
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

SOME RESULTS ON COMPLEXITY OF µ-CALCULUS

EVALUATION IN THE BLACK-BOX MODEL ∗

Pawe l Parys1

Abstract. We consider µ-calculus formulas in a normal form: after
a prefix of fixed-point quantifiers follows a quantifier-free expression.
We are interested in the problem of evaluating (model checking) such
formulas in a powerset lattice. We assume that the quantifier-free part
of the expression can be any monotone function given by a black-box—
we may only ask for its value for given arguments. As a first result we
prove that when the lattice is fixed, the problem becomes polynomial
(the assumption about the quantifier-free part strengthens this result).
As a second result we show that any algorithm solving the problem has

to ask at least about n2 (namely Ω
(

n2

logn

)
) queries to the function,

even when the expression consists of one µ and one ν (the assumption
about the quantifier-free part weakens this result).

1991 Mathematics Subject Classification. 68Q17, 03B70.

1. Introduction

Fast evaluation of µ-calculus expressions is one of the key problems in theoretical
computer science. Although it is a very important problem and many people were
working on it, no one has been able to show any polynomial time algorithm. On
the other hand the problem is in NP∩co-NP, so it may be very difficult to show any
lower bound on the complexity. In such situation a natural direction of research is
to slightly modify the assumptions and see whether the problem becomes easier.

We restrict ourselves to expressions in a quantifier-prefix normal form, namely

θ1x1.θ2x2 . . . θdxd.f(x1, . . . , xd), (1)

Keywords and phrases: µ-calculus, black-box model, lower bound, expression complexity

∗ Work supported by Polish government grant no. N N206 380037.

1 Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland;
e-mail: parys@mimuw.edu.pl, fax +48225544400, tel. +48225544403

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

where θi = µ for odd i and θi = ν for even i. We denote expression (1) as µν(d, f).
We want to evaluate such expressions in the powerset model or, equivalently, in
the lattice {0, 1}n with the order defined by a1 . . . an ≤ b1 . . . bn when ai ≤ bi for
all i. The function f : {0, 1}nd → {0, 1}n is an arbitrary monotone function and is
given by a black-box (oracle) which evaluates the value of the function for given
arguments.

First concentrate on the problem of polynomial expression complexity, i.e. com-
plexity for a fixed size of the model. We assume that the oracle representing the
function answers in time tf (in other words it is a computational procedure calcu-
lating the function in time tf). To simplify the complexity formulas assume that
tf ≥ Θ(nd), i.e. that the procedure at least reads its arguments. One can easily
evaluate expression (1) in time O(nd · tf); this can be done by naive iterating [4].
We show that, using a slightly modified version of the naive iterating algorithm,

the complexity can be O
((
n+d
d

)
· tf
)

. For big n it does not improve anything,

however for fixed n the complexity is equal to O(dn · tf), hence is polynomial in
d. This is our first result, described in Sections 2 and 3.

Theorem 1.1. There is an algorithm which for any fixed model size n calculates
the value of expression (1) in time polynomial in d and tf , namely O(dn · tf).

Our result slightly extends an unpublished result in [7]. The authors also get
polynomial expression complexity, however using completely different techniques.
Our result is stronger, since they consider only expressions in which f is given by a
vectorial Boolean formula, not as an arbitrary function. Moreover their complexity
is slightly higher: O(d2n · |f |).

As a side remark recall two results about parallel complexity of the modal
µ-calculus model checking problem (where we allow an arbitrary formula, not
necessarily of form (1)). The problem is PTIME-hard not only when consider-
ing combined complexity [9], but already for the expression complexity [3]. This
somehow contradicts with the intuition that for fixed model the problem should
become easy.

Our second result is an almost quadratic lower bound for d = 2. It was possible
to achieve any lower bound thanks to the assumption that the algorithm may
access the function f in just one way: by evaluating its value for given arguments.
Moreover, we are not interested in the exact complexity, only in the number of
queries to the function f . In other words we consider decision trees: each internal
node of the tree is labeled by an argument, for which the function f should be
checked, and each of its children corresponds to a possible value of f for that
argument. The tree has to determine the value of expression (1): for each path
from the root to a leaf there is at most one possible value of (1) for all functions
which are consistent with the answers on that path. We are interested in the
height of such trees, which justifies the following definition.

Definition 1.2. For any natural number d and finite lattice L we define num(d, L)
as the minimal number of queries, which has to be asked by any algorithm correctly
calculating expression (1) basing only on queries to the function f : Ld → L.

