can apply pop* to s. We have op(s) = s : s" 71 : ... : 55 As

7 € type?(s¥), and @' C type?(s?) for k+ 1 < i < n, from the definitions of type® and of
composition of types we see that (¢1,m,q’") € type®(op(s)).

3. If op = col®, in type?(tX) there is a run descriptor 7 = (qy, ®", ®" "1 ..., @K+ m ¢)
such that ®¢ C ¥’ for K +1 < i < n. In particular t¥ is nonempty (as empty stacks have
empty types), so we can apply col™ to s. We have op(s) = " : s"7 1 ¢ ... gKHL K
As 7 € type®(tX), and ®' C type?(s’) for K + 1 < i < n, from the definitions of type®
and of composition of types we see that (q1,m,q") € type®(op(s)).

4. If op = pushé,k, in cons,_1(f3, k, ¥*) there is a run descriptor 7 = (g, ®", ®*~1,..., 1,
m,q') such that ® C W' for 2 < i < n, and ®' C W' : cons._; (o, K, type?(t)). We
have op(s) = s™ : s" 7t o182 (st (2 — 1), K, t5)) : ((B,2 — 1), k, s¥). Because
Uk C type?(s¥), we have

T € cons,_1(f, k, U*) C cons, 1 (3, k, type?(s¥)) = type®(((3, 2z — 1), k, s*)).

We see that ®! C type?(s! : (a,z — 1, K,tX)), and ®° C type?(s’) for 2 < i < n.
Thus from the definitions of type® and of composition of types we see that (g1, m,q’) €
type (0p(s)).

5. If op = push” (where k > 2), in cons,_;(a, K, type®(tX)) there is a run descriptor 7 =
(g, @™, "1 ... ®1 m,q') such that &' C Wifor 1 <i < k—1and for k+1 < i < n, and

PF C Wk Wk-L ..o Ut cons, g (a, K, type?(t5)). We have op(s) = s : s" 711 ...:
sl (s skt ist i (2= 1), K) rsF = oo i st ((a, 2 — 1), K t5). We see
that 7 € type?(((a, z — 1), K, t%)), and ®F C type?(s* : sF71 ... 1 st i (a, 2 — 1, K, t5)),

and ®! C type?(s?) for 1 <7 <k —1 and for k+ 1 < i < n. Thus from the definitions of
type® and of composition of types we see that (¢1,m,q’) € type®(op(s)).
In each case (except the first one) we have performed one step which leads us to a configu-
ration satisfying again the assumptions of the lemma. Thus we can continue this way either
forever (we get an infinite run), or until case 1 holds. If case 1 holds, we easily see that
the same sequence of transitions of S used in each step form a run of S from (g,n(s)) to
(¢’,m(s")) which evaluates to m’ under . <

E.1 Potentials

In this subsection we prove that every run of R’ is finite (Lemma E.5). This is obtained
by defining a potential of an annotated stack; the potential was indeed already defined in
Definition 6.2. It is a natural number which is decreased by every annotating stack operation
(as stated in the lemma below). Thus the length of a run is bounded by the potential of the
stack of the first configuration of that run; Lemma E.5 follows immediately.

» Lemma E.6. For any annotated pds s and any operation op we have pt(op(s)) < pt(s).

It is important that s is a pds, not any stack, i.e. that s can be obtained from the initial
configuration using stack operations (here we allow also the rew operations). It is useful in
the case of the col operation. For pds’s we have the following well-known property (whether
the stack is annotated or not does not change anything here).

» Proposition E.7. Let s be an annotated pds. If col®(s) is defined, col®(s) is the stack
obtained from s by applying pop” some positive number of times.

23

24

Variants of Collapsible Pushdown Systems

Proof of Lemma E.6. Decompose s = s™ : s"~ 1 : ... : s and s° = ((a, 2), K, t%). We
consider four cases according to the form of the operation op. Assume first that op = pop”.
Then op(s) = s™ : s" "1 :...:s*. We have (recall that k > 1)

pt(sk) < pt(sk) + ogpt(s* T hisk 2s?) pt(sk N R 50)_

Because pt(op(s)) = f(pt(s¥)) and pt(s) = f(pt(s* : s¥71 : ... : s0)) for some (the same)
strictly increasing function f (the rest of the stack is the same, only the topmost k-stack is
changed), we get pt(op(s)) < pt(s).

