
On the Significance of the Collapse Operation

Paweł Parys

University of Warsaw

ul. Banacha 2, 02-097 Warszawa, Poland

Email: parys@mimuw.edu.pl

Abstract—We show that deterministic collapsible pushdown
automata of second level can recognize a language which is
not recognizable by any deterministic higher order pushdown
automaton (without collapse) of any level. This implies that
there exists a tree generated by a second level collapsible
pushdown system (equivalently: by a recursion scheme of second
level), which is not generated by any deterministic higher order
pushdown system (without collapse) of any level (equivalently:
by any safe recursion scheme of any level). As a side effect,
we present a pumping lemma for deterministic higher order
pushdown automata, which potentially can be useful for other
applications.

I. INTRODUCTION

In verification we often approximate an arbitrary program

by a program with variables from a finite domain, remem-

bering only a part of information. Then the outcome of

some conditions in the program (e.g. in the if or while

statements) cannot be determined, hence they are replaced by

a nondeterministic choice (branching). If the program does not

use recursion, the set of its possible control flows is a regular

language, and the program itself is (in a sense) a determin-

istic finite automaton recognizing it. If the program contains

recursion, we obtain a deterministic context free language, and

from the program one can construct a deterministic pushdown

automaton (PDA for short) recognizing this language. In other

words, stack can be used to simulate recursion (notice that the

same is true for compilers: they convert a recursive program

into a program using stack). In verification it is interesting to

analyze the possibly infinite tree of all possible control flows

of a program. This tree has a decidable MSO theory [1].

A next step is to consider higher order programs, i.e. pro-

grams in which procedures can take procedures as parameters.

Such programs closely correspond to so-called higher order

recursion schemes and to typed λ-terms. They no longer can

be simulated by classical PDA. Here higher order PDA come

into play. They were originally introduced by Maslov [2]. In

automata of level n we have a level n stack of level n − 1
stacks of ... of level 1 stacks. The idea is that the PDA

operates only on the topmost level 1 stack, but additionally

it can make a copy of the topmost stack of some level, or

can remove the topmost stack of some level. However the

correspondence between higher order automata and recursion

schemes (programs) is not perfect. Trees generated (in suitable

sense) by a PDA of level n coincide with higher order

Work partially supported by the Polish Ministry of Science grant nr N N206
567840.

recursion schemes of level n with safety restriction [3]. See

[4], [5] for another characterizations of the same hierarchy. It

is important that these trees have decidable MSO theory [3].

To overcome the safety restriction, a new model of push-

down automata were introduced, called collapsible pushdown

automata [6], [7]. These automata are allowed to perform an

additional operation called collapse (or panic in [6]); it allows

to remove all stacks on which a copy of the currently topmost

stack symbol is present. These automata correspond to all

higher order recursion schemes (not only safe ones) [8], and

trees generated by them also have decidable MSO theory [9].

It is also worth to mention that verification of some real life

higher order programs can be performed in reasonable time

[10].

A question arises if these two hierarchies are possibly the

same hierarchy? This is an open problem stated in [3] and

repeated in other papers concerning higher order PDA [6],

[11], [9], [8]. A partial answer to this question was given in

[12]: there exists a language recognized by a deterministic

collapsible pushdown automaton of second level, which is

not recognized by any deterministic higher order pushdown

automaton (without collapse) of second level. We prove a

stronger property, that the sum of both hierarchies is different,

which is our main theorem.

Theorem 1.1. There exists a language recognized by a de-

terministic collapsible pushdown automaton of second level,

which is not recognized by any deterministic higher order

pushdown automaton (without collapse) of any level.

The result can be also stated as follows (the parts about

recursion schemes follow from the equivalences mentioned

above).

Corollary 1.2. There exists a tree generated by a collapsible

pushdown system of second level (equivalently: by a recursion

scheme of second level), which is not generated by any

higher order pushdown system (without collapse) of any level

(equivalently: by a safe recursion scheme of any level).

This confirms that the correspondence between higher order

recursion schemes and higher order pushdown systems is not

perfect. The language used in Theorem 1.1 (after some adap-

tations) comes from [3] and from that time was conjectured

to be a good example.

As a side effect, in Section VI we present a pumping lemma

for deterministic higher order pushdown automata. Although

its formulation is not very natural, we believe it may be

useful for some other applications. Our lemma is similar (but

incomparable: neither weaker or stronger) to the pumping

lemma from [13] (in fact, the lemma from [13] was already

stated by Blumensath [14], but there is an irrecoverable error

in his proof). Earlier, several pumping lemmas related to the

second level of the pushdown hierarchy were proposed [15],

[16], [17].

Related work: One may ask a similar question for non-

deterministic automata rather than for deterministic ones: is

there a language recognized by a nondeterministic collapsible

pushdown automaton, which is not recognized by any non-

deterministic higher order pushdown automaton (without col-

lapse). This is an independent problem. The answer is known

only for level 2 and is opposite: one can see that for level 2

the collapse operation can be simulated by nondeterminism,

hence normal and collapsible nondeterministic level 2 PDA

recognize the same languages [11]. However it seems that in

context of verification considering deterministic automata is

a more natural choice, for the following reasons. First, most

problems for nondeterministic PDA are not decidable: even

the very basic problem of universality for level 1 PDA is

undecidable. Second, we want to verify deterministic programs

(possibly with some not deterministic input). A nondetermin-

istic program is something rather strange: it has an oracle

which says what to do in order to accept. Normally, when

a program is going to make some not deterministic choice,

we want to analyze all possibilities, not only these which are

leading to some ,,acceptance” (hence we have branching, not

nondeterminism).

We know [8] that there is a collapsible pushdown graph of

level 2, which has undecidable MSO theory, hence which is

not a pushdown graph of any level (as they all have decidable

MSO theory).

In [18] we simultaneously prove that the hierarchy of col-

lapsible pushdown trees (and also graphs) is infinite, i.e. that

for each level there exists a tree generated by a collapsible

pushdown system of that level which is not generated by any

collapsible pushdown system of a lower level.

II. PRELIMINARIES

An n-th level deterministic higher order pushdown au-

tomaton (n-HOPDA for short) is a tuple (A,Γ, γI , Q, qI , F, δ)
where A is an input alphabet, Γ is a stack alphabet, γI ∈ Γ
is an initial stack symbol, Q is a set of states, qI ∈ Q is an

initial state, F ⊆ Q is a set of accepting states, and δ is a

transition function which maps every element of Q × Γ into

one of the following operations:

• read(f), where f : A → Q is an injective function,

• popk(q), where 1 ≤ k ≤ n and q ∈ Q, or

• push
k(t0, q), where 1 ≤ k ≤ n, and t0 ∈ Γ, and q ∈ Q.

The letter n is used exclusively for the level of pushdown

automata.

For any alphabet Γ (of stack symbols) we define a k-th

level pushdown store (k-pds for short) as an element of the

following set Γk
∗:

Γ0
∗ = Γ,

Γk
∗ = (Γk−1

∗)∗ for 1 ≤ k ≤ n.

In other words, a 0-pds is just a single symbol, and a k-pds for

1 ≤ k ≤ n is a (possibly empty) sequence of (k − 1)-pds’s.

The last element of a k-pds is also called the topmost one.

For any sk ∈ Γk
∗ and sk−1 ∈ Γk−1

∗ we write sk : sk−1 for

the k-pds obtained from sk by placing sk−1 at its end. The

operator “:” is assumed to be right associative, i.e. s2 : s1 :
s0 = s2 : (s1 : s0). We say for k ≥ 1 that a k-pds is proper if

it is nonempty and every (k − 1)-pds in it is proper; a 0-pds

is always proper.

A configuration of A consists of a state and of a proper n-

pds, i.e. is an element of Q×Γn
∗ in which the n-pds is proper.

The initial configuration consists of the initial state qI and of

the n-pds containing only one 0-pds, which is the initial stack

symbol γI . For a configuration c, its state is denoted state(c),
and its n-pds is denoted π(c).

Next, we define when a configuration d is a successor of a

configuration c. Let p = state(c), and let s0 be the topmost

0-pds of π(c). We have three cases depending on δ(p, s0):

• if δ(p, s0) = read(f) then state(d) = f(a) for some

a ∈ A, and π(d) = π(c),
• if δ(p, s0) = popk(q) then state(d) = q, and π(d) is

obtained from π(c) by replacing its topmost k-pds sk :
sk−1 by sk (i.e. we remove the topmost (k − 1)-pds; in

particular the topmost k-pds of π(c) has to contain at

least two (k − 1)-pds’s),

• if δ(p, s0) = push
k(t0, q) then state(d) = q, and π(d) is

obtained from π(c) by replacing its topmost k-pds sk :
sk−1 by (sk : sk−1) : sk−1, and then by replacing its

topmost 0-pds by t0 (i.e. we copy the topmost (k−1)-pds,

and then we change the topmost symbol in the copy1).

Notice that most configurations have exactly one successor.

However when the operation is read, there are several succes-

sors. It is also possible that there are no successors: when the

operation is popk but there is only one (k − 1)-pds on the

topmost k-pds.

A run is a function R from numbers 0, 1, . . . , l (for some

l ≥ 0) to configurations such that R(i) is a successor of R(i−
1) for 1 ≤ i ≤ l. The number l is called the length of R, and

denoted |R|. We say that R is a run from R(0) to R(|R|). For

0 ≤ x ≤ y ≤ |R| we can consider the subrun of R from x to

y; this is the run of length y − x which maps i to R(i + x).
For two runs R, S such that S(0) = R(|R|) we can consider

their composition; this is the run of length |R| + |S| which

maps i ≤ |R| to R(i), and i > |R| to S(i − |R|). We also

consider infinite runs.

The word read by a run is a word over the input alphabet

A. For a run from a configuration c to its successor d, it

is the empty word if the operation between them is pop or

1In the classical definition the topmost symbol can be changed only when
k = 1 (for k ≥ 2 it has to be s0 = t0). We make this (not important)
extension to have an unified definition of pushk for every k.

2

TABLE I
STACK CONTENTS AND SETS pre FOR THE EXAMPLE RUN

i π(R(i)) pre0

R
(i) pre1

R
(i) pre2

R
(i) pre3

R
(i)

0 [[[ab]]] {0} {0} {0} {0}
1 [[[ab][ac]]] {0, 1} {0, 1} {0, 1} {0, 1}
2 [[[ab][ac]][[ab][ad]]] {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
3 [[[ab][ac]][[ab][a]]] {3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}
4 [[[ab][ac]][[ab][a]][[ab][e]]] {3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
5 [[[ab][ac]][[ab][a]][[ab]]] {0, 5} {0, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}
6 [[[ab][ac]][[ab][a]]] {3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 6} {0, 1, 2, 3, 4, 5, 6}

push. If the operation is read(f), this is the one-letter word

consisting on the letter a for which state(d) = f(a) (this

letter is determined uniquely, as f is injective). For a longer

run R this is defined as the concatenation of the words read

by every subrun of R from i− 1 to i (for 1 ≤ i ≤ k). A word

w is accepted by A if it is read by some run from the initial

configuration to a configuration having an accepting state. The

language recognized by A is the set of words accepted by A.

A position is a vector x = (xn, xn−1, . . . , x1) of n positive

integers. The symbol on position x in configuration c (which

is an element of Γ) is defined in the natural way (we take the

xn-th (n − 1)-pds of π(c), then its xn−1-th (n − 2)-pds, and

so on; elements of pds’s are numbered from bottom to top).

We say that x is a position of c, if at position x there is a

symbol in c.

For 0 ≤ k ≤ n, by topk(c) we denote the position of the

bottommost symbol of the topmost k-pds of c. In particular

top0(c) is the topmost position of c.

For any run R, indices 0 ≤ a ≤ b ≤ |R|, and a position

y of R(b), we define a position histR(b, y)(a). It is y when

b = a. It is y also when b = a+1, and the operation between

R(a) and R(b) is read or pop, as well as when the operation

is push
k and y is not in the topmost (k − 1)-pds of R(b). If

the operation between R(a) and R(b) is push
k and y is in the

topmost (k−1)-pds of R(b), then histR(b, y)(a) is the position

of R(a) from which a symbol was copied to y (i.e. this is y

with the (n−k +1)-th coordinate decreased by 1). When b >

a + 1, histR(b, y)(a) is defined (by induction) as histR(a +
1, histR(b, y)(a+1))(a). In other words, histR(b, y)(a) is the

(unique) position of R(a), from which the symbol was copied

to y in R(b).

For 0 ≤ k ≤ n, a run R, and an index 0 ≤ b ≤ |R| we

define a set prek
R(b) consisting of these indices a (0 ≤ a ≤ b)

for which histR(b, topk(R(b)))(a) = topk(R(a)). We also

denote pre−1
R (b) = {b}. Intuitively, a ∈ prek

R(b) means that

the topmost k-pds of R(b) “comes from” the topmost k-pds of

R(a), in the sense that the topmost k-pds of R(b) is a copy of

the topmost k-pds of R(a), but possibly some changes were

done to it. Notice that prek
R(b) ⊆ prel

R(b) for k ≤ l, and

prek
R(a) = prek

R(b) ∩ {0, 1, . . . , a} for a ∈ prek
R(b).

Example 2.1. Consider a PDS of level 3. Below, brackets

are used in descriptions of pds’s as follows: symbols taken in

brackets form one 1-pds, 1-pds’s taken in brackets form one

2-pds, and 2-pds’s taken in brackets form one 3-pds. Consider

a run R of length 6 in which π(R(0)) = [[[ab]]] and the

operations between consecutive configurations are (we omit

the state):

push
2(c), push

3(d), pop1, push
3(e), pop2, pop3.

The contents of the 3-pds’s of the configurations in the run,

and the pre sets, are presented in Table I. In configuration

R(0) symbol a is on position (1, 1, 1) and symbol b is on

position (1, 1, 2). We have

histR(2, (2, 2, 1))(1) = (1, 2, 1), and

histR(2, (2, 2, 1))(0) = (1, 1, 1).

Notice that positions y in R(b) and histR(b, y)(a) in R(a) not

necessarily contain the same symbol, for example on position

(1, 2, 2) in R(1) we have c, and on position (1, 1, 2) in R(0)
we have b, but histR(1, (1, 2, 2))(0) = (1, 1, 2).

Collapsible 2-HOPDA: In Section VII we also use de-

terministic collapsible pushdown automata of second level (2-

CPDA for short). Such automaton is defined like 2-HOPDA,

with the following differences. A 0-pds contains now two

parts: a symbol from Γ, and a natural number, but still only

the symbol (together with a state) is used to determine which

transition is performed from a configuration. The push
1 opera-

tion sets the number in the topmost 0-pds to the current size of

the 2-pds (the number of 1-pds’s). We have a new operation

collapse(q). When it is performed between configurations c

and d, then state(d) = q, and π(d) is obtained from π(c) by

removing its topmost 1-pds’s, so that only k − 1 of them is

left, where k is the number stored in the topmost 0-pds of c

(intuitively, we remove all 1-pds’s on which the topmost 0-pds

is present).

III. BASIC PROPERTIES OF RUNS

In this section we present four propositions, which follow

easily from definitions.

Proposition 3.1. Let R be a run of an n-HOPDA, let 0 ≤ k ≤
n, and let i ≤ j be such that prek

R(j) ∩ {i, i + 1, . . . , j} =
{i, j}. Then

• the topmost k-pds of R(i) and R(j) is the same; addi-

tionally for every position x in the topmost k-pds of R(j),
histR(j, x)(i) is the corresponding position in R(i), or

• j = i + 1 and the operation between R(i) and R(j) is

popr for r ≤ k, or push
r

for r ≤ k.

Proof: For j = i and for j = i + 1 we immediately get

one of the possibilities. Otherwise, we look at the history of

the topmost k-pds of R(j). It is covered by the first operation

3

after R(i), and then it is not the topmost k-pds until R(j).
Thus it remains unchanged (we get the first possibility).

Proposition 3.2. Let R be a run of an n-HOPDA, let 1 ≤ k ≤
n, and let i, j be such that i ∈ prek

R(j). Then i ∈ prek−1
R (j) if

and only if the size (the number of (k−1)-pds’s) of the topmost

k-pds of R(i) is not greater than the size of the topmost k-pds

of R(l) for every l ∈ prek
R(j) ∩ {i, i + 1, . . . , j}.

Proof: Let rl be the size of the topmost k-pds of R(l)
(for each l), and let yl(r) be the bottommost symbol of the r-

th (k− 1)-pds of the topmost k-pds of R(j) (for 1 ≤ r ≤ rl).

Let rmin be the smallest among rl for l ∈ prek
R(j), l ≥ i. We

will prove that for 1 ≤ r ≤ rj ,

histR(j, yj(r))(i) = yi(min(r, rmin)). (1)

Then the thesis of the proposition follows immediately, as

i ∈ prek−1
R (j) if and only if histR(j, yj(rj))(i) = yi(ri).

To prove (1) we make an induction on j. For j = i it is true.

Otherwise, let l < j be the greatest index being in prek
R(j).

We have some of the two cases described by Proposition 3.1

(where l is taken as i), and for both of them we see that for

1 ≤ r ≤ rj ,

histR(j, yj(r))(l) = yl(min(r, rl)).

Together with the induction assumption for l, this implies (1).

Proposition 3.3. Let 1 ≤ k ≤ n, let R be a run of an n-

HOPDA, and let 0 ≤ i ≤ j ≤ l ≤ |R|. Assume that i 6∈
prek−1

R (j) and j ∈ prek
R(l). Then i 6∈ prek−1

R (l).

Proof: If i 6∈ prek
R(l) then as well i 6∈ prek−1

R (l). So as-

sume that i ∈ prek
R(l); then also i ∈ prek

R(j). By Proposition

3.2 we know that for some a ∈ prek
R(j)∩{i, i+1, . . . , j} the

size of the topmost k-pds of R(a) is smaller than the size of

the topmost k-pds of R(i). Again Proposition 3.2 (now for l

used as j) gives us that i 6∈ prek−1
R (l).

Proposition 3.4. Let 1 ≤ k ≤ n. Let R be a run of an n-

HOPDA, and let 1 ≤ k ≤ n. Assume that 0 ∈ prek−1
R (|R|−1)

and 0 6∈ prek−1
R (|R|) and |R| − 1 ∈ prek

R(|R|). Then the

topmost k-pds of R(0) after removing its topmost (k− 1)-pds

is equal to the topmost k-pds of R(|R|).

Proof: We also have 0 ∈ prek
R(|R| − 1) and 0 ∈

prek
R(|R|). Let r be the size of the topmost k-pds of the

topmost k-pds of R(0). From Proposition 3.2 (used for 0 as

i and |R| − 1 as j) we know that the size of the topmost

k-pds of R(l) is at least r, for every l ∈ prek
R(|R| − 1).

Moreover from Proposition 3.1 we know that between these

configuration R(l), we can modify the topmost k-pds only

using a single operation; thus the first r − 1 (k − 1)-pds’s of

the topmost k-pds of R(0) and of R(|R| − 1) are the same.

From Proposition 3.2, now used for 0 as i and |R| as j, we

get that the size of the topmost k-pds of R(|R|) is smaller

than r. Thus it has to be r − 1 (the last operation has to be

popk), so we get the thesis.

IV. TYPES AND SEQUENCE EQUIVALENCE

Let A be an n-HOPDA over input alphabet A which

contains a distinguished symbol ♯, and over stack alphabet

Γ. Let ϕ : A∗ → M be a morphism into a finite monoid. In

the appendix we define the following objects:

• a finite set TA,ϕ,

• a function typeA,ϕ which assigns to every configuration

of A an element of TA,ϕ,

• a partial order ≤ over TA,ϕ,

• an equivalence relation over infinite sequences of config-

urations of A, called (A, ϕ)-sequence equivalence, which

has finitely many equivalence classes.

Basing on typeA,ϕ, for each 0 ≤ k ≤ n we define a function

typek
A,ϕ which assigns to every configuration c of A a pair

from TA,ϕ × Γk
∗ , which is typeA,ϕ(c), and the topmost k-pds

of c. We extend partial order ≤ to TA,ϕ × Γk
∗:

(t1, s
k
1) ≤ (t2, s

k
2) ⇐⇒ t1 ≤ t2 and sk

1 = sk
2 .

