
Decidable classes of documents for XPath∗

Vince Bárány1,2, Mikoªaj Boja«czyk2, Diego Figueira2,3, and Paweª

Parys2

1 TU Darmstadt, Darmstadt, Germany

2 University of Warsaw, Warsaw, Poland

3 University of Edinburgh, Edinburgh, United Kingdom

Abstract

We study decidability of XPath over XML documents of bounded depth. We de�ne two parameters,

called match width and braid width, that assign a number to any class of documents. We show that

for all k, satis�ability for XPath restricted to bounded depth documents with match width at most k

is decidable; and that XPath is undecidable on any class of documents with unbounded braid width.

We conjecture that these two parameters are equivalent, in the sense that a class of documents has

bounded match width iff it has bounded braid width.

Keywords and phrases XPath, XML, class automata, data trees, data words, satis�ability

1 Introduction

This paper is about satis�ability of XPath over XML documents, modelled as data trees.

A data tree is a tree where every position carries a label from a �nite set, and a data value

from an in�nite set. The data values can only be tested for equality.

XPath satis�ability. XPath can be seen as a logic for expressing properties of data

trees. Here are some examples of properties of data trees that can be expressed in XPath:

�every two positions carry a di�erent data value�, �if x and y are positions that carry the same

data value, then on the path from x to y there is at most one position that has label b�. Our

interest in XPath stems from the fact that it is arguably the most widely used XML query

language. It is implemented in XSLT and XQuery and it is used in many speci�cation and

update languages. Query containment and query equivalence are important static analysis

problems, which are useful to query optimization tasks. These problems reduce to checking

for satis�ability : Is there a document on which a given XPath query has a non-empty result?

By answering this question we can decide at compile time whether the query contains a

contradiction and thus the computation of the query (or subquery) on the document can

be avoided. Or, by answering the query equivalence problem, one can test if a query can

be safely replaced by another one which is more optimized in some sense (e.g., in the use of

some resource). Moreover, the satis�ability problem is crucial for applications on security,

type checking transformations, and consistency of XML speci�cations.

Our point of departure is that XPath satis�ability is an undecidable problem [9]. There

are two main approaches of working around this undecidability.

1. Restrict the formulas. The �rst way is to consider fragments of XPath that have

decidable satis�ability. For example, fragments without negation or without recursive

axes [1]; or fragments whose only navigation can be done downwards [7] or downwards and

rightwards [6] or downwards and upwards [8]. However, even though all these restrictions

yield decidable fragments, the most expressive ones have huge, non-primitive-recursive,

complexity bounds.

∗ Partially supported by FET-Open Project FoX, grant agreement 233599.

© V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Decidable classes of documents for XPath

2. Restrict the models. When proving undecidability of XPath satis�ability, for each

Minsky machine one constructs an XPath formula ϕ, such that models of ϕ describe

computations of the Minsky machine. XML documents that describe computations of

Minsky machines seem unlikely to appear in the real world; and therefore it sounds

reasonable to place some restrictions on data trees, restrictions that are satis�ed by

normal XML documents, but violated by descriptions of Minsky machines.

This paper is devoted to the second approach.

Comparison with tree width

The archetype for our research is the connection between tree width and satis�ability of

guarded second order logic, over graphs. Guarded second-order logic is a logic for expressing

properties of undirected graphs. A formula of guarded second-order logic uses a predicate

E(x, y) for the edge relation, and can quantify over nodes of the graph, sets of nodes of the

graph, and subsets of the edges in the graph. Satis�ability of guarded second-order logic

over graphs is undecidable (already �rst-order logic has undecidable satis�ability). However,

the picture changes when one bounds the tree width of graphs.

Bounded tree width is a su�cient condition for decidability. More precisely, for every

k ∈ N, one can decide if a formula of guarded second-order logic is satis�ed in a graph

of tree width at most k [5].

Bounded tree width is also a necessary condition for decidability: if a set of graphs X has

unbounded tree width, then it is undecidable if a given formula of guarded second-order

logic has a model in X [12].

Our contribution

Our goal in this paper is to �nd a parameter, which is to XPath over data trees, what tree

width is to guarded second-order logic over graphs. As candidates, we de�ne two parameters,

called the match width and the braid width of data trees. Our results are:

Bounded match width is a su�cient condition for decidability. For every k ∈ N, one can
decide if a formula of XPath is satis�ed in a data tree of match width at most k.

Bounded braid width is a necessary condition for decidability: if a set of data trees X

has unbounded braid width, then it is undecidable if a given formula of XPath has a

model in X.

Observe that the two statements talk about two di�erent parameters. We conjecture that

bounded match width is equivalent to bounded braid width, but we are unable to prove this.

Bounded depth data trees. Our results are restricted to data trees with bounded

depth, which we believe is relevant since the depth of XML documents is very small in

practice. However, we believe that our results can be extended to arbitrary data trees.

Why not tree width?

Instead of de�ning a new parameter for data trees, such as match width, why not simply

work with tree width, which has proved so useful in other contexts? It is not di�cult to

apply the notion of tree width to a data tree; for instance one can de�ne the tree width of

a data tree to be the tree width of the graph where the nodes are positions, and the edges

are either tree edges (connecting a node to its parent in the tree), or data edges (connecting

positions carrying the same data value). In fact, even guarded second-order logic (which is

much more expressive than XPath) is decidable over data trees of bounded tree width.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 3

So why not use tree width? A short answer is that because guarded second-order logic is

much more powerful than XPath, one can de�ne data trees which are di�cult for guarded

second-order logic (have high tree width), but easy for XPath (have low match width).

Another, related, point is that match width is a parameter that is more suited to ana-

lyzing data trees, with an emphasis on XML documents that store databases. A data tree

contains two kinds of structure: the underlying tree structure, and the structure induced by

comparing data values. When talking about the tree width of a data tree, these two kinds

of structure are not distinguished, and merged into a single graph. Match width, on the

other hand, is sensitive to the di�erence between the tree structure and the data structure.

Consider the following example. Suppose that we have a data tree, which contains two sub-

trees: one subtree which contains employees, and one subtree which contains departments.

Suppose that in each employee record, we have a pointer to a department record, which

maps an employee to his/her department. Such a document is illustrated below, with the

dashed lines representing links from employees to their departments.

As long as the sources of all the links (in the �employees� subtree) are located in a di�erent

subtree than the the targets of the links (in the �department� subtree), then the match

width of the document will be small (as we shall prove in the paper), regardless of the

distribution of the links. On the other hand, by appropriately choosing the distribution of

the links (while still keeping all sources in the �employees� subtree and all targets in the

�departments� subtree), the tree width of a document can be made arbitrarily high. In

other words, the documents like the one in the picture are a class of data trees, where the

match width is bounded, and the tree width is unbounded. (We also believe that this class

of documents is rather typical for XML documents occurring in practice.) In particular, on

this class of documents, guarded second-order logic is undecidable, while XPath is decidable.

Plan of the paper

In the next section we state the main de�nitions: data trees, data words, and class automata.

Our main contributions are stated in terms of data words with at most two elements in each

equivalence class, called match words, since it simpli�es proofs and de�nitions. However,

in later sections we show how to generalize our results to bounded depth data trees with

unbounded number of elements per data equivalence class. We introduce match width in

Section 3, and in Section 4 we show our main result, that class automata (or XPath) over

classes of match words with bounded match width is decidable. In Section 5 we introduce

braid width and show that XPath and class automata are undecidable over any class with

unbounded braid width. In Sections 6 and 7 we extend the de�nitions and results to data

words and to bounded depth data trees. Omitted proofs can be found in the Appendix.

2 Preliminaries

Data trees and data words

We work with unranked trees, where the siblings are ordered. A tree over alphabet A is a

tree where the nodes are labelled by letters from A. A data tree can be de�ned in two ways.

The �rst way is that it is an unranked tree, where every node carries a label from the input



4 Decidable classes of documents for XPath

alphabet A, and a data value from a in�nite set (say, the natural numbers). The logics

that we use can only compare the data values for equality, and therefore the only thing that

needs to be known about data values in a data tree is which ones are equal. That is why

we choose to model a data tree as a pair (t,∼), where t is a tree over the alphabet A, and

∼ is an equivalence relation on the nodes of t, which says which nodes have the same data

value. Similarly, a data word is a pair (w,∼), where w is a word over the alphabet A and ∼
is an equivalence relation on the positions of w.

XPath

By XPath we mean the fragment capturing the navigational aspects of XPath 1.0. (called

FOXPath in [2]). Expressions of this logic can navigate the tree by composing binary

relations from a set of basic relations (a.k.a. axes): the parent relation (here noted ↑), child
(↓), ancestor (↑∗), descendant (↓∗), next sibling to the right (→) or to the left (←), and their

transitive closures (→∗, ∗←). For example, α = ↑[a]↑↓[b], de�nes the relation α between two

nodes x, y such that y is an uncle of x labeled b and the parent of x is labeled a. Boolean

tests are built by using these relations. An expression like 〈α〉 (for a relation α) tests that

there exists a node accessible with the relation α from the current node. Most importantly,

a data test like 〈α = β〉 (resp. 〈α 6= β〉) tests that there are two nodes reachable from the

current node with the relations α and β that have the same (resp. di�erent) data value.