Next, assume that op = col”. By Proposition E.7 it is equivalent to performing a positive
number of pop” operation, so pt(op(s)) < pt(s) by the above case.

Next, assume that op = push}}’k. Denote u! = (s': (o, z—1), K, t5)) : (3, 2—1), k, s%).
Then op(s) = s™: 8" 1:.-.: 5% :ul. We have

pt(ul) = pt(s?) + 227D £ 221 — pr(sh) 4 22271 < pi(s!) 4 227 = pt(s' : s°).

1

Again, because only the topmost 1-stack is changed from s! : s° to u!, we get pt(op(s)) <

pt(s).

Finally, assume that op = pushk (for k > 2). For 0 < j < k denote w =g i
st (o, 2 — 1), K,t5). Then op(s) = s : s 1 ... 0 skF1 gk - k=1 As previously, we
have

1+pt(u®) =1+2(z —1) < 2z = pt(s?).
Next, for 1 < j < k — 1 we get by induction
1+ pt(uj) =1+ pt(sj) + 2Pt(uj_l) < pt(sj) + 21+Pt(uj_1) <
< pt(s?) + gpt(s’ T his? TRs?) pt(s? 17710 80).

Finally,

k

pt(u® : uF~1) = pt(s¥) + opt(uf™h) | opt(ut ™) _ pt(s") + gl+pt(ut =)

< pt(Sk) + 2pt(sk_1:sk_2;--~;so) _ pt(Sk s 80).
Again, because only the topmost k-stack is changed from s¥ : s¥=1: ... 50 to u* : uF~1, we
get pt(op(s)) < pt(s). <

Proof of Theorem 1.5. The Theorem is proved in Subsection 6.1; it remains to prove that
pt(sr) < exps,_1(8]QJ?|T'|), where s; is the n-stack consisting of the initial stack symbol with
annotation z, (recall that z., is the smallest number such that cons = cons,_ . Directly
from definition we see that pt(s;) = exp,,(220); we have to bound z... Recall that, for
each argument, cons,;; always contains cons,, thus for each argument we can have at most
\TO| + 1 different values of cons,. Moreover, for z < z, cons,;; differs from cons, for at
least one argument. We have |T'| - >°;_, |T*| possible arguments, thus

Zoo S (ITO|+ 1) |T)- D ITH < 20170 - D |7
k=1 k=1

Finally, using Proposition 4.6, and because n > 2, we have
2200 <AL|- TP < [T+ (exp,_1 (41QI%))? < exp,,_1 (8|QI*IT)).

Thus the accepting run has length at most exp,,,_;(8|Q|*|T), as required. <

Pawet Parys

E.2 Reseting the z values

In this subsection we finally construct system R satisfying Lemma E.1. The only difference
between Lemmas E.1 and E.3 is that now we do not have the assumption that every symbol
in the stack s (from which we start) has z on its second coordinate. The idea is that
in state start,,, we place some marker on the top of the stack. Then above the marker
we work as previously, and we assume that bellow the marker all symbols have z., on its
second coordinate. More precisely, we need a separate kind of marker for each level: in each
k-stack we will mark the bottommost (k — 1)-stack in which the z values are actual; we also
need another kind of marker to denote the 0-stacks in which the z values in the link are not
actual.

The stack alphabet of R will be T'r =T x {0,1,..., 200} x P({1,2,...,n,link}). As we
have already said, m maps stacks over I'g to stacks over I'. Next we define a stack ev(s) over
I" =Tx{0,1,..., 2o } which corresponds to a stack s over I'r. We will have w(ev(s)) = 7(s).
For a stack s over T, let 2o (s) denote the stack over I such that m(2(s)) = s and that
every symbol in 2z (s) has z. on its second coordinate.

