
Some Results on Complexity of µ-calculus Evaluation in the
Black-box Model

Pawe l Parys?

University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland

parys@mimuw.edu.pl

Abstract. We consider µ-calculus formulas in a normal form: after a prefix of fixed-point quantifiers
follows a quantifier-free expression. We are interested in the problem of evaluating (model checking) of
such formula in a powerset lattice. Assumptions about the quantifier-free part of the expression are the
weakest possible: it can be any monotone function given by a black-box—we may only ask for its value
for given arguments. As a first result we prove that when the lattice is fixed, the problem becomes
polynomial. As a second result we show that any algorithm solving the problem has to ask at least

about n2 (namely Ω
“

n2

log n

”
) queries to the function, even when the expression consists of one µ and

one ν.

1 Introduction

Fast evaluation of µ-calculus expressions is one of the key problems in theoretical computer science. Although
it is a very important problem and many people were working on it, no one could show any polynomial time
algorithm. On the other hand the problem is in NP∩co-NP, so it may be very difficult to show any lower bound
on the complexity. In such situation a natural direction of research is to slightly modify the assumptions and
see whether the problem becomes easier.

We restrict ourselves to expressions in a quantifier-prefix normal form, namely

θ1x1.θ2x2 . . . θdxd.F (x1, . . . , xd), (1)

where θi = µ for odd i and θi = ν for even i. We want to evaluate such expression in the powerset model or,
equivalently, in the lattice {0, 1}n with the order defined by a1 . . . an ≤ b1 . . . bn when ai ≤ bi for all i. The
function F : {0, 1}nd → {0, 1}n is an arbitrary monotone function and is given by a black-box (oracle) which
evaluates the value of the function for given arguments.

First concentrate on the problem of polynomial expression complexity, i.e. complexity for fixed size of
the model. We assume that the oracle representing the function answers in time tF (in other words it is a
computational procedure calculating the function in time tF). To simplify the complexity formulas assume
that tF ≥ O(nd), i.e. that the procedure at least reads its arguments. A typical complexity, in which one
can evaluate the expression (1) is O(nd · tF); this can be done by naive iterating [1]. We show that, using a
slightly modified version of the naive iterating algorithm, the complexity can be O

((
n+d
d

)
· tF
)

. For big n
it does not improve anything, however for fixed n the complexity is equal to O(dn · tF), hence is polynomial
in d. This is our first result, described in Section 2.

Theorem 1. There is an algorithm which for any fixed model size n calculates the value of expression (1)
in time polynomial in d and tF , namely O(dn · tF).

Our result slightly extends an unpublished result in [2]. The authors also get polynomial expression
complexity, however using completely different techniques. Our result is stronger, since they consider only

? Work supported by Polish government grant no. N206 008 32/0810.

expressions in which F is given by a vectorial Boolean formula, not as an arbitrary function. Moreover their
complexity is slightly higher: O(d2n · |F |).

Our second result is an almost quadratic lower bound for d = 2. It was possible to achieve any lower
bound thanks to the assumption that the algorithm may access the function F in just one way, by evaluating
its value for given arguments. Moreover, we are not interested in the exact complexity, only in the number of
queries to the function F . In other words we consider decision trees: each internal node of the tree is labeled
by an argument, for which the function F should be checked, and each its child corresponds to a possible
value of F for that argument. The tree has to determine the value of the expression (1): for each path from
the root to a leaf there is at most one possible value of (1) for all functions which are consistent with the
answers on that path. We are interested in the height of such trees, which justifies the following definition.

Definition 1. For any natural number d and finite lattice L we define num(d, L) as the minimal number of
queries, which has to be asked by any algorithm correctly calculating expression (1) basing only on queries to
the function F : Ld → L.

In this paper we consider only the case d = 2. We show that almost n2 queries are necessary in that case.
Precisely, we have the following result, described in Section 3.

Theorem 2. For any natural n it holds num(2, {0, 1}n) = Ω
(

n2

logn

)
.

This result is a first step towards solving the general question, for any d. It shows that in the black-box
model something may be proved. Earlier it was unknown even if for any d there are needed more than nd
queries. Note that num(1, {0, 1}n) is n and that in the case when all d fixed-point operators are µ (instead
of alternating µ and ν) it is enough to do n queries. So the result gives an example of a situation where the
alternation of fixed-point quantifiers µ and ν is provably more difficult than just one type of quantifiers µ
or ν. Although it is widely believed that the alternation should be a source of algorithmic complexity, the
author is not aware of any other result showing this phenomenon, except the result in [3].