XPath can be also interpreted over data words, using the sibling axes.

Class automata

In the technical parts of the paper, we will use an automaton model for XPath, which is

called class automata, introduced in [4]. Suppose that t is a tree over a �nite alphabet A,

and X is a set of nodes in t. We write t⊗X for the tree over alphabet A× 2 obtained from

t by extending the label of each node by a bit, which indicates whether the node belongs

to X. Similarly, for any two trees t1, t2 with the same nodes and labelled by alphabets A1

and A2 respectively, we write t1⊗ t2 for the tree over alphabet A1×A2, which has the same

nodes as t1 and t2, and where each node is labelled by the pair of labels from t1 and t2.

A class automaton consists of

an input alphabet A;

a work alphabet B;

a class condition L, which is a regular language of trees over the alphabet A×B × 2.

The automaton accepts a data tree (t,∼) if there is some tree s over the work alphabet B

with the same nodes as t, such that

t⊗ s⊗X ∈ L for every equivalence class X of ∼.

It was shown in [4] that class automata capture XPath.

I Theorem 1 ([4]). For every XPath boolean query, one can compute a class automaton,

which accepts the same data trees.

3 Match width

In this section we de�ne the match width of a data word. In fact, we will work with data

words whose every class has size at most 2, that we call match words. Later on, we will

comment on how to extend this de�nition to data words and data trees.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 5

b a b a a b a b

aa b a

b a b a a b a b

aa b a
segment

bound node

b
a

b
a

a
b

a
b

a
a

b
a

segm
en

t

(a) (b)

Figure 1 A split match word (a) and its parts (b).

A split match word is a �nite set of words, together with an additional set of edges,

which connect positions of these words with each other. Figure 1 (a) contains an example

of a split match word. We write τ for split match words. The words are called the segments

of the split word.

We can think of a split word as a graph where the nodes are positions of the words,

with two types of edges: sucessor edges, which go from one position to the next in each

segment, and data edges, which are the additional edges. We require the data edges to be a

matching. The matching need not be perfect: some nodes might not have an outgoing data

edge, such nodes are called free nodes. The nodes that are not free are called bound nodes.

These de�nitions are illustrated in Figure 1 (b). Note that a match word can be seen as a

special case of a split match word, which has one segment.

3.1 Operations on split match words

We will construct split match words out of simpler split match words, using the following

four operations.

Base (no arguments). We can begin with a split match word which has one segment,

with one position, and no data edges.

Union (two arguments). We can take a disjoint union of two split match words. In the

resulting split word, the number of segments is the sum of the numbers of segments of

the arguments; and there are no data edges between segments from di�erent arguments.

Join (one argument). We can add a successor edge, joining two segments into one

segment.

Match (one argument). We can choose two distinct segments, and add any set of data

edges with sources in one segment and targets in the other segment.

The operations (except union) are not deterministic (in the sense that the result is not

uniquely determined by the operation name and the argument). The result of base depends

on the choice of a label on the only position; the result of applying join to a split match

word also depends on the choice of segments to be joined; and the result of applying match

depends on the choice of new data edges.

Derivation. A derivation is a �nite tree, where each node is of one of four types (base,

union, join or match) and is labelled by a split match word, satisfying the following natural

property. The leaves are of base type, nodes of union type have two children, and nodes of

join and match type have one child. Suppose that x is a node in a derivation. Then the

split match word in the label of node x is constructed, using the operation in the type of x,

from the split match words in the children of x. A derivation is said to generate the split

match word that labels its root.



6 Decidable classes of documents for XPath

Rank. Suppose that t is a derivation. To each node of t, we assign a number, which

is called the rank of the node. The rank of a base node is 0. The rank of a union or join

node is the maximum of the ranks of the children. The rank of a match node is 0 if the split

match word in the label of x has no free nodes; otherwise it is n+ 1, where n is the rank of

the unique child of x.

Width. The rank of a derivation is the maximal rank that appears in a node of the

derivation. The segment size of a derivation is the maximal number of segments that appear

in a split match word in one of the nodes of the derivation. Finally, the width of a derivation

is the maximum of its rank and segment size. The match width of a split match word is the

minimal width of a derivation that generates it. We are most interested in the special case

of the match width of a match word, seen as a special case of a split match word.

In order to have small width, a derivation needs to have both small rank and small

segment size. In the following examples we show that requiring only the rank to be small,

or only the segment size to be small, is not restrictive enough, since all match words can be

generated that way.

I Example 2. Every split match word with one segment (which is the same thing as a

match word, with possibly some free nodes that are not matched) can be generated by a

derivation of segment size 2, but possibly unbounded rank. The proof is by induction on the

number of nodes. Consider then a split match word with n+ 1 nodes. Apply the induction

assumption to the �rst n nodes. Now add the (n + 1)-st node as a separate segment using

a union rule, connect it if necessary with one of the �rst n nodes using a match rule, and

then join it using the join rule.

I Example 3. Every match word can be generated by a derivation of rank 1, but possibly

unbounded segment size. We prove the following claim: every split match word τ without

free nodes can be generated by a derivation of rank 1, but possibly unbounded segment size.

The proof is by induction on the number of nodes in τ . For the induction step, consider a

split match word τ . Choose some data edge in τ , which connects nodes x and y. Create a

new split match word, call it σ, by removing the nodes x and y together with their incident

successor edges and the data edge connecting x and y. (Observe that σ can have more

segments than τ ; for example if x and y are in separate segments, and they are not the �rst

or last positions in those segments, then σ will have two more segments than τ , since the

segments containing x and y will break into two segments each.) The new split match word

σ has no free nodes; and therefore by induction assumption it has a derivation of rank 1.

Since there are no free nodes, the root of the derivation has rank 0. Therefore, we can add

x and y as separate segments, connect them with an edge, and then join them to σ creating

τ . Using this claim, we can add free nodes and join all segments, creating any match word.

I Example 4. A segregated match word is a data word of even length 2n, such that every

data edge connects a node from the �rst half with a node in the second half.

b a b a a b a b a a{ { . . . . . . . . . . . .. . .

(a) A segregated word. (b) The forbidden pattern.

Clearly, segregated words have match width at most 2. They can be alternatively described

as those data words not containing four elements in the con�guration shown under (b).



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 7

In [4] it was shown that emptiness for class automata is decidable over segregated data

words. It is instructive to recall the argument in anticipation of the broader technique

underlying our main result. For the rest of this argument we say that a match word is free if

no data value occurs twice in it, i.e. if it is entirely devoid of data equality edges and thus, as

long as it is considered in isolation, it is hardly more than a word over a �nite alphabet. It

is easy to see that it is su�cient to just consider a �xed, one-letter work alphabet B = {b}.
Let A be a class automaton with a class condition L ⊆ (A×B×2)∗ recognized by a monoid

morphism α : (A × B × 2)∗ → M so that L = α−1(F ) for some F ⊆ M . We de�ne the

α-pro�le, πα(w), of a free match word w as the vector X ∈ NM whose every entry Xm

equals the number of positions x in w such that α(w⊗b|w|⊗{x}) = m. Observe that the set

Λα = {πα(w) | w free match word} of all pro�les of free match words is the Parikh image of

a suitable regular language, whence, by Parikh's theorem [11], it is semi-linear (Presburger

de�nable [10]). Indeed, for each free match word w let σ(w) be the word of the same length

satisfying σ(w)[i] = α(w ⊗ b|w| ⊗ {i}) for each 1 ≤ i ≤ |w|. Then πα(w) is precisely the

image of σ(w) under the Parikh mapping. To see that the set {σ(w) | w a free match word}
is regular it su�ces to say that {w × σ(w) | w a free match word} is recognisable by an

automaton that aggregates in a straighforward manner the value of α(v⊗b|v|⊗{0}) for each
pre�x and each su�x v of w.

Whenever free match words u and v have the same length and share the same data

values, then the segregated word w = uv is accepted by the class automaton A if, and only

if, there is a matrix X ∈ NM×M such that for all r, s ∈M Xr,s 6= 0 only if r · s ∈ F and∑
s

Xr,s = Yr and
∑
r

Xr,s = Zs

where Y = πα(u) and Z = πα(v). Here X represents a family of matching by prescribing

how many positions of each type within u should be matched to how many positions of

whichever type within v.

In conclusion, the class automaton α accepts some segregeted word i� the above system

of linear equations has a solution for {Yr, Zs, Xr,s}r,s∈M . The set of solutions is de�nable

in Presburger arithmetic (viz. semilinear [10]) and can be e�ectively veri�ed for emptiness.

Main result

We now announce the main results of this paper: emptiness for class automata is decidable

over match words of bounded match width.

I Theorem 5. The following problem is decidable:

Input A number n and a class automaton.
Question Does the automaton accept some match word of match width ≤ n?

In Section 4, we sketch the proof of the theorem. Before proving the theorem, we further

discuss the notion of match width, and show how it is related to tree width.

Match width and �rst-order logic. Match width is a measure that is adapted

speci�cally for class automata. If we consider monadic second-order logic, or even �rst-

order logic, over match words of bounded match width, then satis�ability is undecidable.