» Definition E.8. We define ev(s*) for each k-stack s* over I'r (for 0 < k < n) by induction
on the structure of s*. Let (a, z, I) be the topmost symbol in s*.
Assume that k¥ = 0 and s* = ((a, 2, 1), K,t¥X) where 1 < K < n, and t¥ is a K-stack

(over T'g) such that ev(tX) is already defined. In this case we set

ev(s") :{ (@, 2), K, 200 (%)) if link € I
(o, 2), K,ev(t)) if link ¢ I

Otherwise k > 1; if s¥ is empty, ev(s*) is the empty k-stack. Finally, assume that k > 1
and s* = t* : t*=1 such that ev(t¥) and ev(t*~1) are already defined. In this case we set

oy zeo(tF) rev(thTY) if kel
ev(s”) = { ev(th) rev(t*Y) ifk gl

Next we define a homomorphism f from stacks over I'g into a finite stack algebra such
that f(s) determines type®(ev(s)). As f has to be a homomorphism, f(s) has to return
more information, not only type®(ev(s)). For a k-stack s (over I'g) f(s) returns the triple:
type®(ev(s)), and type®(z.0(s)) (which is equal to type(n(s))), and the set I being on the third
coordinate of the topmost symbol of s (assuming that I = () for the empty stack). Thus the
k-th level of the finite stack algebra (the image of f) is P(T*)xP(T*)xP({1,2,...,n,link}).
It is clear from the definition above that we can define the operations of the algebra so that
f is a homomorphism, i.e. that f(s* : s¥71) depends only on f(s*) and f(s*~!), and that
f(((a, 2, 1), K,t%)) depends only on «, z, I, K, and f(t¥).

We are now ready to define the deterministic f-driven n-CPS R. Its states will be all
the states of R’, plus the states start, ., for ¢ € Q, m € M, plus some auxiliary states. From
a state start, ,, and topmost stack symbol («, z,I) (regardless of the values of f) it has a
transition to state (¢, m) which replaces the topmost stack symbol by («, 200, {1,2, ..., link}).
Moreover for every transition

(q7Qn7Qn71"'"Ql’(a7z)7K7ZK’€7q,70p>
of R/, in R from
((ja (Qna) ')ﬂ (Qnilv B ')a teey (Qla B ')a (Oé,Z, I)a K, (EK, B ')aE)

(for all possible values substituted for “.”) we have the following transitions:

25

26

Variants of Collapsible Pushdown Systems

If op = rew(g, .1y, we just perform rewg . 1y to state g’

If op = pop¥, we first perform pop” (to some fresh auxiliary state) and then we update
the topmost stack symbol appropriately (using rew), going to state ¢’. Let (3,2',I') be
the topmost symbol after the pop* operation. If k € I, we place (3, zo0, (I N {k + 1,k +
2,...,n})U{L,2,..., k,link}) in the topmost stack symbol. Otherwise (k & I) we place
there (8,2, (IN{k+ 1L, k+2,...,nHUI'Nn{L,2,...,k,link}).

If op = col®, we first perform col® (to some fresh auxiliary state) and then we update
the topmost stack symbol appropriately (using rew), going to state ¢'. Let (5,2, I') be
the topmost symbol after the op operation. If link € I, we place (8, zo0, (I N{k + 1,k +
2,...,n})U{L,2,...,k,link}) in the topmost stack symbol. Otherwise (link & I') we place
there (8,2, (IN{k+1,k+2,...,n})U(I' Nn{1,2,...,k,link}).

If op = push” (for k > 2), we first perform push”, and then we replace the topmost stack
symbol by («, z, I\ {k}), and we change the state to ¢’.

If op = push%ﬁﬁzl)’k, we perform push%ﬁ,z/’p)’k and change the state to ¢/, where I' =
(I\{1}) U {link} if & € I, and I = I\ {1, link} if & & I.

