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Abstract

We show that deterministic higher order pushdown automata (even with panic) can not
recognize some context-free languages.

1 Definition

A deterministic h-th order pushdown automaton (DhPDA for short) is given by a tuple (A,Γ, γI , Q, qI , δ)
where A is an input alphabet, Γ is a stack alphabet, γI an initial stack symbol, Q a set of states,
qI an initial state and δ : Q× A× Γ → Q× Ops. The set Ops contains the following operations:
pop, push(γ) for any γ ∈ Γ, copy(i) for i = 1, . . . , h − 1, next0, nextacc. When δ(q, a, γ) = (q′, op)
we write q, a, γ → q′, op. A deterministic h-th order pushdown automaton with panic (DhPDAP
for short) has additionally a panic operation.

The automaton has a h-th order stack of h− 1-th order stacks of . . . of first order stacks; the
first order stacks contain symbols from Γ. None of the stacks is empty; if the last element of a
stack is removed, we remove also the whole stack from a higher order stack. At the beginning
there is one stack of each order and the first order stack contains one γI symbol. The automaton
always sees only the last (topmost) symbol on the last (topmost) stack. When the current state is
q, the letter of the input word under the head is a, and the last stack symbol is γ, the automaton
looks at the transition q, a, γ → q′, op, changes its state into q′ and:

• if op = pop, it removes one symbol from the last first order stack; when any stack becomes
empty, it is removed from the higher order stack; when the h-th order stack becomes empty,
the automaton fails;

• if op = push(γ), it places the symbol γ on the top of the first order stack;

• if op = copy(i), it copies the last i-th order stack;

• if op = next0, it moves the head to the next letter of the input word; if we are on the end of
the word, the automaton fails;

• if op = nextacc, it moves the head to the next letter of the input word; if we are on the end
of the word, the automaton accepts the word;

• if op = panic, it restores the stack configuration in which this particular symbol γ was put
on a first order stack.

2 Theorem

Theorem 1. There is a context-free language, which can not be recognized by an deterministic
h-th order pushdown automaton with panic, for any h.
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As the counterexample we take a language L over an alphabet A = {a, b, c, s} defined by the
following context-free grammar:

S → aS | bS | sS | sT | sX
T → bTa | sb
X → bXbb | aY
Y → bY bb | aY a | s.

Let us introduce some notation. For any language L over an alphabet A (in particular for the
language defined above) and a word w = w1 . . . wn ∈ A∗ we define a word wL ∈ (A × {0, acc})∗:
together with each letter wi we write acc if w1 . . . wi ∈ L and 0 otherwise. On the other hand, for
a word w′ ∈ (A× {0, acc})∗, let πA(w′) be its projection to the first coordinate. The number of a
letters in a word w is denoted as #a(w).

The key observation is that a deterministic automaton knows for each prefix of the input word
if it is accepted or not, which is described by the following lemma.

Lemma 2. Let L be a language over an alphabet A recognized by a DhPDAP and K a regular
language over an alphabet A×{0, acc}. Then the language {w : wL ∈ K} is accepted by a DhPDAP.
The number of states is multiplied by the size of a deterministic automaton recognizing K.

Proof
Let L be recognized by A = (A,Γ, γI , Q, qI , δ) and K by a deterministic finite automaton with
states P . The new automaton would have states Q×P . To define δ′, for any a ∈ A, γ ∈ Γ, q ∈ Q
we look at δ(a, γ, q) = (q′, op). If op = nextk for each p ∈ P we take δ′(a, γ, (q, p)) = ((q′, p′), nextl)

where p′ is read from the transition p
a,k−→ p′ and l = acc if p′ is accepting, l = 0 otherwise.