I Lemma 6. Satis�ability of �rst-order logic is undecidable over segregated match words, as

de�ned in Example 4, which have match width at most 2.

Match width and tree width. On the other hand, bounded tree width implies

bounded match width, but the converse does not hold.



8 Decidable classes of documents for XPath

I Lemma 7. If a match word has tree width k, then it has match width at most 3k + 3.

I Lemma 8. Match words of match width 2 can have unbounded tree width.

4 Bounded match width su�cient for decidability

In this section, we present a proof sketch of Theorem 5. In fact, we show a stronger result,

Theorem 9, which implies Theorem 5.

Numbered segments. Consider a split match word τ with n segments. In this section,

it will be convenient to number the segments, so we assume that each split match word comes

with an implicit ordering of the segments. The segments will be written as τ [1], . . . , τ [n].

We write segments(τ) for the set {1, . . . , n}.

Type of a split match word.

Consider a monoid morphism α : (A×2)∗ →M . We de�ne the α-type of a split match word

τ to be the following information.

The empty type, which is the vector

emptytypeτ ∈M segments(τ)

that maps i ∈ segments(τ) to the type α(τ [i]⊗ ∅) ∈M .

The free type, which is the function

freetypeτ : segments(τ)×M → N

that maps (i,m) to the number of free positions x in the word τ [i] that satisfy α(τ [i]⊗
{x}) = m.

The bound type, which is the set

boundtypeτ ⊆M segments(τ)

which contains a vector v ∈M segments(τ) if there is some matched pair of positions, call

them x, y, such that on coordinate i ∈ segments(τ), the vector has the value α(τ [i] ⊗
{x, y}). Note that it may be that positions x, y are not in component i, or that only one

is in the component.

When the morphism α is clear from the context, we say type instead of α-type. The

type is therefore some �nite information (the empty type and the bound type), together with

a vector of natural numbers (the free type). Because of the free type, the set of possible

α-types is potentially in�nite. However, as we shall see below, semilinear sets can be used

to represent the vectors in the free type, at least as long as the match width is bounded.

We brie�y recall semilinear sets below.

Semilinear sets

A linear space is Nk for some dimension k ∈ N. A semilinear space is a �nite disjoint union

of linear spaces. The components of the disjoint union are called the components of the

semilinear space. We write semilinear spaces as
∐
i∈I Xi, where the index set I is �nite,

each component Xi is a linear space, and
∐

stands for disjoint union. Semilinear spaces are

closed under cartesian products and disjoint unions.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 9

A semilinear subset of a linear space is de�ned in the usual way. (I.e. as a �nite union

of linear subsets, and the linear subsets of Nk are those of the form

v0 +

t∑
j=1

Nvj = {v0 +

t∑
j=1

njvj : n1, . . . , nt ∈ N}

for some t and �xed v0,v1, . . . ,vt ∈ Nk.) A semilinear subset of a semilinear space associates

a semilinear subset to each of the components.

Representing α-types.

We are now ready to state the main technical result used in the proof of Theorem 5. Fix a

number k of segments. An α-type of a split match word with k segments is an element of

Xk
def
= Mk︸︷︷︸

empty type

× Nk×M︸ ︷︷ ︸
free type

× P (Mk)︸ ︷︷ ︸
bound type

.

The above is a semilinear space, with one linear space of dimension k×M for every pair of

empty and bound types. Therefore, it makes sense to ask if the set of possible α-types is

semilinear or not. The answer is positive, when the match width is bounded, as the following

theorem shows.

I Theorem 9. Let n ∈ N. The set

{typeτ : τ is a k-segment split match word of match width ≤ n}

is a semilinear subset of Xk and can be computed.

The proof of the above theorem is long, and included in the Appendix. It uses Parikh's

theorem, which says that the Parikh image of a context-free language is semilinear. Here

we only show that Theorem 9 implies Theorem 5.

Proof of Theorem 5. Recall that the theorem says that one can decide if a class automaton

accepts some match word of match width ≤ k. Let A be the input alphabet, B be the work

alphabet, and L ⊆ (A×B × 2)∗ the class condition of the class automaton. Let

α : (A×B × 2)∗ →M

be a monoid morphism which recognizes the language L. In other words there is some set

F ⊆M such that L is the inverse image α−1(F ).

The match width of a word does not change after its positions have been additionally

labelled by the work alphabet B. Therefore, we want to decide the following question: is

there some match word (w,∼) over the alphabet A×B, with match width ≤ k, and so that

w ⊗ {x, y} ∈ L for every matched positions {x, y} in ∼, and
w ⊗ {x} ∈ L for every free position {x} in ∼.

The above condition says that there is a split match word with one segment such that

the free type maps every pair (i,m) with m 6∈ F to 0 (i.e. all free positions x are so that

w ⊗ {x} ∈ L), and the bound type is a subset of F . By Theorem 9, we can compute all

possible α-types of match words with one segment, and test if there is some such α-type. J



10 Decidable classes of documents for XPath

5 A necessary condition for decidability

So far, we have de�ned a measure of match words, namely match width. Bounded match

width is a su�cient condition for decidable emptiness of class automata. In this section, we

de�ne a complementary measure, called braid width, such that emptiness of class automata

is undecidable on any class of match words with unbounded braid width. Therefore, having

bounded braid width is a necessary condition for decidable emptiness of class automata.

De�nition of braid width

Consider a match word, interpreted as a graph with successor edges and data edges. Split

the match word into n consecutive subwords, henceforth called segments. Consider a path,

which uses successor and data edges, and visits nodes x1, . . . , xk. Such a path is a braid if:

the path visits all n segments, and

if a node of the path is in segment i, then subsequent nodes on the path cannot revisit

any of the segments 1, . . . , i− 2.

(The notion of a braid is relative to some decomposition into segments.) We say that a

match word has braid width at least n if it can be split into n segments, such that one can

�nd n node-disjoint braids. Below there is a picture of a match word with braid width at

least 3, along with the witnessing segments and braids.

b a b ab a b a b aa b a{ { {
Notice that a braid can visit the previous segment. In fact, this is necessary, as there are

classes of match word with unbounded braid width that, if we would restrict the braids to go

only forward, would otherwise have bounded braid width (cf. Example 22 of the Appendix).

Also note that for any �xed k ∈ N it is easy to construct a class automaton Ak recognising

all match words of braid width at least k.

I Theorem 10. Let X be a class of match words of unbounded braid width. Then, emptiness

of class automata is undecidable on X. If in addition X is closed under arbitrary relabellings,

then even XPath is undecidable on X.

Proof idea. Observe that the �rst claim follows from the second, since class automata cap-

ture XPath by Theorem 1. The second claim is proved by reduction from the halting problem

for 2-counter Minsky machines. To every Minsky machineM we associate a boolean XPath

query whose models are match words inside of which an accepting run ofM is encoded. It

is not hard to see that there must be a word with k braids and k segments such that:

every braid begins in the �rst segment, and �nishes in the last segment, and

consecutive nodes on every braid are either in the same or in neighboring segments.

A match word with these properties and an appropriate labelling can represent a run ofM
of length and width at most k, where width is the sum of the maximum values of the two

counters reached during a run.

We use the labels to specify: which are the nodes involved in the k braids; the limits of

each segments; for every node of a braid, where to �nd the previous and next node of the

braid (using instructions to go the previous node, the next node, or to the node with equal



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 11

xx x + 1

b a a b a b b a b a a b a b a(w,∼) (w�,∼�)

Figure 2 An example of a data expansion (w,∼) of a data word (w′,∼′).

data value). Also, for every segment and braid, we add a special �ag to the �rst node of the

braid traversal that is in the segment.

Now, making use of the fact that there are exactly k �agged nodes in every segment, and

that there is a way of linking these k nodes in a segment with the k �agged nodes of the

next segment, we can code con�gurations ofM. In order to code the counters, each braid is

associated to one of the counters through a label, and each �agged element is labelled with

being active or inactive. The value of counter i ∈ {1, 2} is then the number of active �agged

nodes of braids associated to counter i inside the segment. If we also label each segment

with a state, each segments codes a con�guration ofM. Depending on the instruction, an

XPath formula can test whether a counter is 0 (no active �agged elements in the segment),

or to increase (or decrease) a counter value, by choosing an inactive �agged element and

forcing that the next �agged element of the same braid is active.

Each of the above constraints is expressible in XPath and we can therefore ensure that

an accepting run ofM is encoded in the match word. J

6 Data words instead of match words

We discuss how the de�nition of braid and match width can be generalized to classes of data

words with arbitrarily many elements in each equivalence class. The same decidability and

undecidability results can also be transfered to this general de�nition.

Suppose a data word (w,∼) with two data classes X,Y with at least two elements each,

so that the rightmost position of X is x and the leftmost position of Y is x+1 (i.e., the next

position of x). We say that (w,∼) is a data expansion of (w′,∼′), if (w′,∼′) is the result of
removing x + 1 from (w,∼) and joining the data classes X and Y (cf. Figure 2). We say

that a match word (w,∼) is a match expansion of (w′,∼′) if it is the result from applying

repeatedly data expansions to (w′,∼′). The class of match words C is the match expansion

of a class of data words C ′, if C consists of all match expansions of data words from C ′.