The important properties of the typeA,ϕ function and the

(A, ϕ)-sequence equivalence are described by the following

two theorems. Theorem 4.1 is already present in [13], but

Theorem 4.3 is new.

Theorem 4.1. Let A be an n-HOPDA with an input alphabet

A, let ϕ : A∗ → M be a morphism into a finite monoid

M , and let 0 ≤ k ≤ n. Let R be a run of A such

that 0 ∈ prek
R(|R|), and let c be a configuration such that

typek
A,ϕ(R(0)) ≤ typek

A,ϕ(c). Then there exists a run S from

c such that

1) if |R| > 0 then |S| > 0, and

2) 0 ∈ prek
S(|S|), and

3) the words read by R and by S evaluate to the same

under ϕ, and

4) typek
A,ϕ(R(|R|)) ≤ typek

A,ϕ(S(|S|)).

Remark 4.2. We explain the intuition why the above theorem

is true. Assume n = 1 and k = 0. Then it is enough if

type0
A,ϕ(c) returns the topmost stack symbol of c, and the state

of c (and the relation ≤ is trivial). Notice that the assumption

0 ∈ pre0
R(|R|) means that the topmost stack symbol of R(0)

is not removed in the whole run. Thus if the topmost stack

symbol and the state of c is the same as of R(0), we can

perform from c the same sequence of operations as in R.

Assume now that n = 2 and k = 0. Although again the

topmost stack symbol of R(0) is not removed directly, now

the run can depend on all the symbols of the topmost 1-pds,

after making a copy of it. But the assumption 0 ∈ pre0
R(|R|)

guaranties that if the topmost symbol of R(0) is removed

in some copy of the topmost 1-pds, then the copy is later

removed. Thus for the topmost 1-pds only the following

information is needed for each state q, and each monoid

element m: if we start in state q in which states the topmost

1-pds can be removed, if the word read between these two

states evaluates to m.

Theorem 4.3. Let A be an n-HOPDA with an input alphabet

A containing a ♯ symbol, let ϕ : A∗ → M be a morphism into

4

a finite monoid M , and let 0 ≤ k ≤ n. Let c1, c2, c3, . . . and

d1, d2, d3, . . . be infinite sequences of configurations which

are (A, ϕ)-sequence equivalent. Let also R be a run, and

0 = l0 ≤ l1 ≤ · · · ≤ lr = |R| indices such that

lj−1 ∈ prek
R(lj) for 1 ≤ j ≤ r − 1 (not for j = r),

and in R there is no push
n

operation and there is only one

popn operation, which is the last operation of R. Assume that

typek
A,ϕ(R(0)) = typek

A,ϕ(ci) = typek
A,ϕ(di) for each i. Then

for each i there exist runs Si from ci, and Ti from di such

that

1) the last operation of Si and of Ti is popn, and

2) the word read by Si decomposes as w1w2 . . . wr, where

wj evaluates under ϕ to the same as the word read by

the subrun of R from lj−1 to lj (for 1 ≤ j ≤ r); the

same for Ti, and

3) let xi and yi be the number of the ♯ symbols read by the

run Si and Ti, respectively; then either the sequences

x1, x2, x3, . . . and y1, y2, y3, . . . are both bounded, or

both unbounded.

Remark 4.4. We explain the intuition why the above theorem

is true. Assume n = 2 and k = 0. To characterize a sequence

c1, c2, c3, . . . , for each state q and monoid element m, it is

enough to know if it is possible that starting in configuration

(q, π(ci)) and finishing by a pop2 operation, we read a word

evaluating to m with a bounded number of the ♯ symbols.

Then, from every ci we can perform the same operations as

in the initial part of R, as long as the topmost symbol of

R(0) is not removed (this is true only for n = 2); this part

reads a bounded (constant) number of ♯ symbols. It ends in a

configuration (q, π(ci)) for some state q (which depends only

on R). By assumptions, this can not happen before R(lr−1).
Thus, from (q, π(ci)) we need to have a run which just reads

a word evaluating to the same as the rest of R. Whether such

run can read a bounded number of the ♯ symbols is determined

by the equivalence class of the sequence.

V. MILESTONE CONFIGURATIONS

In this section we define so-called milestone configurations

and we show their basic properties. The idea of considering

milestone configurations comes from [19], but our definition

is slightly different. Starting from this section, we often

assume that the input alphabet contains a distinguished symbol

denoted ⋆ (star).

Definition 5.1. Let A be an n-HOPDA with input alphabet

containing a ⋆ symbol, and let c be a configuration of A.

We say that c is a milestone (or a milestone configuration) if

there exists an infinite run R from c reading only stars, and

an infinite set I of indices such that 0 ∈ I , and i ∈ pre0
R(j)

for each i, j ∈ I , i ≤ j.

Example 5.2. Consider a PDS of level 3. Assume there is a

run which begins in a pds [[[aa]]] (the notation is the same as

in the previous example), and performs forever the following

sequence of operations, in a loop:

push
2(a), push

3(a), pop1, push
3(a), pop2, push

3(a).

Then the topmost 2-pds is alternatively: [[aa]] or [[aa][aa]]
or [[aa][a]]. This run does not read any symbols, so it is

a degenerate case of an infinite run which reads only stars.

Configurations with topmost 2-pds [[aa]] are milestones (and

no other configurations in this run). To obtain a less degenerate

case, we may consider a loop of operations as above, but

containing additionally a read operation; when a star is read,

the loop continues (we do not care what happens when any

other symbol is read). Then again configurations with topmost

2-pds [[aa]] are milestones.

Lemma 5.3. Let A be an n-HOPDA with input alphabet

containing a ⋆ symbol. Let R be an infinite run of A reading

only stars. Then, for infinitely many i the configuration R(i)
is a milestone.

Proof: Let In = N. For k = n−1, n−2, . . . , 0 we define

Ik = {i ∈ Ik+1|∀j≥i(j ∈ Ik+1 ⇒ i ∈ prek
R(j))}.

It is enough to show that set I0 is infinite. Then, by definition,

I0 contains only milestone configurations.

We prove that Ik is infinite by induction on k, from k = n

down to k = 0. The induction basis for k = n is true, because

In = N. Let now k ≤ n− 1; assume that Ik+1 is infinite. For

each index l, we want to find an index i ≥ l which is in Ik.

By sj denote the size of the topmost (k +1)-pds of R(j). We

can choose an index i ∈ Ik+1 such that si is minimal among

all sj for j ∈ Ik+1 ∩ {l, l + 1, l + 2, . . . }. By Proposition 3.2

(used for k + 1 as k) we see that i ∈ Ik.

If c is a milestone, R the (unique) infinite run from c reading

only stars, and I a set like in the definition of a milestone,

then also R(i) is a milestone for each i ∈ I . The following

lemma shows that in fact the set I can contain all i for which

R(i) is a milestone.

Lemma 5.4. Let A be an n-HOPDA with input alphabet

containing a ⋆ symbol. Let R be a run reading only stars,

which begins and ends in a milestone. Then 0 ∈ pre0
R(|R|).

Proof: Consider the infinite run S from R(0) reading only

stars (since R(0) is a milestone, the run is really infinite); R

is its prefix. We use the sets Ik from the proof of Lemma 5.3

(for run S). We will show that if S(i) is a milestone, then

i ∈ I0. It will mean that both 0 and |R| are in I0; it follows

that 0 ∈ pre0
R(|R|).

We prove by induction on k, from k = n down to k = 0,

that if S(i) is a milestone, then i ∈ Ik. We have i ∈ In

for each i. Let k ≤ n − 1. Assume that S(i) is a milestone,

and that for each milestone S(j) we have j ∈ Ik+1. Choose

any j ∈ Ik+1, j ≥ i. We need to prove that i ∈ prek
S(j).

By definition of a milestone, we have arbitrarily large l (in

particular l ≥ j) such that i ∈ pre0
S(l) and S(l) is a milestone.

It follows that i ∈ prek
S(l). We also know that j, l ∈ Ik+1 (by

induction assumption), so j ∈ prek+1
S (l). We use Proposition

3.3 for i, j, l, and k + 1 (as k). We get that i ∈ prek
S(j), as

wanted.

We also prove a finitary version of Lemma 5.3, which is

used in the proof of the pumping lemma in the next section.

5

Lemma 5.5. Let A be an n-HOPDA with input alphabet con-

taining a ⋆ symbol and stack alphabet Γ, and let 1 ≤ k ≤ n.

There exists a function b : Γk
∗ → N, assigning a number to

a k-pds, having the following properties. Let R be a run

which reads only stars, and let y be a position of R(|R|).
Let sk be the k-pds of R(0) containing histR(|R|, y)(0).
Assume that there exist at least b(sk) indices i such that

position histR(|R|, y)(i) is in the topmost k-pds of R(i). Then

for some i, configuration R(i) is a milestone and position

histR(|R|, y)(i) is in the topmost k-pds of R(i).

In order to do prove the above, we need an auxiliary lemma.

The intuition behind it is, by analogy to the proof of Lemma

5.3, that we can choose an arbitrarily big set Ik having a big

enough set Ik+1.

Lemma 5.6. Let A be an n-HOPDA with input alphabet

containing a ⋆ symbol, and let 0 ≤ k ≤ n− 1. There exists a

function fk : N×N → N, having the following properties. Let

N be a natural number, let R be a run reading only stars, and

let 0 ≤ x ≤ |R|. Assume that |prek+1
R (x)| ≥ fk(r, N), where

r is the size of the topmost (k+1)-pds of R(min(prek+1
R (x))).

Then there exists an index y ∈ prek+1
R (x) such that

1) |prek
R(y)| ≥ N , and

2) the topmost k-pds of R(min(prek
R(y))) is one of k-pds’s

in the topmost (k + 1)-pds of R(min(prek+1
R (x))).

Proof: We prove the lemma by induction on N . For N =
1 we can take fk(r, 1) = 1, and then y = min(prek+1

R (x)).
Let now N ≥ 2. We take

fk(r, N) = 1 +

r∑

m=1

fk(m + 1, N − 1).

Fix some R and x satisfying the assumptions. Let a =
min(prek+1

R (x)). By ri we denote the size of the topmost

(k + 1)-pds of R(i) (for each i ∈ prek+1
R (x)). Then r = ra.

For each j ∈ prek+1
R (x) denote

mj = min{ri : i ∈ prek+1
R (x) ∧ i ≤ j}.

Notice that 1 ≤ mj ≤ r (because ra = r) and that mj ≥ mj′

for j ≤ j′. From the formula for fk(r, N) we see that for some

m we have at least f(m+1, N−1)+1 indexes j ∈ prek+1
R (x)

such that mj = m. Choose some such m; let b be the first

index such that mb = m, and e the last such index. We have

m = rb.

Let b′ be the next index after b which is in prek+1
R (x).

Notice that rb′ ≤ rb+1 = m+1; this follows from Proposition

3.1 used for R, k + 1 (as k), b (as i), and b′ (as j). Thus we

have

|prek+1
R (e) ∩ {b′, b′ + 1, . . . , e}| ≥ f(m + 1, N − 1) ≥

≥ f(rb′ , N − 1).

We use the induction assumption for the subrun of R

from b′ to e (as R), and e − b′ (as x). We obtain an

index y ∈ prek
R(e) ⊆ prek+1

R (x) such that |prek
R(y) ∩

{b′, b′ + 1, . . . , e}| ≥ N − 1. Recall that rl ≥ rb for every

l ∈ prek+1
R (e) ∩ {b, b + 1, . . . , e}. From Proposition 3.2, used

for R, k + 1 (as k), b (as i), and y (as j) we get that

b ∈ prek
R(y). This implies that |prek

R(y)| ≥ N .

Finally we show condition 2. Assume that prek
R(b)∩{a, a+

1, . . . , b−1} 6= ∅; let i be any its element. Then i ∈ prek+1
R (x),

so ri > rb. This contradicts with Proposition 3.2, used for R,

k + 1 (as k), i, and b (as j). It means that prek
R(b) ∩ {a, a +

1, . . . , b−1} = ∅. On the other hand a ∈ prek+1
R (b). Thus the

topmost k-pds of R(b) is one of the k-pds’s in the topmost

(k + 1)-pds of R(a).

Proof of Lemma 5.5: Let ϕ : A∗ → M be a morphism

into a finite monoid, which checks if a word consists of only

⋆ symbols. Fix some k-pds sk. Let N0 = |TA,ϕ| · |Γ| + 1,

i.e. this is the number of possible values of type0
A,ϕ, plus one.

For 0 ≤ l ≤ k − 1 let Nl+1 = f l(rl, Nl), where rl is the

maximal size of an (l + 1)-pds which appears in sk, and f l

is the function from Lemma 5.6. We define b(sk) = Nk.

Now take a run R and a position y in R(|R|), such that

the assumptions of the lemma are satisfied. First, for each

0 ≤ l ≤ k we want to show that for some ml (0 ≤ ml ≤ |R|)
we have

a) |prel
R(ml)| ≥ Nl, and

b) histR(|R|, y)(ml) is in the topmost k-pds of R(ml),
and

c) the topmost l-pds of R(min(prel
R(ml))) is one of the

l-pds’s of sk.

We show this by induction on l, from l = k down to

l = 0. Consider first l = k. As mk we take the greatest

index for which position histR(|R|, y)(mk) is in the topmost

k-pds of R(mk). Then for every index i such that position

histR(|R|, y)(i) is in the topmost k-pds of R(i), we have

i ∈ prek
R(mk), so by assumption of the lemma we have

|prek
R(mk)| ≥ b(sk) = Nk. Moreover, the topmost k-pds of

R(min(prek
R(mk))) was not modified from the beginning of

the run (as it was not the topmost k-pds). So this k-pds is the

same as the k-pds of R(0) containing histR(|R|, y)(0), which

is sk.

Let now l < k, and assume that we have an index ml+1

satisfying a)-c). From condition c) we know that the size of

the topmost (l + 1)-pds of R(min(prel+1
R (ml+1))) is at most

rl. Thus Lemma 5.6 can be used for l (as k), Nl (as N), R,

and ml+1 (as x); it requires that |prel+1
R (ml+1)| ≥ fk(rl, Nl),

which is guaranteed by condition a). As ml we take the index

y from the lemma. Observe that such ml satisfies conditions

a)-c): condition a) is the same as condition 1 from the lemma;

condition b) is true because ml ∈ prel+1
R (ml+1) implies ml ∈

prek
R(ml+1), and we have b) for ml+1; condition c) follows

from condition 2 from the lemma, and c) for ml+1.

Next, let S be the unique maximal run from R(0) which

reads only stars (it is either infinite, or ends in a configuration

with no successor); R is its prefix. Observe that in pre0
S(m0)

we have two indices l0 < l1 such that type0
A,ϕ(S(l0)) =

type0
A,ϕ(S(l1)) (because we have more indices than possible

values of type0
A,ϕ). We also have l0 ∈ pre0

S(l1). Now,

assume that (for some r ≥ 1) we have a sequence of indices

6

l0 < l1 < · · · < lr such that for each 0 ≤ i < r it holds

li ∈ pre0
S(li+1) and type0

A,ϕ(S(li)) ≤ type0
A,ϕ(S(li+1));

initially we have such sequence for r = 1. We use Theorem

4.1 for 0 (as k), the subrun of S from lr−1 to lr (as R), and

S(lr) (as c). We obtain a run from S(lr) which reads only

stars; it is necessarily a subrun of S from lr to some lr+1. It

holds lr+1 6= lr (condition 1), lr ∈ pre0
S(lr+1) (condition 2),

and type0
A,ϕ(S(lr)) ≤ type0

A,ϕ(S(lr+1)) (condition 4). So we

obtain a sequence satisfying the same conditions, but having

one more element. We can continue like that for infinity: we

obtain an infinite sequence l0 < l1 < l2 < . . . such that for

each i it holds li ∈ pre0
S(li+1) (in particular S is infinite). By

transitivity of pre we also have li ∈ pre0
S(lj) for each i < j.

This shows that S(l0) is a milestone (to the set I required in

the definition we take all li). Moreover recall that l0 is from

pre0
R(m0). Thus, by condition b), position histR(|R|, y)(l0)

is in the topmost k-pds of R(l0).

VI. PUMPING LEMMA

In this section we present a pumping lemma which can be

used to prove that a language cannot be recognized by an

n-HOPDA.

Definition 6.1. Let A be an n-HOPDA with input alphabet A

containing a ⋆ symbol. Let ϕ : A∗ → M be a morphism into

a finite monoid. We say that a run R′ is a pumping witness

for a run R with respect to ϕ, if R(0) = R′(0), and the words

read by R and by R′ evaluate to the same under ϕ, and for

each 0 ≤ k ≤ n,

• typek
A,ϕ(R(|R|)) ≤ typek

A,ϕ(R′(|R′|)), or

• 0 ∈ prek−1
R (|R|).

We say that run R can be pumped with respect to ϕ if for

each r′ there exists a pumping witness R′ such that the word

read by R′ begins with at least r′ stars.

Intuitively, a run can be pumped, if we can change the

number of stars at its beginning in such way that the final

configuration does not change too much. In the definition we

describe the behavior of the topmost k-pds (for each k). The

second option, 0 ∈ prek−1
R (|R|), corresponds to a situation

when a part of the topmost k-pds was created while reading

the initial stars; then we do not say anything about the topmost

k-pds of R′(|R′|). Otherwise, the topmost k-pds of R(|R|),
in some sense, was not touched while reading the initial stars;

then we guarantee that typek
A,ϕ(R(|R|)) ≤ typek

A,ϕ(R′(|R′|))
(in particular the topmost k-pds of R(|R|) and of R′(|R′|) are

the same).

Theorem 6.2 (Pumping lemma). Let A be an n-HOPDA with

input alphabet A containing a ⋆ symbol. Let ϕ : A∗ → M

be a morphism into a finite monoid M , and c a milestone

configuration of A. There exists r > 0 such that each run

from c, which reads a word beginning with (at least) r stars,

can be pumped with respect to ϕ.

The rest of this section is devoted to a proof of this theorem.

Lemma 6.3. Let A be an n-HOPDA with input alphabet

A containing a ⋆ symbol, and let 1 ≤ k ≤ n. Let c be a

milestone configuration of A. Then there exists a finite set

Sk of k-pds’s having the following property. Let R be a run

from c reading only stars. Let x be the bottommost position

of the topmost (k − 1)-pds in some k-pds of R(|R|). Assume

that histR(|R|, x)(0) 6= topk−1(c). Then the k-pds of R(|R|)
containing x is in Sk.

Proof: Let X be the set containing all k-pds’s of c, and

additionally the topmost k-pds of c with its topmost (k − 1)-
pds removed. Let Sk contain all k-pds which can be obtained

from a k-pds sk ∈ X by applying at most b(sk) of push and

pop operations,2 where b is the function from Lemma 5.5.

Fix a run R from c which reads only stars. We say that a k-

pds of some configuration R(i) is c-clear, if histR(i, x)(0) 6=
topk−1(c) for x being the bottommost position of the topmost

(k− 1)-pds in the considered k-pds of R(i). Fix some c-clear

k-pds of R(|R|), let y be its bottommost position. Our goal

is to show that this k-pds is in Sk.

Let i be the smallest index such that the k-pds of R(i)
containing histR(|R|, y)(i) is c-clear (such i exists, as |R| is

a good candidate). We claim that the k-pds of R(i) containing

histR(|R|, y)(i) is in X . Indeed, one possibility is that i = 0,

then we are done. Otherwise, the k-pds of R(i−1) containing

histR(|R|, y)(i−1) is not c-clear, but in the next configuration

it becomes c-clear; so necessarily this is the topmost k-pds and

i−1 ∈ prek
R(i) (the operation between R(i−1) and R(i) has

to be popk). We have 0 ∈ prek−1
R (i − 1) (the topmost k-pds

of R(i − 1) is not c-clear) and 0 6∈ prek−1
R (i) (the topmost

k-pds of d is c-clear). So we can use Proposition 3.4 for the

subrun of R from 0 to i. It says that the topmost k-pds of R(i)
can be obtained from the topmost k-pds of c by removing its

topmost (k − 1)-pds; thus it is in X .

