
A Pumping Lemma for Pushdown Graphs of Any
Level
Paweł Parys∗

University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland, parys@mimuw.edu.pl

Abstract
We present a pumping lemma for the class of ε-contractions of pushdown graphs of level n, for each
n. A pumping lemma was proposed by Blumensath, but there is an irrecoverable error in his proof;
we present a new proof. Our pumping lemma also improves the bounds given in the invalid paper of
Blumensath.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases pushdown graph, ε-contraction, pumping lemma

1 Introduction

Higher-order pushdown systems are a very natural extension of pushdown systems. They were
originally introduced by Maslov [10]. In a system of level n we have a level-n stack of level-(n− 1)
stacks of ... of level-1 stacks. The idea is that the system operates only on the topmost level-1
stack, but additionally it can make a copy of the topmost stack of some level, or can remove
the topmost stack of some level. Higher-order pushdown systems have connections with several
other concepts. A result of Knapik et al. [9] shows that higher-order pushdown systems generate
the same trees as safe higher-order recursion schemes. Carayol and Wöhrle [2] proved that the
ε-contractions of graphs generated by higher-order pushdown systems are exactly the graphs in
the Caucal hierarchy [3]. Thus, all these graphs have decidable monadic second-order theories.

Even though higher-order pushdown systems generate important classes of graphs, useful char-
acterizations of their structure are still rare. We still miss techniques for disproving membership
in the pushdown hierarchy. In classical automata theory, pumping lemmas provide good tools for
proving that a language cannot be defined by a finite automaton or by a pushdown automaton. For
indexed languages, which are the languages recognized by pushdown systems of level 2, we have
a pumping lemma of Hayashi [6], and a shrinking lemma of Gilman [4]. We also have a pumping
lemma of Kartzow [7] for collapsible pushdown systems of level 2. On higher levels, similar results
are still missing. Blumensath [1] published a pumping lemma for all levels of the higher-order
pushdown hierarchy. Unfortunately, there is an irrecoverable error in his proof (cf. [11], see also
Appendix C).

Our main theorem is the following pumping lemma applicable to every level of the higher-order
pushdown graph hierarchy.

I Theorem 1.1. Let A be a pushdown system of level n, and L a regular language. Let G be
the ε-contraction of the pushdown graph of A; assume that it is finitely branching. Assume that
in G there exists a path of length m from the initial configuration to some configuration c. Let
S1 = (m+ 1) · CAL and Sj = 2Sj−1 for 2 ≤ j ≤ n, where CAL is a constant which depends on A
and on L. Assume also that in G there exists a path p of length at least Sn, which starts in c and
belongs1 to L. Then there are infinitely many paths in G, which start in c, belong to L, and end
in configurations having the same state as the last configuration of p.

This theorem is very similar to the pumping lemma proposed in [1]. Namely our Lemma 5.2
is an analogue of Corollary 16 from [1], and our Lemma 5.3 is an analogue of Theorem 61 from

∗ Work partially supported by the Polish Ministry of Science grant nr N N206 567840.
1 Formally, the word consisting of labels on that path belongs to L.

© Paweł Parys;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Pumping Lemma for Pushdown Graphs of Any Level

[1]; the above theorem (without the part about the regular language L) is obtained by composing
these two lemmas.

Notice also that the bound Sn is n− 1 times exponential in m, while the corresponding bound
in [1] is 3n−1 times exponential. Thus we obtain a better bound. Moreover, our bound is optimal,
as explained in Section 6. The other difference is that our pumping preserves a regular property
L of the paths, as well as the state of the last configuration.

2 Preliminaries

A pushdown system (PDS for short) of level n is given by a tuple (A,Γ, γI , Q, qI ,∆, λ), where
A is an input alphabet,
Γ is a stack alphabet, and γI ∈ Γ is an initial stack symbol,
Q is a set of states, and qI ∈ Q is an initial state,
∆ ⊆ Q× Γ×Q×OP is a transition relation, where the set OP contains the operations popk

and pushk(α) for 1 ≤ k ≤ n and α ∈ Γ,
λ : ∆→ A ∪ {ε} is a labelling of transitions.

In this paper, the letter n is always used for the level of the pushdown system.
For any alphabet Γ (of stack symbols) we define a k-th level pushdown store (k-pds for short)

as an element of the following set Γk
∗:

Γ0
∗ = Γ,

Γk
∗ = (Γk−1

∗)∗ for 1 ≤ k ≤ n.

In other words, a 0-pds is just a single symbol, and a k-pds for 1 ≤ k ≤ n is a (possibly empty)
sequence of (k − 1)-pds’s. The last element of a k-pds is also called the topmost one. For any
αk ∈ Γk

∗ and αk−1 ∈ Γk−1
∗ we write αk : αk−1 for the k-pds obtained from αk by placing αk−1 at

its end. The operator „:” is assumed to be right associative, i.e. α2 : α1 : α0 = α2 : (α1 : α0). We
say for k ≥ 1 that a k-pds is proper if it is nonempty and every (k− 1)-pds in it is proper; a 0-pds
is always proper.

A configuration of A consists of a state and of a proper n-pds, i.e. it is an element of Q× Γn
∗

in which the n-pds is proper. The initial configuration consists of the initial state qI and of the
n-pds containing only one 0-pds, which is the initial stack symbol γI . For a configuration c, its
state is denoted by state(c), and its n-pds is denoted by π(c).

Next, for configurations c, d we define when c ` d. Let α be the topmost 0-pds of π(c). Assume
that (state(c), α, state(d), op) ∈ ∆. We have two cases depending on op:

if op = popk then π(d) is obtained from π(c) by replacing its topmost k-pds αk : αk−1 by αk

(i.e. we remove the topmost (k−1)-pds; in particular the topmost k-pds of π(c) has to contain
at least two (k − 1)-pds’s),
if op = pushk(β) then π(d) is obtained from π(c) by replacing its topmost k-pds αk : αk−1 by
(αk : αk−1) : αk−1, and then by replacing its topmost 0-pds by β (i.e. we copy the topmost
k-pds, and then we change the topmost symbol in the copy2).

A run is a function w from numbers 0, 1, . . . , l (for some l ≥ 0) to configurations such that
w(i − 1) ` w(i) for 1 ≤ i ≤ l. The number l is called the length of w, and denoted by |w|. We
say that w is a run from w(0) to w(|w|). For 0 ≤ x ≤ y ≤ |w| we can consider the subrun of w
from x to y; this is the run of length y − x which maps i to w(i + x). For two runs v, w such
that v(|v|) = w(0) we can consider their composition; this is the run of length |v| + |w| which
maps i ≤ |v| to v(i), and i > |v| to w(i − |v|). We say that a configuration d is reachable from a
configuration c if there exists a run w from c to d.

2 In the classical definition the topmost symbol can be changed only when k = 1 (for k ≥ 2 it has to be β = α).
Notice however that our theorems, true for every PDS, are in particular true for such restricted PDS’s. On
the other hand, it is not difficult to see that for any PDS A of level n there exists a PDS B of level n of this
restricted form such that graphs PDG(A)/ε and PDG(B)/ε are isomorphic.

Paweł Parys 3

The pushdown graph of A, denoted by PDG(A), is the directed graph consisting of configu-
rations of A reachable from the initial configuration; there is an edge from a configuration c to a
configuration d when c ` d. To each edge of PDG(A) we can assign a label from A ∪ {ε} in the
following way. Let c, d be configurations such that c ` d. Notice that the transition δ ∈ ∆ used
between c and d (in the definition of `) is uniquely determined. We label the edge from c to d by
λ(δ). A run of A can also be interpreted as a path in PDG(A), so it makes sense to talk about
edges of a run, and about labels of these edges.

We define the ε-contraction of PDG(A), denoted by PDG(A)/ε, which is a directed multi-
graph.3 Its vertices are the initial configuration cI , and configurations d such that there is a run
from cI to d in which the last edge is labelled by an element of A (i.e. not by ε). In PDG(A)/ε
there is an edge from c to d labelled by a ∈ A when in PDG(A) there is a path from c to d
whose edges except the last one are labelled by ε, and the last edge is labelled by a. We say that
PDG(A)/ε is finitely branching if from each of its nodes there are only finitely many outgoing
edges.

A position is a vector x = (xn, xn−1, . . . , x1) of n positive integers. The symbol on position x
in configuration c (which is an element of Γ) is defined as follows: we take the xn-th (from the
bottom) (n− 1)-pds of π(c), then its xn−1-th (n− 2)-pds, and so on. We say that x is a position
of c, if at position x there is a symbol in c.

For 0 ≤ k ≤ n, by topk(c) we denote the position of the bottommost symbol of the topmost
k-pds of c. In particular top0(c) is the position of the topmost symbol in c.

For any run w, indices 0 ≤ a ≤ b ≤ |w|, and a position y of w(b), we define a position
histw(b, y)(a). It is y when b = a. It is y also when b = a + 1, and the operation between w(a)
and w(b) is popk, as well as when the operation is pushk and y is not in the topmost (k − 1)-pds
of w(b). If the operation between w(a) and w(b) is pushk and y is in the topmost (k − 1)-pds of
w(b), then histw(b, y)(a) is the position of w(a) from which a symbol was copied to y (i.e. this is
y with the (n − k + 1)-th coordinate decreased by 1). When b > a + 1, histw(b, y)(a) is defined
(by induction) as histw(a+ 1, histw(b, y)(a+ 1))(a). In other words, histw(b, y)(a) is the (unique)
position of w(a), from which the symbol was copied to y in w(b).

For 0 ≤ k ≤ n, a run w, and an index 0 ≤ b ≤ |w| we define a set prek
w(b) consisting of all

indices a for which 0 ≤ a ≤ b and histw(b, topk(w(b)))(a) = topk(w(a)). Intuitively, a ∈ prek
w(b)

means that the topmost k-pds of w(b) „comes from” the topmost k-pds of w(a), in the sense that
the topmost k-pds of w(b) is a copy of the topmost k-pds of w(a), but possibly some changes were
done to it.

Example. Consider a PDS of level 3. Below, brackets are used in descriptions of pds’s as follows:
symbols taken in brackets form one 1-pds, 1-pds’s taken in brackets form one 2-pds, and 2-pds’s
taken in brackets form one 3-pds. Consider a run w of length 6 in which π(w(0)) = [[[ab]]] and
the operations between consecutive configurations are:

push2(c), push3(d), pop1, push3(e), pop2, pop3.

The contents of the 3-pds’s of the configurations in the run, and the pre sets, are presented in the
table below.

i π(w(i)) pre0
w(i) pre1

w(i) pre2
w(i) pre3

w(i)
0 [[[ab]]] {0} {0} {0} {0}
1 [[[ab][ac]]] {0, 1} {0, 1} {0, 1} {0, 1}
2 [[[ab][ac]][[ab][ad]]] {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
3 [[[ab][ac]][[ab][a]]] {3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}
4 [[[ab][ac]][[ab][a]][[ab][e]]] {3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
5 [[[ab][ac]][[ab][a]][[ab]]] {0, 5} {0, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}
6 [[[ab][ac]][[ab][a]]] {3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 4, 5, 6}

3 In this graph, unlike in PDG(A), we can have multiple edges between two nodes, each labeled by a different
symbol.

4 A Pumping Lemma for Pushdown Graphs of Any Level

In configuration w(0) symbol a is on position (1, 1, 1) and symbol b is on position (1, 1, 2). We
have

histw(2, (2, 2, 1))(1) = (1, 2, 1) and histw(2, (2, 2, 1))(0) = (1, 1, 1).

