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We propose a new extension of higher-order pushdown automata, which allows to use an infinite
alphabet. The new automata recognize languages of data words (instead of normal words), which
beside each its letter from a finite alphabet have a data value from an infinite alphabet. Those data
values can be loaded to the stack of the automaton, and later compared with some farther data values
on the input. Our main purpose for introducing these automata is that they may help in analyzing
normal automata (without data). As an example, we give a proof that deterministic automata with
collapse can recognize more languages than deterministic automata without collapse. This proof is
simpler than in the no-data case. We also state a hypothesis how the new automaton model can be
related to the original model of higher-order pushdown automata.

1 Introduction

Already in the 70’s, Maslov ([12, 13]) generalized the concept of pushdown automata to higher-order
pushdown automata and studied such devices as acceptors of string languages. In the last decade, re-
newed interest in these automata has arisen. They are now studied also as generators of graphs and trees.
Knapik et al. [11] showed that the class of trees generated by deterministic level-n pushdown automata
coincides with the class of trees generated by safe level-n recursion schemes (safety is a syntactic re-
striction on the recursion scheme), and Caucal [6] gave another characterization: trees on level n+ 1
are obtained from trees on level n by an MSO-interpretation of a graph, followed by application of un-
folding. Carayol and Wöhrle [5] studied the ε-closures of configuration graphs of level-n pushdown
automata and proved that these graphs are exactly the graphs in the n-th level of the Caucal hierarchy. In
order to deal with non-safe schemes, Hague et al. [8] extended the model of level-n pushdown automata
to level-n collapsible pushdown automata by introducing a new stack operation called collapse. They
showed that the trees generated by such automata coincide exactly with the class of trees generated by
all higher-order recursion schemes and this correspondence is level-by-level. Nevertheless, for a long
time it was an open question whether safety implies a semantical restriction to recursion schemes. It was
proven recently [14], and the proof is technically rather complicated.

We extend the definition of higher-order pushdown automata by allowing infinite alphabets, both on
input and on stack. More precisely, every symbol consists of two parts: a label from a finite alphabet,
and a data value from an infinite alphabet. The part from the finite alphabet is treated as normally. On
the other hand all the data values are assumed to be equivalent; the automaton can only test whether two
data values are equal (data values from the input can be stored on the stack, and afterwards compared
with some future data values on the input). Words over such a two-part alphabet are called data words.
We consider both collapsible and non-collapsible variant of the automata.

Data words are widely considered, for example in the context of XML processing. In XML docu-
ments we have tag names and attribute names (which are from a finite alphabet), but we also have a text
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data; typically we don’t want to analyze the internal structure of such a text, we just want to compare
texts appearing indifferent places in the document (or to compare them with some constants). Several
automata models and logics were already considered for data words, see [16] for a survey. Some of the
automata models are generalizations of finite automata to data words [10], other [4, 3] are designed to
cover some logics, like FO2 or XPath. A model of pushdown automata (of level 1) using an infinite
alphabet (very similar to our model) was considered in [7]. (Historically the first models of pushdown
automata over infinite alphabet were presented in [2] and [9]; they simply allow infinitely many rules and
infinitely many transition functions, one for each letter in the alphabet). We are not aware of any works
which consider infinite alphabets for higher-order pushdown automata.

The main technical content of this paper is a proof that deterministic collapsible pushdown automata
with data recognize more languages than non-collapsible ones, as stated below.

Theorem 1.1. There exists a data language recognized by a deterministic collapsible pushdown automa-
ton with data of the second level, which is not recognized by any deterministic higher-order pushdown
automaton with data (without collapse) of any level.

The proof of this theorem is extracted from the analogous proof for automata without data, contained
in [14]. Although we consider a more complicated model of automata, the proof is in fact simpler. The
reason is that when having data values, we can precisely trace where this data value is stored in the
stack. We just need to analyze how this places are related for different data values, hence in which order
the data values can be recovered from the stack. The idea for automata without data is similar, but its
realization is much more complicated. Instead of considering data values, we consider blocks containing
the same letter repeated very many times. We look in which place of the stack the automaton “stores” the
number of these repetitions. However now this place cannot be easily identified. Moreover, it is difficult
to change the number of repetitions in one place, so that the whole run stays similar. This problems
disappear when we have data values. Thus our paper can be rather seen as an illustration of the original
proof.

We also state a hypothesis how the new classes of automata are related to the original one. Namely, let
us consider the (already mentioned) encoding of data words into normal words, in which a data value is
represented as a number of repetitions of a symbol. Of course every data word has many encodings, as a
data value may be mapped to an arbitrary number of repetitions. Assume that we have an automaton (for
normal words) which either accepts all representations of a data word, or none of them. Our hypothesis
would be that then we can create an automaton with data, which recognizes the corresponding language
of data words. One can easily see that the opposite implication holds: an automaton with data can
be converted to a normal automaton recognizing all representations of data words in the language (the
number of repetitions of a symbol on the input is stored on the stack as a number of repetitions of some
stack symbol).

If this hypothesis would be proved to be true, our Theorem 1.1 would imply the original theorem of
[14] that collapsible pushdown automata (without data) recognize more languages than non-collapsible
ones (the representation of the data word language from Theorem 1.1 would give a correct example
language for normal words).

A next goal would be to prove analogous result for nondeterministic automata, i.e. that nondeter-
ministic collapsible pushdown automata with data recognize more languages than non-collapsible ones.
Notice that this is not the case for level 2 [1], but is believed to be true for higher levels. It looks likely
that this can be shown for automata with data, much easier than for automata without data.
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2 Preliminaries

In this section we define higher-order pushdown automata with data.
Let us fix any infinite set of data values D, e.g. D= N. For a finite alphabet A, a data word over A is

just a word over A×D. For a data word w, by π(w) we denote the (normal) word over A obtained from
w by projecting every letter to its first coordinate.