We de�ne that a class C of data words has match width at least/at most n if the match

expansion of C has match width at least/at most n. Similarly, C has braid width at least/at

most n if the match expansion of C has braid width at least/at most n.

These de�nitions allow us to transfer our decidability and undecidability results for class

automata. Further, the notions of bounded match width and bounded braid width coincide

on match words if and only if they coincide on data words.

I Lemma 11. For any class of data words with unbounded braid width, the emptiness prob-

lem for class automata is undecidable.

I Lemma 12. Given a class automaton A and a number n, the emptiness problem for A
restricted to data words with match width at most n is decidable.

Note that, by Theorem 1, Lemma 12 is also true for XPath. However, we do not know if

the undecidability result for XPath (or even regular -XPath) of Theorem 10 holds for classes

of data words of unbounded braid width.



12 Decidable classes of documents for XPath

7 Data trees instead of data words

In the previous sections we discussed the case of data words. But what about data trees?

Here we extend the notions of braid width and match width to data trees and generalize

our decidability and undecidability results.

One solution is to reduce data trees to words. For a data tree (t,∼), we de�ne its word

representation word(t,∼), which is like the text representation of an XML tree. If the

labels of t are A, then the labels of word(t,∼) are {open, close} × A. Every node of (t,∼)

corresponds to two nodes in word(t,∼), one with an opening tag and one with a closing tag,

with the same data value, as depicted below.

a

b b

a b a a,op b,op b,cl b,op a,op a,cl b,op b,cl a,op a,cl b,cl a,cl

(t,∼) word(t,∼)

If the depth of the tree is known in advance, and can be encoded in the states of an au-

tomaton, then this representation can be decoded by a class automaton, as stated in the

following lemma.

I Lemma 13. Fix d ∈ N. For any class automaton on data trees A, one can compute a

class automaton on data words Ad such that A accepts a data tree (t,∼) if and only if Ad
accepts the data word word(t,∼) provided that (t,∼) has depth at most d.

We extend the de�nition of match and braid width to data trees following the (t,∼) 7→
word(t,∼) coding. A class of data trees has braid/match width of at least/at most n if

its data word representation has braid/match width of at least/at most n. In view of the

lemma above, we have the following.

I Lemma 14. For any class automaton on data trees A and numbers d, n, the emptiness

problem for A restricted to data trees of depth at most d and match width at most n is

decidable.

8 Discussion

We conjecture that match width and braid width are equivalent in the sense that a class

of data words has bounded match width if, and only if, it has bounded braid width. One

implication of the conjecture follows from Theorems 5 and 10. Namely, for every k, the class

of documents of match width at most k has bounded braid width, since otherwise the class

would have undecidable emptiness for class automata. In other words, unbounded braid

width means unbounded match width. The content of the conjecture is therefore the other

implication: is it the case that unbounded match width means unbounded braid width?

We also conjecture that XPath is undecidable on unbounded match width data words or

data trees, but we are unable to prove it.

Finally, we believe that the results can also be extended to arbitrary data trees, by

de�ning accordingly split data trees and using forest algebra [3] instead of monoids.

References

1 Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satis�ability in the presence of

DTDs. Journal of the ACM (JACM), 55(2):1�79, 2008.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 13

2 Michael Benedikt and Christoph Koch. XPath leashed. ACM Comput. Surv., 41(1), 2008.

3 M. Boja«czyk and I. Walukiewicz. Forest algebras. In Automata and Logic: History and

Perspectives, pages 107�132. Amsterdam University Press, 2007.

4 Mikolaj Bojanczyk and Slawomir Lasota. An extension of data automata that captures XPath.

In LICS, pages 243�252. IEEE Computer Society, 2010.

5 Bruno Courcelle. Graph rewriting: A bibliographical guide. In Term Rewriting, volume 909

of Lecture Notes in Computer Science, page 74. Springer, 1993.

6 Diego Figueira. Alternating register automata on �nite data words and trees. Logical Methods

in Computer Science (LMCS), 8(1:22), 2012.

7 Diego Figueira. Decidability of downward XPath. ACM Transactions on Computational Logic

(TOCL), 13(4), 2012. To appear.

8 Diego Figueira and Luc Segou�n. Bottom-up automata on data trees and vertical XPath. In

International Symposium on Theoretical Aspects of Computer Science (STACS'11). Springer,

2011.

9 Floris Geerts and Wenfei Fan. Satis�ability of XPath queries with sibling axes. In Interna-

tional Symposium on Database Programming Languages (DBPL'05), volume 3774 of Lecture

Notes in Computer Science, pages 122�137. Springer, 2005.

10 Seymour Ginsburg and Edwin H. Spanier. Semigroups, presburger formulas, and languages.

Paci�c Journal of Mathematics, 16:285�296, 1966.

11 Rohit J. Parikh. On context-free languages. J. ACM, 13:570�581, October 1966.

12 D. Seese. The structure of the models of decidable monadic theories of graphs. Ann. Pure

Appl. Logic, 53(2), 1991.



14 Decidable classes of documents for XPath

A On match width

Here is a further example of a large class of match words with bounded match width.

I Example 15. Consider the class P of paranthesized segregated words. This is the smallest

class of match words containing all segregated words and closed under concatenation and

nesting. A `typical' such word is illustrated below.

All paranthesized segregated match words have match width at most 3. To see that, consider

split segregated words (u, v) each obtained from a segregated match word uv by splitting it in

the middle (|u| = |v|). Just as segregetad words, these too can be generated by a derivation

of match width 2. To nest a paranthesized segregated word w within a segregated word

uv we merely to derive w and the split segregated word (u, v) and apply union and join

to obtain the match word uwv. This requires 3 components at an intermediate stage but

no further uses of match and generates a match word uwv ∈ P. Concatenations can be

generated using only union and join and 2 components.

It can be veri�ed that paranthesized segregted words are characterised as those match

words not containing any of the following three con�gurations of 6 elements as subgraphs.

Proof of Lemma 6

Consider a match word where the sequence of labels is

(ab)nw1 · · ·wk where every wi is either cd or cdd

and every data edge connects a node from (ab)n to a node from w1 · · ·wk. In particular, this

data word is segregated. Based on this data word w, de�ne a graph Gw as follows (the graph

will have nodes of degree at most 3). The nodes of the graph are the words w1, . . . , wk. In

the graph, there is an edge from wi to wj if there is some l ∈ {1, . . . , n} such that there is a

data edge which connects the l-th a to some position in wi, and there is another data edge

which connects the l-th b (which is the successor of the l-th a) to some position in wj .

It is not di�cult to see that for every �rst-order formula on graphs ϕ, there is a �rst-order

formula ϕ̂ on match words (which has predicates for successor edges and data edges), such

that

w |= ϕ̂ i� Gw is de�ned and Gw |= ϕ.

Every graph with degree at most 3 is of the form Gw for some w. Therefore, if one wants to

know of a formula ϕ is satis�able over graphs of degree at most 3 (which is an undecidable

problem); it su�ces to test if ϕ̂ is satis�able in some segregated match word. Therefore,

�rst-order logic is undecidable over segregated match words.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 15

Proof of Lemma 7

In fact, every match word of tree width k can be generated by a derivation involving split

match words of at most 3k+ 3 segments and no nested applications of the match operation.

One proceeds by �rst generating |w|2 many 2-segment match words, wx,y, one for every

data equality edge {x, y} in w, by an application of match on the union of two singletons.

Subsequently w is derived from all these pairs wx,y by fusing them together using only

union and join as directed by the structure of a tree decomposition of w ensuring that all

intermediate split match words comprise at most 3k + 3 segments.

Consider a tree decomposition (T,<, β) of width k of a match word w. Here (T,<) is

the transitive closure of a directed tree with the <-minimal node as its root; and β maps

every node u ∈ T to a set of positions of w of size at most k+ 1. We may assume wlog. that

every internal node u of T has precisely two successors, denoted by u0 and u1. By de�nition

of tree decomposition, for each unordered pair of positions {x, y} that share the same data

value in w there is a node v ∈ T such that {x, y} ⊆ β(v). For future use we �x a <-maximal

such v = vx,y for every such pair in an arbitrary fashion.

For each node u of T let ω(u) be the split match word obtained from the union of all

wx,y such that u ≤ vx,y by joining all successor pairs among them as in w. Naturally,

w = ω(r) for r the root of T . Let us �rst notice that ω(u) for each u has at most k + 1

segments. Indeed, some position x of each segment (the �rst or the last position) has to

be later connected by a successor edge with some other position y (unless there is only

segment which contains all positions of the split match word, in which case the claim holds

trivially). Assume that x 6∈ β(u). Then x ∈ β(v) only for succesors v of u, while y ∈ β(v)

only for nodes v not being a successor of u. This means that {x, y} 6⊆ β(v) for each node v,

which contradicts the de�nition of a tree decomposition. Next, we claim that each ω(u) is

derivable using intermediate split match words having no more than 3k + 3 segments. For

u a leaf (i.e. <-maximal) node of T this is trivially true. Consider an internal node u ∈ T
and assume that ω(u0) and ω(u1) have been generated by a derivation as claimed. Observe

that the sets of positions of ω(u0) and ω(u1) are disjoint. Then ω(u) can be derived from

the union of ω(u0), ω(u1) and all those wx,y with vx,y = u (at most 3k + 3 many segments

in total: at most k + 1 from ω(u0), from ω(u1), and from all wx,y) by adding all successor

edges present in w using joins. The claim follows by bottom-up induction on T .