Now observe that if histR(|R|, y)(j) = topk(R(j)) for

some j ≥ i (where i as above), then 0 6∈ pre0
R(j). Indeed,

one possibility is that i = 0; then histR(|R|, y)(0) 6= topk(c)
(since the k-pds of c containing histR(|R|, y)(0) is c-clear),

so 0 6∈ prek
R(j), which implies 0 6∈ pre0

R(j). Otherwise,

as already observed, 0 6∈ prek−1
R (i) and histR(|R|, y)(i) =

topk(R(i)), which implies i ∈ prek
R(j). By Proposition 3.3,

applied for 0 (as i), i (as j), and j (as l), we get 0 6∈ prek−1
R (j),

which implies 0 6∈ pre0
R(j).

Let sk be the k-pds of R(i) containing histR(|R|, y)(i)
(where i as above). We have two cases. Assume first that there

exist at least b(sk) indices j such that i ≤ j ≤ |R| and position

histR(|R|, y)(j) is in the topmost k-pds of R(j). Then we can

use Lemma 5.5 for the subrun of R from i to |R| (and for

y). Then for some j, configuration R(j) is a milestone and

position histR(|R|, y)(j) is in the topmost k-pds of R(j). As

both c and R(j) are milestones, we can use Lemma 5.4. We get

that 0 ∈ pre0
R(j). But from the above paragraph we know that

2Although we have not defined operations on k-pds’s, only on configura-
tions, the definition is natural: the popr operation (for 1 ≤ r ≤ k) removes
the topmost (r − 1)-pds; the pushr operation (for 1 ≤ r ≤ k) copies the
topmost (r − 1)-pds and changes the topmost 0-pds.

7

0 6∈ pre0
R(j); a contradiction. So there exist less than b(sk)

indices j such that i ≤ j ≤ |R| and position histR(|R|, y)(j)
is in the topmost k-pds of R(j). Observe that a k-pds can

be changed only if it is the topmost k-pds. So the k-pds of

R(|R|) containing y can be obtained from the k-pds of R(i)
containing histR(|R|, y)(i) (i.e. from sk, which is in X) by

applying at most b(sk) of push and pop operations. Thus it is

in Sk.

Corollary 6.4. Let A be an n-HOPDA with input alphabet A

containing a ⋆ symbol. Let c be a milestone configuration of

A, and let ϕ : A∗ → M be a morphism into a finite monoid

M . Then there exists a finite set S of configurations having the

following property. Let 0 ≤ k ≤ n, let R be a run from c, and

let 0 ≤ r ≤ |R| be such that the subrun of R from 0 to r reads

only stars. Assume that 0 6∈ prek−1
R (|R|), but 0 ∈ prek−1

R (i)
for each i ∈ prek

R(|R|)∩{r, r+1, . . . , |R|−1}. Then for some

configuration d ∈ S, we have typek
A,ϕ(R(|R|)) = typek

A,ϕ(d).

Proof: Recall that typek
A,ϕ(d) returns an element of TA,ϕ,

and the topmost k-pds of d. We have only finitely elements of

TA,ϕ. So it is enough to show, for each k, that there are only

finitely many possible topmost k-pds’s over all configurations

R(|R|) satisfying the assumptions. For k = 0 this is trivial as

0-pds contains just one symbol. So let 1 ≤ k ≤ n. We have

two cases.

First assume that prek
R(|R|)∩{r, r+1, . . . , |R|−1} 6= ∅. Let

i be the greatest index in this set. Is it possible that i < |R|−1?

Then the first case of Proposition 3.1 (used for |R| as j) holds,

so we could not have simultaneously 0 ∈ prek−1
R (i) and 0 6∈

prek−1
R (|R|), which are our assumptions. Thus i = |R| − 1.

As we have 0 ∈ prek−1
R (|R| − 1) and 0 6∈ prek−1

R (|R|) and

|R| − 1 ∈ prek
R(|R|), we can use Proposition 3.4. It says that

the topmost k-pds of R(|R|) can be obtained from the topmost

k-pds of c by removing the topmost (k − 1)-pds. Thus the

content of this k-pds is fixed.

The other case is that prek
R(|R|)∩{r, r+1, . . . , |R|−1} = ∅.

This means that for r ≤ i < |R|, the k-pds of R(i)
containing histR(|R|, topk(R(|R|)))(i) is not the topmost

k-pds, so it remains unchanged, and is the same as the

topmost k-pds of R(|R|). Thus the topmost k-pds of R(|R|)
is the same as some k-pds of R(r) (the one containing

histR(|R|, topk(R(|R|)))(r)). Let x be the bottommost po-

sition of the topmost (k − 1)-pds of this k-pds in R(r).
We have histR(|R|, topk−1(R(|R|)))(0) = histR(r, x)(0).
Because 0 6∈ prek−1

R (|R|), it follows that histR(r, x)(0) 6=
topk−1(R(0)). So x and the subrun of R from 0 to r satisfy

the assumptions of Lemma 6.3. It follows that our k-pds comes

from a finite set Sk.

Proof of Theorem 6.2: Consider the infinite run S

starting at the milestone configuration c and reading only stars.

Consider first the degenerate case when in S only finitely many

stars are read. As r we take their number, plus one. Then the

thesis is satisfied trivially, as there is no run from c which

reads a word beginning with r stars. So for the rest of the

proof assume that S reads infinitely many stars.

Let S be the set from Corollary 6.4 (used for c and ϕ). For

each i ≥ 1 we define the set Ti ⊆ {0, 1, . . . , n} × S × M

as follows. A triple (k, d, m) belongs to Ti if and only if

there exists a run R from c such that the word read by R

begins with (at least) i stars, evaluates to m under ϕ, and

typek
A,ϕ(R(|R|)) = typek

A,ϕ(d). By definition Ti ⊆ Ti+1 (for

each i), and there are only finitely many possible sets, so from

some moment every Ti is the same. As the required number

of stars (in the statement of the pumping lemma) we take such

r > 0 that Ti = Tr for each i ≥ r.

Consider now any number r′ (we may assume that r′ ≥ r)

and any run R from c which reads a word beginning with

at least r stars. Our goal is to show a pumping witness R′

for R such that the word read by R′ begins with at least r′

stars. Let k be the greatest number (0 ≤ k ≤ n) such that

0 6∈ prek−1
R (|R|). Such k exists, as k = 0 is always good

(recall that by definition pre−1
R (|R|) = {|R|} and |R| > 0).

Let i be an index such that the subrun of R from 0 to i reads

exactly r stars. Let j ≥ i be the smallest index such that

j ∈ prek
R(|R|), and 0 6∈ prek−1

R (j). Such j exists, as j = |R|
is always good.

We use Corollary 6.4 for k, for the subrun of R from 0
to j (as R), and for i (as r). Its assumptions are satisfied by

minimality of j. So we get that typek
A,ϕ(R(j)) = typek

A,ϕ(d),
for some d ∈ S. It means that (k, d, m) ∈ Tr, where m is the

image under ϕ of the word read by the subrun of R from 0
to j. Because Tr = Tr′ , there exists a run U from c such that

the word read by U begins with (at least) r′ stars, evaluates

to m under ϕ, and typek
A,ϕ(U(|U |)) = typek

A,ϕ(R(j)).
Finally, we use Theorem 4.1 for the subrun of R from j

to |R| (as R), and for U(|U |) (as c). We have assumed that

j ∈ prek
R(|R|), which is the assumption of the theorem. We

obtain a run U ′ from U(|U |) such that typek
A,ϕ(R(|R|)) ≤

typek
A,ϕ(U ′(|U ′|)), and that the words read by the subrun of

R from j to R and by U ′ evaluate to the same.

Notice that the composition R′ of U and U ′ is a pumping

witness for R, and the word read by R′ begins with at least r′

stars. Indeed, the words read by R and by R′ evaluate to the

same under ϕ. For 0 ≤ l ≤ k, we have typel
A,ϕ(R(|R|)) ≤

typel
A,ϕ(R′(|R′|)). For k < l ≤ n, by the maximality of k,

we have 0 ∈ prel−1
R (|R|).

VII. THE SEPARATING LANGUAGE

In this section we define a language U which can be

recognized by a 2-CPDA, but not by any n-HOPDA, for any

n. It is a language over the alphabet A = {[,], ⋆, ♯}. For a word

w ∈ {[,], ⋆}∗ we define stars(w). Whenever in some prefix

of w there are more closing brackets than opening brackets,

stars(w) = 0. Also when in the whole w we have the

same number of opening and closing brackets, stars(w) = 0.

Otherwise, let stars(w) be the number of stars in w before the

last opening bracket which is not closed. Let U be the set of

words w♯stars(w)+1, for any w ∈ {[,], ⋆}∗ (i.e. these are words

w consisting of brackets and stars, followed by stars(w) + 1
sharp symbols).

It is known that languages similar to U can be recognized

by a 2-CPDA (e.g. [11]), but for completeness we show it

8

below. The collapsible 2-HOPDA will use three stack symbols:

X (used to mark the bottom of 1-pds’s), Y (used to count

brackets), Z (used to mark the bottommost1-pds). The initial

symbol is X . The automaton first pushes Z, makes a copy of

the 1-pds (i.e. push
2), and pops Z (hence the first 1-pds is

marked with Z, unlike any other 1-pds used later). Then, for

an opening bracket we push Y , for a closing bracket we pop

Y , and for a star we make push
2. Hence for each star we have

an 1-pds and on the last 1-pds we have as many Y symbols as

the number of currently open brackets. If for a closing bracket

the topmost symbol is X , it means that in the word read so far

we have more closing brackets than opening brackets; in this

case we should accept suffixes of the form {[,], ∗}∗♯, which

is easy.

Finally the ♯ symbol is read. If the topmost symbol is X ,

we have read as many opening brackets as closing brackets,

hence we should accept one ♯ symbol. Otherwise, the topmost

Y symbol corresponds to the last opening bracket which is

not closed. We do the collapse operation. It leaves the 1-pds’s

created by the stars read before this bracket, except one (plus

the first 1-pds). Thus the number of 1-pds’s is precisely equal

to stars(w). Now we should read as many ♯ symbols as we

have 1-pds’s, plus one (after each ♯ symbol we make pop2),

and then accept.

VIII. WHY U CANNOT BE RECOGNIZED?

In this section we prove that language U cannot be rec-

ognized by a deterministic higher order pushdown automaton

of any level. Assume oppositely, that for some n we have an

(n − 1)-HOPDA recognizing U . We construct an n-HOPDA

A which works as follows. First it makes a push
n operation.

Then it simulates the (n − 1)-HOPDA (not using the push
n

and popn operations). When the (n − 1)-HOPDA is going to

accept, A makes the popn operation and afterwards accepts.

Clearly, A recognizes U as well.

Fix a morphism λ : A∗ → M into a finite monoid M , which

checks if a word is of the form ♯∗ (some number of the ♯

symbols), or of the form ⋆∗]⋆∗ (a closing bracket surrounded

by some number of stars), or of none of these two forms. This

means that for words u, v being of different form we have

λ(u) 6= λ(v). Let N be the number of equivalence classes of

the (A, λ)-sequence equivalence relation, times |TA,λ|, plus

one. Consider the following words:

w0 = [

wk+1 = wN
k]N [for 0 ≤ k ≤ n − 1,

where the number in the superscript (in this case N) denotes

the number of repetitions of a word. For a word w, its pattern

is a word obtained from w by removing its letters other than

brackets (leaving only brackets). Fix a morphism ϕ : A∗ → M

such that from its value ϕ(w) we can deduce

• if word w contains the ♯ symbol, and

• if the pattern of w is longer than |wn|, and

• the exact value of the pattern of w, assuming that the

pattern is not longer than |wn|.

We fix a run R, and an index z(w) for each prefix w of

wn, such that the following holds. Run R begins in the initial

configuration. Between R(0) and R(z(ε)) only stars are read.

For each prefix w of wn, configuration R(z(w)) is a milestone.

Just after z(w) run R reads r stars, where r is the constant

from Theorem 6.2 used for A, ϕ, and R(z(w)) (as c). If w =
va (where a is a single letter), the word read by R between

R(z(w)) and R(z(wa)) consists of a surrounded by some

number of stars. Of course such run R exists: we read stars

until we reach a milestone (succeeds thanks to Lemma 5.3),

then we read as many stars as required by the pumping lemma,

then we read next letter of wn, and so on (because A accepts

U , it will never block).

By construction of A, for every prefix v of wn we have

z(v) ∈ pren−1
R (z(wn)) (as we never make a popn operation

before reading ♯). This contradicts with the following key

lemma (taken for k = n − 1 and u = ε).

Lemma 8.1. Let −1 ≤ k ≤ n − 1, and let u be a word such

that uwk+1 is a prefix of wn. Then there exist a prefix v of

wk+1 such that z(uv) 6∈ prek
R(z(uwk+1)).

Proof: The proof is by induction on k. For k = −1 this is

obvious, we simply take ε as v. By definition pre−1
R (z(u[)) =

{z(u[)}, and z(u) 6= z(u[).
Let now k ≥ 0. Assume that the thesis of the lemma does

not hold. Then for each prefix v of wk+1 we have z(uv) ∈
prek

R(z(uwk+1)). From this we get the following property ♥.

Let v′ be a prefix of wk+1, and v a prefix of v′.

Then z(uv) ∈ prek
R(z(uv′)).

From the induction assumption (where uwi−1
k is taken as

u), for each 1 ≤ i ≤ N there exist a prefix vi of wk such

that z(uwi−1
k vi) 6∈ prek−1

R (z(uwi
k)). We use Proposition 3.3

for k, R, and z(uwi−1
k vi) (as i), z(uwi

k) (as j), z(uwN
k)

(as l). Its second assumption follows from ♥. It follows that

z(uwi−1
k vi) 6∈ prek−1

R (z(uwN
k)).

Now we are ready to use the pumping lemma (Theorem

6.2). For each 1 ≤ i ≤ N we use it for the subrun of R

from z(uwi−1
k vi) to z(uwN

k). Recall from the definition of R

that the word read by this subrun begins with such number of

stars that the pumping lemma can be used. So this subrun can

be pumped. For each number l we obtain a pumping witness

Si,l which reads a word beginning with at least l stars; let

di,l = Si,l(|Si,l|). From the definition of a pumping witness

(Definition 6.1), we have a run from the initial configuration

to di,l (namely, the subrun of R from 0 to z(uwi−1
k vi)

composed with Si,l) which reads a word having pattern uwN
w .

Moreover, because z(uwi−1
k vi) 6∈ prek−1

R (z(uwN
k)), we get

that typek
A,ϕ(R(z(uwN

k))) ≤ typek
A,ϕ(di,l).

Because there are only finitely many possible values of

typeA,λ, we can assume that typeA,λ(di,l) = typeA,λ(di,j)
for 1 ≤ i ≤ N and each l and j. Indeed, we can choose (for

each i separately) some value of typeA,λ(di,l) which appears

infinitely often, and then we take the subsequence of only

these di,l which give this value.

Since there are more possible indices i ∈ {1, 2, . . . , N}
than the number of classes of the (A, λ)-sequence equiva-

9

lence relation, times |TA,λ|, there have to exist two indices

1 ≤ x < y ≤ N such that typeA,λ(dx,1) = typeA,λ(dy,1),
and the sequences dx,1, dx,2, dx,3, . . . and dy,1, dy,2, dy,3, . . .

are (A, λ)-sequence equivalent. From now we fix these two

indices x, y. Furthermore, because typek
A,ϕ(R(z(uwN

k))) ≤
typek

A,ϕ(di,l) for each 1 ≤ i ≤ N and each l, we know that

the topmost k-pds’s of all dx,l and dy,l are the same. Thus

typek
A,λ(dx,l) = typek

A,λ(dy,j) for each l and j.

Let r = N − x + 1. We will construct a run R′ from dx,1,

and indices 0 = l0 ≤ l1 ≤ · · · ≤ lr = |R′| such that for

1 ≤ i ≤ r−1 the word read by R′ between li−1 and li is of the

form ⋆∗]⋆∗ (a closing bracket surrounded by some number of

stars), and li−1 ∈ prek
R′(li), and R′ between lr−1 and lr reads

only ♯ symbols, and the last operation of R′ is popn. Addition-

ally, we will have typek
A,ϕ(R(z(uwN

k]i))) ≤ typek
A,ϕ(R′(li))

for 0 ≤ i ≤ r−1. Indeed, as R′(0) we take dx,1; we know that

typek
A,ϕ(R(z(uwN

k))) ≤ typek
A,ϕ(dx,1) Then consecutively

for 1 ≤ i ≤ r − 1 we use Theorem 4.1 for A, ϕ, the subrun

of R from z(uwN
k]i−1) to z(uwN

k]i) (as R), and R′(li−1) (as

c). From ♥ we know that z(uwN
k]i−1) ∈ prek

R(z(uwN
k]i). We

obtain a next fragment of R′ (from li−1 to some li), satisfying

the above. Finally, from R′(lr−1) we start reading ♯ symbols

until we reach an accepting configuration; this gives us the last

fragment of R′, from lr−1 to some lr. Because A recognizes

U , it will finally reach such configuration. By construction of

A, the last operation of R′ has to be popn. So we obtain a

run R′ as declared.

Finally we use Theorem 4.3 for A, λ (as ϕ), k, sequences

dx,1, dx,2, dx,3, . . . (as c1, c2, c3, . . .) and dy,1, dy,2, dy,3, . . .

(as d1, d2, d3, . . .), for run R′ (as R), and for sequence

l0, l1, . . . , lr. We have li−1 ∈ prek
R′(li) for 1 ≤ i ≤ r − 1.

By construction of A, no push
n or popn operations are done

in R′, except the last operation in R′, which is popn. As

noticed above (in particular because R′(0) = dx,1) we have

typek
A,λ(e0) = typek

A,λ(dx,l) = typek
A,λ(dy,l) for each l. Thus

the assumptions of the theorem are satisfied. For each l, we

obtain runs Sl (from dx,l) and Tl (from dy,l). From condition

1 of the theorem we see that, for each l, the word read by Sl

(and by Tl) contains r−1 = N−x closing brackets with some

number of stars around them, and after them some number of

the ♯ symbols.

For each l, let xl and yl be the number of the ♯ symbols

read by Sl and Tl, respectively. The pattern of the words read

between the initial configuration and Sl(|Sl|) (by the subrun of

R from 0 to z(uwx−1
k vx) composed with Sx,l and composed

with Sl), for each l, is uwN
k]N−x; the same for Tl. In this

pattern the last opening bracket which is not closed is the

last bracket of the x-th wk. Recall that configurations dx,l

were obtained by pumping inside the x-th wk, so before this

bracket; for l → ∞ the number of stars inserted there is

unbounded. From the definition of language U it follows that

the sequence x1, x2, x3, . . . has to be unbounded. On the other

hand, configurations dy,l were obtained by pumping inside

the y-th wk, so after the last opening bracket which was is

not closed (as y > x). For each l the number of stars before

this bracket is the same. From the definition of language U

it follows that the sequence y1, y2, y3, . . . has to be constant,

hence bounded. This contradicts with condition 2 of Theorem

4.3, which says that either both these sequences are bounded

or both unbounded.

REFERENCES

[1] B. Courcelle, “The monadic second-order logic of graphs IX: Machines
and their behaviours,” Theor. Comput. Sci., vol. 151, no. 1, pp. 125–162,
1995.

[2] A. N. Maslov, “The hierarchy of indexed languages of an arbitrary level,”
Soviet Math. Dokl., vol. 15, pp. 1170–1174, 1974.

[3] T. Knapik, D. Niwinski, and P. Urzyczyn, “Higher-order pushdown
trees are easy,” in FoSSaCS, ser. Lecture Notes in Computer Science,
M. Nielsen and U. Engberg, Eds., vol. 2303. Springer, 2002, pp. 205–
222.

[4] D. Caucal, “On infinite terms having a decidable monadic theory,” in
MFCS, ser. Lecture Notes in Computer Science, K. Diks and W. Rytter,
Eds., vol. 2420. Springer, 2002, pp. 165–176.

[5] B. Courcelle and T. Knapik, “The evaluation of first-order substitution
is monadic second-order compatible,” Theor. Comput. Sci., vol. 281, no.
1-2, pp. 177–206, 2002.