Notice that positions y in w(b) and histw(b, y)(a) in w(a) not necessarily contain the same symbol,
for example on position (1, 2, 2) in w(1) we have c, and on position (1, 1, 2) in w(0) we have b, but
histw(1, (1, 2, 2))(0) = (1, 1, 2).

Easy properties. The following two propositions follow immediately from the definitions. These
properties are often used implicitly later.

I Proposition 2.1. Let w be a run, let 0 ≤ k ≤ n, and let 0 ≤ a ≤ b ≤ c ≤ |w|. Then
prek

w(b) ⊆ prek+1
w (b) (for k < n), and

a ∈ prek
w(b) and b ∈ prek

w(c) implies a ∈ prek
w(c), and

{a, b} ⊆ prek
w(c) implies a ∈ prek

w(b).

I Proposition 2.2. Let w be a run, let 1 ≤ k ≤ n, and let 0 ≤ a ≤ b ≤ |w| be such that
a ∈ prek

w(b). Then a ∈ prek−1
w (b) if and only if, for all a ≤ i ≤ b, the size of the k-pds of w(i)

containing histw(b, topk(w(b)))(i) is not smaller than the size of the topmost k-pds of w(a).

3 Types of configurations

Let A = (A,Γ, γI , Q, qI ,∆, λ) be a PDS of level n. Below we define a function typeA which assigns
to every configuration of A an element of a finite set TA. The important properties of the typeA
function are listed below, in the three facts.

I Fact 3.1. Let A be a PDS of level n. Let w be a run of A such that 0 ∈ pre0
w(|w|), and let c be

a configuration such that typeA(w(0)) = typeA(c). Then there exists a run v from c such that
1. if π(w(0)) 6= π(w(|w|)) then π(v(0)) 6= π(v(|v|)), and
2. 0 ∈ pre0

v(|v|), and
3. all edges of w are labelled by ε if and only if all edges of v are labelled by ε, and
4. typeA(w(|w|)) = typeA(v(|v|)).

I Fact 3.2. Let A be a PDS of level n. Let w be a run of A such that at least one of its edges
is not labelled by ε, and the position top0(w(0)) is present in every configuration of w. Let c be
a configuration such that typeA(w(0)) = typeA(c). Then there exists a run v from c such that at
least one of its edges is not labelled by ε, and the position top0(c) is present in every configuration
of v.

I Fact 3.3. Let A be a PDS of level n. Let w be a run of A, and let c be a configuration such that
typeA(w(0)) = typeA(c). Then there exists a run v from c such that state(v(|v|)) = state(w(|w|)).

Before we define types of configurations, we define types of k-pds’s, for each k. The main idea
is that we have to characterize special kind of runs, called k-returns, as well as runs as described
by Facts 3.2 and 3.3.

I Definition 3.4. Let 1 ≤ r ≤ n, and let w be a run. We say that w is an r-return if
the topmost r-pds of w(0) contains at least two (r − 1)-pds’s, and
histw(|w|, topr−1(w(|w|)))(0) is the bottommost position of the (r − 1)-pds just below the
topmost (r − 1)-pds of w(0), and
prer−1

w (|w|) = {|w|}.

In other words, w is an r-return when the topmost r-pds of w(|w|) is obtained from the topmost
r-pds of w(0) by removing its topmost (r − 1)-pds (but not only in the sense of contents, but we
require that really it was obtained this way). In particular we have the following proposition.

I Proposition 3.5. Let w be an r-return. Then the topmost r-pds of w(0) after removing its
topmost (r − 1)-pds is equal to the topmost r-pds of w(|w|).

Paweł Parys 5

Example. Consider a PDS of level 2, and a run w of length 6 in which π(w(0)) = [[ab][cd]], and
the operations between consecutive configurations are:

push2(e), pop1, pop2, pop1, push1(d), pop1.

The contents of the 2-pds’s of the configurations in the run are presented in the table below.

i 0 1 2 3 4 5 6
π(w(i)) [[ab][cd]] [[ab][cd][ce]] [[ab][cd][c]] [[ab][cd]] [[ab][c]] [[ab][cd]] [[ab][c]]

The subruns of w from 0 to 2, from 0 to 4, from 1 to 2, from 3 to 4, and from 5 to 6 are 1-returns;
the subruns of w from 1 to 3, and from 2 to 3 are 2-returns. These are the only subruns of w
being returns, in particular w is not a 1-return because 4 ∈ pre0

w(6).

We are going to define a type of a k-pds for each 0 ≤ k ≤ n. A set of possible level-k types
(types of k-pds’s) will be denoted by T k. We also define a set Dk; its elements correspond to
kinds of runs (this correspondence is formalized in the “agrees with” notion).

I Definition 3.6. We define T k (where 0 ≤ k ≤ n) by induction on k, going down from k = n to
k = 0. Let 0 ≤ k ≤ n. Assume we have already defined sets T i for k + 1 ≤ i ≤ n. We take

Dk = Q ∪
n⋃

r=k+1
{r} ×

(
{non-ε} ∪

(
{0, 1} × P(T n)× P(T n−1)× · · · × P(T r+1)×Q× {0, 1}

))
,

T k = P(T n)× P(T n−1)× · · · × P(T k+1)×Q×Dk,

where by P(X) we denote the power set of X (the set of all subsets of X).

I Definition 3.7. We define type(αk) ⊆ T k for a k-pds αk (where 0 ≤ k ≤ n) by induction on k,
going down from k = n to k = 0. Let 0 ≤ k ≤ n. Assume we have already defined sets type for
i-pds’s for k + 1 ≤ i ≤ n.
1. Let t = (r, f, ξn, ξn−1, . . . , ξr+1, q, g) ∈ Dk, and let w be a run. Decompose π(w(|w|)) = βn :

βn−1 : · · · : βr. We say that w agrees with t if
w is an r-return, and
each edge of w is labelled by ε if and only if f = 0, and
type(βi) = ξi for r + 1 ≤ i ≤ n, and
q = state(w(|w|)), and
π(w(|w|)) can be obtained from π(w(0)) by removing its topmost (r − 1)-pds if and only if
g = 0.

2. We say that a run w agrees with (r, non-ε) ∈ Dk if at least one edge of w is labelled by an
element of A, and position topr−1(w(0)) is present in every configuration of w.

3. We say that a run w agrees with q ∈ Dk ∩Q if state(w(|w|)) = q.
4. Let t = (ρn, ρn−1, . . . , ρk+1, p, t′) ∈ T k, and let αk be a k-pds. We say that t ∈ type(αk) if the

following is true.
For k + 1 ≤ i ≤ n, let αi be an i-pds such that type(αi) = ρi. Then there exists a run
from (p, αn : αn−1 : · · · : αk) which agrees with t′.

In point 4 of the above definition we mean that for all appropriate αk+1, αk+2, . . . , αn the run
exists (and not that there exist appropriate αk+1, αk+2, . . . , αn such that the run exists). However
in fact the „there exists” variant would be equivalent; this is described by the following lemma,
which is the main technical result about types.

I Lemma 3.8. Let 0 ≤ k ≤ n, let t ∈ Dk, and let w be a run which agrees with t. Decompose
π(w(0)) = αn : αn−1 : · · · : αk. Then

(type(αn), type(αn−1), . . . , type(αk+1), state(w(0)), t) ∈ type(αk).

The proof of this lemma is tedious but rather straightforward, and can be found in Appendix
B. Finally, we define types of configurations.

6 A Pumping Lemma for Pushdown Graphs of Any Level

I Definition 3.9. Let TA = P(T n) × P(T n−1) × · · · × P(T 1) × Γ × Q. For a configuration
c = (q, αn : αn−1 : · · · : α0), let

typeA(c) = (type(αn), type(αn−1), . . . , type(α1), α0, q).

Using Lemma 3.8 it is not difficult to show that Facts 3.1–3.3 for such definition of a type.

4 Pumping of pushdown graphs

The following technical lemma describes how pushdown graphs can be pumped.

I Lemma 4.1. Let A be a PDS of level n, let 0 ≤ k ≤ n, let w be a run of A, and let G ⊆
prek

w(|w|) − {|w|}. Let αk be the k-pds of w(0) containing histw(|w|, topk(w(|w|)))(0). For 1 ≤
j ≤ k, let rj be the maximum of the sizes of the j-pds’s in αk. Define

N0 = |TA|+ 1 and Nj = rj · 2Nj−1 for 1 ≤ j ≤ k.

Assume that |G| ≥ Nk. Then there exist indices 0 ≤ x < y < z ≤ |w| such that
1. typeA(w(x)) = typeA(w(y)), and
2. x ∈ pre0

w(y) and y ∈ prek
w(|w|), and

3. either π(w(x)) 6= π(w(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z − 1 ∈ G and top0(w(y)) is present in every configuration of the subrun of w from y to z.

Let us comment on the statement of this lemma. The essence of the lemma is that in every
appropriately long run one can find indices x, y such that typeA(w(x)) = typeA(w(y)) and x ∈
pre0

w(y). Notice that the notion “appropriately long” depends on the size of the stack in w(0):
when one starts from a bigger stack, we require a longer run. Then Fact 3.1 can be applied to the
fragment of w between x and y, so this fragment can be pumped (repeated forever). The lemma
is more complicated for technical reasons. The problem is that pumping any fragment of a run is
not interesting enough. For example the fragment between x and y can be a loop doing nothing;
we are not satisfied with finding such a loop. For this reason we have introduced the set G of
“good” indices, and we assume that this set is big enough. Our goal is to have some element of G
in the fragment between x and y (the second variant of condition 3). However this is not always
possible, and we sometimes get the first variant of condition 3; the intuition is that then we can
show (using also index z) that the graph has to be infinitely branching.

For the proof, we need a lemma about sequences of integers (proven in Appendix A).

I Lemma 4.2. Let N ≥ 1 be a natural number, let a0, a1, . . . , aM be a sequence of positive integers
such that |ai − ai−1| ≤ 1 for 1 ≤ i ≤ M . Let G ⊆ {0, 1, . . . ,M − 1} be such that |G| ≥ a0 · 2N .
Then there exist two indices b, e such that 0 ≤ b < e ≤M and e− 1 ∈ G, and
1. for each i such that b ≤ i ≤ e we have ai ≥ ab, and
2. for each i such that 0 ≤ i ≤ b− 1 we have ai ≥ ab + 1, and
3. |Hb,e| ≥ N , where

Hb,e = {i : b ≤ i ≤ e− 1 ∧ ∀j(i ≤ j ≤ e⇒ aj ≥ ai) ∧
∧ ∃g∈G(g ≥ i ∧ ∀j(i+ 1 ≤ j ≤ g ⇒ aj ≥ ai + 1))}.

Proof (Lemma 4.1). Induction on k. Consider first the case k = 0. We have |G| ≥ |TA|+ 1 and
there are only |TA| possible values of typeA, so there exist two indices x, y ∈ G such that x < y and
typeA(w(x)) = typeA(w(y)) (we get condition 1). By assumption we know that x, y ∈ pre0

w(|w|);
this implies that x ∈ pre0

w(y) (we get condition 2). We have condition 3 because x ∈ G. We take
z = y + 1. We have z − 1 ∈ G. Because y ∈ pre0

w(|w|), position top0(w(y)) is present in w(z) (we
get condition 4).

Now assume that k ≥ 1. For 0 ≤ i ≤ |w|, let ai be the size of the k-pds of w(i) containing
histw(|w|, topk(w(|w|)))(i). By definition a0 = rk (it is the size of αk). Notice that |G| ≥ Nk =
a0 ·2Nk−1 . We apply Lemma 4.2 to the sequence a0, a1, . . . , a|w|, to Nk−1 (as N) and G. Of course
consecutive elements of the sequence differ by at most one, because operations of a pushdown

Paweł Parys 7

system can change the size of a k-pds by at most one, so the assumption of the corollary is
satisfied. From the corollary we obtain indices b, e. By condition 3 of the corollary we know that
|Hb,e| ≥ Nk−1.