TITLE WILL BE SET BY THE PUBLISHER 3

In this paper we consider only the case d = 2. We show that almost n2 queries
are necessary in that case. Precisely, we have the following result, described in
Sections 4 to 6.

Theorem 1.3. For any natural n it holds num(2, {0, 1}n) = Ω
(

n2

logn

)
.

This result is a first step towards solving the general question, for any d. It shows
that in the black-box model something may be proved. Earlier it was unknown
even if more than nd queries are needed for any d. Note that num(1, {0, 1}n) is
n (as well as in the case of d operators µ and no ν operators it is enough to do
n queries). So the result gives an example of a situation where the alternation
of fixed-point quantifiers µ and ν is provably more difficult than just one type of
quantifiers µ or ν. Although it is widely believed that the alternation should be
a source of algorithmic complexity, the author is not aware of any other result
showing this phenomenon, except the result in [2].

Let us comment on the way how the function f is given. We consider very
general algorithms, which make very weak assumptions: the function can be given
by an arbitrary program. This is called a black-box model, and was introduced
in [6]. In particular our formulation covers vectorial Boolean formulas, as well as
modal formulas in a Kripke structure of size n. Moreover our framework is more
general, since not every monotone function can be described by a modal formula
of small size, even when it can be computed quickly by a procedure. Thus our
assumptions strengthens the upper bound (Theorem 1.1) and weakens the lower
bound (Theorem 1.3). Note that the algorithm in [6], working in time O(nbd/2c+1 ·
tf), can also be applied to our setting. On the other hand the recent algorithms,

from [8] working in time O(md/3) and from [5] working in time mO(
√
m) (where

m ≥ n depends on the size of f), use the parity games framework, hence require
that f is given by a Boolean or modal formula of small size. This can be compared
to models of sorting algorithms. One possible assumption is that the only way to
access the data is to compare them (this is similar to our black-box model). Then
an Ω(n log n) lower bound can be proved. Most of the sorting algorithms work in
this framework. On the other hand, when the data can be accessed directly, faster
algorithms are possible (like O(n) for strings and O(n log log n) for integers).

It is known that for a given structure an arbitrary µ-calculus formula can be
converted to a formula of form (1) in polynomial time, see Section 2.7.4 in [1].
Hence, a polynomial algorithm evaluating expressions of form (1) immediately
gives a polynomial algorithm for arbitrary expressions. However during this con-
version one also needs to change the underlying structure to one of size nd, where
d is the nesting level of fixed-point quantifiers. So, even when the original model
has fixed size n, after the normalization the model can become very big, and our
algorithm from Theorem 1.1 gives exponential complexity.

4 TITLE WILL BE SET BY THE PUBLISHER

2. The iterating algorithm

Let us first fix some notation. For x ∈ {0, 1}n denote the number of bits in x
which are set to 1 by b(x). Moreover, let fi be the function represented by the
part of expression (1) starting from θixi:

fi(x1, . . . , xi−1) = θixi.θi+1xi+1 . . . θd−1xd−1.θdxd.f(x1, . . . , xi−1, xi, . . . xd).

In particular fd+1 = f and f1() is the value µν(d, f), which we want to calculate.
Recall that each fi is a monotone function.

Below we present a general version of the iterating algorithm evaluating expres-
sion (1). The algorithm can be described by a series of recursive procedures, one
for each fixed-point operator; the goal of a procedure Calculatei(x1, . . . , xi−1) is to
calculate fi(x1, . . . , xi−1).

Calculatei(x1, . . . , xi−1):
xi = Initializei(x1, . . . , xi−1)
repeat
xi = Calculatei+1(x1, . . . , xi)

until xi stops changing
return xi

The most internal procedure Calculated+1(x1, . . . , xd) simply returns f(x1, . . . , xd).
To evaluate the whole expression we simply call Calculate1().

Till now we have not specified the Initializei procedures. First assume that they
always return 00 . . . 0 for odd i and 11 . . . 1 for even i. Then we simply get the
naive iterating algorithm from [4]. However we would like to make use of already
done computations and start an iteration from values which are closer to the fixed-
point. Of course we can not start from an arbitrary value. The following standard
lemma gives conditions under which the computations are correct.