[6] T. Knapik, D. Niwinski, P. Urzyczyn, and I. Walukiewicz, “Unsafe gram-
mars and panic automata,” in ICALP, ser. Lecture Notes in Computer
Science, L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds., vol. 3580. Springer, 2005, pp. 1450–1461.

[7] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong, “The monadic second
order theory of trees given by arbitrary level-two recursion schemes is
decidable,” in TLCA, ser. Lecture Notes in Computer Science, P. Urzy-
czyn, Ed., vol. 3461. Springer, 2005, pp. 39–54.

[8] M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre, “Collapsible
pushdown automata and recursion schemes,” in LICS. IEEE Computer
Society, 2008, pp. 452–461.

[9] C.-H. L. Ong, “On model-checking trees generated by higher-order
recursion schemes,” in LICS. IEEE Computer Society, 2006, pp. 81–90.

[10] N. Kobayashi, “Model-checking higher-order functions,” in PPDP,
A. Porto and F. J. López-Fraguas, Eds. ACM, 2009, pp. 25–36.

[11] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong, “Safety is not a
restriction at level 2 for string languages,” in FoSSaCS, ser. Lecture
Notes in Computer Science, V. Sassone, Ed., vol. 3441. Springer,
2005, pp. 490–504.

[12] P. Parys, “Collapse operation increases expressive power of deterministic
higher order pushdown automata,” in STACS, ser. LIPIcs, T. Schwentick
and C. Dürr, Eds., vol. 9. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2011, pp. 603–614.

[13] P. Parys, “A pumping lemma for pushdown graphs of any level,” 2011,
accepted to STACS 2012.

[14] A. Blumensath, “On the structure of graphs in the Caucal hierarchy,”
Theor. Comput. Sci., vol. 400, no. 1-3, pp. 19–45, 2008.

[15] T. Hayashi, “On derivation trees of indexed grammars,” Publ. RIMS,

Kyoto Univ., vol. 9, pp. 61–92, 1973.
[16] R. H. Gilman, “A shrinking lemma for indexed languages,” Theor.

Comput. Sci., vol. 163, no. 1&2, pp. 277–281, 1996.
[17] A. Kartzow, “A pumping lemma for collapsible pushdown graphs of

level 2,” in CSL, ser. LIPIcs, M. Bezem, Ed., vol. 12. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2011, pp. 322–336.

[18] A. Kartzow and P. Parys, “Strictness of the collapsible pushdown
hierarchy,” 2012, submited to LICS 2012.

[19] A. Kartzow, “Collapsible pushdown graphs of level 2 are tree-
automatic,” in STACS, ser. LIPIcs, J.-Y. Marion and T. Schwentick, Eds.,
vol. 5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010, pp.
501–512.

10

APPENDIX A

PUSHDOWN AUTOMATA AS TREE GENERATORS

In this section we describe how pushdown automata can be used to generate trees, and we show how Corollary 1.2 follows

from Theorem 1.1. We do not describe recursion schemes in this paper; it is known that a tree is generated by a recursion

scheme of second level if and only if it is generated by a collapsible pushdown system of second level [8], and that a tree is

generated by a safe recursion scheme of any level if and only if it is generated by a higher order pushdown system (without

collapse) of the same level [3], so we get the “equivalently” parts of Corollary 1.2.

We consider ranked, potentially infinite trees. Beside of the input alphabet A we have a function rank : A → N; a tree node

labelled by some a ∈ A has always rank(a) children.

Automata used to generate trees are called higher order pushdown systems, or collapsible pushdown systems if they use the

collapse operation. They are defined like HOPDA, with the difference that they do not have the set of accepting states, and

that instead of the read(f) operations, there are branch(a, q1, q2, . . . , qrank(a)) operations, for a ∈ A, and for pairwise distinct

states q1, q2, . . . , qrank(a) ∈ Q. We use a shorthand δ(c) for a configuration c to denote δ(state(c), s0), where s0 is the topmost

symbol of c. If from δ(c) = branch(a, q1, q2, . . . , qrank(a)), in a successor d of c we have π(d) = π(c) and state(d) = qi for

some 1 ≤ i ≤ rank(a) (in particular c has no successors if rank(a) = 0). Let T (A) be the set of all configurations c of A
reachable from the initial one, such that a branch operation should be performed from c. Additionally we require that from

each configuration of A reachable from the initial one, there exists a run to a configuration from T (A) (this assumption is

needed to ensure that the generated tree has a proper form).

A tree generated by a pushdown system has runs from the initial configuration to a configuration from T (A) as its nodes. A

node R is labelled by a ∈ A such that δ(R(|R|)) = branch(a, q1, q2, . . . , qrank(a)). A node S is its i-th child (1 ≤ i ≤ rank(a)),
if S is the composition of R and a run S′ which uses a branch operation only in its first transition. Notice that the graph

obtained this way is really an A-labelled ranked tree.

Proof of Corollary 1.2: Let L ⊆ A∗ be the language recognized by a deterministic collapsible pushdown automaton A
of second level, which is not recognized by any deterministic higher order pushdown automaton (without collapse) of any

level (L exists by Theorem 1.1). We can transform A to a deterministic collapsible pushdown automaton B of second level,

also recognizing L, such that each configuration of B reachable from the initial one has a successor. Indeed, the only reason

why in A there are configurations with no successors is that it wants to empty a pds using a pop operation. To avoid such

situations, B should have some bottom-of-stack marker on the bottom of each pds of each level (thus at the beginning B
performs a push operation of each level). Then whenever A blocks because it wants to empty a pds, in B the bottom-of-stack

marker is uncovered; in such situation B starts some loop with no accepting state. There is also a technical detail, that a pop

operation which would block A, in B can enter an accepting state; to overcome this problem, every pop operation ending in

an accepting state should first end in some auxiliary, not accepting state, from which (if the bottom-of-stack marker is not

seen) an accepting state is reached.

Next, we create a collapsible pushdown system C of second level, which generates a tree over alphabet B = {X,Y,Z}, where

rank(X) = |A| and rank(Y) = rank(Z) = 1. It is obtained from B in two steps. First, we replace every operation read(f) of

B by operation branch(X, f(a1), f(a2), . . . , f(a|A|)), where A = {a1, a2, . . . , a|A|}. Then, in every operation we replace the

resulting state q by its auxiliary copy q, and from q (for any topmost stack symbol) we perform operation branch(Y, q) if q

was accepting, or operation branch(Z, q) if q was not accepting (this way, after every operation of the original automaton, we

perform operation branch(Y, ·) or branch(Z, ·)). Notice that from each configuration of C reachable from the initial one, there

exists a run to a configuration from T (C), as required by the definition of a (collapsible) pushdown system. Let tC be the tree

generated by C.

Finally, assume that tC can be generated also by some higher order pushdown system D (without collapse). From D we

create a deterministic higher order pushdown automaton E (without collapse) of the same level. We replace every operation

branch(X, q1, q2, . . . , q|A|) of D by operation read(f), where f(ai) = qi. We replace every operation branch(Y, q) of D by

operation push
1(s0, p) for a fresh accepting state p and some stack symbol s0; from (p, s0) we perform operation pop1(q)

(thus we replace branch(Y, q) by a pass through an accepting state). The same for a branch(Z, q) operation, but the fresh state

p is not accepting.

Notice that E recognizes L; this contradicts our assumptions about L, so tC is not generated by any higher order pushdown

system (without collapse). Indeed, take any word w ∈ L. We have an accepting run of B which reads w. This run corresponds

to a run of C, so to a path p in tC , from the root to a Y-labelled node. Letters of w say which child p chooses in X-labelled

nodes: if i-th letter of w is aj , then from the i-th X-labelled node of p, the path continues to the j-th child. This path p

corresponds also to a run of D, so to a run of E . This run ends in an accepting state, and reads w; thus E accepts w. Similarly,

every word accepted by E is also accepted by B.

11

APPENDIX B

TYPES AND SEQUENCE EQUIVALENCE

In this appendix we define objects used in the statements of Theorems 4.1 and 4.3, and we prove these theorems.

For the whole Appendix B fix an n-HOPDA A. Let A be its input alphabet, Γ its stack alphabet, and Q its set of states.

Assume A contains a distinguished symbol ♯. Fix also a morphism ϕ : A∗ → M into a finite monoid M .

A. Returns

It is important to distinguish special runs, called returns.

Definition B.1. A run R is called an r-return (where 1 ≤ r ≤ n) if

• the topmost r-pds of R(0) contains at least two (r − 1)-pds’s, and

• histR(|R|, topr−1(R(|R|)))(0) is the bottommost position of the (r− 1)-pds just below the topmost (r− 1)-pds of R(0),
and

• prer−1
R (|R|) = {|R|}.

In other words, R is an r-return when the topmost r-pds of R(|R|) is obtained from the topmost r-pds of R(0) by removing

its topmost (r−1)-pds (but not only in the sense of contents, but we require that really it was obtained this way). In particular

we have the following proposition.

Proposition B.2. Let R be an r-return. Then the topmost r-pds of R(0) after removing its topmost (r − 1)-pds is equal

to the topmost r-pds of R(|R|). Additionally, for every position y in the topmost r-pds of R(|R|), histR(|R|, y)(0) is the

corresponding position in the topmost r-pds of R(0).

Proof: For each index i ∈ prer
R(|R|) let si be the size of the topmost r-pds. Choose the index i ∈ prer

R(|R|), i < |R|, for

which si is smallest. Because i 6∈ prer−1
R (|R|), by Proposition 3.2 (used for this i, and for |R| as j), we know that si ≥ s|R|+1.

Thus also si ≥ s|R| + 1 for each index i ∈ prer
R(|R|), i < |R|. For all indices i ≤ j such that prer

R(|R|)∩ {i, i + 1, . . . , j} =
{i, j}, by Proposition 3.1 we know that the first s|R| (r − 1)-pds’s of the topmost r-pds of R(j) and of R(i) are the same,

and that for every position y in such (r− 1)-pds of R(j), histR(j, y)(i) is the corresponding position in the topmost r-pds of

R(i). From the second point in the definition of an r-return it follows that 0 ∈ prer
R(|R|). Composing this property for each

such pair i, j, we get that the topmost r-pds of R(|R|) is equal to the first s|R| (r − 1)-pds’s of the topmost r-pds of R(0),
and that for every position y of the topmost r-pds R(|R|), histR(|R|, y)(0) is the corresponding position in the topmost r-pds

of R(0). By the second point of the definition of an r-return, we get that s0 = s|R| + 1, which gives us the thesis.

Example: Consider a PDS of level 2, and a run R of length 6 in which π(R(0)) = [[ab][cd]], and the operations between

consecutive configurations are:

push
2(e), pop1, pop2, pop1, push

1(d), pop1.

The contents of the 2-pds’s of the configurations in the run are presented in the table below.

i 0 1 2 3 4 5 6
π(R(i)) [[ab][cd]] [[ab][cd][ce]] [[ab][cd][c]] [[ab][cd]] [[ab][c]] [[ab][cd]] [[ab][c]]

The subruns of R from 0 to 2, from 0 to 4, from 1 to 2, from 3 to 4, and from 5 to 6 are 1-returns; the subruns of R from 1
to 3, and from 2 to 3 are 2-returns. These are the only subruns of R being returns, in particular R is not an 1-return because

4 ∈ pre0
R(6).

The lemma below shows possible forms of runs described by Theorems 4.1 and 4.3 (i.e. such that 0 ∈ prek
R(|R|)).

Lemma B.3. Let 0 ≤ k ≤ n, and let R be a run. Then we have 0 ∈ prek
R(|R|) if and only if

1) |R| = 0, or

2) |R| = 1, and the operation performed in R is read, or push
r

for any r, or popr for r ≤ k, or

3) R is a one-step run performing a push
r

operation composed with an r-return, where r ≥ k + 1, or

4) R is a composition of runs S and T such that 0 ∈ prek
S(|S|) and 0 ∈ prek

T (|T |), and |S| 6= 0 6= |T |.

Proof: Concentrate first on the left-to-right implication. If |R| = 0, we have case 1; assume that |R| ≥ 1. Notice that the

first operation, between R(0) and R(1), cannot be popr for r ≥ k + 1, as such operation removes the topmost k-pds of R(0),
which contradicts with the assumption that 0 ∈ prek

R(|R|). Thus, if |R| = 1, we have case 2; assume that |R| ≥ 2. If the first

operation is read or popr for r ≤ k, or push
r for r ≤ k, then 0 ∈ prek

R(|R|) implies that 1 ∈ prek
R(|R|); we have case 4 (for

subruns from 0 to 1 and from 1 to |R|). We can do the same if the operation is push
r for r ≥ k + 1 and 1 ∈ prek

R(|R|).
The remaining case is when the first operation is push

r for r ≥ k + 1 and 1 6∈ prek
R(|R|). Notice that histR(1, y)(0) =

topk(R(0)) holds only for y = topk(R(1)) and y = topk(R(0)). So, because 0 ∈ prek
R(|R|) (which by definition means

histR(|R|, topk(R(|R|)))(0) = topk(R(0))) and 1 6∈ prek
R(|R|), it has to be histR(|R|, topk(R(|R|)))(1) = topk(R(0)). Thus

12

also histR(|R|, topr−1(R(|R|)))(1) = topr−1(R(0)), which is the bottommost position of the (r − 1)-pds just below the

topmost (r − 1)-pds of R(1). Let j ≥ 1 be the smallest positive index for which j ∈ prer−1
R (|R|); such j exists since |R|

always can be taken as j. Then histR(j, topr−1(R(j)))(1) = topr−1(R(0)) and prer−1
R (j) = {0, j}, thus the subrun of R

from 1 to j is an r-return. If j = |R|, we have case 3; assume that j < |R|. By Proposition B.2, the only position y in the

topmost (r−1)-pds (even in the topmost r-pds) of R(j) for which histR(j, y)(0) = topr−1(R(0)) is y = topr−1(R(j)). Thus

0 ∈ prek
R(|R|) and j ∈ prer−1

R (|R|) implies that j ∈ prek
R(|R|); we have case 4 (for subruns from 0 to j and from j to |R|).

The right-to-left implication is almost immediate; in case 3 we use Proposition B.2.

The next lemma shows possible forms of returns.

Lemma B.4. Let 1 ≤ r ≤ n. A run R is an r-return if and only if

1) R is a one-step run performing a read operation composed with an r-return, or

2a) R is a one-step run performing a popr operation, or

2b) R is a one-step run performing a popk operation composed with an r-return, where k ≤ r − 1, or

3a) R is a one-step run performing a push
k

operation composed with an r-return, where k 6= r, or

3b) R is a one-step run performing a push
k

operation composed with a k-return composed with an r-return, where k ≥ r.

Proof: Concentrate first on the left-to-right implication. Of course |R| ≥ 1. Notice that the first operation, between R(0)
and R(1), cannot be popk for k ≥ r + 1, as such operation removes the topmost r-pds of R(0), which contradicts with the

assumption that histR(|R|, topr−1(R(|R|))(0) is in the topmost r-pds of R(0).
Assume that the first operation is read, or popk for k ≤ r−1, or push

k for k ≤ r−1. Then histR(1, y)(0) is the bottommost

position of the (r− 1)-pds just below the topmost (r− 1)-pds of R(0) only if y is the bottommost position of the (r− 1)-pds

just below the topmost (r− 1)-pds of R(1). Thus, because R is an r-return, histR(|R|, topr−1(R(|R|)))(1) is the bottommost

position of the (r − 1)-pds just below the topmost (r − 1)-pds of R(1), so the subrun of R from 1 to |R| is an r-return; we

have case 1 or 2b or 3a.

Next, assume that the first operation of R is popr. Then histR(1, y)(0) is the bottommost position of the (r−1)-pds just below

the topmost (r− 1)-pds of R(0) only if y = topr−1(R(1)). Thus, because R is an r-return, histR(|R|, topr−1(R(|R|)))(1) =
topr−1(R(1)), which means 1 ∈ prer−1

R (|R|) = {|R|}. So |R| = 1; we have case 2a.

Finally, assume that the first operation of R is push
k for k ≥ r. Let s be the size of the topmost k-pds of R(0). For each i from

1 to |R| we look at the size of the k-pds containing histR(|R|, topr−1(R(|R|)))(i). Recall that histR(|R|, topr−1(R(|R|)))(0)
is in the topmost k-pds of R(0), so for i = 1 this is also the topmost k-pds and its size is s + 1. Assume first that this size is

at least s+1 for each i. Then 1 ∈ prek−1
R (|R|) (Proposition 3.2). Because R is an r-return, we know that 1 6∈ prer−1

R (|R|) (of

course |R| 6= 1), so k 6= r (k > r). As 1 ∈ prek−1
R (|R|), we know that histR(|R|, topr−1(R(|R|)))(1) is in the topmost (k−1)-

pds of R(1), so it is the bottommost position of the (r−1)-pds just below the topmost (r−1)-pds of R(1). It follows that the

subrun of R from 1 to |R| is an r-return, and k 6= r (case 3a). The opposite possibility is that for some i (1 ≤ i ≤ |R|), the size

of the k-pds containing histR(|R|, topr−1(R(|R|)))(i) becomes s. Fix the first such i. Then prek−1
R (i) = {0, i} (Proposition

3.2), and histR(i, topk−1(R(i)))(1) is the bottommost position of the (k−1)-pds just below the topmost (k−1)-pds of R(1),
thus the subrun of R from 1 to i is a k-return. By Proposition B.2, if histR(i, y)(0) is the bottommost position of the (r−1)-pds

just below the topmost (r−1)-pds of R(0), and if y is in the topmost k-pds, then it y has to be the bottommost position of the

(r−1)-pds just below the topmost (r−1)-pds of R(i). Because the size of the k-pds containing histR(|R|, topr−1(R(|R|)))(i)
has changed size between R(i− 1) and R(i), it has to be the topmost k-pds, so necessarily histR(|R|, topr−1(R(|R|)))(i) is

the bottommost position of the (r − 1)-pds just below the topmost (r − 1)-pds of R(i). Thus the subrun of R from i to |R|
is an r-return.

Next we concentrate on the right-to-left implication. Case 2a is trivial. In cases 1, 2b, 3a we observe that for y being the

bottommost position of the (r − 1)-pds just below the topmost (r − 1)-pds of R(1), also histR(1, y)(0) is the bottommost

position of the (r − 1)-pds just below the topmost (r − 1)-pds of R(0) (it is important that k 6= r in case 3a). Thus

histR(|R|, topr−1(R(|R|)))(0) is the bottommost position of the (r−1)-pds just below the topmost (r−1)-pds of R(0). Then

of course 0 6∈ prer−1
R (|R|). So R is an r-return. In case 3c, let i be the length of the first return, plus one (so the k-return ends

in R(i)). Recall that k ≥ r. By Proposition B.2, for y being the bottommost position of the (r−1)-pds just below the topmost

(r − 1)-pds of R(i), also histR(i, y)(0) is the bottommost position of the (r − 1)-pds just below the topmost (r − 1)-pds of

R(0). Thus histR(|R|, topr−1(R(|R|)))(0) is the bottommost position of the (r−1)-pds just below the topmost (r−1)-pds of

R(0). Then of course 0 6∈ prer−1
R (|R|). If j ∈ prer−1

R (|R|) for some 1 ≤ j ≤ i, we have histR(i, y)(j) = topr−1(R(j)) for y

being the bottommost position of the (r − 1)-pds just below the topmost (r − 1)-pds of R(i). This implies that j ∈ prek−1
R (i)

(both for k > r and k = r), which is impossible, as the subrun of R from 1 to i is a k-return. We get that R is an r-return.

B. Types of pds’s

We are going to define a type of a k-pds for each 0 ≤ k ≤ n. A set of possible level k types (types of k-pds’s) will be

denoted T k.