For any alphabet Γ (of stack symbols) we define a k-th level stack (a k-stack for short) as an element
of the following set Γk

∗:

Γ
0
∗ = Γ× (D∪{no-data}),

Γ
k
∗ = (Γk−1

∗ )∗ for 1≤ k ≤ n.

In other words, a 0-stack contains a symbol from Γ and possibly a data value (or no-data if no data value
is stored), and a k-stack for 1≤ k ≤ n is a (possibly empty) sequence of (k−1)-stacks. Top of a stack is
on the right. The size of a k-stack is just the number of (k− 1)-stacks it contains. For any sk ∈ Γk

∗ and
sk−1 ∈ Γk−1

∗ we write sk : sk−1 for the k-stack obtained from sk by placing sk−1 at its end; the convention
is that s2 : s1 : s0 = s2 : (s1 : s0). We say that an n-stack s is well formed if every k-stack in s is nonempty,
for 1 ≤ k ≤ n (including the whole s). In configurations of our automata we allow only well formed
stacks.

An n-th level deterministic higher-order pushdown automaton with data (n-HOPAD for short) is a
tuple A = (A,Γ,γI,Q,qI,F,∆) where A is an input alphabet, Γ is a stack alphabet, γI ∈ Γ is an initial
stack symbol, Q is a set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of accepting states, and
∆⊆ Q×Γ× (A∪{ε})×Q×OPn

Γ
is a transition relation, where OPn

Γ
contains the following operations:

• popk, where 1≤ k ≤ n, and

• pushk
α , where 1≤ k ≤ n, and α ∈ Γ.

The transition relation ∆ should be deterministic, which means that it is partial function from Q×Γ×
(A∪{ε}) to Q×OPn

Γ
, which moreover is never simultaneously defined for some (q,α,a) ∈ Q×Γ×A

and for (q,α,ε). The letter n is used exclusively for the level of pushdown automata.
A configuration of A consists of a state and of a well formed stack, i.e. is an element of Q×Γn

∗
in which the n-stack is well formed. The initial configuration consists of the initial state qI and of the
n-stack containing only one 0-stack, which is (γI,no-data).

Next, we define when c `(a,d) c′, where c,c′ are configurations, and (a,d)∈ (A×D)∪{(ε,no-data)}.
Let p be the state of c, q the state of c′, and let (α,d′) be the topmost 0-stack of c. We have c `(a,d) c′ if
• (p,α,a,q,popk) ∈ ∆, and the stack of c′ is obtained from the stack of c by replacing its topmost

k-stack sk : sk−1 by sk (i.e. we remove the topmost (k−1)-stack), and either d = no-data or d = d′,
or

• (p,α,a,q,pushk
β
), and the stack of c′ is obtained from the stack of c by replacing its topmost k-

stack sk : sk−1 by (sk : sk−1) : sk−1, and then by replacing its topmost 0-stack by (β ,d) (i.e. we copy
the topmost (k−1)-stack, and then we change the topmost symbol in the copy).1

1 In the classical definition the topmost symbol can be changed only when k = 1 (for k≥ 2 it has to be s0 = t0). We make this
extension to have an unified definition of pushk for every k. However it is easy to simulate an automaton using one definition
by an automaton using the other in such a way that the same language is recognized.
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Notice that we require that the stack of d is well-formed, so a popk operation cannot be executed if the
topmost k-stack has size 1. Observe that every push operation sets the data value in the topmost 0-stack
to the just read data value, or to no-data if performing an ε-transition.2 On the other hand a pop operation
can read a data value only if it is the same as the data value in the topmost 0-stack; however 0-stacks
with data values can be also removed without reading anything.

A run R, from c0 to cm, is just a sequence c0 `x1 c1 `x2 · · · `xm cm. We denote R(i) := ci and call
|R| := m the length of R. The subrun R�i, j is ci `xi+1 ci+1 `xi+2 · · · `x j c j. If a run R ends in the first
configuration of a run S, we denote by R ◦ S the composition of R and S which is defined as expected.
The data word read by R is the data word over A obtained from x1x2 . . .xm by dropping all appearances
of (ε,no-data). A data word w is accepted by A if it is read by some run from the initial configuration
to a configuration having an accepting state.

Collapsible n-HOPAD. In Section 3 we also use deterministic collapsible pushdown automata (n-
CPAD for short). Such automata are defined like n-HOPAD, with the following differences. A 0-stack
contains now three parts: a symbol from Γ, a data value from D, and n natural numbers. The natural
numbers are not used to determine which transition can be performed from a configuration. Every
push operation stores in the topmost 0-stack a tuple of n numbers (k1,k2, . . . ,kn), where ki is the size
of the topmost i-stack after this operation. We have a new operation collapsei for 1 ≤ i ≤ n. When it
is performed between configurations c and c′, then the stack of c′ is obtained from the stack of c by
removing its topmost (i−1)-stacks, so that only ki−1 of them are left, where ki is the i-th number stored
in the topmost 0-stack of c (intuitively, from the topmost i-stack we remove all (i− 1)-stacks on which
the topmost 0-stack is present).3

3 The Separating Language

In this section we define a data language U which can be recognized by a 2-CPAD, but not by any n-
HOPAD, for any n. It is a data language over the alphabet A = {[, ],$}. The language U contains the data
words w over the alphabet A = {[, ],$} which satisfy the following conditions:

• w contains exactly one dollar, and

• w after removing the dollar is a well-formed bracket expression, i.e. in each prefix of w the number
of closing brackets is not greater than the number of opening brackets, and in the whole w these
numbers are equal, and

• the suffix of w after the dollar is symmetric to some prefix of w (i.e. the i-th letter from the begin-
ning and the i-th letter from the end have the same data value, and one of them is ] and the other
[).