Lemma 2.1. Assume that the values of xi returned by Initializei satisfy

xi ≤ fi(x1, . . . , xi−1), and (2)

xi ≤ fi+1(x1, . . . , xi−1, xi) (3)

for odd i, and

xi ≥ fi(x1, . . . , xi−1), and (2’)

xi ≥ fi+1(x1, . . . , xi−1, xi). (3’)

for even i. Then the procedure Calculatei(x1, . . . , xi−1) calculates fi(x1, . . . , xi−1).
Moreover, for 1 ≤ i ≤ d, at each step of the repeat-until loop xi increases and
satisfies properties (2) and (3) for odd i (decreases and satisfies properties (2’)
and (3’) for even i).

Proof. For i = d + 1 the first part is obviously true. For i ≤ d the proof is by
induction on the order in which the procedures return. As the cases of odd and

TITLE WILL BE SET BY THE PUBLISHER 5

even i are symmetric, assume that i is odd. Recall that in this case we calculate
a µ fixed-point. First observe that property (2) is preserved during the iterations:

fi+1(x1, . . . , xi) ≤ fi+1(x1, . . . , xi−1, fi(x1, . . . , xi−1)) = fi(x1, . . . , xi−1).

The inequality follows from monotonicity of fi+1 and (2) before the iteration,
while the equality is true because the value of fi is a fixed-point of fi+1. We
have also used the induction assumption to know that Calculatei+1(x1, . . . , xi) =
fi+1(x1, . . . , xi). Property (3) is even simpler,

fi+1(x1, . . . , xi) ≤ fi+1(x1, . . . , xi−1, fi+1(x1, . . . , xi)),

it follows from monotonicity of fi+1 and (3) before the iteration.
Property (3) guarantees that xi is increased at each iteration. After some

number of steps it has to stabilize. Then xi = fi+1(x1, . . . , xi) is a fixed-point.
From (2) we know that xi is ≤ fi(x1, . . . , xi−1). Moreover it can not be strictly
smaller than fi(x1, . . . , xi−1), because then we would have a fixed-point smaller
than the smallest fixed-point. So xi stabilizes at fi(x1, . . . , xi−1). �

The second lemma more precisely indicates possible results of Initializei: it says
that it may be a previously calculated value of the expression for smaller/greater
argument.

Lemma 2.2. If xi = fi(x
′
1, . . . , x

′
i−1) for some x′1 ≤ x1, . . . , x

′
i−1 ≤ xi−1 then

conditions (2) and (3) hold. By symmetry, if xi = fi(x
′
1, . . . , x

′
i−1) for some

x′1 ≥ x1, . . . , x′i−1 ≥ xi−1 then conditions (2’) and (3’) hold.

Proof. We prove the first part of the lemma (which is useful for odd i). Property
(2) simply follows from monotonicity of fi. To get (3) we use the fact that the xi,
as a value of fi, is a fixed-point of fi+1, and the monotonicity of fi+1:

xi = fi+1(x′1, . . . , x
′
i−1, xi) ≤ fi+1(x1, . . . , xi−1, xi).

�

Furthermore, observe that conditions (2) and (3) (respectively, (2’) and (3’))
trivially hold for xi = 00 . . . 0 (xi = 11 . . . 1).

3. The algorithm with polynomial expression complexity

To speed up the algorithm we need to somehow remember already calculated
values of expressions and use them later as a starting value, when the same ex-
pression for greater/smaller arguments is going to be calculated. Instead of re-
membering all the results calculated so far in some sophisticated data structure,
we do a very simple trick. We just take

Initializei(x1, . . . , xi−1) =

 00 . . . 0 for i = 1,
11 . . . 1 for i = 2,
xi−2 for i ≥ 3.

6 TITLE WILL BE SET BY THE PUBLISHER

First we will argue why this is really correct. Precisely, in the light of the above
lemmas, we need to prove that while initializing xi by xi−2 it holds

• xi−2 = fi(x
′
1, . . . , x

′
i−1) for some x′1 ≤ x1, . . . , x

′
i−1 ≤ xi−1 or xi−2 =

00 . . . 0 for odd i, and
• xi−2 = fi(x

′
1, . . . , x

′
i−1) for some x′1 ≥ x1, . . . , x

′
i−1 ≥ xi−1 or xi−2 =

11 . . . 1 for even i.