Let us comment the way how the function F is given. We make the weakest possible assumptions: the
function can be given by an arbitrary program. This is called a black-box model, and was introduced in [4]. In
particular our formulation covers vectorial Boolean formulas, as well as modal formulas in a Kripke structure
of size n. Moreover our framework is more general, since not every monotone function can be described by a
modal formula of small size, even when it can be computed quickly by a procedure. Note that the algorithm
in [4], working in time O(nbd/2c+1 · tF), can also be applied to our setting. On the other hand the recent
algorithms, from [5] working in time O(md/3) and from [6] working in time mO(

√
m) (where m ≥ n depends

on the size of F), use the parity games framework, hence require that F is given by a Boolean or modal
formula of small size. This can be compared to models of sorting algorithms. One possible assumption is
that the only way to access the data is to compare them. Then an Ω(n log n) lower bound can be proved.
Most of the sorting algorithms work in this framework. On the other hand, when the data can be accessed
directly, faster algorithms are possible (like O(n) for strings and O(n log log n) for integers).

It is known that for a given structure an arbitrary µ-calculus formula can be converted to a formula of
form (1) in polynomial time, see Section 2.7.4 in [7]. Hence, a polynomial algorithm evaluating expressions of
form (1) immediately gives a polynomial algorithm for arbitrary expressions. However during this conversion
one also needs to change the underlying structure to one of size nd, where d is the nesting level of fixed-point
quantifiers. So, even when the original model has fixed size n, after the normalization the model can become
very big, and our algorithm from Theorem 1 gives exponential complexity.

2 The algorithm with polynomial expression complexity

Below we present a general version of the well known iterating algorithm. The algorithm can be de-
scribed by a series of recursive procedures, one for each fixed-point operator; the goal of a procedure
Calculatei(X1, . . . , Xi−1) is to calculate θixi.θi+1xi+1 . . . θdxd.F (X1, . . . , Xi−1, xi, . . . , xd).

2

Calculatei(X1, . . . , Xi−1):
Xi = Initializei(X1, . . . , Xi−1)
repeat
Xi = Calculatei+1(X1, . . . , Xi)

until Xi stops changing
return Xi

Moreover the most internal procedure Calculated+1(X1, . . . , Xd) simply returns F (X1, . . . , Xd). To evaluate
the whole expression we simply call Calculate1().

Till now we have not specified the Initializei procedures. When they always return 00 . . . 0 for odd i and
11 . . . 1 for even i, we simply get the naive iterating algorithm from [1]. However we would like to make use
of already done computations and start a iteration from values which are closer to the fixed-point. Of course
we can not start from an arbitrary value. The following standard lemma gives conditions under which the
computations are correct.

Lemma 1. Assume that Initializei(X1, . . . , Xi−1) for odd i returns either 00 . . . 0 or a result of a previous
call to Calculatei(X ′1, . . . , X

′
i−1) for some X ′1 ≤ X1, . . . , X

′
i−1 ≤ Xi−1 and for even i either 11 . . . 1 or a

result of a previous call to Calculatei(X ′1, . . . , X
′
i−1) for some X ′1 ≥ X1, . . . , X

′
i−1 ≥ Xi−1. Then the function

Calculatei(X1, . . . , Xi−1) returns the correct result.

So to speed up the algorithm we need to somehow remember already calculated values of expressions and
use them later as a starting value, when the same expression for greater/smaller arguments is going to be
calculated. Instead of remembering all the results calculated so far in some sophisticated data structure, we
do a very simple trick. We simply take

Initializei(X1, . . . , Xi−1) =

00 . . . 0 for i = 1,
11 . . . 1 for i = 2,
Xi−2 for i ≥ 3.

(2)

It turns out that Initializei defined this way satisfies assumptions of Lemma 1, so the algorithm is correct.
The complexity bound follows from a simple observation that arguments of each call to Calculated+1 satisfy

X1 ≤ X3 ≤ · · · ≤ Xd−3 ≤ Xd−1 ≤ Xd ≤ Xd−2 ≤ · · · ≤ X4 ≤ X2.

The same chain of inequalities is true for the numbers bi of bits of Xi set to 1. Moreover the sequence b1, . . . , bd
during each call to Calculated+1 differs from stage to stage, it always increases in some appropriately defined
order. There are

(
n+d
d

)
such sequences, hence the complexity is O

((
n+d
d

)
· tF
)

.