Notice that words in the language can be divided into three parts, the last of them preceded by a dollar.
The first part is completely symmetric to the third part, while the second part is an arbitrary bracket
expression. The first part ends on the last opening bracket which is not closed before the dollar (or this
part is empty if all brackets are closed).

2 In nondeterministic automata we should allow also ε-transitions performing a push operation which put an arbitrary
(guessed) data value in the topmost 0-stack. This is of course forbidden in deterministic automata.

3 Again, a classical definition of the links stored and of collapse differs slightly, but this does not change the class of
recognized languages.
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Let us now show briefly how U can be recognized by a 2-CPAD. The 2-CPAD will use 4 stack
symbols: [, ], X (used to mark the bottom of 1-stacks), Y (used to count open brackets). The initial
symbol is X . The automaton first performs push2(X). Then, for every bracket a on the input,

• we perform push1(a) (we place the bracket on the stack, together with the data value),

• we perform push2 and pop1,

• if a = [ we perform push1(Y ), otherwise pop1.

When at some moment the topmost symbol is X and a closing bracket is read, the word is rejected (the
number of closing brackets till now is greater than the number of opening brackets). After reading a word
of length k, we have k+2 1-stacks. For 1≤ i ≤ k, the topmost symbol of the (i+1)-th 1-stack is equal
to the i-th symbol on the input (including the data value); additionally the number of the Y symbols on
the (i+ 2)-th 1-stack is equal to the number of opening brackets minus the number of closing brackets
among the first i letters of the input.

Finally the dollar is read. If the topmost symbol is X , we have read as many opening brackets as
closing brackets, hence we should accept immediately. Otherwise, the topmost Y symbol corresponds to
the last opening bracket which is not closed. We execute the collapse operation. It removes the 1-stacks
containing all the brackets read after this bracket. Now we repeat pop2 until only the first 1-stack is left
(which has X as its topmost symbol), and during each pop2 we read appropriate bracket from the input
(the automaton ensures that the data value on the input is the same as the data value on the stack, hence
the same as in the first part of the input).

In the remaining part of the paper we prove that any n-HOPAD cannot recognize U ; in particular all
automata appearing in the following sections does not use collapse.

A proof for level 1. In order to show intuitions how the proof of Theorem 1.1 works, we present it
first for level 1. Thus consider a 1-HOPAD A which recognizes U . We give him a data word w with
π(w) = [N ]N and with every data value different, where N is a big enough number (namely, a number
greater than the number of states).

Notice that the unique run of A on w (A is deterministic) stores all data values of w on the stack,
and none of them can be removed from the stack until the end of w is reached. Indeed, we can afterwards
give [$ to the automaton, and he has to reproduce all data values of w (the only suffix after which A
should accept contains all the data values of w).

Let s be the stack after reading the part [N . Now assume that a dollar appear after some number k
of closing brackets (i.e. we have [N ]k$ instead of [N ]N). Just after the dollar, the stack of A still begins
with s. As the data values from the [N part appear only in s, we have to reach a configuration (qk,s) for
some state qk. As we have not enough states, for two numbers of closing brackets k,k′, the state will be
the same, i.e. qk = qk′ . Afterwards, the unique accepting run from (qk,s) and from (qk′ ,s) is the same,
in particular the same subset of data values appearing in s is read. This is not what is expected by the
language U , as in one case the first N− k data values of w should be read, and in the other case the first
N− k′ of them. We have a contradiction.

For higher levels the overall idea will be the same. In the next section we will define upper runs and
returns. In our level-1 example, the part of the run which does not modify s will be an upper run, and the
part which analyzes s will correspond to a return. Next we will say that a stack can be accessed only in
a constant number of ways (like here we could only visit it for each of the states). These ways will be
described by “run descriptors” in Section 5; for each of these ways we can recover only one subset of the
data values stored in the stack. Finally, in Section 6, we conclude the proof.
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Table 1: Stack contents of the example run, and subruns being k-upper runs and k-returns

j stack of R( j) {i : R�i, j 0-upper} {i : R�i, j 1-upper} {i : R�i, j 1-return} {i : R�i, j 2-return}
0 [ab][cd] {0} {0} /0 /0
1 [ab][cd][ce] {0,1} {0,1} /0 /0
2 [ab][cd][c] {2} {0,1,2} {0,1} /0
3 [ab][cd] {0,3} {0,3} /0 {1,2}
4 [ab][c] {4} {0,3,4} {0,3} /0
5 [ab][cd] {4,5} {0,3,4,5} /0 /0
6 [ab][c] {4,6} {0,3,4,5,6} {5} /0

4 Upper runs and returns

In this section we define two important classes of runs, called upper runs and returns, and we show how
they decompose.

A run R is called k-upper, where 0≤ k ≤ n, if the topmost k-stack of R(|R|) is a copy of the topmost
k-stack of R(0), but possibly some changes were made to it. This has to be properly understood for k = 0:
we assume that a push0 operation makes a copy of the topmost 0-stack, and then modifies its contents; in
particular a run which just performs push0 is 0-upper. Notice that every run is n-upper, and that a k-upper
run is also l-upper for l ≥ k.

A run R is called a k-return, where 1≤ k ≤ n, if

• the topmost (k− 1)-stack of R(|R|) is obtained as a copy of the second topmost (k− 1)-stack of
R(0) (in particular we require that the topmost k-stack has size at least 2), and

• while tracing this copy of the second topmost (k− 1)-stack of R(0) which finally becomes the
topmost (k−1)-stack of R(|R|), it is never the topmost (k−1)-stack of R(i) for all i < |R|.