In each of these cases we can easily see that, if the sequence of one or two transitions go
from stack s to stack ¢, then op(ev(s)) = ev(t). Notice that after the transition from state
start, ,,, we obtain a stack s such that every symbol in ev(s) has 2z, on its second coordinate,
thus we can apply Lemma E.3. We obtain a run of R’ from ((¢,m), ev(s)) to some (¢, §)
such that in S there is a run from (g, 7(s)) to (¢/, 7(8')) which evaluates to m under ¢. We
can lift this run of R’ to R and obtain a run from (starty ,,,s) to (¢’,s’) for some s’ such
that §' = ev(s’) (so that 7(§") = n(s’)), as required. This proves Lemma E.1.

F Proof of Theorem 1.1 and 1.2

We have already sketched proofs of these theorems in the main part of the paper; here we
present the construction in more details.

Let us introduce a notation for the elements of the finite monoid M, to which morphism
¢ goes. We have there elements 1), (the neutral element), e, and e*a, e*ac*, e*ac* A for
each a € A (which are images of words described by such regular expressions), and one more
element for all other words.

F.1 Theorem 1.1

Let us first concentrate on Theorem 1.1. Fix some n-CPS § = (T', 4,Q,qs, L,A) such
that T(S) is deterministic. We first construct the deterministic f-driven n-CPS R (using
rew operations) as described in the previous section. Basing on R we construct a strongly
deterministic f-driven n-CPS S’ (using rew operations) such that T'(S) = T(S’). Then we
just use Lemma C.2 and we obtain a strongly deterministic n-CPS §” such that T'(S) =
T(S8"), which gives us the thesis of Theorem 1.1. The stack alphabet of S’ is the same as of
R; the set of states contains all the states of R, plus a dead state gg;e. The initial state is gy
(the same as in §), and the initial stack symbol is (L, 0, 0). System S’ has all the transitions
of R. Additionally in &’ we have transitions

(q7 ('7 \Ijna ')? ('7 \Ilnilﬁ ')7 R ('a \1117 ')7 (OZ, Z7I)7K’ ('a EKy ')7aa5tartq78*a7 reW(OéJJ)) (1)

(for all possible values substituted for “.”) when ¢ € Q, a € A, and ¥" : Y=L ;...
Ul : cons(a, K, X)) contains a run descriptor (g,c*ag* A, ¢') for some ¢’. Moreover, we have

Pawet Parys

transitions
(CL ('7 \Ijnu ')7 ('7 \Iln_la ')7 ceey ('1 \Ijlv ')7 (OZ, 2, I)7 K7 ('1 EKv ')7 4, qdie, reW(a,z,I)) (2)
(for all possible values substituted for “-”) when ¢ € Q, a € A, and " : Y"1 ;... ¥l

cons(a, K, ¥K) contains a run descriptor (g,c*a,q’) for some ¢/, but does not contain a run
descriptor (g, m/,q"”) for any ¢”. Recall that in R we do not have transitions from states
q € Q, thus after adding transitions (1) and (2) it remains deterministic.

It remains to observe that T'(S) = T(S’), and that S is strongly deterministic. Let
us begin with some simple observations. Recall that the second coordinate of f(s*) is
equal to type(m(s¥)). Thus a transition of form (1) (of form (2)) reading letter a can be
applied to a configuration (g,s’) if and only if (¢,e*ac*A,q’) € type(w(s’)) (respectively,
(g,e*a,q') € type(m(s’))) for some ¢’. Next we have the following correspondence between
runs of S and §'.

» Fact F.1. Let ¢/ = (g, s’) be a configuration of S’ with ¢ € @, and ¢ = (g, 7(s’)) a reachable

configuration of S. Let a € A be such that (¢,e*ac*A, ¢') € type(n(s')) for some ¢’. Then

1. There exists a unique configuration d of S such that there is a run from ¢ to d which
evaluates under ¢ to £*a.

2. There exists a run from d reading a nonempty word.

3. There exists a unique configuration d’ = (r,t') of &’ such that r € and that there is a
run from ¢’ to d’ which reads a.