13

Definition B.5. We define T k by induction on k, going down from k = n to k = 0. Let 0 ≤ k ≤ n. Assume we have already

defined sets T i for k + 1 ≤ i ≤ n. We take

T k = {(ne, tr)} ∪
(
P(T n) × P(T n−1) · · · × P(T k+1) × Q ×Dk × {tr, nt}

)
, where

Dk =
n⋃

r=k+1

M × {r} × P(T n) × P(T n−1) × · · · × P(T r+1) × Q,

and by P(X) we denote the power set of X (the set of all subsets of X). In particular Dn = ∅ and T n = {(ne, tr)}. By Ttr

and Tnt we denote the subset of
⋃

0≤k≤n T k having respectively tr or nt on the last coordinate.

Before we define types, we present their intended meaning. This is described by the following definition and lemma, which

connect types with existence of some returns.

Definition B.6. Let 0 ≤ l ≤ n, let σ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, q) ∈ T l, and let R be a run. Decompose π(R(|R|)) = tn :
tn−1 : · · · : tr. We say that run R agrees with σ̂ if

• the word read by R evaluates to m under ϕ, and

• R is an r-return, and

• ξi ⊆ type(ti) for r + 1 ≤ i ≤ n, and

• q = state(R(|R|)).

Lemma B.7. Let 0 ≤ l ≤ n and let ρ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, q) ∈ Dl. Assume there exists a run from a configuration c

which agrees with ρ̂. Decompose π(c) = sn : sn−1 : · · · : sl. Then in type(sl) we have a tuple (ηn, ηn−1, . . . , ηl+1, state(c), ρ̂, ·)
such that ηi ⊆ type(si) for l + 1 ≤ i ≤ n.

We will also have implication in the opposite direction, saying that having a tuple in type implies existence of appropriate

run. However we will be talking not only about the existence of a run, but also about the number of the ♯ characters read.

Then the last coordinate (tr/nt) of types will be used (notice that it is not used in the above definition and lemma, including

its proof). Its intended meaning is, roughly speaking, that using a tuple with nt increases the number of the ♯ characters read,

and a tuple with tr does not change it.

Now we come to the definition of types. We first define a composer, which is then (in Definition B.10) used to compose

types of smaller pds’s into types of greater pds’s.

Definition B.8. We define when (βk, βk−1 . . . , βl;αk; fl) is a composer, where 0 ≤ l < k ≤ n, βi ⊆ T i for l ≤ i ≤ k,

αk ⊆ T k, and fl ∈ {tr, nt}.

1) Let σl = (γn, γn−1, . . . , γl+1, p, σ̂, ·) ∈ T l, and let σk = (γn, γn−1, . . . , γk+1, p, σ̂, f l) ∈ T k (in particular σ̂ ∈ Dk),

where fl = tr if and only if {σl} ∪ γl+1 ∪ γl+2 ∪ · · · ∪ γk ⊆ Ttr. Then we say that (γk, γk−1, . . . , γl+1, {σl}; {σk}; tr)
is a composer.

2) Tuple (∅, ∅, . . . , ∅; {(ne; tr)}; tr) is a composer.

3) Let αk ⊆ T k; Assume for each σ ∈ αk we have a composer (βk
σ, βk−1

σ , . . . , βl
σ; {σ}; tr). Let βi =

⋃
σ∈αk βi

σ. Then we

say that (βk, βk−1, . . . , βl;αk; fl) is a composer, where fl = tr if and only if βi
σ ∩ βi

τ ⊆ Ttr for each σ, τ ∈ αk, σ 6= τ ,

l ≤ i ≤ k.

Now we will define the set of types of a 0-pds as a fixpoint. First, for each z ∈ N and each 0-pds s0 we define typez(s
0) ⊆ T 0.

The cases in the definition below correspond to the cases of Lemma B.4.

Definition B.9. Let z ∈ N and let s0 ∈ Γ. If z = 0 we put typez(s
0) = ∅. For z > 0 we proceed by induction: assume that

typez−1 are already defined. We define typez(s
0) as the smallest set satisfying the following conditions. Let p be a state.

1) Assume that δ(s0, p) = read(f) and in typez−1(s
0) we have a tuple

σ =
(
αn, αn−1, . . . , α1, f(a), (m, r, ξn, ξn−1, . . . , ξr+1, q2), ·

)

for some a ∈ A. Then
(
αn, αn−1, . . . , α1, p, (ϕ(a)m, r, ξn, ξn−1, . . . , ξr+1, q2), f l

)
∈ typez(s

0), where fl = tr if and

only if σ ∈ Ttr and a 6= ♯.

2) Assume that δ(s0, p) = popk(q1) (where 1 ≤ k ≤ n). We have two subcases:

a) Let αi ⊆ T i for k + 1 ≤ i ≤ n. Then
(
αn, αn−1, . . . , αk+1, {(ne, tr)}, ∅, ∅, . . . , ∅, p, (ϕ(ε), k, αn, αn−1, . . . , αk+1, q1), tr

)
∈ typez(s

0).

b) Let σk = (αn, αn−1, . . . , αk+1, q1, σ̂, ·) ∈ T k. Then

(αn, αn−1, . . . , αk+1, {σk}, ∅, ∅, . . . , ∅, p, σ̂, tr) ∈ typez(s
0).

14

3) Assume that δ(s0, p) = push
k(t0, q1) (where 1 ≤ k ≤ n) and in typez−1(t

0) we have a tuple

σ = (αn, αn−1, . . . , α1, q1, σ̂, ·), where σ̂ = (m1, r1, ζ
n, ζn−1, . . . , ζr1+1, q2).

Assume also that (βk, βk−1, . . . , β0;αk; fl) is a composer such that β0 ⊆ typez−1(s
0). We have two subcases:

a) Assume that r1 6= k. Define

ηi =






αi for k + 1 ≤ i ≤ n,

βi for i = k,

αi ∪ βi for 1 ≤ i ≤ k − 1.

Then (ηn, ηn−1, . . . , η1, p, σ̂, f l′) ∈ typez(s
0), where fl′ = tr if and only if fl = tr and β0 ∪ {σ} ⊆ Ttr and

αi ∩ βi ⊆ Ttr for 1 ≤ i ≤ k − 1.

b) Assume that r1 = k and in typez−1(s
0) we have a tuple

τ =
(
ζn, ζn−1 . . . , ζk+1, γk, γk−1, . . . , γ1, q2, (m2, r2, ξ

n, ξn−1, . . . , ξr2+1, q3), ·
)
,

where r2 ≤ k. Define

ηi =






αi for k + 1 ≤ i ≤ n,

βi ∪ γi for i = k,

αi ∪ βi ∪ γi for 1 ≤ i ≤ k − 1.

Then
(
ηn, ηn−1, . . . , η1, p, (m1m2, r2, ξ

n, ξn−1, . . . , ξr2+1, q3), f l′
)
∈ typez(s

0), where fl′ = tr if and only if

fl = tr, and β0 ∪{σ, τ} ⊆ Ttr and βi ∩ γi ⊆ Ttr for 1 ≤ i ≤ k, and αi ∩ (βi ∪ γi) ⊆ Ttr for 1 ≤ i ≤ k− 1 (the last

two conditions say that only elements of Ttr may appear in more than one component of the union defining ηi).

Notice that the sequence typez is monotone: typez(s
0) ⊆ typez+1(s

0) for each z ∈ N and each 0-pds s0. Because we have

only finitely many 0-pds’s, the sequence stabilizes for each 0-pds after a finite number of steps. This fixpoint is denoted as

type (without an index).

Definition B.10. We define type(sk) for any 1 ≤ k ≤ n and any k-pds sk by induction on k and on the size of sk. If sk is

empty, type(sk) = ∅. Otherwise we decompose sk = tk : tk−1 (type for tk and tk−1 are already defined). As type(sk) we

take the set containing all elements σ ∈ T k such that there exists a composer (βk, βk−1; {σ}; ·) for which βk ⊆ type(tk) and

βk−1 ⊆ type(tk−1).

The following two observations follows immediately from Definitions B.8 and B.10.

Proposition B.11. Let 0 ≤ l < k ≤ n, let sk : sk−1 : · · · : sl be a k-pds, and let αk ⊆ T k. Then αk ⊆ type(sk : sk−1 · · · : sl)
if and only if there exists a composer (βk, βk−1, . . . , βl;αk; ·) such that βi ⊆ type(si) for each l ≤ i ≤ k.

Proposition B.12. Let 1 ≤ k ≤ n, and let sk be a k-pds. Then (ne, tr) ∈ type(sk) if and only if sk is not empty.

Proof of Lemma B.7: We make an external induction on the length of the run and an internal induction on l. Fix

some tuple ρ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, q) ∈ Dl. Assume we have a run R from c which agrees with ρ̂. Decompose

π(c) = sn : sn−1 : · · · : sl. Consider first the case l = 0. Lemma B.4 gives us five possible forms of R; we analyze these

cases.

Assume that R is a one-step run performing a read(f) operation composed with an r-return S (case 1). Let a be the

symbol read by the first operation of R. Then the word read by S evaluates to m′ such that ϕ(a)m′ = m. Thus S agrees

with σ̂ = (m′, r, ξn, ξn−1, . . . , ξr+1, q). From the induction assumption (for run S) we know that in type(s0) we have a tuple

(αn, αn−1, . . . , α1, f(a), σ̂, ·) such that αi ⊆ type(si) for 1 ≤ i ≤ n. From Definition B.9 (point 1) we know that in type(s0)
there is a tuple (αn, αn−1, . . . , α1, p, ρ̂, ·).

Assume that R is a one-step run performing a popr(q) operation (case 2a). Then π(R(1)) = sn : sn−1 : · · · : sr, so

ξi ⊆ type(si) for r + 1 ≤ i ≤ n. Of course sr is not empty, so (ne, tr) ∈ type(sr). We also have m = ϕ(ε). From Definition

B.9 (point 2a) we know that in type(s0) there is a tuple (ξn, ξn−1, . . . , ξr+1, {(ne, tr)}, ∅, ∅, . . . , ∅, p, ρ̂, ·).
Assume that R is a one-step run performing a popk(q1) operation composed with an r-return S, where k ≤ r − 1 (case

2b). Then π(S(0)) = sn : sn−1 : · · · : sk, and S also agrees with ρ̂. From the induction assumption (for run S and for k as l)

we get that in type(sk) there is a tuple ρk = (αn, αn−1, . . . , αk+1, q1, ρ̂, ·) such that αi ⊆ type(si) for k + 1 ≤ i ≤ n. From

Definition B.9 (point 2b) we know that in type(s0) there is a tuple (αn, αn−1, . . . , αk+1, {ρk}, ∅, ∅, . . . , ∅, p, ρ̂, ·).
Assume that R is a one-step run performing a push

k(t0, q1) operation composed with an r-return S, where k 6= r (case 3a).

We have

π(S(0)) = sn : sn−1 : · · · : sk+1 : (sk : sk−1 : · · · : s0) : sk−1 : sk−2 : · · · : s1 : t0,

15

and S also agrees with ρ̂. From the induction assumption (for shorter run S) we get that in type(t0) there is a tuple

(αn, αn−1, . . . , α1, q1, ρ̂, q, ·) such that αi ⊆ type(si) for 1 ≤ i ≤ k − 1 and for k + 1 ≤ i ≤ n, and αk ⊆ type(sk :
sk−1 : · · · : s0). From Proposition B.11 we get that there exists a composer (βk, βk−1, . . . , β0;αk; ·) such that βi ⊆ type(si)
for 0 ≤ i ≤ k. Let ηi be defined like in Definition B.9, point 3a; we see that ηi ⊆ type(si) for 1 ≤ i ≤ n. We get that in

type(s0) there is a tuple (ηn, ηn−1, . . . , η1, p, ρ̂, ·).
Assume that R is a one-step run performing a push

k(t0, q1) operation composed with a k-return S composed with an r-return

T , where k ≥ r (case 3b) Let m1 and m2 be the images under ϕ of the words read by S and by T , respectively; we have

m1m2 = m. Notice that the topmost k-pds’s of R(0) and of T (0) are the same (Proposition B.2). Decompose π(T (0)) = un :
un−1 : · · · : uk+1 : sk : sk−1 : · · · : s0. Run T agrees with τ̂ = (m2, r, ξ

n, ξn−1, . . . , ξr+1, q). From the induction assumption

for T we get that in type(s0) there is a tuple (ζn, ζn−1, . . . , ζk+1, γk, γk−1, . . . , γ1, state(T (0)), τ̂ , ·) such that ζi ⊆ type(ui)
for k + 1 ≤ i ≤ n and γi ⊆ type(si) for 1 ≤ i ≤ k. Run S agrees with σ̂ = (m1, k, ζn, ζn−1, . . . , ζk+1, state(T (0))). From

the induction assumption for S we get that in type(t0) there is a tuple (αn, αn−1, . . . , α1, q1, σ̂, ·) such that αi ⊆ type(si) for

1 ≤ i ≤ k − 1 and for k + 1 ≤ i ≤ n, and αk ⊆ type(sk : sk−1 : · · · : s0). From Proposition B.11 we get that there exists a

composer (βk, βk−1, . . . , β0;αk; ·) such that βi ⊆ type(si) for 0 ≤ i ≤ k. Let ηi be defined like in Definition B.9, point 3b;

we see that ηi ⊆ type(si) for 1 ≤ i ≤ n. We get that in type(s0) there is a tuple (ηn, ηn−1, . . . , η1, p, ρ̂, ·).
Consider now the case l > 0. Decompose sl = tl : tl−1. From the induction assumption for l − 1 we get that in type(tl−1)

there is a tuple ρl−1 = (αn, αn−1, . . . , αl, p, ρ̂, ·) such that αi ⊆ type(si) for l + 1 ≤ i ≤ n, and αl ⊆ type(tl). From

Definition B.8, point 1 we get that (αl, {ρl−1}; {ρl}; {tr}) is a composer, where ρl = (αn, αn−1, . . . , αl+1, p, ρ̂, f l) (for some

fl). From Proposition B.11 we get that ρl ∈ type(sl).
Next, we are going to prove the opposite: that types witnesses existence of some runs. Simultaneously we want to bound

the number of the ♯ symbols read by these runs. To handle this, we need to define a decomposition.

Definition B.13. Let 0 ≤ k ≤ n, let sk be a k-pds, and let αk ⊆ type(sk). We define when ω is a decomposition of (sk, αk).
The definition is by induction on k and on the size of sk. If |αk| 6= 1, ω consists of decompositions ωσ of (sk, {σ}) for

each σ ∈ αk, as defined below. If αk = {σ} and k = 0 we have exactly one decomposition ω = (s0, σ). If αk = {σ} and

sk = tk : tk−1, a decomposition ω of (sk, αk) consists of

• sk and σ, and

• a composer (βk, βk−1;αk; ·) such that βk ⊆ type(tk) and βk−1 ⊆ type(tk−1), and

• a decomposition ωk of (tk, βk), and

• a decomposition ωk−1 of (tk−1, βk−1).

Proposition B.14. Let 0 ≤ k ≤ n, let sk be a k-pds, and let αk ⊆ type(sk). Then there exists a decomposition of (sk, αk).

To each decomposition ω we are going to assign two natural numbers low(ω) and high(ω).

Definition B.15. For positive natural numbers m1, . . . ,mk we define pow(m1, . . . ,mk) by induction on k:

pow() = 1, and pow(m1, m2, . . . ,mk) = (1 + m1)
pow(m2,...,mk) − 1.

Proposition B.16. The following is true for any positive natural numbers:

pow(a1, a2, . . . , ak, pow(b1, b2, . . . , bl)) = pow(a1, a2, . . . , ak, b1, b2, . . . , bl), (1)

pow(a1, a2, . . . , ak, b1 · pow(c1, c2, . . . , cl), b2, b3, . . . , bl) ≤

≤ pow(a1, a2, . . . , ak, b1c1, b2c2, . . . , blcl), (2)

pow(a1, . . . , ai−1, a
x
i , ai+1, . . . , ak) ≤ pow(a1, a2 . . . , ak−1, xak) for 1 ≤ i ≤ k − 1, (3)

pow(a1, a2, . . . , ak) + 1 ≤ pow(a1, a2, . . . , ak−1, ak + 1), (4)

pow(a1, a2, . . . , ak) · pow(b1, b2, . . . , bk) ≤ pow(a1b1, a2b2, . . . , akbk). (5)

Definition B.17. Let 0 ≤ k ≤ n, and let ω be a decomposition of (sk, αk) for some k-pds sk and some αk ⊆ type(sk). We

define natural numbers low(ω) and high(ω) by induction on k and on the size of sk.

• If k = 0 and α0 = {σ} ⊆ Ttr, we take low(ω) = 0 and high(ω) = 1.

• If k = 0 and α0 = {σ} ⊆ Tnt, we take low(ω) = 1 and high(ω) = Cz where z is the smallest number such that

σ ∈ typez(s
0) and Cz is defined inductively:

C0 = 1, and Cz = (3|T 0|)n · (Cz−1)
|T 0|2+2.

• If sk = tk : tk−1 and αk = {σ}, the decomposition consists of a composer (βk, βk−1;αk; ·) and decompositions ωk and

ωk−1 of (tk, βk) and (tk−1, βk−1), respectively. We take

low(ω) = low(ωk) + low(ωk−1), and high(ω) = pow(high(ωk), high(ωk−1)).

16

• In general (for αk of size different than 1), ω consists of decompositions ωσ of (sk, {σ}), for each σ ∈ αk. We take

low(ω) =
∑

σ∈αk

low(ωσ), and high(ω) =
∏

σ∈αk

high(ωσ).

Proposition B.18. Let 0 ≤ k ≤ n and let ω be a decomposition of (sk, αk) for some k-pds sk and some αk ⊆ type(sk). If

αk ⊆ Ttr then low(ω) = 0 and high(ω) = 1; otherwise low(ω) ≥ 1 and high(ω) ≥ 2.

Proof: By induction on k and on the size of sk. We analyze Definition B.17. In the third case observe (see Definition

B.8, point 1) that αk ⊆ Ttr if and only if βk ⊆ Ttr and βk−1 ⊆ Ttr; the other cases are immediate.

Proposition B.19. For each L ∈ N there exists HL ∈ N such that for each decomposition ω such that low(ω) ≤ L we have

high(ω) ≤ HL.

Proof: We prove this by induction on L. For L = 0 we can take H0 = 1 (by the above proposition, low(ω) = 0 implies

high(ω) = 1). Fix some L ≥ 1. Let NL,0 be the maximum of high(ω) for decompositions ω of (s0, α0) over every 0-pds

s0 and every α0 ⊆ type(s0). There are only finitely many of them, so this maximum exists. For 1 ≤ k ≤ n we define by

induction

NL,k = max(pow(1, NL,k−1), pow(HL−1, HL−1), (HL−1)
|T k|),

and we take HL = NL,n. We will show that if ω is a decomposition of (sk, αk) for some k-pds sk and some αk ⊆ type(sk)
such that low(ω) ≤ L, then high(ω) ≤ NL,k. This gives the thesis as NL,k ≤ HL.

We prove this by induction on k and on the size of the k-pds sk. For k = 0 this is true by definition. Let 1 ≤ k ≤ n, and

let first |αk| = 1. Then sk is nonempty, sk = tk : tk−1. The decomposition ω contains a composer (βk, βk−1;αk; ·), and a

decomposition ωk of (tk, βk), and a decomposition ωk−1 of (tk−1, βk−1). By definition

low(ω) = low(ωk) + low(ωk−1), and high(ω) = pow(high(ωk), high(ωk−1)).

We have three cases. The first case is that low(ωk) ≤ L−1 and low(ωk−1) ≤ L−1. Then, by the “big” induction assumption,

high(ωk) ≤ HL−1 and high(ωk−1) ≤ HL−1. Thus

high(ω) ≤ pow(HL−1, HL−1) ≤ NL,k.

The second case is that low(ωk) = L and low(ωk−1) = 0. By the induction assumption for a smaller k-pds we get that

high(ωk) ≤ NL,k. Since high(ωk−1) = 1, we have

high(ω) ≤ pow(NL,k, 1) = NL,k.

The third case is that low(ωk) = 0 and low(ωk−1) = L. By the induction assumption for k − 1 we get that high(ωk−1) ≤
NL,k−1. Since high(ωk) = 1, we have

high(ω) ≤ pow(1, NL,k−1) ≤ NL,k.

Let now |αk| 6= 1. Then ω contains decompositions ωσ of (sk, {σ}) for every σ ∈ αk. By definition

low(ω) =
∑

σ∈αk

low(ωσ), and high(ω) =
∏

σ∈αk

high(ωσ).