Proof of Lemma 8

Every n×m-grid can be found as a topological minor of some segregated word. The following

graphic illustrates this for 3×4. The claim follows, given that the tree-width of the n×n-grid
is n.

B Proof of Theorem 9: reduction to semilinear functions

Our strategy for the proof of Theorem 9 is that we abstract away the class automata and

data words, and we work purely in the world of semilinear spaces and semilinear sets; in this

world Theorem 16 is an analogue of Theorem 9. In this section we give all the necessary

de�nitions, we present Theorem 16, and we show why Theorem 9 is its consequence. In the

next section we prove Theorem 16.



16 Decidable classes of documents for XPath

Semilinear functions

A function which assigns a subset of a semilinear space to each element of a semilinear space

f :
∐
i∈I

Xi → P (
∐
j∈J

Yj)

can also be seen as a subset of
∐
i∈I Xi×

∐
j∈J Yj . If f is a semilinear subset of this semilinear

space, then we say that f is a semilinear function. It is known that the image
⋃
s∈S f(s) of a

semilinear subset S ⊆∐i∈I Xi by a semilinear function f is a semilinear subset of
∐
j∈J Yj

. Additionally, given f and S, this semilinear subset can be computed.

Move functions

A function f : Nn → Nk is called a move function if it is de�ned by

f(x1, . . . , xn) =
( ∑
i∈A1

xi,
∑
i∈A2

xi, . . . ,
∑
i∈Ak

xi
)
,

for some choice of disjoint sets A1, . . . , Ak ⊆ {1, . . . , n}. In other words, a move function is

a linear function whose matrix is such that every column contains at most one entry with

1, and 0 everywhere else.

A semilinear function

f :
∐
i∈I

Xi → P (
∐
j∈J

Yj)

is called a move function if for each i ∈ I either

f restricted to arguments in Xi always returns the empty set, or

there is some j ∈ J such that f restricted to arguments in Xi returns always singletons,

and the underlying function between semilinear spaces (returning the only element of

the singleton) is a move function from Xi to Yj .

It is a standard property of semilinear sets that when f is given by a semilinear function,

one can compute its representation as a move function.

Derivation

Instead of operations on split match words we now consider semilinear functions. Namely,

let S be a semilinear space, and let F be a �nite set of semilinear functions of the form

f : Sar(f) → P (S) (where ar(f) is the arity of f).

A derivation is a �nite tree, where each node is labelled by a pair from F ×S, satisfying
the following property. A node labelled by function f has exactly ar(f) children. Suppose

that x is a node in a derivation, labeled by (f, v), and v1, . . . , var(f) are the elements of S in

the labels of the children of x. Then v ∈ f(v1, . . . , var(f)). A derivation is said to generate

the element of S that labels its root.

Level

Suppose that t is a derivation. To each node of t, we assign a number, which is called the

rank of the node. The rank of every leaf is 0. Consider now an internal node x labelled by

(f, v); let n be the maximum of the ranks of its children. If f is a move function, the rank of

x is n. If f is not a move function, the rank of x is 0 if v has zeroes on all coordinates (recall

that v is an element of some component of S, which is a linear space); otherwise it is n+ 1.

The rank of a derivation is the maximal rank that appears in a node of the derivation.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 17

Main result

We now announce a theorem which is a generalization of Theorem 9.

I Theorem 16. Let n ∈ N, let S be a semilinear space, and let F be a �nite set of semilinear

functions of the form f : Sar(f) → P (S). The set

{v ∈ S : v is generated by a derivation of rank ≤ n}

is semilinear subset of S and can be computed.

Reduction from Theorem 9

As in the main paper, let Xk be the set of all possible types of words with k segments:

Xk = Mk × Nk×M × P (Mk).

Let us now �x the number n ∈ N which appears in Theorem 9, i.e. the maximal match

width. As soon as this number is �xed, we can consider a semilinear space

S =

n⋃
k=0

Xk.

The key idea of the proof is that for each of our four operations on split match words

(base, union, join, match) it is enough to know types of the arguments, in order to determine

the type of the result. Moreover this functions are semilinear, and for union and join they

are even move functions. More precisely, we have the following three lemmas.

I Lemma 17. There exists a move function union : S × S → P (S) such that for each two

split match words σ, τ ,

if the total number of segments in σ and τ is ≤ n, the type of the union of σ and τ is

the only element of union(typeσ, typeτ ), and

if the total number of segments in σ and τ is > n, the set union(typeσ, typeτ ) is empty.

Proof. We assume here that the union operation returns the segments of the resulting split

match word in a speci�c order, namely �rst the segments of the �rst argument, and then

the segments of the second argument.

For types (S0, S1, S2) ∈ Xk and (T0, T1, T2) ∈ Xl we de�ne that

(R0, R1, R2) ∈ union((S0, S1, S2), (T0, T1, T2))

when

k + l ≤ n, and
the empty type R0 is the concatenation of S0 and T0, and

the free type R1 maps (i,m) ∈ {1, . . . , k+ l}×M to S1(i,m) if i ≤ k, and to T1(i−k,m)

if i > k, and

the bound type R2 contains all tuples

(σ1, . . . , σk, τ1, . . . , τl), where (σ1, . . . , σk) ∈ S2, (τ1, . . . , τk) = T0, and

(σ1, . . . , σk, τ1, . . . , τl), where (σ1, . . . , σk) = S0, (τ1, . . . , τk) ∈ T2.



18 Decidable classes of documents for XPath

Let σ be a split match word with k segments, and τ a split match word with l segments,

let the underlying words in σ and τ be, respectively, w1, . . . , wk and v1, . . . , vl, and let the

α-type of σ and τ be, respectively, (S0, S1, S2) and (T0, T1, T2). The second point of the

lemma holds trivially, as for k + l > n the result of the union function is the empty set.

Assume now that k + l ≤ n. We have to check that the α-type of the union of σ and τ is

(R0, R1, R2). The empty type of the union of σ and τ is the tuple

(α(w1), . . . , α(wk), α(v1), . . . , α(vl)),

hence it is the concatenation of S0 and T0. For i ≤ k, the free type of the union maps (i,m)

to the number of free positions x in the word wi such that α(wi⊗{x}) = m, which is exactly

S1(i,m). Similarly for i > k, but now it describes word vi−k, so it is T1(i − k,m). For the

bound type notice that when x, y are matched positions in the union of σ and τ , then either

both x, y are in the words coming from σ, or both in the words coming from τ .

To see that union is a move function, notice �rst that it returns either an empty set

or a singleton set. Next notice that the R0 and R2 are determined by S0, S2, T0, T2. This

means that the result's component in the semilinear space is determined by the argument's

component, as required in the move function. By looking at the formula for R1, we see that

it is obtained from (S1, T1) by a move function. J

I Lemma 18. For each two indices i 6= j there exists a move function joini,j : S → P (S)

such that for each split match word σ,

if σ has ≥ max(i, j) segments, and τ is obtained by joining the i-th and the j-th segment

of σ, the type of τ is the only element of joini,j(typeσ), and

if σ has < max(i, j) segments, the set joini,j(typeσ) is empty.

Proof. We again have to assume some order of segments after the join operation: we say that

the i-th and the j-th segments are removed from the tuple, and the new (joined) segment is

appended at the end.

For (S0, S1, S2) ∈ Xk we de�ne that (R0, R1, R2) ∈ joini,j(S0, S1, S2) when

k ≥ max(i, j), and

the empty type R0 is obtained from S0 by removing its i-th and j-th coordinates, and

appending the product of the i-th and the j-th coordinate at the end of the tuple, and

the free type R1 maps (a,m) ∈ {1, . . . , k − 2} ×M to S1(a′,m) where a′ = a+ |{i, j} ∩
{1, . . . , a}|, so that S1(i,m) and S1(j,m) are not used; R1 maps (k−1,m) ∈ {k−1}×M
to ∑

m′ : m′·sj=m

S1(i,m′) +
∑

m′ : si·m′=m

S1(j,m′),

where si, sj ∈M are the i-th and j-th coordinates of S0, and

the bound type R2 contains tuples from S2 with its i-th and j-th coordinates removed,

and the product of the i-th and the j-th coordinates appended at the end of the tuple.

Let σ be a split word with k segments, let the underlying words in σ be w1, . . . , wk, and

let the α-type of σ be (S0, S1, S2). The second point of the lemma is trivial; assume that

k ≥ max(i, j). We have to check that the α-type of the result of joining the i-th and j-th

segment of σ is (R0, R1, R2). For the empty type and the bound type this is obvious, as

we do with the tuples of α-type the same what is done with the split match word (we use

the fact that α((wiwj)⊗ P ) = α(wi ⊗ P ) · α(wj ⊗ P ) for any set of positions P ). Similarly

for the free type. The only nontrivial question is whether the number of free positions x in

word wiwj such that α((wiwj) ⊗ {x}) = m is R1(k − 1,m), for each m ∈ M . But this is



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 19

equal to the number of free positions x in word wi such that α(wi ⊗ {x})α(wj ⊗ ∅) = m,

plus the number of free positions x in word wj such that α(wi ⊗ ∅)α(wj ⊗ {x}) = m, which

is exactly R1(k − 1,m).