4. There exists a run from d’ reading a nonempty word.
5. d=(r,n(t)).

Proof. There is at most one d satisfying 1, as otherwise there would be two a-labelled edges
from a node in T'(S), which is impossible in a deterministic tree. There is at most one d’
satisfying 3, because S is deterministic and every transition from state in @) reads a letter.
Due to Lemma 4.2, there is a run of S from ¢ which evaluates under ¢ to *ae* A; its prefix
is a run to a configuration d as required by points 1 and 2.

The transition of form (1) reading a can be applied to d’; it changes the state to start, c«q.
Due to Lemma 4.2 (applied for the run from ¢ to d) we know that (q,£*a,q’) € type(n(s))
for some ¢’, which allows us to use Lemma E.1. It says that there is a run of R (hence of
§’) from (starty e+q, s’) to some d’ = (r,t’') such that there is a run of S from ¢ to (r, 7(t’))
which evaluates under ¢ to e*a. By uniqueness of d we obtain d = (r,7(t')). Point 2 and
Lemma 4.2 imply that (r,e*b,q’) € type(n(t')) for some ¢’, b; thus some transition of form
(1) or (2) reading b can be applied to d'. <

Next observe that if a configuration d’ = (r,t') where r € Q is reachable in &', then
d = (r,m(t')) is reachable in S. This is induction on the length of the shortest run from the
initial configuration to d’. Let ¢ = (¢, s’) be the previous configuration with state in @ on
such run; by the induction assumption we know that ¢ = (g, 7(s’)) is reachable in S. While
leaving ¢’ we have used some transition of form (1), reading some letter a, which requires
that (gq,e*ac* A, ¢') € type(w(s’)) for some ¢’, so the above fact can be applied. Notice that
our d’ is the unique d’ from the fact, so d is reachable. As a side effect we also obtain that
there is a run reading a nonempty word from every such d’. Consider also any reachable
configuration e’ of &’ with state not in Q U {qgic}- Such configuration can be reached only
on a run between some ¢’ and d’ as in the above fact, so there is a run reading a nonempty
word also from every such ¢’. This way we obtain that S’ is strongly deterministic.!!

1 Because all pop and col are performed only by e-transitions (which are the only transitions from the

27

28

Variants of Collapsible Pushdown Systems

It remains to prove that T'(S) = T(S’). Recall that T'(S) and T(S’) are deterministic
(8’ is even deterministic itself). In such situation it is enough to prove that for every word
w € A* there exists a run of S from the initial configuration reading word w if and only if
there exists a run of 8’ from the initial configuration reading word w. Thus consider a run
R of § which reads some word w = wiwsz ... w),|- Let co be the initial configuration, and
for 1 < i < n, let ¢; be the configuration of R just after reading the i-th letter of w. We
prove by induction on 4, for 0 <4 < |w|—1 that there is a run of &’ reading wyws . .. w; from
the initial configuration to a configuration ¢, = (g;, s}) such that ¢; = (g;, 7(s})). Indeed,
for ¢ = 0 we take the initial configuration as ¢j. For 0 < ¢ < |w| we see that from ¢;_;
word w;w;41 can be read. By Lemma 4.2 we have (g;—1,e*w;e*A,q’) € type(n(s;_;)) for
some ¢', so Fact F.1 applied for ¢,_; gives us ¢, as required. For i = |w| we only know
that (qju|—1,€" W)w|,q") € type(ﬂ(siwl_l)) (again Lemma 4.2). This allows us to say that a
transition of form (1) or (2) reading wj,, can be applied to ¢;_;, which finishes the run of
S’ reading w.

Next consider a run R’ of &’ (from the initial configuration) which reads some word
W = WiWs ... Wiy For 0 <4 < fw| —1, let ¢ = (qi,5;) be the configuration of R’ just
before reading w; 1. Necessarily ¢; € @, and ¢ is the initial configuration. Moreover for
i < |w| — 2 just after ¢ there is a transition of form (1) reading w;41, hence we can apply
Fact F.1. It tells us that there is a run reading w;41 from (g, 7(s})) to (giy1,7(s}4)). So
we already have a run reading wjwsy ... wp,|—1 and ending in (q‘u,|_1,7r(sfw‘_1)). As from
wa\—l a transition of form (1) or (2) reading wy,, is applied, by Lemma 4.2 we obtain a run
from (qjw|—1, T(Siw‘_l)) reading wj,,|, which finishes our run reading w.