Now observe that Hb,e ∪ {e − 1} ⊆ prek
w(|w|). Indeed, consider any i ∈ Hb,e. If i ∈ G ⊆

prek
w(|w|), we are done. Otherwise, by definition of Hb,e, it has to be ai+1 ≥ ai + 1. But only the

topmost k-pds can change its size, so histw(|w|, topk(w(|w|)))(i) is in the topmost k-pds of w(i);
this by definition means that i ∈ prek

w(|w|). Moreover e− 1 ∈ G ⊆ prek
w(|w|).

Because Hb,e ∪ {e− 1} ⊆ prek
w(|w|) (see the above paragraph), we know that ai is the size of

the topmost k-pds of w(i) for i ∈ Hb,e ∪ {e − 1}. Notice that ai ≤ aj for i ∈ Hb,e, i ≤ j ≤ e

(follows from the definition of Hb,e). This implies that Hb,e ⊆ prek−1
w (e− 1) (Proposition 2.2).

What operation is performed between w(e−1) and w(e)? Definitely this is not a popr operation
for r ≥ k + 1, as it would remove the topmost k-pds of w(e − 1), which is impossible because
e − 1 ∈ G ⊆ prek

w(|w|). If this operation is popk, then e ∈ prek
w(|w|), and ae is the size of the

topmost k-pds of w(e); because ai ≤ ae for i ∈ Hb,e, we have Hb,e ⊆ prek−1
w (e). If this is any

other operation (i.e. popr for r ≤ k − 1, or pushr for any r), we have e − 1 ∈ prek−1
w (e), so also

Hb,e ⊆ prek−1
w (e). Let v be the subrun of w from b to e, and let H ′ = {i− b : i ∈ Hb,e}. It follows

that H ′ ⊆ prek−1
v (|v|).

Let αk−1 be the (k − 1)-pds of v(0) containing histv(|v|, topk−1(v(|v|)))(0); equivalently: the
(k − 1)-pds of w(b) containing histw(e, topk−1(w(e)))(b). Notice that αk−1 is one of (k − 1)-pds’s
of the k-pds of w(b) containing histw(e, topk(w(e)))(b). Because e− 1 ∈ prek

w(e) (as the operation
between w(e − 1) and w(e) cannot be popr for r ≥ k + 1) and e − 1 ∈ G ⊆ prek

w(|w|), we have
histw(e, topk(w(e)))(b) = histw(|w|, topk(w(|w|)))(b). Recall that ai ≥ ab + 1 for 0 ≤ i ≤ b − 1
(condition 2 of Lemma 4.2). This implies that the topmost (k − 1)-pds (and obviously all the
deeper (k−1)-pds’s) of the k-pds of w(b) containing histw(|w|, topk(w(|w|)))(b) was never modified
between w(0) and w(b) (as it was never a topmost (k− 1)-pds). It follows that αk−1 is one of the
(k − 1)-pds’s of αk. Thus, for 1 ≤ j ≤ k − 1, the maximum of the sizes of j-pds’s in αk−1 is at
most rj .

Next, we apply the induction assumption for k − 1 (as k), v (as w), H ′ (as G). The above
analysis shows that its assumptions are satisfied. We obtain three indices, call them x′, y′, z′. Let
x = x′ + b and y = y′ + b. Let z be the smallest index such that z ≥ z′ + b and z − 1 ∈ G (it
exists because z′ + b ≤ e and e− 1 ∈ G). We claim that x, y, z satisfy conditions 1–4. From the
induction assumption we have the following properties:
1′. typeA(w(x)) = typeA(w(y)), and
2′. x ∈ pre0

w(y) and y ∈ prek−1
w (e), and

2′. either π(w(x)) 6= π(w(y)), or Hb,e ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4′. z′ + b− 1 ∈ Hb,e and top0(w(y)) is present in every configuration of the subrun of w from y to

z′ + b.

We immediately get condition 1 and the first part of condition 2. From y ∈ prek−1
w (e) we know

that y ∈ prek
w(e); we also know that y ≤ e − 1. As already observed, the operation performed

between w(e − 1) and w(e) cannot be popr for r ≥ k + 1, which implies that e − 1 ∈ prek
w(e),

so y ∈ prek
w(e − 1). Because e − 1 ∈ G ⊆ prek

w(|w|) we get y ∈ prek
w(|w|) (the second part of

condition 2).
Because y ∈ prek

w(|w|) and x ∈ pre0
w(y), we know that the size of the topmost k-pds of x and

of y is ax and ay, respectively. Assume that π(w(x)) = π(w(y)); this in particular means that
ax = ay, and Hb,e∩{x, x+1, . . . , y−1} 6= ∅. Let i be any element of Hb,e∩{x, x+1, . . . , y−1}. By
the definition of the set Hb,e, there exists g ∈ G such that g ≥ i and aj ≥ ai + 1 for i+ 1 ≤ j ≤ g.
Because x ∈ pre0

w(y) (hence also x ∈ prek−1
w (y) and x ∈ prek

w(y)), from Proposition 2.2 we know
that ai ≥ ax, hence ay < ai+1. This implies that g ≤ y−1. We get that g ∈ G∩{x, x+1, . . . , y−1}
(condition 3).

Because z′ + b − 1 ∈ Hb,e, we know that aj ≥ az′+b−1 + 1 for z′ + b ≤ j ≤ z − 1 (as z − 1
is the first element of G not smaller than z′ + b − 1). As az′+b−1 6= az′+b, we know that the size
of the topmost k-pds of w(z′ + b − 1) is az′+b−1 (only the topmost k-pds can change its size).
We get that the topmost (k − 1)-pds of w(z′ + b − 1) becomes covered after the next operation

8 A Pumping Lemma for Pushdown Graphs of Any Level

(az′+b > az′+b−1), and is not the topmost one until z. Thus top0(w(z′+ b− 1)) is present in every
configuration of the subrun of w from z′ + b − 1 to z. As additionally top0(w(y)) is present in
every configuration of the subrun of w from y to z′+ b−1, we know that it is also present in every
configuration of the subrun of w from y to z (we get condition 4). J

5 Finitely branching ε-contractions of pushdown graphs

In this section we show how finitely branching ε-contractions of pushdown graphs can be pumped;
we prove Theorem 1.1. First we give an auxiliary lemma, which describes how the assumption
about finite branching can be used. Then we have two lemmas, which are then composed together
into Theorem 1.1. Lemma 5.2 tells us that a short run from the initial configuration cannot
finish in a configuration having a big stack. Lemma 5.3 is similar to Theorem 1.1, but instead of
assuming that a configuration can be reached with a short run from the initial configuration, we
assume that its stack is small (and this assumption will be then satisfied thanks to Lemma 5.2).

I Lemma 5.1. Let A be a PDS of level n, let w be a run of A such that w(0) is reachable from the
initial configuration, and let 0 ≤ x < y ≤ |w|− 1 be indices such that typeA(w(x)) = typeA(w(y)),
and x ∈ pre0

w(y), and π(w(x)) 6= π(w(y)). Assume that top0(y) is present in every configuration
of the subrun of w from y to |w|. Assume also that every edge of w between x and y is labelled
by ε, and at least one edge of w between y and |w| is not labelled by ε. Then PDG(A)/ε is not
finitely branching.

Proof. Without loss of generality, we assume that w begins in the initial configuration; we can
obtain such a situation by appending before w any run from the initial configuration to w(0), and
appropriately shifting x and y. Let g be the smallest index (0 ≤ g ≤ x) such that every edge
between g and x is labelled by ε. Then w(g) is a node of PDS(A)/ε.

We want to create a sequence of runs v1, v2, v3, . . . such that for each i ≥ 1 we have
a) v1(0) = w(x) and vi(0) = vi−1(|vi−1|) for i > 1, and
b) π(vi(0)) 6= π(vi(|vi|)), and
c) 0 ∈ pre0

vi
(|vi|), and

d) every edge of vi is labelled by ε, and
e) typeA(vi(0)) = typeA(vi(|vi|)).
As v1 we can take the subrun of w from x to y. Assume that we already have vi for some i ≥ 1.
We use Fact 3.1 for vi (as w) and vi(|vi|) (as c); thanks to properties c) and e) its assumptions
are satisfied. We obtain a run vi+1 from vi(|vi|). Conditions 1–4 of the fact immediately give us
conditions b–e for vi+1.

Notice, for each i ≥ 1, that because 0 ∈ pre0
vi

(|vi|) and π(vi(0)) 6= π(vi(|vi|)), position
top0(vi(|vi|)) (which is top0(vi+1(0))) is lexicographically greater than top0(vi(0)). Thus every
top0(vi(0)) is different.

For every i ≥ 1 we do the following. From condition e) and from typeA(w(x)) = typeA(w(y))
we know that typeA(vi(0)) = typeA(w(y)). We use Fact 3.2 for the subrun of w from y to |w|
(as w), and for vi(0) (as c). We obtain a run ui from vi(0) such that at least one of its edges is
not labelled by ε, and position top0(vi(0)) is present in every configuration of ui. We can assume
that only the last edge of ui is not labelled by ε (we obtain this situation by cutting ui after the
first edge not labelled by ε). Now compose the subrun of w from g to x, runs v1, v2, . . . , vi−1,
and run ui. We obtain a run from w(g) such that only its last edge is not labelled by ε. Thus
ui(|ui|) is a successor of w(g) in PDG(A)/ε, in which position top0(vi(0)) is present. As each
position top0(vi(0)) is different, they cannot be all present in only finitely many configurations, so
among ui(|ui|) there are infinitely many different configurations. This means that PDG(A)/ε is
not finitely branching. J

I Lemma 5.2. Let A be a PDS of level n such that PDG(A)/ε is finitely branching. Let w be a
run which begins in the initial configuration, and whose last edge is not labelled by ε. Let m be the
number of edges of w not labelled by ε. Let

M1 = (m+ 1) · (|TA|+ 1) and Mj = 2Mj−1 for 2 ≤ j ≤ n.

Paweł Parys 9

Then, for 1 ≤ k ≤ n, the size of any k-pds of w(|w|) is at most Mk.

Proof. Induction on m. Notice that m ≥ 1. Define

M ′1 = m · (|TA|+ 1) and M ′j = 2M ′j−1 for 2 ≤ j ≤ n.

Let b be the index such that the (m − 1)-st edge of w not labelled by ε is between w(b − 1) and
w(b); if m = 1 we take b = 0. From the induction assumption, used for the subrun of w from 0 to
b, we know, for 1 ≤ k ≤ n, that the size of any k-pds of w(b) is at most M ′k. This is also true for
m = 1, as M ′k ≥ 1.

Assume that for some k (1 ≤ k ≤ n) the size of some k-pds of w(|w|) is greater than Mk.
Let s be the bottommost position of such a k-pds. Let v be the subrun of w from b to |w|. For
0 ≤ i ≤ |v|, let ai be the size of the k-pds of v(i) containing histv(|v|, s)(i). We have a|v| ≥ Mk

and a0 ≤M ′k. Of course |ai−1 − ai| ≤ 1 for 1 ≤ i ≤ |v|. Let

G = {i : 0 ≤ i ≤ |v| − 1 ∧ ∀j(i+ 1 ≤ j ≤ |v| ⇒ aj ≥ ai + 1)}.