Otherwise for each p ∈ P we take δ′(a, γ, (q, p)) = ((q′, p), op). It is easy to see that A′ recognizes
the desired language. �

As Kk
h we take the regular language of all words w′ ∈ (A× {0, acc})∗ such that

1. πA(w′) starts with sbks and ends with sb∗s, and

2. in πA(w′) there are exactly 2h+ 2 fragments of the form sb∗s, and

3. a letter (s, ?) appears if and only if the previous letter was (?, acc), or if it is the first or the
second (s, ?) letter in the word.

Notice that this language can be implemented by a deterministic automaton with O(k) states (for
fixed h), because the only dependence in k is in the length of sbks.

For any k, l ≥ 0 we define ex2 as the following tower of powers of 2:

ex2(k, 0) = k ex2(k, l + 1) = 2ex2(k,l).

Assuming that L is recognized by a DhPDAP, from the above lemma we get that Mk
h =

{w : wL ∈ Kk
h} is also recognized by a DhPDAP. We will show in Mk

h there is exactly one word,
of length greater than ex2(k, 2h+ 1).

For any word w, a fragment between two consecutive s letters is called a block (note that each
word in Mh begins and ends with s). Condition 3 and the grammar of L say that for each two
consecutive blocks u, v, the word usv has to be generated by a T or X nonterminal. The first
block is bk and the last block is b∗. Now see that for each block u, the next block v is uniquely
determined:

• When #a(u) > 0, only X fits to usv. The word v has to be the mirror image of u, in which
every b is duplicated and the last a is removed. Hence #a(v) = #a(u)−1, #b(v) = 2 ·#b(u).
Observe that

#b(v) · 2#a(v) = #b(u) · 2#a(u).
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• When #a(u) = 0, only T fits to usv. Thus v = ba#b(u). In this case

#b(v) · 2#a(v) = ex2(#b(u) · 2#a(u), 1).

In the second case we can also finish the word without creating the next block. Finishing is possible
only when we are in the 2h + 2-th b∗ block, as this is checked by Kk

h (in the second condition).
Moreover, in that case we have to finish: if we continue, too many b∗ blocks will be present in
the word, as the last block will be also a b∗ block. Note that when processing in that way, we
will finish at some moment: the number of consecutive blocks with #a(u) > 0 is always finite, as
#a(u) decreases; after a finite number of them next b∗ block appear. The conditions described
above are not only necessary, but also sufficient: we get a word in Mk

h .
We will calculate the number of b letters in the last block. It is important to look at the number

#b(u) · 2#a(u), which we call the characteristic of a block. The characteristic of the first block is
k (recall that the first block is bk). In the next block it becomes 2k, and it stays the same until
the next b∗ block. Then it becomes 22k

, and so on; at the 2h+ 2-th b∗ block it is ex2(k, 2h+ 1).
This means that in the last block we have ex2(k, 2h+ 1) letters. Hence the length of the word is
greater than this number.

Recall the following theorem.

Theorem 3 ([1], Corollary 9.7). Let A be a (nondeterministic) h-th order pushdown automaton.
If A accepts a word of length at least

ex2(h3h−1h!|Q|3, 2h)

then the language recognized by A is infinite.

Recall also a folklore result, that an deterministic h-th order pushdown automaton with panic
can be converted into a (nondeterministic) h-th order pushdown automaton (without panic), and
moreover that the number of states is increased only polynomially. Intuitively, while putting a
symbol on the stack, the nondeterministic automaton should guess if this symbol will be used to
do the panic operation or not. If yes, this place should be marked appropriately. When later there
should be a panic operation, we start removing symbols from the stacks, until we reach this place
(it is possible to guarantee that it works exactly like the real panic operation).

We have a DhDPAPT of size O(k) recognizing Mk
h . Thus we also have a (nondeterministic)

h-th order pushdown automaton of size poly(k) recognizing Mk
h . For k big enough, the num-

ber ex2(k, 2h + 1) becomes greater than ex2(h3h−1h!|Qk|3, 2h) (where Qk are the states of the
automaton recognizing Mk

h ). This causes a contradiction with the theorem.
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