Like in the case of union, also the joini,j function returns either a singleton set or an

empty set, and R0 and R2 are determined by S0 and S2. By looking at the formula for R1,

we see that it is obtained from S1 by a move function. This move function is di�erent for

di�erent components of the semilinear space (for di�erent S0 and S2), but that is immaterial.

This shows that joini,j is a move function. J

I Lemma 19. There exists a semilinear function match : S → P (S) such that for each split

match word σ, and each element v ∈ S, the following two conditions are equivalent:

there exists a split match word obtained from σ by applying the match operation, having

type v, and

v ∈ match(typeσ).

Proof. Before we de�ne the match function, we �rst de�ne (for each 1 ≤ k ≤ n) a subset

match′k of the semilinear space

Mk × N{1,...,k}×M × P (Mk)×Mk × N{1,...,k}×M × P (Mk)× {1, . . . , k}2 × NM×M .

We say that (S0, S1, S2, R0, R1, R2, i, j, C) ∈ match′k when
1. R0 = S0, and

2. i 6= j, and

3. for each m ∈M ,

S1(i,m) = R1(i,m) +
∑
n∈M

C(m,n), and

S1(j,m) = R1(j,m) +
∑
n∈M

C(n,m), and

S1(a,m) = R1(a,m) for a 6∈ {i, j}, and

4. R2 consists of all the tuples of S2 and all the tuples (m1, . . . ,mk) such that C(mi,mj) >

0, and ma is the i-th coordinate of S0 for a 6∈ {i, j}.
Then we de�ne match to be the projection of

⋃n
k=1 match′k to the �rst 6 coordinates.

Let σ be a split match word with k segments, let the underlying words in σ be w1, . . . , wk,

and let the α-type of σ be (S0, S1, S2). Let i, j be the two segments of σ between which we

add the new edges of the matching (as in the de�nition of the match operation), and let τ be

the resulting split match word. For m1,m2 ∈M , let C(m1,m2) be the number of positions

x in wi which were just matched with a position y in wj such that α(wi ⊗ {x}) = m1 and

α(wj ⊗ {y}) = m2. We will check that (S0, S1, S2, R0, R1, R2, i, j, C) ∈ match′k; for this we
have to verify conditions 1�4. Condition 1 holds because the underlying words in σ and τ

are the same. Condition 2 holds by assumptions of the match operation. Condition 3 holds

by our de�nition of C. To see condition 4 notice that R2 still contains all pairs from S2, as

positions x, y matched in σ are still matched in τ . But in the bound type R2 we also have

tuples

(α(w1 ⊗ {x, y}), . . . , α(wk ⊗ {x, y}))
for all newly matched positions x, y, where x is in wi and y in wj . The i-th coordinate of

such tuple is equal to α(wi ⊗ {x}), the j-th coordinate to α(wj ⊗ {y}), and each other a-th

coordinate (a 6∈ {i, j}) to α(wa⊗∅), which is the a-th coordinate of the empty type S0. This

gives us the implication from the �rst point to the second point.



20 Decidable classes of documents for XPath

Again, let σ be a split match word with k segments, let the underlying words in σ be

w1, . . . , wk, and let the α-type of σ be (S0, S1, S2). Let also (R0, R1, R2) ∈ match(S0, S1, S2).

We have to show that typeτ = (R0, R1, R2) for some τ obtained by application of match to

σ. By de�nition of match we know that for some i, j, C we have

(S0, S1, S2, R0, R1, R2, i, j, C) ∈ match′k.

We choose the matching between the positions of the i-th and the j-th segment of σ, so that

for each m1,m2 ∈M there are exactly C(m1,m2) positions x of wi such that α(wi⊗{x}) =

m1 matched with positions y of wj such that α(wj ⊗ {y}) = m2. Condition 3 ensures that

we have enough such positions, and that in wa there remain exactly R1(a,m) free positions

x such that α(wa ⊗ {x}) = m, for each a,m. Similarly to the above paragraph, we see that

the α-type of τ is (R0, R1, R2).

Notice that match′k is semilinear, as each one of the conditions de�ning it gives a semi-

linear subset of the space. Furthermore, match, being its projection, is also semilinear. J

Additionally we have a 0-ary function base ∈ P (S) which contains exactly the types of

the split match words generated by the base operation. There are only �nitely many such

words, so this set is semilinear and can be computed.

Finally, we see that an element v ∈ S is the type of some split match word of match

width ≤ n if and only if v is generated by some derivation of rank ≤ n. This follows from the

above lemmas. Indeed, a derivation of rank ≤ n generating some split match word can be

converted to a derivation of rank ≤ n generating the type of this word (and using functions

base, union, joini,j , match), by simply replacing the split match word in each node by its

type. Oppositely, we can also convert a derivation of rank ≤ n generating some v ∈ S to

a derivation of rank ≤ n generating some split match word having type v; the split match

words in this derivation can be assigned in a bottom-up manner. Notice that the rank is

de�ned in the same way for operations on split match words, and for the corresponding

functions. From Theorem 16 it follows that the set of those v ∈ S which are generated by

some derivation of rank ≤ n (thus the set of those v ∈ S which are a type of some split

match word of match width ≤ n) is semilinear and can be computed. At the end we restrict

this set to Xk, and we obtain the set required in the statement of Theorem 9.

C Proof of Theorem 9: semilinear functions

In this appendix we prove Theorem 16. We do this in three steps: �rst we prove Lemma 20,

then Lemma 21, and �nally Theorem 9.

I Lemma 20. Consider a semilinear space S, and a �nite set F of semilinear functions of

the form f : Sar(f) → P (S). Assume that every function f ∈ F is either a move function,

or has arity 0. Then the set

{v ∈ S : v is generated by some derivation}

is a semilinear subset of S, and can be computed.

Notice that in this lemma we do not say anything about the rank of the derivation, but this

is redundant, as a set F satisfying the assumptions allows only derivations of rank 0.

Proof. Abusing the notation a bit we identify a function returning a singleton (i.e. a move

function) with the function returning the only element of the singleton.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 21

Denote the semilinear space S as
∐
i∈I Xi. Fix some component r ∈ I. It is enough to

check that the set

{v ∈ Xr : v is generated by some derivation}

is semilinear (and to compute it). Then we repeat the argument for every r.

We de�ne a set T of (�nite) trees each node x of which satis�es the following conditions.

1. It is labeled by a triple (f, i, g), where i ∈ I is a component number, f ∈ F , and

g : Xi → Xr is a move function.

2. Let k be the arity of f ; then x has exactly k children. Denote the label of the j-th child

of x by (fj , ij , gj).

3. f restricted to Xi1 × · · · ×Xik is a move function to Xi.

4. The root is labeled by (f, r, id), where id : Xr → Xr is the identity (move) function.

5. If x is not a leaf, for each a1 ∈ Xi1 , . . . , ak ∈ Xik we have (where by + we denote the

coordinatewise sum of vectors)

g1(a1) + · · ·+ gk(ak) = g(f(a1, . . . , ak)).

The labels of these trees come from a �nite alphabet (as there are only �nitely many move

functions between given linear spaces). All the conditions relate the label of a node with

labels of its children. It follows that there exists a context-free grammar GT , whose derivation
trees are exactly the trees from T (triples (f, i, g) with 0-ary f are terminals in this grammar,

the other tuples are nonterminals). Notice also that given move functions g, f and g1, . . . , gk
one can compute if they satisfy condition 5; thanks to this the context-free grammar can

be computed. In fact, given move functions g and f , there is exactly one sequence of move

function g1, . . . , gk such that condition 5 is satis�ed (it follows directly from the de�nition

of a move function).

Let also D be the set of all derivations which generate an element of Xr. We make

however a small twist: we assume that nodes of a derivation are labelled by triples (f, i, v),

where v ∈ Xi, instead of pairs (f, v). Trivially there is a one-to-one correspondance between

these two kinds of derivations. Notice that the labels of these derivations come from an

in�nite alphabet.

Next, observe that we have a natural mappingM from D to T : A tree D ∈ D is mapped

to the tree T ∈ T which has the same shape and the same �rst two coordinates of the labels.

The third coordinate of the labels is assigned in the only correct way: in the root we have

to write the identity function, and then we �ll in the rest in a top-down manner (as already

observed, the g function in a node determines the g functions in the children). Because D is

a derivation, we obtain conditions 1-5 for T . The mappingM has the following properties.

I Claim 1. Let x1, x2, . . . , xn be a maximal antichain of nodes of a tree D ∈ D (i.e. a

maximal set of nodes such that none of them is a descendant of the other); simultaneously

they can be treated as nodes of the tree M(D) ∈ T . For 1 ≤ j ≤ n, let vj and gj be the

last coordinate of xj in D and inM(D), respectively. Then the last coordinate of the root

label in D is

g1(v1) + · · ·+ gn(vn) .