Notice that a run R is a k-return exactly when the topmost k-stack of R(|R|) is obtained from the topmost
k-stack of R(0) by removing its topmost (k−1)-stack, and this removing was done in the last step of R.
In particular every k-return is k-upper.

Example 4.1. Consider a HOPAD of level 2. In this example we omit data values; brackets are used to
group symbols in one 1-stack. Consider a run R of length 6 which begins with a stack [ab][cd], and the
operations between consecutive configurations are:

push2(e), pop1, pop2, pop1, push1(d), pop1.

Recall that our definition is that a push of any level can change the topmost stack symbol. The contents
of the stacks of the configurations in the run, and subruns being k-upper runs and k-returns are presented
in Table 1. Notice that R is not a 1-return.

It is important that returns and upper runs can be always divided into smaller fragments which are
again returns and upper runs. More precisely, from [14] we have the following characterizations of k-
returns and k-upper runs (these decompositions can be obtained quite easily by analyzing all possible
behaviors of an automaton).

Proposition 4.2. A run R is an r-return (where 1≤ r ≤ n) if and only if
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1. |R|= 1, and the operation performed by R is popr, or

2. the first operation performed by R is popk for k < r, or pushk for k 6= r, and R�1,|R| is an r-return,
or

3. the first operation performed by R is pushk for k≥ r, and R�1,|R| is a composition of a k-return and
an r-return.

Proposition 4.3. A run R is k-upper (where 0≤ k ≤ n) if and only if

1. R performs only operations of level at most k, or

2. |R|= 1, and the operation performed by R is pushr for any r ≥ k+1, or

3. the first operation performed by R is pushr for r ≥ k+1, and R�1,|R| is an r-return, or

4. R is a composition of two nonempty k-upper runs.

5 Types of Stacks

In this section we assign to each k-stack a type from a finite set which, in some sense, describes possible
returns and upper runs from a configuration having this k-stack as the topmost k-stack. Additionally, we
also define a set of data values which can be extracted from a k-stack; the idea is that we can extract
either none or all data values contained in such a set.

For this section we fix an n-HOPAD A with stack alphabet Γ, state set Q, and input alphabet A.
Moreover we fix a morphism ϕ : A∗ → M into a finite monoid. In our application the monoid will be
testing whether the word is empty, or is a single closing bracket, or begins with a dollar, or is any other
word; however the results of this section work for any monoid. For a run R we write ϕ(R) to denote the
value of ϕ on the word read by R (more precisely ϕ is applied only to the first coordinates of the letters
of this word).

5.1 Returns

We begin by defining types which describe returns. In the next subsection we indirectly use the same
types to describe upper runs; this will be possible because upper runs consist of returns (as described by
Proposition 4.3). To every k-stack sk (where 0≤ k ≤ n) we assign a set type(sk)⊆T k; it contains some
run descriptors. The sets T k of all possible run descriptors are defined inductively as follows (where
P(X) denotes the power set of X):

T k = {ne}∪
(
P(T n)×P(T n−1)×·· ·×P(T k+1)×Q×Dk), where

Dk =
n⋃

r=k+1

M×{r}×P(T n)×P(T n−1)×·· ·×P(T r+1)×Q.

Recall that Q is the set of states, and M is the finite monoid used to distinguish classes of input words.
Before we define types, let us describe their intended meaning. We say that a run R agrees with

(m,r,Σn,Σn−1, . . . ,Σr+1,q) ∈Dk if

• ϕ(R) = m, and

• R is an r-return, and

• R ends in a stack tn : tn−1 : · · · : tr such that Σi ⊆ type(t i) for r+1≤ i≤ n, and
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• the state of R(|R|) is q.

The acronym ne stands for nonempty; we have ne ∈ type(sk) when sk is nonempty. A typical run de-
scriptor in T k is of the form σ = (Ψn,Ψn−1, . . . ,Ψk+1, p, σ̂). By adding σ to the type of some sk, we
claim the following. If for each k+ 1 ≤ i ≤ n we take an i-stack t i that satisfies the claims of Ψi, then
there is a run which starts in state p and stack tn : tn−1 : · · · : tk+1 : sk, and agrees with σ̂ . In other words
we have the following lemma.

Lemma 5.1. Let 0≤ k≤ n, let σ̂ ∈Dk, and let c= (p,sn : sn−1 : · · · : sk) be a configuration. The following
two conditions are equivalent:

1. there exists a run from c which agrees with σ̂ ,

2. type(sk) contains a run descriptor (Ψn,Ψn−1, . . . ,Ψk+1, p, σ̂) such that Ψi ⊆ type(si) for k+1≤
i≤ n.

Moreover, to every k-stack sk (where 0≤ k ≤ n), and every run descriptor σ ∈ type(sk) we assign a
set of important data values idv(sk,σ)⊆D. The idea is that although sk may contain many data values, a
run having sk in its first configuration and described by σ can use only some subset of these data values;
these will be the important data values of sk (from the point of view of σ ). There is a small technical
difficulty that a run can read (by accident) a data value already present in sk while performing a push
operation; of course this is not what we want to count. To deal with this, we distinguish some data
value 0 ∈ D and we define normalized runs: a run R is normalized when every of its non-ε-transition
performing a push reads data value 0. The sets idv are designed to satisfy the following lemma.

Lemma 5.2. Let 0 ≤ k ≤ n, let σ̂ = (m,r,Σn,Σn−1, . . . ,Σr+1,q) ∈ Dk, let c = (p,sn : sn−1 : · · · : sk) be a
configuration, and let d ∈ D\{0}. The following two conditions are equivalent:

1. there exists a normalized r-return from c which agrees with σ̂ , and either reads d or ends in a
stack tn : tn−1 : · · · : tr such that d ∈ idv(t i,τ) for some r+1≤ i≤ n and some τ ∈ Σi,

2. type(sk) contains a run descriptor σ = (Ψn,Ψn−1, . . . ,Ψk+1, p, σ̂) such that Ψi ⊆ type(si) for
k+1≤ i≤ n, and d ∈ idv(sk,σ) or d ∈ idv(si,τ) for some k+1≤ i≤ n and some τ ∈Ψi.