3 Quadratic lower bound

In order to prove Theorem 2 we first introduce a lattice which is more convenient than {0, 1}n. Take the
alphabet Γn consisting of letters γi for 1 ≤ i ≤ n2 and the alphabet Σn = {0, 1} ∪ Γn, with the following
partial order on it: the letters γi are incomparable; the letter 0 is smaller than all other letters; the letter 1
is bigger than all other letters. We will be considering sequences of n such letters, i.e. the lattice is Σn

n . The
order on the sequences is defined as previously: a1 . . . an ≤ b1 . . . bn when ai ≤ bi for all i. The idea is that
one letter of Σn

n may be encoded in O(log n) bits of {0, 1}m. Hence to show Theorem 2 it is enough to prove
num(d,Σn

n) ≥ Ω(n2).
To prove it we define a family of monotone functions, which will be difficult to distinguish by the algorithm.

A function Fz,σ : Σ2n
n → Σn

n is parametrized by a sequence z ∈ Γnn and by a permutation σ : {1, . . . , n} →
{1, . . . , n} (note that z is from Γnn , not from Σn

n , so it can not contain 0 or 1, just the letters γi). The result
of µy.νx.Fz,σ(y, x) will be z. In the following the i-th element of a sequence x ∈ Σn

n is denoted by x[i]. A
pair z, σ defines a sequence of values y0, . . . , yn:

yk[i] =
{
z[i] for σ−1(i) ≤ k
0 otherwise.

3

In other words yk is equal to z, but with some letters covered: they are 0 instead of the actual letter of z.
In yk there are k uncovered letters; the permutation σ defines the order, in which the letters are uncovered.
Using this sequence of values we define the function. In some sense the values of the function are meaningful
only for y = yk, we define them first (assuming yn+1 = yn):

Fz,σ(yk, x)[i] =

0 if ∀j>ix[j] ≤ yk+1[j] and x[i] 6≥ yk+1[i] (case 1)
yk+1[i] if ∀j>ix[j] ≤ yk+1[j] and x[i] ≥ yk+1[i] (case 2)
x[i] if ∃j>ix[j] 6≤ yk+1[j] (case 3).

For any other value y we look for the lowest possible k such that y ≤ yk and we put Fz,σ(y, x) = Fz,σ(yk, x).
When such k does not exists (y 6≤ z), we put Fz,σ(y, x)[i] = 1.

The intuition behind the functions is as follows. At each moment the algorithm knows only some k letters
of z (at the beginning it do not know any letter). Then it may decide which letter of z it want to uncover in
the next step. When it tries to uncover a letter at position σ(k), it is successful; otherwise it has to try again
at another position. For the worst function it has to try all possible n − k positions to uncover one letter
of z. This gives a quadratic bound. The algorithm may also try to guess a value of letter on some position;
however there are n2 different γi, so in the worst case it has to guess n2 times until it will discover a correct
letter. A more detailed analysis shows that the algorithm is not able to do anything else.

4 Concluding remarks

The detailed proofs of the results are contained in [8, 9], available on the author’s web page.
There are two natural future directions of research. First, it is very interesting to study whether the

polynomial expression complexity can be shown for arbitrary formulas (not being in the normalized form
(1)), or whether the problem is then equivalent to model checking in an arbitrary model. The second goal
is to get an exponential lower bound for an arbitrary number of fixed-point operator alternations in the
formula.

References

1. Emerson, E.A., Lei, C.L.: Efficient model checking in fragments of the propositional mu-calculus (extended
abstract). In: LICS. (1986) 267–278

2. Niwiński, D.: Computing flat vectorial Boolean fixed points. Unpublished manuscript
3. Dawar, A., Kreutzer, S.: Generalising automaticity to modal properties of finite structures. Theor. Comput. Sci.

379(1-2) (2007) 266–285
4. Long, D.E., Browne, A., Clarke, E.M., Jha, S., Marrero, W.R.: An improved algorithm for the evaluation of

fixpoint expressions. In: CAV. (1994) 338–350
5. Schewe, S.: Solving parity games in big steps. In: FSTTCS. (2007) 449–460
6. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM

J. Comput. 38(4) (2008) 1519–1532
7. Arnold, A., Niwiński, D.: Rudiments of µ-calculus. Elsevier (2001)
8. Parys, P.: Evaluation of normalized µ-calculus formulas is polynomial for fixed structure size. Unpublished

manuscript
9. Parys, P.: Lower bound for evaluation of µν fixpoint. In: FICS. (2009) 86–92

4