Notice that |G| ≥Mk−M ′k, as for each j such that M ′k ≤ j ≤Mk− 1 in G we have the last index
i such that ai = j. Let e be the greatest index such that e− 1 ∈ G; let v′ be the subrun of v from
0 to e. Define

N0 = |TA|+ 1 and Ni = M ′i · 2Ni−1 for 1 ≤ i ≤ k − 1.

We are going to use Lemma 4.1 for k−1 (as k), for the run v′ (as w), and forG. We have to check
that its assumptions are satisfied. We need to check that G ⊆ prek−1

v (e). Because only the topmost
k-pds can change its size, and ai 6= ai+1 for i ∈ G, it follows that histv(|v|, s)(i) = topk(v(i)) for
i ∈ G ∪ {e}, which means that G ⊆ prek

v(e). As additionally aj ≥ ai for i ∈ G, i ≤ j ≤ |v|, from
Proposition 2.2 we get G ⊆ prek−1

v (e), as required. We also need to check that G has enough
elements; this is a straightforward calculation, performed in Appendix A.

From Lemma 4.1 we obtain indices 0 ≤ x < y < z ≤ e such that
1. typeA(v(x)) = typeA(v(y)), and
2. x ∈ pre0

v(y), and
3. either π(v(x)) 6= π(v(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z − 1 ∈ G and top0(v(y)) is present in every configuration of the subrun of v from y to z.

Is it possible that π(v(x)) = π(v(y))? As additionally x ∈ pre0
v(y) (condition 2), this would

mean that for every position p in v(y) we have histv(y, p)(x) = p (between v(x) and v(y) some
new fragments of the n-pds were added and then removed; it is impossible that we have first
removed something and then reproduced it). In particular ax and ay describe the size of the same
k-pds, so ax = ay. Moreover ai ≥ ax for x ≤ i ≤ y. But condition 3 implies that there is some
g ∈ G ∩ {x, x+ 1, . . . , y − 1}. This is impossible, as we have ay ≥ ag + 1 (by definition of G), and
ag ≥ ax, which means that ax 6= ay. Thus we always have π(v(x)) 6= π(v(y)).

Because z − 1 ∈ G, we have az−1 6= az, so since only the topmost k-pds can change its
size, we know that histv(|v|, s)(z) = topk(v(z)). Additionally ai ≥ az = az−1 + 1 for z ≤ i ≤
|v| (by definition of G), which means that topk−1(v(z)) is present in every configuration of the
subrun of v from z to |v|. Since top0(v(y)) is present in v(z − 1) (condition 4), we know that
top0(v(y)) is (lexicographically) below topk−1(v(z)), so one cannot remove top0(v(y)) without
removing topk−1(v(z)). It follows that top0(v(y)) is present in every configuration of the subrun
of v from y to |v|.

Recall also that the last edge of v is not labelled by ε, and all earlier edges are labelled by ε.
So every edge of v between x and y is labelled by ε, and at least one edge of v between y and |v| is
not labelled by ε. Thus the assumptions of Lemma 5.1 (where v is taken as w) are satisfied. We
get that PDG(A)/ε is not finitely branching, which contradicts with our assumption. J

I Lemma 5.3. Let A be a PDS of level n such that PDG(A)/ε is finitely branching, and let w
be a run of A such that w(0) is reachable from the initial configuration. For 1 ≤ j ≤ n, let rj be
the maximum of the sizes of j-pds’s of w(0). Define

N0 = |TA|+ 1 and Nj = rj · 2Nj−1 for 1 ≤ j ≤ n.

10A Pumping Lemma for Pushdown Graphs of Any Level

Assume that at least Nn edges of w are not labelled by ε. Then for each j ∈ N there exist a
run wj from w(0) which has at least j edges not labelled by ε, and such that state(wj(|wj |)) =
state(w(|w|)).

Proof. Let G be the set of indices i (0 ≤ i ≤ |w|−1) such that the edge between w(i) and w(i+1)
is not labelled by ε. We use Lemma 4.1 for n (as k), for run w, and set G. Of course G ⊆ pren

w(|w|),
as pren

w(|w|) by definition contains all numbers from 0 to |w|. We also have |G| ≥ Nn, which is
the required size. From the lemma we obtain indices 0 ≤ x < y < z ≤ |w| such that
1. typeA(w(x)) = typeA(w(y)), and
2. x ∈ pre0

w(y), and
3. either π(w(x)) 6= π(w(y)), or G ∩ {x, x+ 1, . . . , y − 1} 6= ∅, and
4. z − 1 ∈ G and top0(w(y)) is present in every configuration of the subrun of w from y to z.

Assume first that every edge of w between x and y is labelled by ε. By condition 3 we see that
π(w(x)) 6= π(w(y)). Notice also that at least one edge of w between y and z is not labelled by ε,
namely the last edge (as z − 1 ∈ G). The assumptions of Lemma 5.1 are satisfied; we get that
PDG(A)/ε is not finitely branching, which contradicts with our assumption. Thus at least one
edge of w between x and y is not labelled by ε.

We want to create a sequence of runs v1, v2, v3, . . . beginning at w(x) such that for each j ≥ 1
we have
a) 0 ∈ pre0

vj
(|vj |), and

b) at least j edges of vj are not labelled by ε, and
c) typeA(vj(0)) = typeA(vj(|vj |)).
As v1 we can take the subrun of w from x to y. Assume that we already have vj for some j ≥ 1.
We use Fact 3.1 for vj (as w) and vj(|vj |) (as c); thanks to properties a) and c) its assumptions
are satisfied. We obtain a run v from vj(|vj |). Let vj+1 be the composition of runs vj and v.
Condition 2 of the fact says that 0 ∈ pre0

v(|v|); together with 0 ∈ pre0
vj

(|vj |) it gives us that
0 ∈ pre0

vj+1
(|vj+1|). Condition 3 of the fact says that at least one edge of v is not labelled by

ε; thus at least j + 1 edges of vj+1 are not labelled by ε. Condition 4 of the fact says that
typeA(v(0)) = typeA(v(|v|)); thus typeA(vj+1(0)) = typeA(vj+1(|vj+1|)).

Next, we use Fact 3.3 for the subrun of w from y to |w| and for vj(|vj |); we obtain a run v′j
from vj(|vj |) such that state(v′j(|v′j |)) = state(w(|w|)). Finally, as wj we take the composition
of the subrun of w from 0 to x with run vi and with run v′i; this run satisfies the thesis of the
lemma. J

Proof (Theorem 1.1). First we consider the following special case. Assume that the language
L contains all words. Assume also that the set of states of A is of the form Q × {0, 1}, and a
transition is labelled by ε if and only if it leads to a state with 0 on the second coordinate. Then
we take CAL = 3 · (|TA|+ 1) ·2|TA|+1. Because in PDG(A)/ε we have a path of length m from the
initial configuration to c, there exists a run w from the initial configuration to c such that exactly
m of its edges are not labelled by ε, in particular the last one. Let

M1 = (m+ 1) · (|TA|+ 1) and Mj = 2Mj−1 for 2 ≤ j ≤ n.

By Lemma 5.2 we know, for 1 ≤ k ≤ n, that the size of any k-pds of c is at most Mk. Let

N0 = |TA|+ 1 and Nj = Mj · 2Nj−1 for 1 ≤ j ≤ n.

A straightforward calculation proves that Sn ≥ Nn (see Appendix A). Because in PDG(A)/ε
we have a path of length Sn starting at c, there exists a run v starting at c such that at least
Sn ≥ Nn of its edges are not labelled by ε. We use Lemma 5.3 for the run v (as w). It says that
there exist runs wj from c having arbitrarily many edges not labelled by ε, and such that wj(|wj |)
and w(|w|) have the same state. Since one state is reached either only by ε-transitions or only
by non-ε-transitions, the last edge of wj is not labelled by ε, because the last edge of w was not
labelled by ε. It means that there are arbitrarily many paths in PDG(A)/ε starting at c, and
ending in configurations with state state(w(|w|)).

Paweł Parys 11

Next, consider a situation where A is arbitrary, but L still contains all words. Then we convert
A to A′ having the above form. We simply product the states Q of A by {0, 1}; for every transition
δ = (q1, γ, q2, op) of A, in A′ we have, for i = 0, 1, transitions ((q1, i), γ, (q2, 0), op) if λ(δ) = ε, or
((q1, i), γ, (q2, 1), op) otherwise. The initial state gets 1 on the second coordinate. Notice that only
configurations having 1 on the second coordinate are in PDG(A′)/ε. Moreover there is an edge
between two configurations in PDG(A)/ε if and only if there is an edge between corresponding
(obtained by putting 1 on the second coordinate of the state) configurations in PDG(A′)/ε. So
the two graphs are isomorphic, thus the theorem for one of them immediately implies the theorem
for the other.

Finally, consider an arbitrary language L and arbitrary PDS A. Roughly speaking, the theorem
is then true, because we can make a product of A with a finite automaton recognizing L. More
precisely, we proceed as follows. Let A = (A,Γ, γI , Q, qI ,∆, λ), and let A′ = A∪{$}, where $ 6∈ A
is a fresh symbol. Let AL = (QL, A

′, qI
L, F,∆L) be a deterministic finite automaton recognizing

language A∗$L (where QL is its set of states, A′ its input alphabet, qI
L ∈ Q an initial state, F ⊆ Q

a set of accepting states, and ∆L : QL ×A′ → QL a transition function). We assume that AL has
the additional property: there is a state q$

L which is reached if and only if the input word read so
far is from A∗$. We create a new pushdown system A′ = (A′,Γ, γI , Q×QL, (qI , q

I
L),∆′, λ′). For

each transition δ = (q1, γ, q2, op) ∈ ∆ and every p ∈ QL we add to ∆′
a transition δ′ = ((q1, p), γ, (q2, p

′), op), where p′ = p if λ(δ) = ε and p′ = ∆L(p, λ(δ)) otherwise;
let the label of δ′ be the label of δ;
a transition δ′ = ((q1, p), γ, (q2,∆L(p, $)), op) if λ(δ) 6= ε; let the label of δ′ be $.

We also create a pushdown system A′′ which is almost identical to A′, but its initial state is
(qI , q

$
L).

As CAL we take the greater4 of the constants for A′ and A′′, and language A′∗, from the above
special case. Let c be the configuration of A for which we want to do the pumping; in PDG(A)/ε
there is a path of length m from the initial configuration to c. Assume first that m > 0. Then
there is a run w of A from the initial configuration to c such that exactly m of its edges are not
labelled by ε, in particular the last edge. Let c′ be the configuration with state (state(c), q$

L) and
the same pds as c. In A′ we have a run w′ from the initial configuration to c′ with the same
property (so there is a path in PDG(A′)/ε of length m). Indeed, we replace each transition of w
by a corresponding transition of A′ of the first kind, except the last transition, which we replace
by a transition of the second kind. The labels of this run, after omitting ε, form a word from
A∗$, so the second coordinate of state(w′(|w′|)) is q$

L. Similarly, because in PDG(A)/ε there is
a path p of length at least Sn which begins in c and belongs to L, in PDG(A)/ε there is a path
of length at least Sn which begins in c′ and ends in a configuration having an accepting state of
AL on the second coordinate of the state. We use the above special case for A′ (for language
containing all words). We obtain infinitely many paths in PDG(A′)/ε, which start in c′, and end
in configurations having the same state as the original path. Because the second coordinate of
this state is an accepting state of AL, the paths belong to L. Thus there are infinitely many paths
in PDG(A)/ε, which start in c, belong to L, and end in configurations having the same state as
p. The case m = 0 is solved analogously, but as c′ we take the initial configuration of A′′. J

6 Example application

Let ϕ : N → N be an unbounded function. Let fϕ
1 (x) = x · ϕ(x) and fϕ

k+1(x) = 2fϕ
k

(x) for k ≥ 1.
Consider the tree Tϕ

n whose nodes are

{0i1j : i ≥ 0, j ≤ fϕ
n (i+ 2) + 1},

and a node w is connected with a node wa by an edge labelled by a (where w is a word and
a ∈ {0, 1} is a letter). This tree is not isomorphic to the ε-contraction of any pushdown graph of
level n.