In the first condition we only say that there exists such run, moreover it can be different for every
data value. However we will use this lemma only in situations when this run is in some sense unique,
so that this unique run will be described. Observe also that a data value which was important in the first
configuration of a run need not to be always read: it may also stay important in the last configuration of
the run. We can exclude this possibility by taking empty sets Σi (in particular by taking r = n).

Now we come to the definition of types and important data values. We first define a composer, which
is then (in Definition 5.5) used to compose types of smaller stacks into types of greater stacks.

Definition 5.3. We define when (Φk,Φk−1 . . . ,Φl;Ψk) is a composer, where 0≤ l < k ≤ n, Φi ⊆T i for
l ≤ i≤ k, and Ψk ⊆T k.

1. Let σ = (Σn,Σn−1, . . . ,Σl+1, p, σ̂) ∈T l , and let τ = (Σn,Σn−1, . . . ,Σk+1, p, σ̂) ∈T k (in particular
σ̂ ∈Dk). Then we say that (Σk,Σk−1, . . . ,Σl+1,{σ};{τ}) is a composer.

2. Tuple ( /0, /0, . . . , /0;{ne}) is a composer.

3. Let Ψk ⊆ T k, and for each τ ∈ Ψk let (Φk
τ ,Φ

k−1
τ , . . . ,Φl

τ ;{τ}) be a composer. Then we say that
(Φk,Φk−1, . . . ,Φl;Ψk) is a composer, where Φi =

⋃
τ∈Ψk Φi

τ for l ≤ i≤ k.

Now we will define types of 0-stacks, and sets of important data values as a fixpoint.
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Definition 5.4. For each 0-stack s0, let type(s0) be the smallest set satisfying the following conditions;
additionally for σ ∈ type(s0), let idv(s0,σ) be the smallest set satisfying the following conditions. Let
s0 = (α,d) be a 0-stack, and let p be a state.

1. Assume that A has a transition (α, p,a,q1,pop
k) (where 1 ≤ k ≤ n and a ∈ A∪{ε}), and that

either a = ε or d 6= no-data. We have two subcases:

(a) Let

σ =
(

Ψ
n,Ψn−1, . . . ,Ψk+1,{ne}, /0, /0, . . . , /0, p,(ϕ(a),k,Ψn,Ψn−1, . . . ,Ψk+1,q1)

)
∈T 0.

Then σ ∈ type(s0). If a 6= ε , then d ∈ idv(s0,σ).
(b) Let τ = (Ψn,Ψn−1, . . . ,Ψk+1,q1,(m,r,Σn,Σn−1, . . . ,Σr+1,q)) ∈T k, and

σ = (Ψn,Ψn−1, . . . ,Ψk+1,{τ}, /0, /0, . . . , /0, p,(ϕ(a)m,r,Σn,Σn−1, . . . ,Σr+1,q)) ∈T 0.

Then σ ∈ type(s0). If a 6= ε , then d ∈ idv(s0,σ).

2. Assume that A has a transition (α, p,a,q1,push
k(β )) (where 1≤ k ≤ n). Let t0 = (β ,no-data) if

a = ε , or t0 = (β ,0) otherwise. Assume that type(t0) contains a run descriptor

τ = (Ψn,Ψn−1, . . . ,Ψ1,q1,(m1,r1,Ω
n,Ωn−1, . . . ,Ωr1+1,q2)).

Assume also that (Φk,Φk−1, . . . ,Φ0;Ψk) is a composer such that Φ0 ⊆ type(s0). We have two
subcases:

(a) Assume that r1 6= k. Let

σ = (Πn,Πn−1, . . . ,Π1, p,(ϕ(a)m1,r1,Ω
n,Ωn−1, . . . ,Ωr1+1,q2)) ∈T 0,

where

Π
i =


Ψi for k+1≤ i≤ n,
Φi for i = k,
Ψi∪Φi for 1≤ i≤ k−1.

Then σ ∈ type(s0), and
⋃

ρ∈Φ0 idv(s0,ρ)⊆ idv(s0,σ).

(b) Assume that r1 = k and type(s0) contains a run descriptor

χ =
(

Ω
n,Ωn−1 . . . ,Ωk+1,ϒk,ϒk−1, . . . ,ϒ1,q2,(m2,r2,Σ

n,Σn−1, . . . ,Σr2+1,q3)
)
,

where r2 ≤ k. Let

σ = (Πn,Πn−1, . . . ,Π1, p,(ϕ(a)m1m2,r2,Σ
n,Σn−1, . . . ,Σr2+1,q3)) ∈T 0,

where

Π
i =


Ψi for k+1≤ i≤ n,
Φi∪ϒi for i = k,
Ψi∪Φi∪ϒi for 1≤ i≤ k−1.

Then σ ∈ type(s0), and idv(s0,χ)∪
⋃

ρ∈Φ0 idv(s0,ρ)⊆ idv(s0,σ).
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Notice that the above operations are monotone (more run descriptors in types can only cause that
more run descriptors are added to other types), thus the unique smallest fixpoint exists. Finally, we
define types of greater stacks.

Definition 5.5. For each k-stack sk, where 1 ≤ k ≤ n, let type(sk) be the smallest set satisfying the fol-
lowing conditions; additionally for σ ∈ type(sk), let idv(sk,σ) be the smallest set satisfying the following
conditions.