Proof. We prove this property by induction on the sum of depths (distances from the root)

of the nodes xj . The base case is when n = 1 and x1 is the root. In this case the condition

holds trivially, as g1 is the identity function and v1 is read from the root. In any other case,

the antichain must contain all children of some node x (they can be found among nodes

on the maximal depth); without loss of generality we can assume that these are x1, . . . , xk.



22 Decidable classes of documents for XPath

Let (f, i, v) and (f, i, g) be the labels of their parent x in D and M(D), respectively. By

condition 5 of T and by the de�nition of a derivation we know that

g1(v1) + · · ·+ gk(vk) = g(f(v1, . . . , vk)) = g(v), thus

g1(v1) + · · ·+ gn(vn) = g(v) + gk+1(vk+1) + · · ·+ gn(vn).

Notice also that x, xk+1, . . . , xn is also a maximal antichain, and the sum of depths of its

nodes is smaller. The claim now follows from the induction hypothesis for this antichain

and the above equality. J

I Claim 2. Let v ∈ Xr. Then v is generated by some derivation if and only if there exists

a word (f1, i1, g1) · · · (fn, in, gn) generated by GT , and a sequence of values v1, . . . , vn such

that vj ∈ Xij ∩ fj() for 1 ≤ j ≤ n, and v = g1(v1) + · · ·+ gn(vn).

Proof. To prove this, assume �rst that v is generated by some derivation D ∈ D (its root has

v on the last coordinate of the label). Let (f1, i1, g1) · · · (fn, in, gn) be the word of labels in all

leaves ofM(D); it is generated by GT . Let v1, . . . , vn be the values on the third coordinate

on the leaves' labels in D. By the de�nition of a derivation we know that vj ∈ Xij ∩ fj()
for 1 ≤ j ≤ n. Thanks to Claim 1 applied for the antichain of all leaves, we know that

v = g1(v1) + · · ·+ gn(vn); this proves one direction.

For the other direction, assume that there exists a word (f1, i1, g1) · · · (fn, in, gn) gener-

ated by GT , and a sequence of values v1, . . . , vn such that vj ∈ Xij ∩ fj() for 1 ≤ j ≤ n,

and v = g1(v1) + · · · + gn(vn). Then we have a tree T ∈ T with n leaves, whose j-th leaf

is labeled by (fj , ij , gj) (for 1 ≤ j ≤ n). Notice that there exists a tree D ∈ D such that

M(D) = T and the labels of the leafs of D are (f1, i1, v1), . . . , (fn, in, vn). Indeed, in D we

take the shape and the �rst two coordinates of the labels from T ; the third coordinate of

the leaves labels is determined by by the sequence v1, . . . , vn; the third coordinate of labels

of all other nodes is �lled in a bottom-up manner (the v values in the children of a node

determine the v value in the node). Conditions 1-5 for T guarantee that we indeed obtain

a derivation. Thanks to Claim 1 applied for the antichain of all leaves, we know that the

last coordinate of the root's label in D is v = g1(v1) + · · ·+ gn(vn). But this means that v

is generated by D. J

Let Γ be the set of all tuples used as labels of trees in T . For γ = (f, i, g) ∈ Γ let Sγ be

the set of possible values of g(v) for v ∈ Xi ∩ f(). We see that Sγ is semilinear and can be

computed (for each γ). For a word w = γ1 . . . γn over alphabet Γ, let

Sw = Sγ1 + · · ·+ Sγn = {x1 + · · ·+ xn : x1 ∈ Sγ1 , . . . , xn ∈ Sγn} .

From Claim 2 it follows that the set of elements v ∈ Xr which are generated by some

derivation is equal to the union of Sw over all words w generated by GT . Recall that the

Parikh image of a word w ∈ Γ∗ is a vector from NΓ, mapping γ ∈ Γ to the number of

occurrences of the γ letter in w. Notice that Sw depends only on the Parikh image of w

(does not depend on the order of letters in w). The Parikh theorem [11] says that that the

set of Parikh images of words in a context-free language is semilinear, and can be computed.

We use this theorem to the language generated by GT . It is easy to deduce that the union

of the Sw sets over all words w generated by GT is also a semilinear sets, and it can be

computed (based on the set of Parikh images of all words w generated by GT , and on the

sets Sγ). This �nishes the proof. J

We say that a derivation has a reset if it has an internal node of rank 0 which is not

labelled by a move function.



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 23

I Lemma 21. Let n ∈ N. Consider a semilinear space S, and a �nite set F of semilinear

functions of the form f : Sar(f) → P (S). Then the set

Yk = {v ∈ S : v is generated by some derivation without resets of rank ≤ n}

is a semilinear subset of S, and can be computed.

Proof. Let G ⊆ F be the set containing all 0-ary functions and move functions from F . We

make an induction on n. If n = 0, functions from F −G cannot be used at all, as otherwise

the rank of a derivation without resets would be at least 1. Thus Y0 is equal to

{v ∈ S : v is generated by some derivation using only functions from G}.

This set is semilinear and can be computed thanks to Lemma 20.

Otherwise we make an induction on n. Let us �rst consider another set

Z = {v ∈ S : v is generated by some derivation without resets of rank ≤ n,
having a function from F −G in the root}.

We will show that this a semilinear set, and can be computed. Notice that if a derivation

without resets of rank ≤ n has a function from F −G in the root, then all nodes except the

root have rank ≤ n − 1. Thus v ∈ S is an element of Z if and only if it can be obtained

by applying a function from F −G to elements of Yn−1, and v does not have zeroes on all

coordinates (i.e. there will be no reset at the root of a derivation). By induction assumption

Yn−1 is semilinear and can be computed. Because functions from F −G are semilinear, after

applying any of them we still have a semilinear set which can be computed. Finally, we can

easily remove from our set the elements having zeroes on all coordinates, which shows that

Z is semilinear and can be computed.

Next, consider a set of functions H = G ∪ {h}, where h is a 0-ary function such that

h() = Z. Notice that Yn is equal to

{v ∈ S : v is generated by some derivation using only functions from H}.

Indeed, consider a derivation using only functions from H. We do the following for every

node x using h. Notice that the value in x is an element of Z, so it is generated by some

derivation without resets of rank ≤ n; we substitute this derivation instead of the node x

(which is a leaf). This way we obtain a derivation without resets of rank ≤ n using functions

from F (because all used derivations were not using resets, and the original derivation were

using only move functions and 0-ary functions). Oppositely, consider a derivation without

resets of rank ≤ n. We identify all nodes which use a function from F −G such that none of

its ancestors uses a function from F −G. Of course the subtree rooted in such a node is a

derivation without resets of rank ≤ n, having a function from F −G in the root, so the value

in this node is in Z. We replace the whole subtree by a node labeled by h and the same

value. When this is applied to all such nodes, we end with a derivation using only functions

from H. Finally we see by Lemma 20 that this set is semilinear and can be computed. J

Proof of Theorem 16. Let G ⊆ F be the set containing all 0-ary functions and move func-

tions from F . Let also S0 ⊆ S be the (�nite) set containing elements having zeroes on all

coordinates. Recall that a rank is reset to 0 in a derivation when we use a function from

F −G and the result is from S0.

Our algorithm will be working in stages (at each moment keeping only semilinear sets).

As the result of the i-th stage we will have sets Yi ⊆ S0 and Zi ⊆ S. We begin with the

empty sets Y0 = Z0 = ∅.



24 Decidable classes of documents for XPath

In the i-th stage of the algorithm we consider the set of functions Fi = F ∪ {fi}, where
fi is a 0-ary functions de�ned as fi() = Yi−1. By Lemma 21 we can calculate the set of

elements v generated by some derivation without resets of rank ≤ n, using functions from

Fi; denote this set Zi. To Yi we take all elements of Yi−1, and those elements of S0 which are

results of some function f ∈ F −G on arguments from Zi. Of course Yi is semilinear (even

�nite) and we can calculate it. If we have Yi = Yi−1, we �nish the algorithm; otherwise we

continue doing another stage.

This algorithm stops at some moment, as the sets Yi can only increase, and are subsets

of a �nite set S0. It is enough to observe that, if the algorithm stops after an i-th stage, the

sets Zi contain exactly the elements generated by some derivation of rank ≤ n.
We will �rst show, by induction on i, that if v ∈ Yi ∪ Zi then v is generated by some

derivation of rank ≤ n using functions from F , and additionally that if v ∈ Yi then this

derivation has rank 0 in the root. This is trivial for i = 0 as the sets are empty. Take now

any v ∈ Zi for i > 0. By de�nition it is generated by some derivation without resets of rank

≤ n, using functions from Fi. In this derivation each leaf using fi has a value from Yi−1. By

the induction assumption, this value is generated by a derivation of rank ≤ n using functions

from F which has rank 0 in the root. We replace the considered leaf by this derivation (this

is applied to all such leaves). In this way we obtain a derivation of rank ≤ n using functions

from F , which generates v. Next, take v ∈ Yi. If v ∈ Yi−1, the thesis is trivial by induction

assumption. Otherwise v is a result of applying a function f from F −G to elements of Zi.

These arguments all have derivations of rank ≤ n; we create a new derivation by putting

(f, v) in the root, and attaching these derivations in the children of the root. The obtained

derivation has rank ≤ n, and its root has rank 0, because in the root we have a reset.