4 In fact these two constants are the same, as they do not depend on the initial state.

12A Pumping Lemma for Pushdown Graphs of Any Level

Heading for a contradiction, assume that Tϕ
n is isomorphic to PDG(A)/ε for some pushdown

system A of level n. In this isomorphism, the empty word in Tϕ
n has to correspond to the initial

configuration (as it is the only configuration which can have no predecessors). Choose i ∈ N such
that ϕ(i+ 2) ≥ CAL (where CAL is the constant from Theorem 1.1, for L = {0, 1}∗). Let c be the
configuration corresponding to 0i1, and d the configuration corresponding to 0i1fϕ

n (i+2)+1. We use
Theorem 1.1 for the path from the initial configuration to c and for the path from c to d; their
length is, respectively, i + 1 and fϕ

n (i + 2) (which is greater or equal to Sn from the theorem).
Thus we obtain infinitely many paths starting in 0i1, which contradicts the definition of Tϕ

n .
On the other hand it is known that when the function ϕ is constant, then tree Tϕ

n is isomor-
phic to PDG(A)/ε for some pushdown system A. See e.g. [1], Example 9, where a very similar
pushdown system is constructed. In this sense the length required in Theorem 1.1 is the smallest
possible: Sn has to be n− 1 times exponential in m.

7 Future work

As a continuation of this work, we have recently [8] generalized Theorem 1.1 to collapsible push-
down systems. Collapsible pushdown systems are an extension of higher-order pushdown systems,
in which an additional operation, called collapse, can be performed. Trees generated by these
systems correspond to all higher-order recursion schemes [5], not only to safe ones.

Our pumping lemma talks only about the length of paths, and about a regular condition
on the labels on them, hence its applications are rather limited. It would be useful to show a
pumping lemma which describes more precisely how the new paths (as sequences of labels) can be
constructed from the original paths, similarly to the classical pumping lemma for finite automata
or pushdown automata.

Acknowledgement. I would like to thank Alexander Kartzow for many useful comments.

References
1 Achim Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput. Sci.,

400(1-3):19–45, 2008.
2 Arnaud Carayol and Stefan Wöhrle. The caucal hierarchy of infinite graphs in terms of logic and

higher-order pushdown automata. In FSTTCS, pages 112–123. Springer, 2003.
3 Didier Caucal. On infinite terms having a decidable monadic theory. In Krzysztof Diks and

Wojciech Rytter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science, pages 165–
176. Springer, 2002.

4 Robert H. Gilman. A shrinking lemma for indexed languages. Theor. Comput. Sci., 163(1&2):277–
281, 1996.

5 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible pushdown
automata and recursion schemes. In LICS, pages 452–461. IEEE Computer Society, 2008.

6 Takeshi Hayashi. On derivation trees of indexed grammars. Publ. RIMS, Kyoto Univ., 9:61–92,
1973.

7 Alexander Kartzow. A pumping lemma for collapsible pushdown graphs of level 2. In Marc
Bezem, editor, CSL, volume 12 of LIPIcs, pages 322–336. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011.

8 Alexander Kartzow and Paweł Parys. Strictness of the collapsible pushdown hierarchy. In prepa-
ration, 2012.

9 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order pushdown trees are easy. In
Mogens Nielsen and Uffe Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes in Computer
Science, pages 205–222. Springer, 2002.

10 A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170–1174, 1974.

11 Paweł Parys. The pumping lemma is incorrect? Unpublished, 2010.

Paweł Parys 13

A Combinatorial lemmas

In this appendix we prove combinatorial facts used throughout the paper. We begin by a proof of
Lemma 4.2. In its proof we use the following auxiliary lemma (where the set Hb,e is defined as in
the statement of Lemma 4.2).

I Lemma A.1. Let N be a positive integer, let aB , aB+1, . . . , aE be a sequence of positive integers
such that |ai − ai−1| ≤ 1 and ai ≥ aB for B + 1 ≤ i ≤ E. Let G ⊆ {B,B + 1, . . . , E − 1} be such
that |G| ≥ 2N − 1. Then there exists an index e such that e− 1 ∈ G and |HB,e| ≥ N .

Proof. Induction on E −B. Notice that for B ≤ b ≤ e we always have Hb,e ⊆ HB,e. We have the
following cases.

Case 0. Assume N = 1. Then as e we can take any index such that e − 1 ∈ G (notice that
|G| ≥ 21 − 1 = 1). Let i be the greatest index such that i ≤ e− 1 and ai = aB (it exists as B can
be always taken as i). Notice that i ∈ HB,e, because aj ≥ ai for B ≤ j ≤ E, and aj ≥ ai + 1 for
i+ 1 ≤ j ≤ e− 1 (e− 1 can be taken as g from the definition of HB,e).

Case 1. Assume for some b such that B + 1 ≤ b ≤ E, we have ab = aB and G ⊆ {b, b +
1, . . . , E − 1}. We use the induction assumption for the shorter sequence ab, ab+1, . . . , aE , and for
N and G. The assumption that ai ≥ ab for b+ 1 ≤ i ≤ E is satisfied because ab = aB . We obtain
e such that e − 1 ∈ G and |Hb,e| ≥ N . Since Hb,e ⊆ HB,e (in fact even Hb,e = HB,e), this e is
good for the original sequence.

Case 2. Assume that N ≥ 2 and that for some M such that B + 1 ≤ M ≤ E we have
ai ≥ aB + 1 for B + 1 ≤ i ≤ M , and |G ∩ {B + 1, B + 2, . . . ,M − 1}| ≥ 2N−1 − 1. Let
G′ = G ∩ {B + 1, B + 2, . . . ,M − 1}. We use the induction assumption for the shorter sequence
aB+1, aB+2, . . . , aM , and for N − 1 (as N) and G′ (as G). The assumption that ai ≥ aB+1 for
B + 2 ≤ i ≤ M is satisfied because aB+1 = aB + 1. We obtain e such that e − 1 ∈ G′ ⊆ G

and |HB+1,e| ≥ N − 1. This e is good for the original sequence: because e ≤ M we see that
B ∈ HB,e (as g in the definition of HB,e we can take e − 1); we have HB,e = {B} ∪ HB+1,e, so
|HB,e| = |HB+1,e|+ 1 ≥ N .

Case 3. Assume that none of the above cases hold. Then in particular N ≥ 2. Let b ≥ B + 1
be the smallest index such that ab = aB . If such a number b would not exist, then ai ≥ aB + 1 for
B+1 ≤ i ≤ E and |G∩{B+1, B+2, . . . , E−1}| ≥ |G|−1 ≥ 2N −2 ≥ 2N−1−1, so we could take
M = E in case 2; thus such a number b exists. LetG′ = G∩{b, b+1, . . . , E−1}. We have ai ≥ aB+1
for B+ 1 ≤ i ≤ b− 1. Because b− 1 can not be taken as M in case 2, we either have b− 1 = B, or
|G∩{B+1, B+2, . . . , b−2}| ≤ 2N−1−2. We have |G′| ≥ (2N −1)−2− (2N−1−2) = 2N−1−1, as
G′ = G−{B, b−1}−(G∩{B+1, B+2, . . . , b−2}). We use the induction assumption for the shorter
sequence ab, ab+1, . . . , aE , and for N − 1 (as N) and G′ (as G). The assumption that ai ≥ ab for
b + 1 ≤ i ≤ E is satisfied because ab = aB . We obtain an index e such that e − 1 ∈ G′ ⊆ G and
|Hb,e| ≥ N −1. Observe that this e is good also for the original sequence. Because case 1 does not
hold, we have G 6⊆ {b, b+ 1, . . . , E − 1}, so for some g ∈ G we have B ≤ g ≤ b− 1, which means
that B ∈ HB,e; of course B 6∈ Hb,e. Thus |HB,e| ≥ |Hb,e|+ 1 ≥ N . J

Proof (Lemma 4.2). For each 0 ≤ j ≤M denote

mj = min
0≤i≤j

ai.

Notice that m0,m1, . . . ,mM is a non-increasing sequence of positive integers such that m0 = a0.
Because we have at least a0 · 2N elements of G, for some m there are at least 2N elements of
G ∩ {i : mi = m}. Choose such an m; let b be the first index such that mb = m and E the last
such index. Let G′ = G ∩ {b, b + 1, . . . , E − 1}. We have ai ≥ ab = m for b + 1 ≤ i ≤ E, and
|G′| ≥ 2N − 1, so we can use Lemma A.1 for sequence ab, ab+1, . . . , aE , for N and G′ (as G). We
obtain e such that e ∈ G′ ⊆ G and |Hb,e| ≥ N (we get condition 3). Because e ≤ E we get
condition 1, and by minimality of b we get condition 2. J

Addendum to the proof of Lemma 5.2. Below we check that the set G has enough elements, so
that Lemma 4.1 can be applied. Recall that any i-pds (1 ≤ i ≤ k−1) of v(0) has size at most M ′i .

14A Pumping Lemma for Pushdown Graphs of Any Level

Thus it is enough to show that Mk −M ′k ≥ Nk−1 (we have |G| ≥ Mk −M ′k). We will show by
induction on i thatMi−M ′i ≥ Ni−1 for 1 ≤ i ≤ k. For i = 1 we just haveM1−M ′1 = |TA|+1 = N0.
For i ≥ 2 we have

Mi −M ′i = 2Mi−1 − 2M ′i−1 = 2M ′i−1(2Mi−1−M ′i−1 − 1) ≥ 2M ′i−1(2Ni−2 − 1) ≥
≥ 2 ·M ′i−1(2Ni−2 − 1) ≥M ′i−1 · 2Ni−2 = Ni−1.

Above, the first inequality is true because of the induction assumption, the second inequality
because for any natural number m we have 2m ≥ 2m, and the last inequality because Ni−2 ≥ 1,
so 2Ni−2 − 1 ≥ 2Ni−2−1. J

Addendum to the proof of Theorem 1.1. Below we prove that Sn ≥ Nn. In fact we will prove
that Sj ≥ 3Nj by induction on j (for 1 ≤ j ≤ n). For j = 1 we have

S1 = (m+ 1) · 3 · (|TA|+ 1) · 2|TA|+1 = 3 ·M1 · 2N0 = 3N1.

Let now j ≥ 2. It is easy to see that Nj−1 ≥ N0 ≥ 2, so 2Nj−1 ≥ 3. We also have Nj−1 =
Mj−1 · 2Nj−2 ≥Mj−1, so 2Nj−1 ≥ 2Mj−1 = Mj . From the induction assumption we get that

Sj = 2Sj−1 ≥ 23Nj−1 = 2Nj−1 · 2Nj−1 · 2Nj−1 ≥ 3 ·Mj · 2Nj−1 = 3Nj .

J

B Types and sequence equivalence

B.1 Types of pds’s
In this section we prove Lemma 3.8. This proof is by induction on k (from n to 0). To prove
this lemma, we need to define a relation ∼l over k-pds’s for l ≤ k ≤ n, and a relation ≈l over
configurations; then we prove some auxiliary lemmas.