Assume that sk = tk : tk−1, and there exists a composer (Φk,Φk−1;{σ}) for which Φk ⊆
type(tk) and Φk−1⊆ type(tk−1). Then σ ∈ type(sk), and

⋃k
i=k−1

⋃
ρ∈Φi idv(t i,ρ)⊆ idv(sk,σ).

Let us now observe immediate consequences of Definitions 5.3 and 5.5. We see that ne is in the type
of a k-stack sk if and only if k ≥ 1 and sk is nonempty. We also see that a run descriptor σ is in the type
of a k-stack sk : sk−1 : · · · : sl (where l < k) if and only if there exists a composer (Φk,Φk−1, . . . ,Φl;{σ})
such that Φi ⊆ type(si) for l ≤ i ≤ k (moreover Φl has exactly one element). Similarly, d ∈ idv(sk :
sk−1 : · · · : sl,σ) if and only if there exists a composer (Φk,Φk−1, . . . ,Φl;{σ}) such that Φi ⊆ type(si)
for l ≤ i≤ k and that d ∈ idv(s j,τ) for some l ≤ j ≤ k and some τ ∈Φ j.

It is tedious but straightforward to prove Lemmas 5.1 and 5.2 directly from the definitions of type and
idv. For the 1⇒2 implications, we decompose the run according to Proposition 4.2; this tells us which
rules of Definition 5.4 imply that an appropriate run descriptor is in the type, and that the considered data
value in in idv. For the opposite implication, a run descriptor is in the type (or a data value is in idv),
because there is some derivation using the rules from Definition 5.4; by composing all these rules we
obtain an appropriate run.

Let us mention that a similar notion of types was also present in [15]. Those types were defined
in a different, semantical way. Namely, our Lemma 5.1 is used as a definition; then it is necessary to
prove that the type of sk does not depend on the choice of sn,sn−1, . . . ,sk+1 present in the assumptions of
the lemma. This semantical definition is unsuitable for tracing important data values. Our approach is
better for the following reason: when we add some run descriptor (Ψn,Ψn−1, . . . ,Ψk+1, p, σ̂) to the type
of some k-stack, then in the sets Ψi we only have the assumptions which are really useful (we never put
there redundant run descriptors).

5.2 Upper runs

For upper runs we do not define separate types; we will be using here the types for returns. Our goal is
to obtain the following transfer property.

Lemma 5.6. Let 0≤ k ≤ n, and let R be a normalized k-upper run such that no other normalized run S
from R(0) ends in the same state as R and satisfies ϕ(S) = ϕ(R). Let sn : sn−1 : · · · : sk be the stack or
R(0), and tn : tn−1 : · · · : tk the stack of R(|R|). Let d,d′ ∈ D\{0} be data values which are not read by
R and which do not appear in sk, and such that for each k+ 1 ≤ i ≤ n and each σ ∈ type(si) it holds
d ∈ idv(si,σ)⇔ d′ ∈ idv(si,σ). Then d and d′ do not appear in tk, and for each k+1≤ i≤ n and each
σ ∈ type(t i) it holds d ∈ idv(t i,σ)⇔ d′ ∈ idv(t i,σ).

Intuitively, the lemma says that if two data values cannot be distinguished by the idv sets in the initial
configuration of a k-upper run, they also cannot be distinguished in the final configuration. In order to
obtain this lemma we define src sets as follows (“src” stands for “source”). Let 0 ≤ k ≤ n, let R be a
normalized k-upper run from stack sn : sn−1 : · · · : sk to stack tn : tn−1 : · · · : tk, and let Σi ⊆ type(t i) for
k+ 1 ≤ i ≤ n. For k+ 1 ≤ j ≤ n we define a set src j(R,Σn,Σn−1, . . . ,Σk+1) ⊆ type(s j). To shorten the
notation, we write src j for src j(R,Σn,Σn−1, . . . ,Σk+1) (we should keep in mind that src j depends on R



Paweł Parys 11

and on Σn,Σn−1, . . . ,Σk+1). The intuition is that d ∈ idv(t i,σ) for some k+ 1 ≤ i ≤ n and some σ ∈ Σi

if and only if d ∈ idv(s j,τ) for some k+ 1 ≤ j ≤ n and some τ ∈ src j. The actual statement is more
complicated, and is given by the following lemma.

Lemma 5.7. Let 0≤ k≤ n, let R be a normalized k-upper run from (p,sn : sn−1 : · · · : sk) to (q, tn : tn−1 :
· · · : tk), and let Σi ⊆ type(t i) for k+ 1 ≤ i ≤ n. Let also d ∈ D \ {0} be a data value which does not
appear in sk.

1. Assume that d ∈ idv(t i,σ) for some k+1 ≤ i ≤ n and some σ ∈ Σi. Then d ∈ idv(s j,τ) for some
k+1≤ j ≤ n and some τ ∈ src j.

2. Let c = (p,un : un−1 : · · · : uk) be a configuration such that uk = sk and srci ⊆ type(ui) for k+1≤
i≤ n. Assume that d ∈ idv(u j,τ) for some k+1≤ j ≤ n and some τ ∈ src j(R,Σn,Σn−1, . . . ,Σk+1).
Then there exists a normalized k-upper run S from c to a configuration (q,vn : vn−1 : · · · : vk)
such that ϕ(S) = ϕ(R), and vk = tk, and Σi ⊆ type(vi) for k+ 1 ≤ i ≤ n, and either S reads d or
d ∈ idv(vi,σ) for some k+1≤ i≤ n and some σ ∈ Σi.

Now we come to the definition of the src sets. We define them by induction on the length of R, and
we make a case distinction on the form of R as in Proposition 4.3.