Oppositely, take v ∈ S generated by some derivation of rank ≤ n. We will show that

then v ∈ Zi, where i denotes the last stage of the algorithm; additionally if the derivation

has a reset in the root, then v ∈ Yi. The proof is by induction on the size of the smallest

derivation (size can be de�ned in any way, say as a number of nodes). Assume �rst that

we have a reset in the root; let v1, . . . , vn be the values in the children of the root of the

derivation. By induction v1, . . . , vn are in Zi, and because of the reset, we have v ∈ S0 and

the function in the root is from F − G, so v ∈ Yi = Yi−1 ⊆ Zi. Next assume that we do

not have a reset in the root. We consider every highest node which has a reset (i.e. a node

having a reset such that none of its ancestors has a reset). By the induction assumption, a

value of such a node is in Yi = Yi−1. We replace this node, and the whole subtree rooted in

it, by a single node using function fi. This way we obtain a derivation derivation without

resets of rank ≤ n, using functions from Fi; thus v ∈ Zi. J

D Braid width

Data braid and backward edges

The following example shows the importance of having backward edges in the de�nition of

data braids, going to preceeding segments.

I Example 22. Consider the four braids on four segments illustrated below.

3. segment2. segment1. segment 4. segment

3. segment2. segment 4. segment1. segment



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 25

This pattern can be arbitrarily prolonged to the right and easily generalised to any number

of parallel braids. One can verify that there is no segmentation into three or more segments

relative to which the braids would not make a backward move. More broadly, a stricter

notion of braids disallowing backward progressions would result in the braid width of this

family of match words to remain bounded even as the number of parallel paths increases.

The idea is that most braids (except a handful that can travel from one segment to the next

one by means of next position arcs) need to take the equal-length arcs, which go backwards.

There is no other way to connect the braids from segements 2 and 3, but going backwards

to segment 1.

Proof of Theorem 10

Observe that the �rst claim follows from the second, as class automata can existentially guess

an arbitrary labelling and then evaluate any XPath expression on the resulting match word.

The second claim is proved by reduction from the halting problem for Minsky machines. To

every 2-counter Minsky machine M we associate a boolean XPath query Ψ whose models

are match words inside of which an accepting run ofM is encoded. To facilitate one such

encoding we use match words of su�ciently high braid width. An appropriately labelled

match word of braid width 3k can represent a run of M of length and width at most k,

where width is the sum of the maximum values of the two counters reached during a run.

As X is closed under relabellings we may freely specify what labelling is appropriate for

encoding a run.

Consider a match word in X with a segmentation into 3k segments and a collection of k

selected pairwise disjoint braids. We merge every three consecutive segments; we obtain k

longer segments. The braids relative to the original segments are still braids, and moreover

every braid begins in the �rst segment, and �nishes in the last segment, and

consecutive nodes on every braid are either in the same segment or in neighboring seg-

ments.

We require the labelling to meet the following criteria.

The �rst position of each segment carries a symbol identifying it as a segment border.

Every position carries a label specifying a transition ofM, such that positions within each

segment specify the same transition, and transitions associated to consecutive segments are

compatible in the sense that the target state of one is the source state of the next. Moreover,

the transition associated to the �rst segment has the initial state ofM as its source state and

the transition associated to the last segment ends in an accepting state ofM. Furthermore,

each position participating in a braid carries a symbol identifying it as such. In addition,

every such position carries symbols

specifying the incoming and the outgoing edges, or �directions�, through which the braid

enters and leaves the position, the six possibilities being , plus six

possibilities for the �rst and the last position of a braid;

specifying whether it is the �rst position within a new segment along the braid;

signifying whether it is a front or rear position, i.e. whether it lies in the right-most

segment visited by the braid thus far or falls within the one prior;

identifying it as contributing either to counter #1 or to #2 ;

identifying it as being either on or o� ;

specifying whether it is to keep or change its value in the next segment.

The XPath formula Ψ is designed to validate the correctness of the intended encoding. In

particular it needs to verify that



26 Decidable classes of documents for XPath

{ { {(p,2,1) (q,2,2)inc(#2) (s,1,2)dec(#1) dec(#2)inc(#1)

Figure 3 Detail of 4 braids on 3 sements encoding a partial run ofM. Legend: #1 � solid arcs,

white �gures; #2 � thick dashed arcs, shaded �gures; segment border � triangle; on � black dot;

change � star; new � fat circle; rear � diamond; edges where a change occurs are highlighted.

every position marked with an outgoing successor (resp. predecessor) edge has a successor

(resp. predecessor) marked with an incoming predecessor (successor) edge;

every position marked with an outgoing data equality edge shares the same data value

with a position marked with an incoming data equality edge;

(no big jumps) between ends of each edge of a braid there is at most one segment

border;

(front and rear) if an edge of a braid has both its ends in the same segment, these

ends are either both rear or both front ; if it goes to the next segments, its right end is

front ; if it goes to the previous segment, its left end is rear and its right end is front ;

(new) every position marked new is either the �rst position of a braid, or the incoming

braid edge comes from a front position of the previous segment;

(counter maintenance) consecutive positions on a braid are either both #1 or both

#2 ; furthermore, they are either both on or both o�, unless the �rst one is set to change

and the next one is new, in which case they have complementary on/o� status;

(change as needed) for both i ∈ {1, 2}, in every segment marked with a transition

that increments (decrements) counter i there is exactly one position marked #i, change,

and it is marked o� (resp. on); if the transition does not change counter i, there is no

such position;

(zero test) if a transition testing counter i for zero marks a segment, then the previous

segment does not conatain positions marked #i, new, on.

Each of the above constraints is easily expressible in XPath and together they ensure that

an accepting run ofM is encoded in the match word.

E Proofs of Lemmas 11 and 12

Lemma 11 follows from the following result.

I Lemma 23. For any class automaton A there is a computable class automaton A′, ac-
cepting all data words that have a match expansion in the language of A.

Proof. Let A be a class automaton with a class condition L ⊆ (A × B × 2)∗. The class

automaton A′ is built from A by guessing, for any given input data word (w′,∼′), a label

from the alphabet C = (A2×B2)∪ (A×B). It veri�es that, for every position x that has a

previous and a future position with equal data value (like position x in Figure 2), we guess

two labels (a1, a2) from the alphabet A and two labels (b1, b2) from B, such that a1 is the

actual label of x in w′. And for any other position it just guesses the current label from A

and a label from B. The idea of this guessing is that a1, a2 will be the labels that correspond

to the current and next positions of x in the data expansion of (w′,∼′), and b1, b2 are the

guessed labels needed to verify the property of A. Let s ∈ C∗ be the word of such guessings,



V. Bárány, M. Boja«czyk, D. Figueira, and P. Parys 27

and let us assume that the aforementioned conditions of the guessing hold, since they can

be easily veri�ed in the class condition.

Let w ∈ A∗ be the result of replacing every position z in s with label (a1, a2, b1, b2) by

the two-letter word a1a2, and every position z with guessed label (a1, b1) by a1. Note that

w has length |s| + n, where n is the number of positions of s with labels in A2 × B2. The

idea is that w is the guessed label of the expansion of (w,∼). Let s′ ∈ B∗ be de�ned as w′,
but projecting onto the alphabet B instead of A (i.e., having b1b2/b1 instead of a1a2/a1).

Finally, for any position x of w′, let x̂ be the (x+n)-th position of s, where n is the number

of labels from A2 × B2 to the left of x in s (excluding x). That is, x̂ in w is where x in w′

is mapped after the data expansion.

Now, the automaton A′ checks,
for every singleton class {x} of (w′,∼′), that w ⊗ s′ ⊗ {x̂} ∈ L; and
for every two positions x, y with x < y in an equivalence class X of ∼′ which are

consecutive in the word restricted to X, that w ⊗ s′ ⊗ {x̂+ 1, ŷ} ∈ L.
Note that it can do this for every two such x, y of a given equivalence class X. That is,

there is a regular language L′ such that for every class X with at least two elements, we

have w′ ⊗ s ⊗X ∈ L′ if and only if for every two such x, y in X, w ⊗ s′ ⊗ {x̂ + 1, ŷ} ∈ L.
This is because all such pairs x, y are ordered, in the sense that there are no two distinct

(x, y) and (x′, y′) such that x ≤ x′ ≤ y ≤ y′. Thus the statement follows. J

In a similar way, Lemma 12 follows from the fact that class automata can guess the

�contraction� (the opposite of the match expansion) of a data word.

I Lemma 24. For any class automaton A there is a computable class automaton A′, ac-
cepting all match expansions of data words in the language of A.

Proof. The automaton A′ guesses a set of positions x such that x is the rightmost element

from a equivalence class and x+ 1 is the leftmost element of a (di�erent) equivalence class.

It then treats all such positions x and x+ 1 as only one position with the label of x, and the

class of x and x+ 1 as the same equivalence class, and veri�es the class condition of A′. J


	Introduction
	Preliminaries
	Match width
	Operations on split match words

	Bounded match width sufficient for decidability
	A necessary condition for decidability 
	Data words instead of match words
	Data trees instead of data words
	Discussion
	On match width
	Proof of Theorem 9: reduction to semilinear functions
	Proof of Theorem 9: semilinear functions
	Braid width
	Proofs of Lemmas 11 and 12