One possibility is that low(ωσ) ≤ L − 1 for all σ ∈ αk. Then, by the “big” induction assumption, high(ωσ) ≤ HL−1 for all

σ ∈ αk, so

high(ω) ≤ (HL−1)
|αk| ≤ (HL−1)

|T k| ≤ NL,k.

Otherwise for some σ ∈ αk we have low(ωσ) = L, and low(ωτ) = 0 for all τ ∈ αk, τ 6= σ. Then high(ωσ) ≤ Nl,k (by the

analysis for |αk| = 1), and high(ωτ) = 1 for all τ ∈ αk, τ 6= σ, so

high(ω) = high(ωσ) ≤ NL,k.

Definition B.20. We simultaneously define what does it mean that a decomposition ωk has a witness, and what does it mean

that a run agrees with (σ̂, ωn, ωn−1, . . . , ωk), where σ̂ ∈ Dk and ωn, ωn−1, . . . , ωk are decompositions. This definition is by

induction on k (going down). Let 0 ≤ k ≤ n. Assume that these two notions are already defined for levels greater than k.

1) Let r ≥ k + 1 and let R be a run. Decompose π(R(0)) = sn : sn−1 : · · · : sk and π(R(|R|)) = tn : tn−1 : · · · : tr. Let

σ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, q) and, for k ≤ i ≤ n, let ωi be a decomposition of (si, αi) for some αi ⊆ type(si). Let

x be the number of the ♯ symbols read by R. We say that run R agrees with (σ̂, ωn, ωn−1, . . . , ωk) if R agrees with σ̂,

17

and for each r + 1 ≤ i ≤ n there exists a decomposition χi of (ti, ξi) which has a witness, such that for each positive

integer K it holds

n∑

i=k

low(ωi) ≤ x +
n∑

i=r+1

low(χi), and

pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ωk)

)
≥

≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

2) Let ωk be a decomposition of (sk, αk) for some k-pds sk and some αk ⊆ type(sk). If |αk| 6= 1, ωk consists of a

decomposition ωk
σ for each σ ∈ αk; we say that ωk has a witness if every ωk

σ has a witness, as defined below. If

αk = {(ne, tr)}, we always say that ωk has a witness. If αk = {σ} and σ = (αn, αn−1, . . . , αk+1, p, σ̂, ·), we say that

ωk has a witness if the following implication is true.

For k + 1 ≤ i ≤ n, let ωi be a decomposition of (si, αi) which has a witness, for some i-pds si such that

αi ⊆ type(si). Then there exists a run from (p, sn : sn−1 : · · · : sk) which agrees with (σ̂, ωn, ωn−1, . . . , ωk).

In the last part of the above definition we mean that for all appropriate ωk+1, ωk+2, . . . , ωn the run exists. Our goal now is

to prove that every decomposition has a witness (Corollary B.23). Heading toward this, we first show how having a witness

interplays with composers.

Proposition B.21. Let 0 ≤ l < k ≤ n. For each l ≤ i ≤ k let ωi be a decomposition of (si, βi) which has a witness, for

some i-pds si and some βi ⊆ type(si). Let (βk, βk−1, . . . , βl;αk; fl) be a composer. Then there exists a decomposition ω of

(sk : sk−1 : · · · : sl, αk) which has a witness, such that

k∑

i=l

low(ωi) ≤ low(ω),

k∑

i=l

low(ωi) < low(ω) if fl = nt,

pow
(
high(ωk), high(ωk−1), . . . , high(ωl+1),

∣∣T 0
∣∣n · high(ωl)|T

0|
)
≥ high(ω),

pow
(
high(ωk), high(ωk−1), . . . , high(ωl+1), high(ωl)

)
≥ high(ω) if fl = tr.

Proof: Assume first that l = k − 1 and αk = {σk} has one element, which is not (ne, tr). In such case also βk−1 =
{σk−1} has one element. Let σk−1 = (γn, γn−1, . . . , γk, p, σ̂, ·) and σ̂ = (m, r, ξn, ξn−1, ξr+1, q). Then βk = γk and

σk = (γn, γn−1, . . . , γk+1, p, σ̂, ·). To the decomposition ω we take composer (βk, βk−1;αk; fl), and decompositions ωk and

ωk−1. By Definition B.17 we have

low(ω) = low(ωk) + low(ωk−1), and (6)

high(ω) = pow
(
high(ωk), high(ωk−1)

)
. (7)

This immediately gives the required inequalities (in particular fl = tr, so the second inequality is not needed). To show that

ω has a witness, for k + 1 ≤ i ≤ n take a decomposition ωi of (si, γi) which has a witness, for some i-pds si such that

γi ∈ type(si). Recall also that γk ∈ type(sk) and ωk is a decomposition of (sk, γk) which has a witness. By expanding the

definition of witness for ωk−1 we obtain a run R from (p, sn : sn−1 : · · · : sk−1) which agrees with (σ̂, ωn, ωn−1, . . . , ωk−1).
It is enough to show that R agrees also with (σ̂, ωn, ωn−1, . . . , ωk+1, ω). We already know that R agrees with σ̂. To check

the rest, decompose π(R(|R|)) = tn : tn−1 : · · · : tr. Let x be the number of the ♯ symbols read by R. Because R agrees with

(σ̂, ωn, ωn−1, . . . , ωk−1), for each r + 1 ≤ i ≤ n we obtain a decomposition χi of (ti, ξi) which has a witness, such that for

each positive integer K it holds

n∑

i=k−1

low(ωi) ≤ x +

n∑

i=r+1

low(χi), and

pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ωk−1)

)
≥

≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

By substituting (6) and (7) on the left side of the above inequalities, and using (1), we get that (as σ̂ ∈ Dk, we have r ≥ k+1,

18

so the K factor does not interfere)

low(ω) +

n∑

i=k+1

low(ωi) ≤ x +

n∑

i=r+1

low(χi), and

pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ωk+1), high(ω)

)
≥

≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
,

which are the inequalities required for the run to agree with (σ̂, ωn, ωn−1, . . . , ωk+1, ω).
Now assume only that αk = {σk} has one element, which is not (ne, tr). We make an induction on k − l. For l = k − 1

we have the above case. Otherwise we have composers (βk, {σk−1}; {σk}; tr) and (βk−1, βk−2, . . . , βl; {σk−1}; tr) for some

σk−1 6= (ne, tr) (follows easily from Definition B.8). By the induction assumption (used for the second of the composers) we

have a decomposition χ of (sk−1 : sk−2 : · · · : sl, {σk−1}) which has a witness, and satisfies the inequalities. So we may use

the base case for the first composer, which gives a decomposition ω of (sk : sk−1 : · · · : sl, {σk}) which has a witness, and

satisfies the inequalities. It remains to deduce the required inequalities from those which we get from the induction assumption.

The first inequality follows immediately by summing the first inequalities from the induction assumption. The second one is

not needed, as we always have fl = tr. The fourth inequality we get from the induction assumption and then using (1):

high(ω) ≤ pow
(
high(ωk), pow

(
high(ωk−1), high(ωk−2), . . . , high(ωl)

))
= pow

(
high(ωk), high(ωk−1), . . . , high(ωl)

)
.

The third inequality is also true, as it is weaker.

Next, assume that αk = {(ne, tr)}. Then, by definition, ω has a witness. Moreover βi = ∅, so low(ωi) = 0 and high(ωi) = 1,

for l ≤ i ≤ k, and fl = tr. This trivially gives us the required inequalities.

Finally, consider an arbitrary situation. By Definition B.8, for each σ ∈ αk we have a composer (βk
σ, βk−1

σ , . . . , βl
σ; {σ}; tr)

such that βi =
⋃

σ∈αk βi
σ for l ≤ i ≤ k. Recall that decomposition ωi (for l ≤ i ≤ k) consists of decompositions ωi

τ of

(si, {τ}) for each τ ∈ βi; each of them has a witness. We can create from them a decomposition χi
σ of (si, βi

σ) for each

σ ∈ αk. By the above cases, we have a decomposition ωσ of (sk : sk−1 : · · · : sl, {σ}) which has a witness, for each σ ∈ αk.

This gives us the required decomposition ω of (sk : sk−1 : · · · : sl, αk). To get what we need, we only have to check the

inequalities. The first of them is get by summing the first inequality for each σ ∈ αk and by observing that each element of

βi is in some βi
σ:

low(ω) =
∑

σ∈αk

low(ωσ) ≥
∑

σ∈αk

k∑

i=l

low(χi
σ) =

∑

σ∈αk

k∑

i=l

∑

τ∈βi
σ

low(ωi
τ) ≥

k∑

i=l

∑

τ∈βi

low(ωi
τ) =

k∑

i=l

low(ωi).

For the second inequality observe that if fl = nt, then some τ ∈ Tnt appears in two βi
σ , which means that some positive

component low(ωi
τ) appears in two sums

∑
τ∈βi

σ

low(ωi
τ), so the inequality becomes strict. Now we multiply the fourth

inequality for each σ ∈ αk, we use (5), and we get

high(ω) =
∏

σ∈αk

high(ωσ) ≤
∏

σ∈αk

pow
(
high(χk

σ), high(χk−1
σ), . . . , high(χl

σ)
)
≤

≤ pow
(∏

σ∈αk

high(χk
σ),

∏

σ∈αk

high(χk−1
σ), . . . ,

∏

σ∈αk

high(χl
σ)

)
. (8)

Now observe for l ≤ i ≤ k that

∏

σ∈αk

high(χi
σ) =

∏

σ∈αk

∏

τ∈βi
σ

high(ωi
τ) ≤

(∏

τ∈βi

high(ωi
τ)

)|αk|

≤ (high(ωi))|T
0|.

The last inequality is true, because |αk| ≤ |T k| ≤ |T 0|. Using (3) we move the |T 0| exponents (there is at most n of them)

into the last argument of pow and we get the third inequality.

high(ω) ≤ pow
(
(high(ωk))|T

0|, (high(ωk−1))|T
0|, . . . , (high(ωl))|T

0|
)
≤

≤ pow
(
high(ωk), high(ωk−1), . . . , high(ωl+1), |T 0|n · (high(ωl))|T

0|
)

Now assume that fl = tr. It implies that each τ ∈ βi ∩Tnt belongs to only one set βi
σ , so all the common factors are equal

to 1: ∏

σ∈αk

high(χi
σ) =

∏

σ∈αk

∏

τ∈βi
σ

high(ωi
τ) =

∏

τ∈βi

high(ωi
τ) = high(ωi).

19

By substituting this to (8) we get the fourth inequality.

Lemma B.22. Let s0 be a 0-pds and let ρ ∈ type(s0). Then the (unique) decomposition of (s0, {ρ}) has a witness.

Proof: We make an induction on z ∈ N for which ρ ∈ typez(s
0). For z = 0 this is trivial, as type0(s

0) is empty. Let

z > 0. Take some 0-pds s0 and ρ = (ηn, ηn−1, . . . , η1, p, ρ̂, ·) ∈ typez(s
0), where ρ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, q). We can

assume that ρ 6∈ typez−1(s
0), as otherwise the thesis follows immediately from the induction assumption. Let ω0 be the unique

decomposition of (s0, {ρ}). For 1 ≤ i ≤ n, let ωi be a decomposition of (si, ηi) which has a witness, for some i-pds si such

that ηi ⊆ type(si). Let c = (p, sn : sn−1 : · · · : s0). To show that ω0 has a witness, we have to show that there exists a run

from c which agrees with (ρ̂, ωn, ωn−1, . . . , ω0). Choose some positive integer K and denote

L =
n∑

i=0

low(ωi), and

H = pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ω0)

)
.

The element ρ is in typez(s
0) because it was added there by some of the points of Definition B.9; we analyze each of these

points separately.
Case 1: Assume ρ was added to typez(s

0) by point 1 of Definition B.9. Then δ(s0, p) = read(f), and for some a ∈ A

in typez−1(s
0) we have a tuple σ = (ηn, ηn−1, . . . , η1, f(a), σ̂, ·), where σ̂ = (m′, r, ξn, ξn−1, . . . , ξr+1, q) and ϕ(a)m′ = m.

Let d be the configuration obtained in one step from c, by reading the a symbol. We have π(d) = π(c). From the induction

assumption we know that the unique decomposition ωσ of (s0, σ) has a witness. By expanding the definition of having a

witness we obtain a run S from d which agrees with (σ̂, ωn, ωn−1, . . . , ω1, ωσ). Let R be the composition of the one-step

run from c to d with run S. We claim that R agrees with (ρ̂, ωn, ωn−1, . . . , ω0). It is easy to see that R agrees with ρ̂ (in

particular Lemma B.4 implies that R is an r-return). Let π(R(|R|)) = tn : tn−1 : · · · : tr. Let x and x′ be the number of the

♯ symbols read by R, and by S, respectively. Because S agrees with (σ̂, ωn, ωn−1, . . . , ω1, ωσ), for r + 1 ≤ i ≤ n we have a

decomposition χi of (ti, ξi) which has a witness, such that

low(ωσ) +
n∑

i=1

low(ωi) ≤ x′ +
n∑

i=r+1

low(χi), and (9)

pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ω1), high(ωσ)

)
≥

≥ x′ + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
. (10)

Notice that low(ω0) − low(ωσ) ≤ x − x′. Indeed, either low(ω0) = low(ωσ) and x ≥ x′, or low(ω0) = 1 and low(ωσ) = 0
and x = x′ + 1. Together with (9) it gives us that

L =
(
low(ωσ) +

n∑

i=1

low(ωi)
)

+
(
low(ω0) − low(ωσ)

)
≤

(
x′ +

n∑

i=r+1

low(χi)
)

+ (x − x′) = x +

n∑

i=r+1

low(χi),

which is exactly what we need. If ρ ∈ Ttr, then also σ ∈ Ttr and x = x′, so high(ω0) = high(ωσ), and (10) gives us that

H ≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

If ρ 6∈ Ttr, then high(ω0) ≥ 1 + high(ωσ), because σ ∈ typez−1(s
0) but ρ 6∈ typez−1(s

0). Using (4), (10), and x′ + 1 ≥ x

we get the required inequality:

H ≥ pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ω1), 1 + high(ωσ)

)
≥

≥ pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ω1), high(ωσ)

)
+ 1 ≥

≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

Case 2a: Assume ρ was added to typez(s
0) by point 2a of Definition B.9. Then δ(s0, p) = popr(q), and m = ϕ(ε), and

ρ ∈ Ttr, and ηi = ∅ for 1 ≤ i ≤ r − 1, and ηr = {(ne, tr)}, and ηi = ξi for r + 1 ≤ i ≤ n. Because ηr ⊆ type(sr), sr is

not empty, so it is possible to execute the popr operation from c; let d be the configuration obtained in one step from c. We

have π(d) = sn : sn−1 : · · · : sr. Let R be the one-step run from c to d. We see that R is an r-return (see Lemma B.4), and

q = state(d), and the word read by R is empty, so it evaluates to m under ϕ, and ξi = ηi ⊆ type(si) for r + 1 ≤ i ≤ n.

Thus R agrees with ρ̂. The number of the ♯ symbols read by R is 0. Because ρ ∈ Ttr and ηi = ∅ for 1 ≤ i ≤ r − 1 and

ηr = {(ne, tr)}, we have low(ωi) = 0 and high(ωi) = 1 for 0 ≤ i ≤ r. We see that

L =

n∑

i=r+1

low(ωi), and

H = pow
(
high(ωn), high(ωn−1), . . . , high(ωr+1), K

)
,

20

which says that R agrees with (ρ̂, ωn, ωn−1, . . . , ω0).
Case 2b: Assume ρ was added to typez(s

0) by point 2b of Definition B.9. Then δ(s0, p) = popk(q1), and ρ ∈ Ttr, and

ηi = ∅ for 1 ≤ i ≤ k−1, and ηk = {σ}, where σ = (ηn, ηn−1, . . . , ηk+1, q1, ρ̂, ·). In particular k ≤ r−1 (which is required by

ρ̂ ∈ Dk). Because σ ∈ type(sk) 6= ∅, we know that sk is nonempty, so it is possible to execute the popk operation from c. Let

d be the configuration obtained in one step from c. We have π(d) = sn : sn−1 : · · · : sk. We expand the definition of having

a witness (for ωk): we obtain a run S from d which agrees with (ρ̂, ωn, ωn−1, . . . , ωk). Let π(S(|S|)) = tn : tn−1 : · · · : tr.

Let R be the composition of the one-step run from c to d with run S. We get that R is an r-return (see Lemma B.4), as well

as q = state(R(|R|)); the word read by R is the same as by S, so it evaluates to m under ϕ; additionally ξi ⊆ type(ti) for

r + 1 ≤ i ≤ n. Thus R agrees with ρ̂. The number of the ♯ symbols read by R and by S is the same; denote it x. Because S

agrees with (ρ̂, ωn, ωn−1, . . . , ωk), for r + 1 ≤ i ≤ n we have a decomposition χi of (ti, ξi) which has a witness, such that

n∑

i=k

low(ωi) ≤ x +

n∑

i=r+1

low(χi), and

pow
(
high(ωn), . . . , high(ωr+1), K · high(ωr), high(ωr−1), . . . , high(ωk)

)
≥

≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

Because ρ ∈ Ttr and ηi = ∅ for 1 ≤ i ≤ k − 1, we have low(ωi) = 0 and high(ωi) = 1 for 0 ≤ i ≤ k − 1; we get that

L ≤ x +

n∑

i=r+1

low(χi), and

H ≥ x + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
,

which says that R agrees with (ρ̂, ωn, ωn−1, . . . , ω0).
Case 3: Assume ρ was added to typez(s

0) by point 3a or 3b of Definition B.9. Then δ(s0, p) = push
k(t0, q1). In

typez−1(t
0) we have a tuple σ = (αn, αn−1, . . . , α1, q1, σ̂, ·), where σ̂ = (m1, r1, ζ

n, ζn−1, . . . , ζr1+1, q2) such that αi ⊆
ηi ⊆ type(si) for 1 ≤ i ≤ k − 1 and for k + 1 ≤ i ≤ n. We also have a composer (βk, βk−1, . . . , β0;αk; fl) such that

βi ⊆ ηi ⊆ type(si) for 1 ≤ i ≤ k, and β0 ⊆ typez−1(s
0). As a part of decomposition ωi we obtain a decomposition ωαi

of (si, αi) which has a witness, for 1 ≤ i ≤ k − 1 and for k + 1 ≤ i ≤ n, and a decomposition ωβi of (si, βi) which has a

witness, for 1 ≤ i ≤ k. By the induction assumption the unique decomposition ωσ of (t0, {σ}) and the unique decomposition

ωβ0 of (s0, β0) have a witness. From Proposition B.11 we know that αk ⊆ type(sk : sk−1 : · · · : s0). Using Proposition B.21

we obtain a decomposition ωαk of (sk : sk−1 : · · · : s0, αk) which has a witness. Denote

ai = high(ωαi) for 1 ≤ i ≤ n,

bi = high(ωβi) for 0 ≤ i ≤ k,

Ki = K for i = r,

Ki = 1 for i 6= r.

From Proposition B.21 we get the following inequalities; the first of them is strict if fl = nt:

k∑

i=0

low(ωβi) ≤ low(ωαk), (11)

pow(bk, bk−1, . . . , b1, b0) ≥ ak if fl = tr, (12)

pow
(
bk, bk−1, . . . , b1, |T

0|n · (b0)
|T 0|

)
≥ ak. (13)

Let d be the configuration obtained in one step from c. We have

π(d) = sn : sn−1 : · · · : sk+1 : (sk : sk−1 : · · · : s0) : sk−1 : sk−2 : · · · : s1 : t0.