1. Assume that R performs only operations of level at most k. Then we take srci = Σi for k+1≤ i≤ n.

2. Assume that |R|= 1 and the operation performed by R is pushr for r ≥ k+1. Then we define srci

as the smallest sets satisfying the following:

• Σi ⊆ srci for k+1≤ i≤ n, i 6= r, and
• for every composer (Ψr,Ψr−1, . . . ,Ψk;{σ}) such that σ ∈ Σr and Ψi ⊆ type(si) for k≤ i≤ r

it holds Ψi ⊆ srci for k+1≤ i≤ r.

3. Assume that the first operation of R is pushr, and R�1,|R| is an r-return, where r ≥ k + 1. Let
ρ̂ = (ϕ(R�1,|R|),r,Σn,Σn−1, . . . ,Σr+1,q), where q is the state of R(|R|), and let sk be the topmost
k-stack of R(1). We define srci as the smallest sets satisfying the following:

• Σi ⊆ srci for k+1≤ i≤ r, and
• for every run descriptor ρ = (Φn,Φn−1, . . . ,Φk+1,q1, ρ̂) ∈ type(sk) such that Φi ⊆ type(si)

for k+1≤ i≤ n, i 6= r, and Φr ⊆ type(sr : sr−1 : · · · : sk), it holds Φi ⊆ srci for k+1≤ i≤ n,
i 6= r, and
• for every run descriptor ρ =(Φn,Φn−1, . . . ,Φk+1,q1, ρ̂)∈ type(sk) such that Φi⊆ type(si) for

k+1≤ i≤ n, i 6= r, and Φr ⊆ type(sr : sr−1 : · · · : sk), and for every composer (Ψr,Ψr−1, . . . ,
Ψk;{λ}) such that λ ∈Φr and Ψi ⊆ type(si) for k≤ i≤ r it holds Ψi ⊆ srci for k+1≤ i≤ r.

4. Assume that R = R1 ◦R2 for shorter k-upper runs R1,R2 (if there are multiple choices of R1,R2,
we just fix any of them), and case 1 does not hold. The srci sets for R1 and for R2 are already
defined by induction. Denote Φi = srci(R2,Σ

n,Σn−1, . . . ,Σk+1) for k+1≤ i≤ n. We define srci :=
srci(R1,Φ

n,Φn−1, . . . ,Φk+1) for k+1≤ i≤ n.

The proof of Lemma 5.7 is tedious but again follows easily from the definition. In the third case we
use Lemma 5.2. Notice that point 1 of Lemma 5.2 tells us only that a run exists, so we need a similar
statement in point 2 of our lemma. We finish by a proof of Lemma 5.6.

Proof of Lemma 5.6. The part that d and d′ do not appear in tk is immediate, as by definition of a k-upper
run, tk is a (possibly modified) copy of sk. Because sk does not contain d nor d′, and R is normalized,
they cannot appear on this stack.
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Assume that d ∈ idv(t i,σ) for some k+1≤ i≤ n and some σ ∈ type(t i). Take Σl = /0 for k+1≤ l≤ n,
l 6= i, and Σi = {σ}. By Lemma 5.7.1 d ∈ idv(s j,τ) for some k + 1 ≤ j ≤ n and some τ ∈ src j. By
assumption also d′ ∈ idv(s j,τ). Now we use Lemma 5.7.2 for configuration c = R(0). We obtain a run S,
which ends in the same state as R, and such that ϕ(S) = ϕ(R); this means that R = S. The lemma implies
that d′ ∈ idv(t l,σ ′) for some k+1≤ l ≤ n and some σ ′ ∈ Σl . As only Σi is nonempty and contains only
σ , we obtain d′ ∈ idv(t i,σ). The opposite implication is symmetric.

6 Why U Cannot Be Recognized?

In this section we prove that language U cannot be recognized by a deterministic higher-order pushdown
automaton with data of any level. We base on the techniques developed in the previous sections.

Of course our proof goes by contradiction: assume that for some n we have an (n− 1)-HOPAD
recognizing U . We construct an n-HOPAD A which works as follows. First it makes a pushn operation.
Then it simulates the (n− 1)-HOPAD (not using the pushn and popn operations). When the (n− 1)-
HOPAD is going to accept, A makes the popn operation and afterwards accepts. Clearly, A recognizes
U as well. Such normalization allows us to use Lemmas 5.1 and 5.2, as in A every accepting run is an
n-return. Moreover, we assume that to each state lead either only ε-transitions, or only non-ε-transitions
(it can be easily achieved by having two copies of each state).

As already mentioned, let ϕ : A∗→M be a morphism into a finite monoid which tests whether the
word is empty, or is a single closing bracket, or begins by a dollar, or is any other word. This morphism
is used with the definition of types and important data values in the previous section.

Let N = 2+2M, where M = ∑
n
i=0 |T i|. Consider the following words:

w0 = [][ wk+1 = wN
k ]

N [ for 0≤ k ≤ n−1,

where the number in the superscript (in this case N) denotes the number of repetitions of a word. Let wn

be a data word in which every data value is different and is not equal to 0, and such that π(wn) = wn.
Let R be the unique run from the initial configuration which reads wn, and ends just after reading its

last letter. Abusing slightly the notation, for any prefixes v,w of wk, we define R(v) to be the configuration
of R just after reading |v| letters, and R〈v,w〉 to be the subrun of R between R(v) and R(w). It will be
important to analyze relations between these configurations R(v) for different prefixes.

Notice that every data value read by R appears somewhere in a stack of R(v). This is true, because
after reading [$, the automaton has to check in particular whether the data values present later on the
input are the same as those already read by R. However this contradicts with the following key lemma
(taken for k = n and u = ε).

Lemma 6.1. Let 0 ≤ k ≤ n, and let u be a word such that uwk is a prefix of wn. Then some data value
read by R〈u,uwk〉 does not appear in the topmost k-stack of R(uwk).

Proof. The proof is by induction on k. For k = 0 this is obvious, as three data values are read, but the
topmost 0-stack can store only one of them.