I Definition B.1. Let 0 ≤ l ≤ n. The relation ∼l is the smallest relation satisfying the following:
for any k-pds αk, where l ≤ k ≤ n, we have αk ∼l α

k, and
for any k-pds’s αk, βk such that type(αk) = type(βk), where l+ 1 ≤ k ≤ n (but not k = l), we
have αk ∼l β

k, and
for any k-pds’s αk, βk and (k − 1)-pds’s αk−1, βk−1 such that αk ∼l β

k and αk−1 ∼l β
k−1,

where l + 1 ≤ k ≤ n, we have αk : αk−1 ∼l β
k : βk−1.

I Definition B.2. Let 0 ≤ l ≤ n, and let c and c′ be configurations. Decompose

π(c) = αn : αn−1 : · · · : αl and π(c′) = α′n : α′n−1 : · · · : α′l.

We say that c ≈l c
′ if state(c) = state(c′) and αk ∼l α

′k for l ≤ k ≤ n.

At the end of our proofs it will be easy to see that the above relations are equivalence relations
(transitivity follows from Proposition B.8). However there is no direct argument showing that, so
in the proofs we cannot assume transitivity of these relations.

The following propositions are immediate consequences of the definitions.

I Proposition B.3. Let 0 ≤ l ≤ k ≤ n and let αk, βk be k-pds’s such that αk ∼l β
k. Decompose

αk = α′k : α′k−1 : · · · : α′l and βk = β′k : β′k−1 : · · · : β′l. Then either
α′i ∼l β

′i for l ≤ i ≤ k, or
there exists a number m such that l + 1 ≤ m ≤ k, and α′i ∼l β

′i for m + 1 ≤ i ≤ k, and
type(α′m : α′m−1 : · · · : α′l) = type(β′m : β′m−1 : · · · : β′l).

Indeed, from the definition of ∼l, either the types match, or we have the last case of the definition,
which inductively gives the property.

I Proposition B.4. Let 0 ≤ l ≤ n, and let w and v be runs of length 1 such that w(0) ≈l v(0).
Assume that these runs perform the same transition, which uses a pushk operation for any k, or
a popk operation for 1 ≤ k ≤ l. Then w(1) ≈l v(1).

Paweł Parys 15

I Proposition B.5. Let 1 ≤ k ≤ n, and let αk be a k-pds. Then type(αk) = ∅ if and only if αk is
empty.

The next proposition has in its assumptions the induction assumption of Lemma 3.8, and the
induction assumption of Lemma B.7.

I Proposition B.6. Let 0 ≤ l ≤ k ≤ n and let αk, βk be k-pds’s such that αk ∼l β
k. Assume that

the statement of Lemma 3.8 holds for k ≥ l + 1. Assume also that for each t ∈ Dk, each run w

which agrees with t, and each configuration c such that w(0) ≈l c there exists a run from c which
agrees with t. Then type(αk) = type(βk).

Proof. Decompose αk = α′k : α′k−1 : · · · : α′l and βk = β′k : β′k−1 : · · · : β′l. Take any
t′ = (ρn, ρn−1, . . . , ρk+1, q, t) ∈ type(αk). To prove that t ∈ type(βk), for k + 1 ≤ i ≤ n take any
β′i such that type(β′i) = ρi. Let c = (q, β′n : β′n−1 : · · · : β′k+1 : βk). We have to find a run
from c which agrees with t. By definition of type, because t ∈ type(αk), there is a run w from
(q, β′n : β′n−1 : · · · : β′k+1 : αk) which agrees with t.

If α′i ∼l β
′i for l ≤ i ≤ k, we have w(0) ≈l c. Then (by the second assumption of the

proposition), there exists a run from c which agrees with t, as required. Otherwise (Proposition
B.3), there exists a number m such that l + 1 ≤ m ≤ k, and α′i ∼l β

′i for m + 1 ≤ i ≤ n, and
type(α′m : α′m−1 : · · · : α′l) = type(β′m : β′m−1 : · · · : β′l). Let

d = (q, β′n : β′n−1 : · · · : β′m+1 : α′m : α′m−1 : · · · : α′l).

We have w(0) ≈l d. Then (by the second assumption of the proposition), there exists a run v from
d which agrees with t. Next, we use Lemma 3.8 for m (which is ≥ l + 1) as k, for t, and for v as
w; we have assumed that it is true. It says that

(type(β′n), type(β′n−1), . . . , type(β′m+1), q, t) ∈ type(α′m : α′m−1 : · · · : α′l).

By the definition of type, and by the equality of type for α′m : α′m−1 : · · · : α′l and β′m : β′m−1 :
· · · : β′l we get a run from c which agrees with t, as required. J

The next lemma will be used in the proof of Lemma 3.8. The induction assumption for Lemma
3.8 is assumed in Lemma B.7.

I Lemma B.7. Let 0 ≤ l ≤ r − 1 ≤ n. Assume that the statement of Lemma 3.8 holds for
k ≥ l+ 1. Let t ∈ Dr−1, let w be a run which agrees with t, and let c be a configuration such that
w(0) ≈ c. Then there exists a run from c which agrees with t.

Proof. We make an external induction on r (from n + 1 to l + 1), and an internal induction on
the length of w. To avoid special case for r = n+ 1, we assume that Dn+1 = ∅. If t ∈ Dr, we can
directly use the external induction assumption. Thus we assume that t ∈ Dr−1 −Dr.

Let π(w(0)) = αn : αn−1 : · · · : α0 and π(c) = α′n : α′n−1 : · · · : α′0. Notice (by definition of
≈ and ∼) that w(0) ≈ c implies that α0 = α′0, and state(w(0)) = state(c), and αi is empty if
and only if α′i is empty for 1 ≤ i ≤ n. We have a trivial case when |w| = 0. A run of length 0
can agree only with t = state(w(0)); then the run of length 0 from c also agrees with t. For the
rest of the proof we assume that |w| ≥ 1. Let δ ∈ ∆ be the first transition used in w, between
w(0) and w(1). Notice that the same transition can be performed from c; let c1 be the resulting
configuration. We have state(w(1)) = state(c1).

First we prove the following claim, denoted by (*).

Let u ∈ Dr−1 be such that the subrun of w from 1 to |w| agrees with u. Assume also that
the operation in δ is popk for 1 ≤ k ≤ r − 1 or pushk for 1 ≤ k ≤ r − 1. Then there exists
a run from c1 which agrees with u.

To prove the claim, assume first that the operation in δ is not popk for k ≥ l + 1. Then, by
Proposition B.4, w(1) ≈l c1. Thus we can use the internal induction assumption for u (as t), the
subrun of w from 1 to |w| (as w), and c1 (as c); we obtain a run from c1 which agrees with u, as
required by the claim.

16A Pumping Lemma for Pushdown Graphs of Any Level

Next assume that the operation in δ is popk for k ≥ l + 1. Decompose

π(w(1)) = ρn : ρn−1 : · · · : ρl and π(c1) = ρ′n : ρ′n−1 : · · · : ρ′l.

Notice that ρi = αi and ρ′i = α′i for k + 1 ≤ i ≤ n, and ρk : ρk−1 : · · · : ρl = αk and
ρ′k : ρ′k−1 : · · · : ρ′l = α′k. We have state(w(1)) = state(c1) and ρi ∼l ρ

′i for k + 1 ≤ i ≤ n, and
ρk : ρk−1 : · · · : ρl ∼l ρ

′k : ρ′k−1 : · · · : ρ′l. When also ρi ∼l ρ
′i for l ≤ i ≤ k, we have w(1) ≈l c1

and we are done (see case 1a). Otherwise (by Proposition B.3) there exists a number m such that
l+ 1 ≤ m ≤ k, and ρi ∼l ρ

′i for m+ 1 ≤ i ≤ n, and type(ρm : ρm−1 : · · · : ρl) = type(ρ′m : ρ′m−1 :
· · · : ρ′l). Let

d = (state(w(1)), ρ′n : ρ′n−1 : · · · : ρ′m+1 : ρm : ρm−1 : · · · : ρl).

We have w(1) ≈l d. From the internal induction assumption for u (as t), the subrun of w from 1
to |w| (as w), and d (as c) we obtain a run w′ from d which agrees with u. Next, we use Lemma
3.8 for m (which is ≥ l + 1) as k, for u as t, and for w′ as w; we have assumed the it is true. It
says that

(type(ρ′n), type(ρ′n−1), . . . , type(ρ′m+1), state(d), u) ∈ type(ρm : ρm−1 : · · · : ρl).

By the definition of type, and by the equality of type for ρm : ρm−1 : · · · : ρl and ρ′m : ρ′m−1 : · · · :
ρ′l, we obtain a run v′ from c1 which agrees with u. This finishes the proof of the claim.

We have the following cases depending on the form of t.
Case 1. Consider first the case when t ∈ Q. Then r = n + 1. The subrun w′ of w from 1 to

|w| also agrees with t. From claim (*) follows that there exists a run v′ from c1 which agrees with
t. Then as v we take the composition of the one-step run from c to c1 with run v′; of course v also
agrees with t.

Case 2. Next, consider the case when t is of the form t = (r, non-ε) (recall that t ∈ Dr−1−Dr,
so t = (r′, non-ε) implies that r′ = r). We have r ≥ l, as t ∈ Dl. One possibility is that at least
one of the edges of w before the last edge is labelled by an element of A. Then the subrun w′ of
w from 0 to |w| − 1 also agrees with t. From the internal induction assumption, used for t, w′ (as
w), and c, we obtain a run from c which agrees with t. Thus we can assume that only the last
edge of w is labelled by an element of A, and all earlier edges are labelled by ε.

Next, observe that the operation in δ cannot be popk for k ≥ r, as then position topr−1(w(0))
would not be present in w(1). We have several subcases.

Case 2a. Assume first that |w| = 1. Then λ(δ) 6= ε, thus the one-step run from c to c1 agrees
with t (since the operation in δ is not popk for k ≥ r, position topr−1(c) is present in c1).

Case 2b. Assume that |w| ≥ 2, and the operation in δ is popk for 1 ≤ k ≤ r − 1, or pushk

for 1 ≤ k ≤ r − 1. Then topr−1(w(0)) = topr−1(w(1)), so the subrun w′ of w from 1 to |w| agrees
with t (as position topr−1(w′(0)) is present in every configuration of w′). From claim (*) (used for
t as u) we obtain a run v′ from c1 which agrees with t. Let v be the composition of the one-step
run from c to c1 with run v′. Again because topr−1(v(0)) = topr−1(v(1)), we obtain that v agrees
with t.

Case 2c. Assume that |w| ≥ 2, and the operation in δ is pushk for r ≤ k ≤ n, and position
topk−1(w(1)) is present in every configuration of w, starting from w(1). This means that the subrun
w′ of w from 1 to |w| agrees with u = (k, non-ε). From the internal induction assumption, used
for u (as t), w′ (as w), and c1 (as c), we obtain a run v′ from c1 which agrees with u. Let v be the
composition of the one-step run from c to c1 with run v′. Of course position topr−1(v(0)) cannot
be removed if position topk−1(v(1)) is not removed (as topr−1(v(0)) is deeper than topk−1(v(1))),
so v agrees with t.