Because ωσ has a witness, we have a run S from d which agrees with (σ̂, ωαn , ωαn−1 , . . . , ωα1 , ωσ). Let π(S(|S|)) = un :
un−1 : · · · : ur1 . Let x1 be the number of the ♯ symbols read by S. Because S agrees with (σ̂, ωαn , ωαn−1 , . . . , ωα1 , ωσ), for

r1 + 1 ≤ i ≤ n we have a decomposition χi of (ui, ζi) which has a witness, such that for each positive integer K ′ it holds

low(ωσ) +

n∑

i=1

low(ωαi) ≤ x1 +

n∑

i=r1+1

low(χi), and (14)

pow(an, . . . , ar+1, K
′ · ar, ar−1, . . . , a1, high(ωσ)) ≥ x1 + pow

(
high(χn), high(χn−1), . . . , high(χr1+1), K ′

)
. (15)

21

Case 3a: Assume ρ was added to typez(s
0) by point 3a of Definition B.9. Then r1 = r 6= k, and m1 = m, and q2 = q,

and ξi = ζi for r + 1 ≤ i ≤ n. Let R be the composition of the one-step run from c to d with run S. We see that R is

an r-return (see Lemma B.4), as well as q = state(R(|R|)); the word read by R is the same as by S, so it evaluates to m

under ϕ; additionally ξi ⊆ type(ui) for r + 1 ≤ i ≤ n. Thus R agrees with ρ̂. The number of the ♯ symbols read by R is

x1. Recall that, for 1 ≤ i ≤ k − 1, the decomposition ωi of (si, ηi) consists of decompositions of (si, {υ}) for every υ ∈ ηi,

and low(ωi) is the sum of low for these decompositions. Simultaneously, decomposition ωαi of (si, αi) consists of some of

these decompositions, as αi ⊆ ηi, so in low(ωαi) we sum only some of the components summed in low(ωi); similarly for

ωβi . However, for 1 ≤ i ≤ k − 1, every element of ηi is in some αi or in some βi. Additionally ηi = αi for k + 1 ≤ i ≤ n,

and ηk = βk. Thus
low(ωi) = low(ωαi) for k + 1 ≤ i ≤ n,

low(ωi) = low(ωβi) for i = k.

low(ωi) ≤ low(ωαi) + low(ωβi) for 1 ≤ i ≤ k − 1.

Notice that if for some 1 ≤ i ≤ k−1 we have αi∩βi 6⊆ Ttr, then the appropriate inequality is strict (as the positive component

corresponding to υ ∈ αi ∩ βi ∩ Tnt appears in both low’s on the right side, and only once on the left side). We sum these

inequalities together; next we substitute (11), which is strict if fl = nt, and then (14); we get

L ≤ low(ω0) +

k−1∑

i=1

low(ωαi) +

n∑

i=k+1

low(ωαi) +

k∑

i=1

low(ωβi) ≤ low(ω0) − low(ωβ0) +

n∑

i=1

low(ωαi) ≤

≤ low(ω0) − low(ωβ0) − low(ωσ) + x1 +

n∑

i=r+1

low(χi) ≤ low(ω0) + x1 +

n∑

i=r+1

low(χi).

If β0 ∪ {σ} 6⊆ Ttr, the last inequality is strict, as we have removed negative components. Because low(ω0) ≤ 1, if some on

the above inequalities was strict, we can remove low(ω0), and we get what is needed:

L ≤ x1 +

n∑

i=r+1

low(χi).

On the other hand, if none of these inequalities was strict, we have αi ∩ βi ⊆ Ttr for each 1 ≤ i ≤ k − 1, and fl = tr, and

β0 ∪ {σ} ⊆ Ttr; from Definition B.9 it follows that ρ ∈ Ttr, so low(ω0) = 0 and we also get the above inequality.

Next, we have to show the inequality for the high part. Notice that

high(ωi) = ai for k + 1 ≤ i ≤ n, and

high(ωk) = bk.

Assume first that ρ ∈ Ttr. Then β0 ∪{σ} ⊆ Ttr; we have high(ω0) = b0 = high(ωσ) = 1. Moreover αi ∩βi ⊆ Ttr for each

1 ≤ i ≤ k − 1; we have

high(ωi) = aibi for 1 ≤ i ≤ k − 1.

Using (2) we get

H = pow(Knan, Kn−1an−1, . . . ,Kk+1ak+1, bk, Kk−1ak−1bk−1, Kk−2ak−2bk−2, . . . ,K1a1b1, 1) ≥

≥ pow(Knan, Kn−1an−1, . . . ,Kk+1ak+1, pow(bk, bk−1, . . . , b1, 1), Kk−1ak−1, Kk−2ak−2, . . . ,K1a1, 1) .

Now we use (12) and then (15) for K ′ = K (recall that r 6= k, so Kk = 1), and we get the required inequality

H ≥ pow(Knan, Kn−1an−1, . . . ,K1a1, 1) ≥ x1 + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

Next, assume that ρ ∈ Tnt. Because σ ∈ typez−1(t
0) and β0 ⊆ typez−1(s

0), but ρ 6∈ typez−1(s
0), we have

high(ω0) = Cz = (3|T 0|)n · (Cz−1)
|T 0|2+2 ≥ 2k−1 · |T 0|n · (Cz−1)

|β0|·|T 0|+1 ≥ 2k−1 · |T 0|n · (b0)
|T 0| · high(ωσ).

22

Using (3) we replace 2k−1 in the last argument of pow by 2 in the k − 1 previous arguments; then we observe that for each

1 ≤ i ≤ k − 1 we have (high(ωi))2 ≥ aibi; and then we use (2):

H ≥ pow
(
Knhigh(ωn), Kn−1high(ωn−1), . . . ,Kkhigh(ωk),

Kk−1(high(ωk−1))2, Kk−2(high(ωk−2))2, . . . ,K1(high(ω1))2, |T 0|n · (b0)
|T 0| · high(ωσ)

)
≥

≥ pow
(
Knan, Kn−1an−1, . . . ,Kk+1ak+1, bk, Kk−1ak−1bk−1, Kk−2ak−2bk−2, . . . ,K1a1b1, |T

0|n · (b0)
|T 0| · high(ωσ)

)
≥

≥ pow
(
Knan, Kn−1an−1, . . . ,Kk+1ak+1, pow

(
bk, bk−1, . . . , b1, |T

0|n · (b0)
|T 0|

)
, Kk−1ak−1, Kk−2ak−2, . . . ,K1a1,

high(ωσ)
)
.

Next we use (13) and then (15) for K ′ = K (recall that r 6= k, so Kk = 1), and we get the required inequality

H ≥ pow(Knan, Kn−1an−1, . . . ,K1a1, high(ωσ)) ≥ x1 + pow
(
high(χn), high(χn−1), . . . , high(χr+1), K

)
.

Case 3b: Finally we come to the case that ρ was added to typez(s
0) by point 3b of Definition B.9. Then in typez−1(s

0)
we have a tuple τ = (ζn, ζn−1, . . . , ζk+1, γk, γk−1, . . . , γ1, q2, τ̂ , ·), where τ̂ = (m2, r, ξ

n, ξn−1, . . . , ξr+1, q), such that γi ⊆
ηi ⊆ type(si) for 1 ≤ i ≤ k, and m1m2 = m. We have r1 = k and r ≤ k. Because S is an k-return, we have uk =
sk : sk−1 : · · · : s0 (Proposition B.2), so π(S(|S|)) = un : un−1 : · · · : uk+1 : sk : sk−1 : · · · : s0. Recall that for

k + 1 ≤ i ≤ n we have a decomposition χi of (ui, ζi) which has a witness. For 1 ≤ i ≤ k, as a part of decomposition ωi we

obtain a decomposition ωγi of (si, γi) which has a witness; denote ci = high(ωγi). By the induction assumption the unique

decomposition ωτ of (s0, {τ}) has a witness. This by definition means that we have a run T from S(|S|) which agrees with

(τ̂ , χn, χn−1, . . . , χk+1, ωγk , ωγk−1 , . . . , ωγ1 , ωτ). Let π(T (|T |)) = vn : vn−1 : · · · : vr. Let R be the composition of the one-

step run from c to d with run S and with run T . We see that R is an r-return (see Lemma B.4), as well as q = state(R(|R|));
the word read by R evaluates to m1m2 = m under ϕ; additionally ξi ⊆ type(vi) for r + 1 ≤ i ≤ n. Thus R agrees with ρ̂.

Finally, we have to check the inequalities; this is very similar to the previous case, but now a part corresponding to τ

appears. Let x2 be the number of the ♯ symbols read by T ; the number of the ♯ symbols read by R is x1 + x2. Because T

agrees with (τ̂ , χn, χn−1, . . . , χk+1, ωγk , ωγk−1 , . . . , ωγ1 , ωτ) we have decompositions χ′i of (vi, ξi) for r + 1 ≤ i ≤ n such

that

low(ωτ) +

k∑

i=1

low(ωγi) +

n∑

i=k+1

low(χi) ≤ x2 +

n∑

i=r+1

low(χ′i), and (16)

pow
(
high(χn), high(χn−1), . . . , high(χk+1), Kkck, Kk−1ck−1, . . . ,K1c1, high(ωτ)

)
≥

≥ x2 + pow
(
high(χ′n), high(χ′n−1), . . . , high(χ′r+1), K

)
. (17)

Because ηi = αi for k + 1 ≤ i ≤ n, and ηk = βk ∪ γk, and ηi = αi ∪ βi ∪ γi for 1 ≤ i ≤ k − 1, we get

L ≤ low(ω0) +

k−1∑

i=1

low(ωαi) +

n∑

i=k+1

low(ωαi) +

k∑

i=1

low(ωβi) +

k∑

i=1

low(ωγi).

To this inequality we substitute (11), (14), and (16); we get

L ≤ low(ω0) − low(ωβ0) − low(ωσ) − low(ωτ) + x1 + x2 +

n∑

i=r+1

low(χ′i) ≤ low(ω0) + x1 + x2 +

n∑

i=r+1

low(χ′i).

An analysis like in the previous case shows that either low(ω0) = 0, or low(ω0) = 1 and the above inequality is strict; in

both cases we can remove low(ω0) on the right side and we get what is needed:

L ≤ x1 + x2 +

n∑

i=r+1

low(χ′i).

Next, we have to show the inequality for the high part. Assume first that ρ ∈ Ttr. Then we have high(ω0) = b0 =
high(ωσ) = high(ωτ) = 1. Moreover

high(ωi) = ai for k + 1 ≤ i ≤ n,

high(ωi) = bici for i = k,

high(ωi) = aibici for 1 ≤ i ≤ k − 1.

23

Using (2) we get

H = pow(an, an−1, . . . , ak+1, Kkbkck, Kk−1ak−1bk−1ck−1, Kk−2ak−2bk−2ck−2, . . . ,K1a1b1c1, 1) ≥

≥ pow(an, an−1, . . . , ak+1, pow(bk, bk−1, . . . , b1, 1) · pow(Kkck, Kk−1ck−1, . . . ,K1c1, 1), ak−1, ak−2, . . . , a1, 1) .

Now we use (12), then (15) for K ′ = pow(Kkck, Kk−1ck−1, . . . ,K1c1, 1), and then (1) and (17), and we get the required

inequality

H ≥ pow(an, an−1, . . . , ak+1, ak · pow(Kkck, Kk−1ck−1, . . . ,K1c1, 1), ak−1, ak−2, . . . , a1, 1) ≥

≥ x1 + pow
(
high(χn), high(χn−1), . . . , high(χk+1), pow(Kkck, Kk−1ck−1, . . . ,K1c1, 1)

)
≥

≥ x1 + x2 + pow
(
high(χ′n), high(χ′n−1), . . . , high(χ′r+1), K

)
.

Next, assume that ρ ∈ Tnt. Because σ ∈ typez−1(t
0) and β0 ∪ {τ} ⊆ typez−1(s

0), but ρ 6∈ typez−1(s
0), we have

high(ω0) = Cz = (3|T 0|)n · (Cz−1)
|T 0|2+2 ≥ 2 · 3k−1 · |T 0|n · (Cz−1)

|β0|·|T 0|+2 ≥

≥ 2 · 3k−1 · |T 0|n · (b0)
|T 0| · high(ωσ) · high(ωτ).

Using (3) we replace 2 · 3k−1 in the last argument of pow by 2 or 3 in the k previous arguments; then we observe that for

each 1 ≤ i ≤ k − 1 we have (high(ωi))3 ≥ aibici, and (high(ωk))2 ≥ bkck; and then we use (2):

H ≥ pow
(
high(ωn), high(ωn−1), . . . , high(ωk+1), Kk(high(ωk))2,

Kk−1(high(ωk−1))3, Kk−2(high(ωk−2))3, . . . ,K1(high(ω1))3, |T 0|n · (b0)
|T 0| · high(ωσ) · high(ωτ)

)
≥

≥ pow
(
an, an−1, . . . , ak+1, Kkbkck, Kk−1ak−1bk−1ck−1, Kk−2ak−2bk−2ck−2, . . . ,K1a1b1c1,

|T 0|n · (b0)
|T 0| · high(ωσ) · high(ωτ)

)
≥

≥ pow
(
an, an−1, . . . , ak+1, pow

(
bk, bk−1, . . . , b1, |T

0|n · (b0)
|T 0|

)
· pow

(
Kkck, Kk−1ck−1, . . . ,K1c1, high(ωτ)

)
,

ak−1, ak−2, . . . , a1, high(ωσ)
)
.

Next we use (13), then (15) for K ′ = pow(Kkck, Kk−1ck−1, . . . ,K1c1, high(ωτ)), and then (1) and (17), we get the required

inequality

H ≥ x1 + x2 + pow
(
high(χ′n), high(χ′n−1), . . . , high(χ′r+1), K

)
.

Corollary B.23. Every decomposition has a witness.

Proof: Let ω be a decomposition of (sk, αk) for some k-pds sk and some αk ⊆ type(sk), where 0 ≤ k ≤ n. We make

an induction on k and on the size of a sk. If |αk| 6= 1, then ω consists of decompositions of (sk, {σ}) for each σ ∈ αk; we

have to show that each of them has a witness. Thus it remains to consider the case |αk| = 1. For k = 0 this is Lemma B.22.

For empty sk the thesis is trivial as type(sk) is empty. Otherwise sk = tk : tk−1. The decomposition ω contains a composer

(βk, βk−1;αk; ·) such that βk ⊆ type(tk) and βk−1 ⊆ type(tk−1). It contains also a decomposition ωk of (tk, βk) and a

decomposition ωk−1 of (tk−1, βk−1). By induction assumption both ωk and ωk−1 have a witness. Thus, by Proposition B.21,

also ω has a witness.

C. Types of configurations

Definition B.24. For a configuration c and for 1 ≤ k ≤ n we define pdsk(c) ∈ Γk
∗ as the topmost k-pds of c with its topmost

(k − 1)-pds removed. Additionally pds0(c) is the topmost 0-pds of c.

In other words, we always have π(c) = pdsn(c) : pdsn−1(c) : · · · : pds0(c).

Definition B.25. 1) Let TA,ϕ = P(T n) × P(T n−1) × · · · × P(T 0) × Q.

2) For a configuration c, let

typeA,ϕ(c) =
(
type(pdsn(c)), type(pdsn−1(c)), . . . , type(pds0(c)), state(c)

)
.

3) We say that (αn, αn−1, . . . , α0, p) ≤ (βn, βn−1, . . . , β0, q) if and only if p = q and αi ⊆ βi for each 0 ≤ i ≤ n.

24

Basing on typeA,ϕ, for each 0 ≤ k ≤ n we define a function typek
A,ϕ which assigns to every configuration c of A a pair

from TA,ϕ × Γk
∗ , which is typeA,ϕ(c), and the topmost k-pds of c. We extend partial order ≤ to TA,ϕ × Γk

∗:

(t1, s
k
1) ≤ (t2, s

k
2) ⇐⇒ t1 ≤ t2 and sk

1 = sk
2 .

Lemma B.26. Let 0 ≤ k ≤ n. Let R be a run such that 0 ∈ prek
R(|R|). Let also ξi ⊆ type(pdsi(R(|R|))), for k +1 ≤ i ≤ n.

Then there exist αi ⊆ type(pdsi(R(0))) for k+1 ≤ i ≤ n, and a function fR : N → N such that the following holds. Let c be a

configuration such that state(R(0)) = state(c) and the topmost k-pds of R(0) and of c are the same, and αi ⊆ type(pdsi(c))
for k + 1 ≤ i ≤ n. Let ωi be a decomposition of (pdsi(c), αi), for k + 1 ≤ i ≤ n. Then there exists a run S from c such that

1) if |R| > 0 then |S| > 0, and

2) 0 ∈ prek
S(|S|), and

3) the words read by R and by S evaluate to the same under ϕ, and

4) state(R(|R|)) = state(S(|S|)), and ξi ⊆ type(pdsi(S(|S|))) for k + 1 ≤ i ≤ n, and the topmost k-pds’s of R(|R|)
and of S(|S|) are the same, and

5) there exist decompositions χi of (pdsi(S(|S|)), ξi), for k + 1 ≤ i ≤ n, such that

n∑

i=k+1

low(ωi) ≤ x +

n∑

i=k+1

low(χi), and

fR

(
pow

(
high(ωn), high(ωn−1), . . . , high(ωk+1)

))
≥ x + pow

(
high(χn), high(χn−1), . . . , high(χk+1)

)
,

where x is the number of the ♯ symbols read by S.

Theorem 4.1 follows immediately from the above lemma. It is enough to take, for k +1 ≤ i ≤ n, ξi = type(pdsi(R(|R|))),
and any decomposition ωi. Then typek

A,ϕ(R(0)) ≤ typek
A,ϕ(c) implies that state(R(0)) = state(c) and the topmost k-pds

of R(0) and of c are the same, and αi ⊆ type(pdsi(c)) for k + 1 ≤ i ≤ n. On the other hand condition 3 implies that

typek
A,ϕ(R(|R|)) ≤ typek

A,ϕ(S(|S|)).
Proof: At the beginning notice that the first operation done from R(0) and from c is the same, since state(R(0)) = state(c)

and the topmost symbol (and the whole topmost k-pds) of R(0) and c are the same. We make an induction on the length of

R. Lemma B.3 gives us four possible forms of R; we analyze these cases.

Case 1: Assume first that |R| = 0. We take αi = ξi for k + 1 ≤ i ≤ n, and identity function fR. Given a configuration

c, and decompositions ωi for k + 1 ≤ i ≤ n as S we take the empty run from c, and we take χi = ωi for k + 1 ≤ i ≤ n. The

thesis is satisfied trivially

Case 2a: Next, assume that |R| = 1 and the operation performed in R is read, or push
r for r ≤ k, or popr for r ≤ k.

We take αi = ξi (for k +1 ≤ i ≤ n), and fR(N) = N +1. Given a configuration c, and decompositions ωi for k +1 ≤ i ≤ n,

as S we take the one-step run from c (if the operation is read, we read the same letter as in R). It is important that between

R(0) and R(1), and between S(0) and S(1) only the topmost k-pds is modified. In particular the topmost k-pds of R(1) and

of S(1) are the same. The first four conditions are immediate. In the last condition we take χi = ωi; notice that x ≤ 1.

Case 2b: Next, assume that |R| = 1 and the operation performed in R is push
r for r ≥ k+1. Observe that pdsi(R(1)) =

pdsi(R(0)) for 1 ≤ i ≤ r − 1 and for r + 1 ≤ i ≤ n, and

pdsr(R(1)) = pdsr(R(0)) : pdsr−1(R(0)) : · · · : pds0(R(0)).

Choose some composer (βr, βr−1, . . . , β0; ξr; ·) such that βi ⊆ type(pdsi(R(0))) for 0 ≤ i ≤ r; it exists by Proposition B.11.

We take

αi =






ξi for r + 1 ≤ i ≤ n,

βi for i = r,

ξi ∪ βi for k + 1 ≤ i ≤ r − 1.

For 0 ≤ i ≤ k fix some decomposition ωi of (pdsi(R(0)), type(pdsi(R(0)))); of course it exists. As fR we take a function

such that for every positive integers ak+1, ak+2, . . . , an we have

fR(pow(an, an−1, . . . , ak+1)) ≥ pow
(
a2

n, a2
n−1, . . . , a

2
k+1, high(ωk), high(ωk−1), . . . , high(ω1), |T 0|n · high(ω0)|T

0|
)

.

Such function exists, as for each N there are only finitely many combinations of arguments ak+1, ak+2, . . . , an such that

pow(an, an−1, . . . , ak+1) = N (in particular no argument can be greater than N).