Let now k ≥ 1. Assume first that for some nonempty prefix v of wk the run R〈uv,uwk〉 is not (k−1)-
upper. Let us look at the data value read by the last operation before R(uv). This data value appears
only once on the stack of R(uv), in the topmost 0-stack. One possibility is that R〈uv,uwk〉 is not k-upper.
By definition this means that the topmost k-stack of R(uwk) is not a copy of the topmost k-stack of
R(uv), thus it cannot contain this data value. The opposite possibility is that R〈uv,uwk〉 is k-upper, but
not (k− 1)-upper. This means that the topmost k-stack of R(uwk) is obtained as a copy of the topmost
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k-stack of R(uv), however the topmost (k−1)-stack of this k-stack is not a copy of the topmost (k−1)-
stack of R(uv). The only way how this could happen is that all copies of the topmost (k− 1)-stack of
R(uv) were removed from this k-stack. Then also this k-stack does not contain the considered data value.

For the rest of the proof assume the opposite: that for each nonempty prefix v of wk the run R〈uv,uwk〉
is (k− 1)-upper. We will obtain a contradiction, which will prove that this is in fact impossible. From
this assumption we get the following property ♥.

Let v′ be a prefix of wk, and v a nonempty prefix of v′. Then R〈uv,uv′〉 is (k−1)-upper.

Indeed, if the topmost (k−1)-stack of R(uwk) is a copy of the topmost (k−1)-stack of R(uv′) and of the
topmost (k−1)-stack of R(uv), then for sure the topmost (k−1)-stack of R(uv′) is a copy of the topmost
(k−1)-stack of R(uv).

From the induction assumption (where uwi−1
k−1 is taken as u), for each 2 ≤ i ≤ N there exists a data

value di read by R〈uwi−1
k−1,uwi

k−1〉 which does not appear in the topmost (k− 1)-stack of R(uwi
k−1). As

R〈uwi
k−1,uwN

k−1〉 is (k−1)-upper (property ♥), we know that di does not appear in the topmost (k−1)-
stack of R(uwN

k−1) as well.
Denote the stack of R(uwN

k−1) as sn : sn−1 : · · · : sk−1. Since there are more possible indices i ∈
{2,3, . . . ,N} than subsets of

⋃n
i=k type(s

i), there have to exist two indices 2 ≤ x < y ≤ N such that for
each k ≤ i ≤ n and each τ ∈ type(si) it holds dx ∈ idv(si,τ)⇔ dy ∈ idv(si,τ). Let r = N− x+ 1. Let
us consider the unique accepting run S from R(uwN

k−1]
r) whose first read letter is a dollar (this run is

unique because the U language determines the rest of the word after a dollar). Notice that the last
opening bracket which is not closed before the dollar is the last bracket of the x-th wk−1 after u. Thus
by definition of U , S reads dx and does not read dy. This contradicts with the thesis of the next lemma
(where k−1 is used as k).

Lemma 6.2. Let 0 ≤ k ≤ n, and let u be a word and r a number such that u]r is a prefix of wn. Assume
that R〈u]i−1,u]i〉 is k-upper for each 1 ≤ i ≤ r. Denote the stack of R(u) as sn : sn−1 : · · · : sk. Let also
d,d′ be data values which are not read by R〈u,u]r〉, which does not appear in sk, and such that for each
k+ 1 ≤ i ≤ n and each τ ∈ type(si) it holds d ∈ idv(si,τ)⇔ d′ ∈ idv(si,τ). Then the unique accepting
run from R(u]r) whose first read letter is a dollar, either reads both d and d′, or none of them.

Proof. Originally we have assumed that every data value read by R is different. Let us now make a small
twist, and assume that the data values appearing with the r closing brackets after u are all equal to 0.
This does not affect the statement of the lemma, as the changed data values does not appear in the stack
of R(u) nor these are d or d′. Thanks to this change, the runs R〈u]i−1,u]i〉 are normalized for 1 ≤ i ≤ r.
Notice also that R〈u]i−1,u]i〉 is the only normalized run from R(u]i−1) which ends in the same state as
R〈u]i−1,u]i〉, and reads a single closing bracket (recall that equality of states causes that such a run ends
just after reading a letter). Thus we can apply Lemma 5.6 for the run R〈u]i−1,u]i〉 and for data values d,d′.
Denote the stack of R(u]r) as tn : tn−1 : · · · : tk. After applying this lemma consecutively for i = 1,2, . . . ,r,
we obtain that d,d′ does not appear in tk, and that for each k+ 1 ≤ i ≤ n and each τ ∈ type(t i) it holds
d ∈ idv(t i,τ)⇔ d′ ∈ idv(t i,τ).

Now consider the unique accepting run from R(u]r) whose first read letter is a dollar. We see that it is
normalized (it does not read any new data values), and that this is an n-return (as every accepting run of
A ). It agrees with σ̂ = (ϕ(S),n,q) for some accepting state q. Lemma 5.1 implies that type(tk) contains
a run descriptor σ = (Φn,Φn−1, . . . ,Φk+1, p, σ̂) such that Φi ⊆ type(t i) for k+ 1 ≤ i ≤ n. Assume that
S reads one of d,d′, say d. Then implication 1⇒2 of Lemma 5.2 says that d ∈ idv(t i,τ) for some
k+ 1 ≤ i ≤ n and some τ ∈ Φi (the lemma allows also that d ∈ idv(tk,σ), but this is impossible as d
does not appear in tk). However in such case also d′ ∈ idv(t i,τ). Using now the opposite implication of
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Lemma 5.2 we obtain a normalized run S′ from S(0) which agrees with σ̂ and reads d′. But S′ is also
accepting and its first letter read is a dollar, so S′ = S.
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