Case 2d. Finally, assume that |w| ≥ 2, the operation in δ is pushk for r ≤ k ≤ n, and
position topk−1(w(1)) is not present in some configuration of w after w(1); let w(j) be the first
such configuration. Since position topr−1(w(0)) is still present in w(j), and r ≤ k, it has to be
π(w(0)) = π(w(j)). If for some i such that 1 ≤ i ≤ j − 1 we have i ∈ prek−1

w (j), it would mean
that topk−1(w(1)) is not present also in w(i); this contradicts with our choice of j, which was the
smallest such index. It follows that the subrun w1 of w from 1 to j is a k-return. Run w1 agrees

Paweł Parys 17

with u = (k, f, type(αn), type(αn−1), . . . , type(αk+1), state(w(j)), 0), where f = 0 if and only if all
edges of w1 are labelled ε (hence if and only if j < |w|). From the internal induction assumption,
used for u (as t), w1 (as w), and c1 (as c), we obtain a run v1 from c1 which agrees with u. This
means in particular that state(v1(|v1|)) = state(w(j)) and π(v1(|v1|)) = π(c) (because the last
coordinate of u is 0). Notice that, by definition of a k-return, position topr−1(c) = topr−1(v1(|v1|))
is present in every configuration of v1. If f = 1 we are done: the composition of the one-step run
from c to c1 with run v1 agrees with t. Otherwise, let w2 be the subrun of w from j to |w|. Because
topr−1(w(0)) = topr−1(w(j)), run w2 agrees with t. From the internal induction assumption, used
for t, w2 (as w), and v1(|v1|) (as c), we obtain a run v2 from v1(|v1|) which agrees with t. The
composition of the one-step run from c to c1 with run v1 and with run v2 is a run from c which
agrees with t.

Case 3. Next, consider the case when t is of the form t = (r, f, ξn, ξn−1, . . . , ξr+1, q, g) (again,
t = (r′, f, ξn, ξn−1, . . . , ξr′+1, q, g) implies that r′ = r, because t ∈ Dr−1 − Dr). Decompose
π(w(|w|)) = βn : βn−1 : · · · : βr. Because w is an r-return, we have βr = αr. Additionally
ξi = type(βi) for r + 1 ≤ i ≤ n, and q = state(w(|w|)). Observe that the operation in δ cannot
be popk for k > r. Indeed, then the bottommost position y of the (r − 1)-pds just below the
topmost (r − 1)-pds of w(0) would be removed in w(1) by this operation, so we cannot have
histw(i, x)(0) = y for any 1 ≤ i ≤ |w| and any position x of w(i); in particular w cannot be an
r-return. We have several subcases depending on the operation in δ.

Case 3a. Assume first that the operation in δ is pushk for 1 ≤ k ≤ r − 1, or popk for
1 ≤ k ≤ r− 1. Let w′ be the subrun of w from 1 to |w|. We see that w′ is an r-return, because w
is an r-return and between w(0) and w(1) we make changes only inside the topmost (r − 1)-pds.
We also see that π(w′(|w′|)) can be obtained from π(w′(0)) by removing its topmost (r − 1)-pds
if and only if π(w(|w|)) can be obtained from π(w(0)) by removing its topmost (r − 1)-pds. Let
u = (r, f ′, ξn, ξn−1, . . . , ξr+1, q, g), where f ′ = 0 if and only if every edge of w′ is labelled by ε.
We get that w′ agrees with u. From claim (*) we have a run v′ from c1 which agrees with u.
Let v be the composition of the one-step run from c to c1 with run v′; we obtain a run from c.
Because v′ is an r-return, also v is an r-return. Moreover π(v(|v|)) can be obtained from π(v(0))
by removing its topmost (r − 1)-pds if and only if π(v′(|v′|)) can be obtained from π(v′(0)) by
removing its topmost (r − 1)-pds. Additionally, because f = 0 if and only if f ′ = 0 and λ(δ) = ε,
we see that f = 0 if and only if every edge of v is labelled by ε. It follows that v agrees with t.
Thus it remains to show that there exists a run from c1 which agrees with u.

Case 3b. Next, assume that the operation in δ is popr. We have π(w(1)) = αn : αn−1 : · · · : αr

and π(c1) = α′n : α′n−1 : · · · : α′r. Let y be the bottommost position of the (r− 1)-pds just below
the topmost (r − 1)-pds of w(0) (like in Definition 3.4). We have histw(1, topr−1(w(1)))(0) = y

and no other copy of y is present in w(1); thus histw(|w|, topr−1(w(|w|)))(0) = y implies 1 ∈
prer−1

w (|w|). From Definition 3.4 it follows that |w| = 1. We have q = state(w(1)), and g = 0, and
βi = αi ∼l α

′i for r+ 1 ≤ i ≤ n (also for i = r, but this is useless). To conclude that the one-step
run from c to c1 agrees with t, it remains to show that type(βi) = type(α′i) for r + 1 ≤ i ≤ n.
The external induction assumption says that for i ≥ r + 1, for each t′ ∈ Di, each run w′ which
agrees with t′, and each configuration c′ such that w′(0) ≈l c

′ there exists a run from c′ which
agrees with t′. Exactly this, plus the assumption about Lemma 3.8 for k ≥ l+ 1, allows us to use
Proposition B.6 for βi and α′i; we get that type(βi) = type(α′i) as required.

Case 3c. Finally, assume the operation in δ is pushk for r ≤ k ≤ n. Consider first the situation
when the subrun of w from 1 to |w| is an r-return, and k > r; denote this subrun by w′. Notice
that π(w(|w|)) cannot be obtained from π(w(0)) by removing its topmost (r − 1)-pds, since even
the (r − 1)-pds of w(1) just below its topmost (r − 1)-pds is not removed in w(|w|), as w′ is an
r-return; so g = 0. Let u = (r, f ′, ξn, ξn−1, . . . , ξr+1, q, g′), where f ′ = 0 if and only if every edge of
w′ is labelled by ε, and g′ = 0 if and only if π(w′(|w′|)) can be obtained from π(w′(0)) by removing
its topmost (r− 1)-pds. We get that w′ agrees with u. We use the internal induction assumption
for u (as t), w′ (as w), and c1 (as c); we obtain a run v′ from c1 which agrees with u. Let v be the
composition of the one-step run from c to c1 with run v′; we obtain a run from c. Because v′ is an
r-return and k 6= r, also v is an r-return. Like above, π(v(|v|)) cannot be obtained from π(v(0))
by removing its topmost (r− 1)-pds, because v′ is an r-return. Additionally, because f = 0 if and

18A Pumping Lemma for Pushdown Graphs of Any Level

only if f ′ = 0 and λ(δ) = ε, we see that f = 0 if and only if every edge of v is labelled by ε. Thus
v agrees with t.

Next, consider the situation when there exists j (2 ≤ j ≤ |w| − 1) such that the sub-
run of w from 1 to j is a k-return, and the subrun of w from j to |w| is an r-return. De-
note this subruns w1 and w2. Notice that the topmost k-pds of w(0) and of w(j) are the
same. Decompose π(w(j)) = ρn : ρn−1 : · · · : ρk+1 : αk : αk−1 : · · · : αl. Let u1 =
(k, f1, type(ρn), type(ρn−1), . . . , type(ρk+1), state(w(j)), g1), where f1 = 0 if and only if every edge
of w1 is labelled by ε, and g1 = 0 if and only if π(w(j)) can be obtained from π(w(1)) by removing
its topmost (k−1)-pds. Let u2 = (r, f2, ξ

n, ξn−1, . . . , ξr+1, q, g2), where f2 = 0 if and only if every
edge of w2 is labelled by ε, and g2 = 0 if and only if π(w(|w|)) can be obtained from π(w(j)) by
removing its topmost (r − 1)-pds. We see that w1 agrees with u1 and w2 agrees with u2. We use
the internal induction assumption for u1 (as t), w1 (as w), and c1 (as c); we obtain a run v1 from c1
which agrees with u1. Notice that the topmost k-pds of c and of v1(|v1|) are the same. Decompose
π(v1(|v1|)) = ρ′n : ρ′n−1 : · · · : ρ′k+1 : α′k : α′k−1 : · · · : α′l. Because type(ρi) = type(ρ′i) for
k + 1 ≤ i ≤ n, we get that w(j) ≈l v1(|v1|). We use the internal induction assumption for u2 (as
t), w2 (as w), and v1(|v1|) (as c); we obtain a run v2 from v1(|v1|) which agrees with u2. Let v
be the composition of the one-step run from c to c1 with run v1 and with run v2. Because v1 is
a k-return and v2 is an r-return, and r ≤ k, we get that v is an r-return. Because f = 0 if and
only if f1 = 0 and f2 = 0 and λ(δ) = ε, we see that f = 0 if and only if every edge of v is labelled
by ε. We see that π(w(|w|)) can be obtained from π(w(0)) by removing its topmost (r− 1)-pds if
and only if π(w1(|w1|)) can be obtained from π(w1(0)) by removing its topmost (k − 1)-pds and
π(w2(|w2|)) can be obtained from π(w2(0)) by removing its topmost (r − 1)-pds; similarly for v
and v1, v2. If follows that v agrees with t.

It remains to show that, when the operation in δ is pushk for r ≤ k ≤ n, we always have one
of the above situations. Let s be the size of the topmost k-pds of w(0). Let y be the bottommost
position of the (r − 1)-pds just below the topmost (r − 1)-pds of w(0). For 1 ≤ j ≤ |w|, we look
at the size of the k-pds of w(j) containing histw(|w|, topr−1(w(|w|)))(j) (equivalently: containing
histw(|w|, topk(w(|w|)))(j)). Recall that histw(|w|, topr−1(w(|w|)))(0) = y (and y is in the topmost
k-pds of w(0), and pushk makes changes only inside the topmost k-pds), so for j = 1 this is the
topmost k-pds (in other words 1 ∈ prek

w(|w|)) and its size is s + 1. Assume first that this size is
at least s + 1 for each j. Then 1 ∈ prek−1

w (|w|) (by Proposition 2.2). Because w is an r-return,
we know that 1 6∈ prer−1

w (|w|), so r 6= k (r < k). We see that histw(|w|, topr−1(w(|w|)))(1) is the
copy of y in the topmost (k−1)-pds, so it is the bottommost position of the (r−1)-pds just below
the topmost (r − 1)-pds of w(1). We get that the subrun of w from 1 to |w| is an r-return, and
r 6= k. The opposite possibility is that for some j (1 ≤ j ≤ |w|) the size of the k-pds containing
histw(|w|, topr−1(w(|w|)))(j) becomes s. Fix the first such j. It is easy to see that the subrun of
w from 1 to j is a k-return, and the subrun of w from j to |w| is an r-return. J

Proof (Lemma 3.8). This is induction on k. Denote

t′ = (type(αn), type(αn−1), . . . , type(αk+1), state(w(0)), t).

To prove that t′ ∈ type(αk), for k + 1 ≤ i ≤ n take any i-pds βi such that type(βi) = type(αi).
Let c = (state(w(0)), βn : βn−1 : · · · : βk+1 : αk). We have to prove that there exists a run from
c which agrees with t. Observe that w(0) ≈k c. We use Lemma B.7 for k (as l), w, t, and c.
Its assumptions are satisfied thanks to our induction assumption. We obtain a run from c which
agrees with t, as required. J

I Proposition B.8. Let 1 ≤ k ≤ n, let αk, βk be k-pds’s, and let αk−1, βk−1 be (k − 1)-pds’s. As-
sume that type(αk) = type(βk) and type(αk−1) = type(βk−1). Then type(αk : αk−1) = type(βk :
βk−1).

Proof. Take any t = (ρn, ρn−1, . . . , ρk+1, q, t′) ∈ type(αk : αk−1). To prove that t ∈ type(βn :
βn−1), for k + 1 ≤ i ≤ n take any βi such that type(βi) = ρi. Let c = (q, βn : βn−1 : · · · : βk−1).
We have to prove that there exists a run from c which agrees with t′. By definition of type,
because t ∈ type(αk : αk−1), there is a run from (q, βn : βn−1 : · · · : βk+1 : αk : αk−1) which agrees

Paweł Parys 19

with t′. From Lemma 3.8 it follows that (ρn, ρn−1, . . . , ρk+1, type(αk), q, t′) ∈ type(αk−1); which
by assumptions of the proposition means that (ρn, ρn−1, . . . , ρk+1, type(βk), q, t′) ∈ type(βk−1).
From the definition of type we get that there exists a run from c which agrees with t′. J

B.2 Types of configurations
In this section we prove Facts 3.1–3.3. To simplify the notation we have the following definition.