To show the thesis take any c such that state(R(0)) = state(c) and the topmost k-pds of R(0) and of c are the same, and

αi ⊆ type(pdsi(c)) for k + 1 ≤ i ≤ n. Take also some decomposition ωi of (pdsi(c), αi), for k + 1 ≤ i ≤ n. As S we take

the one-step run from c. Like for R, we have pdsi(S(1)) = pdsi(c) for 1 ≤ i ≤ r − 1 and for r + 1 ≤ i ≤ n, and

pdsr(S(1)) = pdsr(c) : pdsr−1(c) : · · · : pds0(c).

25

The first three conditions are immediate. In condition 4 the only nontrivial part is that ξr ⊆ type(pdsr(S(1))). But βi ⊆
type(pdsi(c)) for 0 ≤ i ≤ r (for 0 ≤ i ≤ k this is true because βi ⊆ type(pdsi(R(0))) and pdsi(R(0)) = pdsi(c), and for

k + 1 ≤ i ≤ r because βi ⊆ αi ⊆ type(pdsi(c))). Using Proposition B.11 for composer (βr, βr−1, . . . , β0; ξr; ·) we get that

ξr ⊆ type(pdsr(S(1))).
Finally, we prove condition 5. For k + 1 ≤ i ≤ r − 1, as a part of ωi we can take a decomposition χi of (pdsi(c), ξi), and

a decomposition ωβi of (pdsi(c), βi); they satisfy the inequalities

low(ωi) ≤ low(χi) + low(ωβi), and high(ωi) ≥ high(χi), and high(ωi) ≥ high(ωβi).

Denote also ωβr = ωr, and χi = ωi for r + 1 ≤ i ≤ n. Moreover for 0 ≤ i ≤ k as a part of the fixed decomposition ωi we

obtain a decomposition ωβi of (pdsi(c), βi) (recall that pdsi(R(0)) = pdsi(c) for 0 ≤ i ≤ k), such that high(ωi) ≥ high(ωβi).
By Proposition B.21 we obtain a decomposition χr of (pdsr(S(1)), ξr) such that

r∑

i=0

low(ωβi) ≤ low(χr),

pow
(
high(ωβr), high(ωβr−1), . . . , high(ωβ1), |T 0|n · high(ωβ0)|T

0|
)
≥ high(χr). (18)

We get the required inequality for low by composing the inequalities mentioned above:

n∑

i=k+1

low(ωi) ≤
r−1∑

i=k+1

(low(χi) + low(ωβi)) + low(ωβr) +
n∑

i=r+1

low(χi) ≤

≤
r−1∑

i=k+1

low(χi) +

n∑

i=r+1

low(χi) +

r∑

i=0

low(ωβi) ≤
n∑

i=k+1

low(χi) ≤ x +

n∑

i=k+1

low(χi).

For the second inequality, we first use the definition of fR and (2):

fR

(
pow

(
high(ωn), high(ωn−1), . . . , high(ωk+1)

))
≥

≥ pow
(
(high(ωn))2, (high(ωn−1))2, . . . , (high(ωk+1))2, high(ωk), high(ωk−1), . . . , high(ω1), |T 0|n · high(ω0)|T

0|
)
≥

≥ pow
(
high(ωn), high(ωn−1), . . . , high(ωr+1), pow

(
high(ωr), high(ωr−1), . . . , high(ω1), |T 0|n · high(ω0)|T

0|
)

,

high(ωr−1), high(ωr−2), . . . , high(ωk+1), 1, 1, . . . , 1
)
.

Next, in the internal pow we replace high(ωi) by high(ωβi) (which is not greater), and we use (18). In the external pow we

replace high(ωi) by high(χi) (which is not greater). We can also remove the final ones, as they do not change the result of

pow. Finally, we observe that x (the number of the ♯ symbols read) is 0. We get the required inequality

fR

(
pow

(
high(ωn), high(ωn−1), . . . , high(ωk+1)

))
≥ x + pow

(
high(χn), high(χn−1), . . . , high(χk+1)

)
.

Case 3: Next, assume that the first operation in R is push
r, and the subrun R′ of R from 1 to |R| is an r-return, where

r ≥ k + 1. From Lemma B.7 we get that in type(pds0(R(1))) we have a tuple σ = (γn, γn−1, . . . , γ1, state(R(1)), σ̂, ·),
where σ̂ = (m, r, ξn, ξn−1, . . . , ξr+1, state(R(|R|))) such that γi ⊆ type(pdsi(R(1))) for 1 ≤ i ≤ n, and m is the image

under ϕ of the word read by R (equivalently: by R′). Observe that pdsi(R(1)) = pdsi(R(0)) for 1 ≤ i ≤ r − 1 and for

r + 1 ≤ i ≤ n, and

pdsr(R(1)) = pdsr(R(0)) : pdsr−1(R(0)) : · · · : pds0(R(0)).

Choose some composer (βr, βr−1, . . . , β0; γr; ·) such that βi ⊆ type(pdsi(R(0))) for 0 ≤ i ≤ r; it exists by Proposition B.11.

We take

αi =






γi for r + 1 ≤ i ≤ n,

βi ∪ ξi for i = r,

γi ∪ βi ∪ ξi for k + 1 ≤ i ≤ r − 1.

For 0 ≤ i ≤ k fix some decomposition ωi of (pdsi(R(0)), type(pdsi(R(0)))); of course it exists. Let also ωσ be the unique

decomposition of (pds0(R(1)), {σ}). As fR we take a function such that for every positive integers ak+1, ak+2, . . . , an we

have (as previously, such function exists)

fR(pow(an, an−1, . . . , ak+1)) ≥ pow
(
a3

n, a3
n−1, . . . , a

3
k+1, (high(ωk))2, (high(ωk−1))2, . . . , (high(ω1))2,

|T 0|n · high(ω0)|T
0| · high(ωσ)

)
.

26

To show the thesis take any c such that state(R(0)) = state(c) and the topmost k-pds of R(0) and of c are the same, and

αi ⊆ type(pdsi(c)) for k + 1 ≤ i ≤ n. Take also some decomposition ωi of (pdsi(c), αi), for k + 1 ≤ i ≤ n. Let d be the

configuration one step after c. Like for R(0) and R(1), we have pdsi(d) = pdsi(c) for 1 ≤ i ≤ r − 1 and for r + 1 ≤ i ≤ n,

and

pdsr(d) = pdsr(c) : pdsr−1(c) : · · · : pds0(c).

For k + 1 ≤ i ≤ r − 1, as a part of ωi we can take a decomposition ωγi of (pdsi(c), γi); and for k + 1 ≤ i ≤ r a

decomposition ωβi of (pdsi(c), βi) and a decomposition χi of (pdsi(c), ξi). Denote also ωγi = ωi for r + 1 ≤ i ≤ n. We

have

low(ωi) ≤ low(ωγi) + low(ωβi) + low(χi) for k + 1 ≤ i ≤ r − 1,

low(ωr) ≤ low(ωβr) + low(χr),

high(ωi) ≥ high(ωγi) for k + 1 ≤ i ≤ r − 1 and for r + 1 ≤ i ≤ n,

high(ωi) ≥ high(ωβi) and high(ωi) ≥ high(χi) for k + 1 ≤ i ≤ r.

Moreover for 0 ≤ i ≤ k as a part of the fixed decomposition ωi we obtain a decomposition ωβi of (pdsi(c), βi) and a

decomposition ωγi of (pdsi(c), γi) (recall that pdsi(c) = pdsi(R(0)) for 0 ≤ i ≤ k). By Proposition B.21 we obtain a

decomposition ωγr of (pdsr(d), γr) such that

r∑

i=0

low(ωβi) ≤ low(ωγr),

pow
(
high(ωβr), high(ωβr−1), . . . , high(ωβ1), |T 0|n · high(ωβ0)|T

0|
)
≥ high(ωγr). (19)

From Corollary B.23 we know that every decomposition has a witness. By the definition of witness, there exists a run S′ from

d which agrees with (σ̂, ωγn , ωγn−1 , . . . , ωγ1 , ωσ). Let S be the composition of the one-step run from c to d with run S′. Run S′

agrees with σ̂, which means that state(R(|R|)) = state(S(|S|)), and ξi ⊆ type(pdsi(R(|R|))) for r+1 ≤ i ≤ n, and m is the

image under ϕ of the word read by S (by S′). It also means that S′ is an r-return, so 0 ∈ prek
S(|S|) (Lemma B.3). Additionally

(Proposition B.2), the topmost r-pds of c and of S(|S|) is the same; similarly the topmost r-pds of R(0) and of R(|R|) is the

same. It follows that the topmost k-pds of R(|R|) and S(|S|) are the same, and ξi ⊆ αi ⊆ type(pdsi(c)) = type(pdsi(S(|S|)))
for k + 1 ≤ i ≤ r. This way we get the first four conditions.

Finally, we prove condition 5. We compose the inequalities mentioned above (and we add some new non-negative compo-

nents):

n∑

i=k+1

low(ωi) ≤
r−1∑

i=k+1

(
low(ωγi) + low(ωβi) + low(χi)

)
+

(
low(ωβr) + low(χr)

)
+

n∑

i=r+1

low(ωγi) ≤

≤
r−1∑

i=1

low(ωγi) +

n∑

i=r+1

low(ωγi) +

r∑

i=0

low(ωβi) +

r∑

i=k+1

low(χi) ≤ low(ωσ) +

n∑

i=1

low(ωγi) +

r∑

i=k+1

low(χi).

Because S′ agrees with (σ̂, ωγn , ωγn−1 , . . . , ωγ1 , ωσ), there exist decompositions χi of (pdsi(S(|S|)), ξi) for r + 1 ≤ i ≤ n

such that we have

low(ωσ) +

n∑

i=1

low(ωγi) ≤ x +

n∑

i=r+1

low(χi).

By combining the last two inequalities, we get the required inequality about low.

For the second inequality, we first use the definition of fR and and twice (2):

fR

(
pow

(
high(ωn), high(ωn−1), . . . , high(ωk+1)

))
≥

≥ pow
(
(high(ωn))3, (high(ωn−1))3, . . . , (high(ωk+1))3,

(high(ωk))2, (high(ωk−1))2, . . . , (high(ω1))2, |T 0|n · high(ω0)|T
0| · high(ωσ)

)
≥

≥ pow
(
high(ωn), high(ωn−1), . . . , high(ωr+1), pow

(
high(ωr), high(ωr−1), . . . , high(ω1), |T 0|n · high(ω0)|T

0|
)
·

· pow
(
high(ωr), high(ωr−1), . . . , high(ωk+1), 1, 1, . . . , 1

)
, high(ωr−1), high(ωr−2), . . . , high(ω1), high(ωσ)

)
.

27

Next, in the first internal pow we replace high(ωi) by high(ωβi) (which is not greater), and we use (19). In the second internal

pow we replace high(ωi) by high(χi) (which is not greater). We can also remove the final ones, as they do not change the

result of pow. In the external pow we replace high(ωi) by high(ωγi) (which is not greater). We get

fR

(
pow

(
high(ωn), high(ωn−1), . . . , high(ωk+1)

))
≥

≥ pow
(
high(ωγn), high(ωγn−1), . . . , high(ωγr+1), high(ωγr) · pow

(
high(χr), high(χr−1), . . . , high(χk+1)

)
,

high(ωγr−1), high(ωγr−2), . . . , high(ωγ1), high(ωσ)
)
.

Finally, we use the inequality from Definition B.20 for K = pow
(
high(χr), high(χr), . . . , high(χk+1)

)
, and (1), and we get

the required inequality.

Case 4: Assume that R is a composition of shorter runs R1 and R2 such that 0 ∈ prek
R1

(|R1|) and 0 ∈ prek
R2

(|R2|). We

use the induction assumption for R2 (as R), and for ξk+1, ξk+2, . . . , ξn. We get γi ⊆ type(pdsi(R2(0))) for k + 1 ≤ i ≤ n,

and a function f2. Then we use the induction assumption for R1 (as R), and for γk+1, γk+2, . . . , γn (as ξk+1, ξk+2, . . . , ξn).

We get αi ⊆ type(pdsi(R(0))) for k + 1 ≤ i ≤ n, and a function f1. We define

fR(N) = f1(N) + max
1≤M≤f1(N)

f2(M).

To show the thesis take any c such that state(R(0)) = state(c) and the topmost k-pds of R(0) and of c are the same,

and αi ⊆ type(pdsi(c)) for k + 1 ≤ i ≤ n. Take also some decomposition ωi of (pdsi(c), αi), for k + 1 ≤ i ≤ n. From the

induction assumption for R1 we obtain a run S1 from c, and (from condition 5) decompositions ωγi of (pdsi(S1(|S1|)), γ
i)

for k + 1 ≤ i ≤ n. By condition 4, S1(|S1|) can be used as c in the induction assumption for R2. We obtain a run S2 from

S1(|S1|) and (from condition 5) decompositions χi of (pdsi(S2(|S2|)), ξ
i) for k + 1 ≤ i ≤ n. As S we take the composition

of S1 and S2. The first four conditions of the induction hypothesis follow trivially, as well as the inequality about low in

condition 5. To see the second inequality, denote

A = pow(high(ωn), high(ωn−1), . . . , high(ωk+1)),

B = pow(high(ωγn), high(ωγn−1), . . . , high(ωγk+1)),

C = pow(high(χn), high(χn−1), . . . , high(χk+1)).

Let x1 and x2 be the number of the ♯ symbols read by S1, and by S2, respectively. The induction assumptions give us the

inequalities

f1(A) ≥ x1 + B and f2(B) ≥ x2 + C.

We get the required inequality:

fR(A) ≥ x1 + B + max
1≤M≤x1+B

f2(M) ≥ x1 + f2(B) ≥ x1 + x2 + C.

D. Sequence equivalence

Definition B.27. Let 0 ≤ k ≤ n, and let (sk
i)∞i=1 be a sequence of k-pds’s. We define stype

(
(sk

i)∞i=1

)
⊆ T k to be the set

of those σ ∈ T k for which σ ∈ type(sk
i) for each i and there exists a decomposition ωi of (sk

i , {σ}) such that the sequence

(low(ωi))
∞
i=1 is bounded.

Definition B.28. Let (ci)
∞
i=1 and (di)

∞
i=1 be sequences of configurations. We say that these sequences are (A, ϕ)-sequence

equivalent if for each 0 ≤ k ≤ n we have

stype
(
(pdsk(ci))

∞
i=1

)
= stype

(
(pdsk(di))

∞
i=1

)
.

Proof of Theorem 4.3: Because between R(lr−1) and R(|R|) there are no push
n operations and there is one popn

operation, which is the last one, we know that the subrun of R from lr−1 to |R| is an n-return. From Lemma B.7 we get that

in type(pds0(R(lr−1))) we have a tuple σ = (αn
r−1, α

n−1
r−1 , . . . , α1

r−1, state(R(lr−1)), σ̂, ·) where σ̂ = (m, n−1, state(R(|R|)),
such that αs

r−1 ⊆ type(pdss(R(lr−1))) for 1 ≤ s ≤ n, and m is the image under ϕ of the word read between R(lr−1) and

R(|R|). Denote also α0
r−1 = {σ}. For j = r − 1, r − 2, . . . , 1, let αk+1

j−1 , αk+2
j−1 , . . . , αn

j−1 be the sets αk+1, αk+2, . . . , αn

obtained from Lemma B.26 used for the subrun of R from lj−1 to lj (as R), and αk+1
j , αk+2

j , . . . , αn
j (as ξk+1, ξk+2, . . . , ξn);

let also fj be the function from this lemma.

28

Case 1: Assume first that αs
0 ⊆ stype((pdss(ci))

∞
i=0) for k + 1 ≤ s ≤ n. Then we have decompositions ωs

0,i of

(pdss(ci), α
s
0) for k + 1 ≤ s ≤ n and each i, such that (low(ωs

0,i))
∞
i=0 is bounded (recall that ωs

0,i is a collection of

decompositions of (pdss(ci), {τ}) for each τ ∈ αs
0, and low(ωs

0,i) is the sum of low for these decompositions). From Proposition

B.19 we get that also (high(ωs
0,i))

∞
i=0 is bounded.

For each i, from Lemma B.26 we obtain, for j = 1, 2, . . . , r−1, a run Sj,i, and decompositions ωs
j,i of

(
pdss(Sj,i(|Sj,i|), α

s
j

)
,

for k + 1 ≤ s ≤ n; run S1,i is from ci, and runs Sj,i for j ≥ 2 are from Sj−1,i(|Sj−1,i|). Notice that the topmost k-pds

of Sr−1,i(|Sr−1,i|) and of R(lr−1) are the same. Fix some decomposition ωs
r−1 of

(
pdss(R(lr−1)), α

s
r−1

)
for 0 ≤ s ≤ k,

and denote ωs
r−1,i = ωs

r−1 for each i. Because every decomposition has a witness (Corollary B.23), we have a run Sr,i

from Sr−1,i(|Sr−1,i|) which agrees with (σ̂, ωn
r−1,i, ω

n−1
r−1,i, . . . , ω

0
r−1,i). As Si we take the composition of runs Sj,i for

j = 1, 2, . . . , r. Condition 1 follows trivially, since Sr,i is an n-return. We see that the words read by Sj,i and by the subrun

of R from lj−1 to lj evaluate to the same under ϕ, for 1 ≤ j ≤ r and each i (we get condition 2).

Let xj,i (for 1 ≤ j ≤ r and each i) be the number of the ♯ symbols read by Sj,i. From condition 5 of Lemma B.26 we

have that

fj

(
pow

(
high(ωn

j−1,i), high(ωn−1
j−1,i), . . . , high(ωk+1

j−1,i)
))

≥ xj,i + pow
(
high(ωn

j,i), high(ωn−1
j,i), . . . , high(ωk+1

j,i)
)
.

By assumption (high(ωs
0,i))

∞
i=0 is bounded for k +1 ≤ s ≤ n. By induction on j (for 1 ≤ j ≤ r−1), since (high(ωs

j−1,i))
∞
i=0

is bounded for k + 1 ≤ s ≤ n, then also (xj,i)
∞
i=0 and (high(ωs

j,i))
∞
i=0 for k + 1 ≤ s ≤ n are bounded. From Definition B.20

(we take K = 1) we have inequality

pow
(
high(ωn

r−1,i), high(ωn−1
r−1,i), . . . , high(ω0

r−1,i)
)
≥ xr,i + 1.

Recall that for 0 ≤ s ≤ k the value of high(ωs
r−1,i) is the same for each i. Thus also (xr,i)

∞
i=0 is bounded. As xi =

∑r
j=1 xj,i,

also (xi)
∞
i=0 is bounded.

Exactly the same we can do for (di)
∞
i=0, obtaining runs such that (yi)

∞
i=0 is bounded (recall that stype((pdss(ci))

∞
i=0) =

stype((pdss(di))
∞
i=0) for k + 1 ≤ s ≤ n).

Case 2: This is the opposite case: we assume that for some k + 1 ≤ s ≤ n we have αs
0 6⊆ stype((pdss(ci))

∞
i=0). Take

any decompositions ωs
0,i of (pdss(ci), α

s
0) for k + 1 ≤ s ≤ n and each i. Notice that if (low(ωs

0,i))
∞
i=0 is bounded then

αs
0 ⊆ stype ((pdss(ci))

∞
i=0); thus (

∑n
s=k+1 low(ωs

0,i))
∞
i=0 is unbounded. We construct the runs exactly in the same way as

previously, but now we use the opposite inequalities. From condition 5 of Lemma B.26 we have that (for 1 ≤ j ≤ r − 1 and

each i)
n∑

s=k+1

low(ωs
j−1,i) ≤ xj,i +

n∑

s=k+1

low(ωs
j,i).

From Definition B.20 we have inequality (for each i)

n∑

s=k+1

low(ωs
r−1,i) ≤

n∑

s=0

low(ωs
r−1,i) ≤ xr,i.

By summing theses inequalities we get that for each i,

n∑

s=k+1

low(ωs
0,i) ≤ xi,

thus (xi)
∞
i=0 is unbounded. In the same way we create runs from (di)

∞
i=0, for which we have that (yi)

∞
i=0 is unbounded.

29