The size of the constructed system can be analyzed as at the end of Section 5.

F.2 Theorem 1.2

Fix a deterministic n-CPS S with a set of final states F. First, for each state ¢ and operation
op we define a set

good(q,0p) S P(T") x P(T"") x ... P(T") x T x | n({k} x P(T*)).
k=1

It contains all tuples (U™, Wn—1 . Wl o, K,%%) such that for some m € M and ¢’ € F
we have

1. (¢;m,q) € ¥™:¥"~1:.... Uk and op = pop”, or

2. (gm,q) €W o1 KT 9K and op = col®, or

3. (¢ym,q') € ¥n : gm0 W2 (WU cons(a, K, %K) : cons(B,k, U*) and op =
pushé’k, or

4. (g,m,q') € Un Yn—l. oWkl (F gkl W cons(an, K BE)) s Wk

W' : cons(a, K, 25) and op = push”.
Let also gl(op) be defined likewise, but with the additional requirement that m # 1, and
m # eT. The following remark is an immediate consequence of the definitions.
» Remark. Let s = s : 5”71 ... : sl (a, K, t5) be a stack, let ¢ € Q, and let op be an
operation. Then

(type(s™), type(s"1),.. ., type(s'), o, K, type(t™)) € good(q, op)

preceding configuration), the first condition of Definition 2.11 follows automatically. Notice that if
there is no run reading a nonempty word from the initial configuration, then the initial state of S’ is a
dead state, so in such case we also have strong determinism.

Pawet Parys

if and only if op(s) is defined and (g, m,¢’) € type(op(s)) for some m € M and ¢’ € F; thus
(by Lemma 4.2) if and only if op(s) is defined and there is an accepting run from (g, op(s)).
Similarly,

(type(s"), type(s" 1), ..., type(s'), a, K, type(t™)) € gi(g, 0p)

if and only if op(s) is defined and there is an accepting run from (g, op(s)) reading a nonempty
word.

We construct a deterministic type-driven n-CPS &’ as follows. Its stack alphabet is I", and
its set of states is QU {qu;c }; we take F' = FU{qa;c}. For each transition (q, o, a,q’,op) of S
(where a € AU {e}), to S’ we add those transitions (¢, ¥", ¥"~1 ... Ul o K, 3% a, ¢, op)
for which (U™, 0"t ... Wl o, K,XK) € gi(¢, op). Additionally, for each transition (¢, @, a,
q',op) of S, to &’ we add those transitions (¢, ¥", U™t ... Ul o K, 3% a,qg.,op) for
which we have (U™, U1 . WUl o, K, %K) € good(q',0p) \ gl(¢’,op). Soin &’ a transition
will be performed normally only if it leads to a configuration from which there is an accepting
run reading a nonempty word (in particular only when op can be applied to the current
stack). Additionally, if it would lead to a configuration from which there is only an accepting
run reading no letters, we go to qg;. and accept immediately. Thanks to that S’ is strongly
deterministic. It is easy to see that L(S’, F') = L(S, F). At the end we use Lemma 5.1 to
convert the type-driven n-CPS to an n-CPS satisfying the thesis of the lemma.

29

	Introduction
	Preliminaries
	The hierarchy is infinite
	Types of stacks
	The algorithm

	Computing the types
	Reconstructing a run
	Bound on the run length

	Conclusions
	Variants of definitions
	Implication ``12'' of Lemma 4.2
	Computing the types
	Proof of Proposition 4.6
	Reconstructing a run
	Potentials
	Reseting the z values

	Proof of Theorem 1.1 and 1.2
	Theorem 1.1
	Theorem 1.2