I Definition B.9. For a configuration c and for 1 ≤ k ≤ n we define pdsk(c) ∈ Γk
∗ as the topmost

k-pds of c with its topmost (k − 1)-pds removed. Additionally pds0(c) is the topmost 0-pds of c.

In other words, we always have π(c) = pdsn(c) : pdsn−1(c) : · · · : pds0(c). Recall that

typeA(c) = (type(pdsn(c)), type(pdsn−1(c)), . . . , type(pds1(c)), pds0(c), state(c)).

Proof (Fact 3.1). If |w| = 0, as v we can take the trivial run consisting of c. So assume that
|w| ≥ 1. Let δ ∈ ∆ be the first transition used in w, between w(0) and w(1). Notice that the same
transition can be performed from c; let c1 be the resulting configuration. We have state(w(1)) =
state(c1). Observe that the operation in δ cannot be popk for any k, as such operation removes
the topmost symbol of w(0), which contradicts with the assumption that 0 ∈ pre0

w(|w|). So the
operation in δ is pushk for some k.

Case 1. First, consider the special case when |w| = 1. As v we take the one-step run from
c to c1. We have π(c) 6= π(c1) (condition 1) and 0 ∈ pre0

w(1) (condition 2). The only edge of w
and of v is labelled by the same, i.e. by λ(δ) (condition 3). Thanks to Proposition B.8 we get
typeA(w(1)) = typeA(c1) (condition 4).

Case 2. Next, consider the special case when the subrun w′ of w from 1 to |w| is a k-return
(where the operation in δ is pushk for the same k). Notice that w′ agrees with

t = (k, f, type(pdsn(w(|w|))), type(pdsn−1(w(|w|))), . . . , type(pdsk+1(w(|w|))), state(w(|w|)), g),

where f = 0 if and only if every edge of w′ is labelled by ε, and g = 0 if and only if π(w(|w|)) can
be obtained from π(w(1)) by removing its topmost (k − 1)-pds. In other words g = 0 if and only
if π(w(|w|)) = π(w(0)). From Lemma 3.8 (used for w, t, and 0 as k) we get that

(type(pdsn(w(1))), type(pdsn−1(w(1))), . . . , type(pds1(w(1))), state(w(1)), t) ∈ type(pds0(w(1))).

Thanks to Proposition B.8 we know that typeA(w(1)) = typeA(c1), so

(type(pdsn(c1)), type(pdsn−1(c1)), . . . , type(pds1(c1)), state(c1), t) ∈ type(pds0(c1)).

By definition of type, there exists a run v′ from c1 which agrees with t. Let v be the composition
of the one-step run from c to c1 with run v′. Notice that π(w(0)) 6= π(w(|w|)) implies that
g = 1 which implies that π(v′(|v′|)) cannot be obtained from π(c1) by removing the topmost
(k − 1)-pds, so π(v(0)) 6= π(v(|v|)) (we get condition 1). By definition of a k-return, we have
histv(|v|, topk−1(v(|v|)))(1) = topk−1(v(0)), as topk−1(v(0)) is the bottommost symbol of the
(k − 1)-pds of v(1) just below its topmost (k − 1)-pds. This means that 0 ∈ prek−1

v (|v|) (we get
condition 2). All edges of w are labelled by ε if and only if λ(δ) = ε and f = 0, hence if and
only if all edges of v are labelled by ε (we get condition 3). Because w′ and v′ agree with t, we
have state(w(|w|)) = state(v(|v|)) and type(pdsi(w(|w|))) = type(pdsi(v(|v|))) for k + 1 ≤ i ≤ n.
Moreover, the topmost k-pds of w(|w|) and of w(0) are the same, and the topmost k-pds of v(|v|)
and of v(0) are the same. This way we get typeA(w(|w|)) = typeA(v(|v|)) (condition 4).

The general case. We make an induction on the length of w. Assume first that for some j
such that 1 ≤ j ≤ |w| − 1 we have j ∈ pre0

w(|w|). Since 0 ∈ pre0
w(|w|), then also 0 ∈ pre0

w(j). We
use the induction assumption for the subrun of w from 0 to j (as w), and for c; we obtain a run v1
from c. We have typeA(w(j)) = typeA(v1(|v1|)). Next, we use the induction assumption for the
subrun of w from j to |w| (as w), and for v1(|v1|) (as c); we obtain a run v2 from v1(|v1|). Let v be
the composition of runs v1 and v2. We have typeA(w(|w|)) = typeA(v(|v|)) (condition 4). Because

20A Pumping Lemma for Pushdown Graphs of Any Level

0 ∈ pre0
v1

(|v1|) and 0 ∈ pre0
v2

(|v2|), we get 0 ∈ pre0
v(|v|) (condition 2). Because 0 ∈ pre0

v(|v1|) and
|v1| ∈ pre0

v(|v|), if π(v(0)) and π(v(|v|)) are equal, then also π(v(|v1|)) is equal to them. In the light
of condition 1 from the induction assumption, this implies that π(w(0)) = π(w(j)) = π(w(|w|))
(we get condition 1). From condition 3 of the induction assumptions follows that every edge of w
is labelled by ε if and only if every edge of v is labelled by ε (we get condition 3).

Thus in general it is enough to show that either |w| = 0 (in which case the thesis is trivial), or we
have some of the two special cases described above, or there exists j such that 1 ≤ j ≤ |w|−1 and
j ∈ pre0

w(|w|). So assume that |w| ≥ 2 and 1 6∈ pre0
w(|w|). Recall that the operation performed be-

tween w(0) and w(1) is pushk. Because 0 ∈ pre0
w(|w|) (which means histw(|w|, top0(w(|w|)))(0) =

top0(w(0))) and 1 6∈ pre0
w(|w|), it has to be histw(|w|, top0(w(|w|)))(1) = top0(w(0)) (as top0(w(0))

has two copies in w(1); these are top0(w(0)) and top0(w(1))). Let j ≥ 1 be the smallest positive
index for which j ∈ prek−1

w (|w|); such j exists since |w| always can be taken as j. If j = |w|, we
see that the subrun of w from 1 to |w| is a k-return, so we have case 2. So assume that j < |w|.
Concentrate on the (k−1)-pds of w(i) containing histw(|w|, topk−1(w(|w|)))(i) for 1 ≤ i ≤ j. This
is not the topmost (k− 1)-pds for i < j (because i 6∈ prek−1

w (|w|), so it is never modified: either it
remains unchanged (and everything in the (k − 1)-pds’s below it in the same k-pds), or we copy
the whole k-pds. Because histw(|w|, top0(w(|w|)))(1) = top0(w(0)) is the topmost symbol in this
(k− 1)-pds, the same is true for w(j): we have histw(|w|, top0(w(|w|)))(j) = top0(w(j)). It means
that j ∈ pre0

w(|w|), thus we can take j to the inductive case. J

Proof (Facts 3.2, 3.3). For Fact 3.2 let t = (1, non-ε), and for Fact 3.3 let t = state(w(|w|)). In
both cases w agrees with t. Also in both cases we want to find a run v from c which agrees with
t. From Lemma 3.8 used for k = 0, for w, and for t, we know that

(type(pdsn(w(0))), type(pdsn−1(w(0))), . . . , type(pds1(w(0))), state(w(0)), t) ∈
∈ type(pds0(w(0))).

Because typeA(w(0)) = typeA(c) it means that

(type(pdsn(c)), type(pdsn−1(c)), . . . , type(pds1(c)), state(c), t) ∈ type(pds0(c)).

From point 4 of Definition 3.7 it follows that there exists a run from c which agrees with t, as
required. J

C The error in the Blumensath pumping lemma

We will show that Lemma 60 in [1] is false; this is a key lemma on which the pumping lemma is
based. This lemma says that in each long enough run w of any pushdown system there exists a
pumping pair of configurations w(x), w(y) (x < y). From the definition of a pumping pair we use
only the following:

state(w(x)) = state(w(y)) (the state in these configurations is the same),
π(w(x)) C1 π(w(y)).

For two k-pds’s αk, βk (for 0 ≤ k ≤ n), the relation αk C1 β
k is defined as follows (Definition

20 in [1]). If k = 0, then αk C1 β
k always holds. For k ≥ 1, suppose that αk = a1a2 . . . ar and

βk = b1b2 . . . bs, where ai, bi are (k − 1)-pds’s. Then αk C1 β
k holds if

r ≤ s, ai = bi, for 1 ≤ i ≤ r − 1, and ar C1 bi, for r ≤ i ≤ s.

Consider the following pushdown system A of level 3. The stack alphabet contains only the a
symbol. The system first executes the push1(a) operation, and then repeats the following sequence
of operations:

push2(a), push3(a), pop1, push3(a), pop2, push3(a).

Thus it has 7 states: an initial state and a loop of 6 states.
This pushdown system has only one infinite run starting in the initial configuration. Consider

its subrun w starting from the second configuration. The n-pds of w(0) is [[[aa]]] (one 1-pds with

Paweł Parys 21

two symbols). Our PDS works as follows. First observe that it never makes any pop3 operation.
Hence only the topmost 2-pds is accessed. By making a push3 operation we keep the history of
the current contents of the topmost 2-pds.

Now observe how the topmost 2-pds changes. It has three possible contents, between which
we loop:

α =[[aa]],
β =[[aa][aa]],
γ =[[aa][a]].

We have αC1 β and γ C1 β, but α and γ are C1-incomparable.
Lemma 60 says that in w there is a pumping pair w(x), w(y) (x < y). We will show that this is

not true. Fix some such pair. Let π(w(x)) = ξ1 . . . ξk and π(w(y)) = ζ1 . . . ζl. The configurations
w(x), w(y) have the same state, which means that ξk = ζl. As x < y, it necessarily holds l ≥ k+3.
Because π(w(x)) C1 π(w(y)), it has to be

ξk C1 ζk and ξk C1 ζk+1 and ξk C1 ζk+2.

We know that ζ1, ζ2, . . . , ζl−1 = α, β, γ, α, β, γ, . . . (and ζl is either equal to ζl−1, or is the next
symbol). This means that

ξk C1 α and ξk C1 β and ξk C1 γ.

But none of α, β, γ satisfies this. Hence there is no pumping pair.

Other arguments against the proof. After reading the above counterexample, one may think
that maybe there is some small mistake in the definitions or in the statement of the lemma, and
that possibly it can be corrected by improving some details. However the problem in the proof is
much deeper. For simplicity assume that we consider a PDS of level 3 which has only one infinite
run from the initial configuration. Lemma 60 says that there exists a pumping pair arbitrarily far
in this run (as we can consider its subrun starting from any moment). From Lemma 57, and the
definition of the substitution used there, it follows that the size of the 3-pds, and the maximal
size of 1-pds’s has to grow with similar speed (the dependence between them has to be linear).
However it is not difficult to show a PDS in which the size of the 3-pds is exponential in the
maximal size of 1-pds’s.

	Introduction
	Preliminaries
	Types of configurations
	Pumping of pushdown graphs
	Finitely branching -contractions of pushdown graphs
	Example application
	Future work
	Combinatorial lemmas
	Types and sequence equivalence
	Types of pds's
	Types of configurations

	The error in the Blumensath pumping lemma