The proof is by induction on the order in which instructions are executed. Take
any moment in which we enter a Calculatei procedure, and assume that the thesis
was true before. Moreover assume that i is odd, as the other case is symmetric.
There are two cases depending on where the current value of xi−2 was set:

(1) We are for the first time in the repeat-until loop in Calculatei−2. Then
there are two subcases. First, it is possible that xi−2 = 00 . . . 0; then the
thesis trivially holds. Otherwise, by induction assumption we know that
xi−2 = fi−2(x′1, . . . , x

′
i−3) for some x′1 ≤ x1, . . . , x

′
i−3 ≤ xi−3. But the

value of fi−2 is a fixed-point of fi−1, and a value of fi−1 is a fixed-point
of fi, so

xi = xi−2 = fi−1(x′1, . . . , x
′
i−3, xi−2) = fi(x

′
1, . . . , x

′
i−3, xi−2, xi−2).

From Lemma 2.1, condition (2’) we know that xi−1 ≥ fi−1(x1, . . . , xi−2),
and by monotonicity of fi−1

fi−1(x1, . . . , xi−3, xi−2) ≥ fi−1(x′1, . . . , x
′
i−3, xi−2) = xi−2.

Hence xi−2 ≤ xi−1, so really xi is initialized with a value of fi for some
arguments smaller than x1, . . . , xi−1.

(2) We are not for the first time in the repeat-until loop in Calculatei−2. Then
the value of xi−2 was set in the previous iteration of the loop, and is
equal to fi−1(x1, . . . , xi−3, x

′
i−2), where x′i−2 is the previous value of xi−2.

Moreover, since a value of fi−1 is a fixed-point of fi, we have xi = xi−2 =
fi(x1, . . . , xi−3, x

′
i−2, xi−2). From Lemma 2.1 we know that x′i−2 ≤ xi−2

(that xi−2 increases). Moreover, from Lemma 2.1, condition (2’) we know
that xi−1 ≥ fi−1(x1, . . . , xi−2), and by monotonicity of fi−1

fi−1(x1, . . . , xi−3, xi−2) ≥ fi−1(x1, . . . , xi−3, x
′
i−2) = xi−2.

Hence x′i−2 ≤ xi−2 and xi−2 ≤ xi−1, so really xi is initialized with a value
of fi for some arguments smaller than x1, . . . , xi−1.

By now we already know that the algorithm is correct, let now analyze its
complexity. A key idea of this analysis is placed in the following lemma.

Lemma 3.1. Arguments of each call to Calculated+1 satisfy

x1 ≤ x3 ≤ · · · ≤ xd−3 ≤ xd−1 ≤ xd ≤ xd−2 ≤ · · · ≤ x4 ≤ x2.

TITLE WILL BE SET BY THE PUBLISHER 7

Proof. First observe the inequality xd−1 ≤ xd. In fact it follows from the above
proof: in both cases we had there xi−2 ≤ xi−1 for odd i. Although it was only for
i ≤ d− 1, the same proof is correct also for i = d+ 1.

All the other inequalities immediately follow from Lemma 2.1: each xi is ini-
tialized with xi−2 and then increased for odd i and decreased for even i. �

To determine the complexity it is enough to look at numbers of bits set to 1 in
the variables. We have

0 ≤ b(x1) ≤ b(x3) ≤ · · · ≤ b(xd−3) ≤ b(xd−1) ≤
≤ b(xd) ≤ b(xd−2) ≤ · · · ≤ b(x4) ≤ b(x2) ≤ n. (4)

Now look at the sequences

b(x1),−b(x2), b(x3),−b(x4), . . . , b(xd−1),−b(xd)

and notice that at each call to Calculated+1 we get a lexicographically greater
sequence. Indeed, when between two consecutive calls we exit back to procedure
Calculatei, then b(x1), . . . , b(xi−1) stay the same, b(xi) is increased (for odd i) or
decreased (for even i), while b(xi+1), . . . , b(xd) may become arbitrary. Hence at
each call to Calculated+1 we have a different sequence satisfying (4). There are(
n+d
d

)
such sequences, so we spend time O

((
n+d
d

)
· tf
)

inside Calculated+1. Notice

that as an effect of calling each Calculatei we will at least once call Calculated+1, so

there areO
((
n+d
d

)
· d
)

calls to any procedure. In each call we spend timeO(n) plus

time of executing called subprocedures (we have O(n) because we need to initialize

and return xi, which is of size n). So the total complexity is O
((
n+d
d

)
· (nd+ tf)

)
.

Under a natural assumption that tf ≥ Θ(nd), i.e. that f at least reads all its

arguments, the complexity becomes O
((
n+d
d

)
· tf
)

.

4. Changing the lattice

Now we come to a proof of Theorem 1.3. In this section we reduce the problem
from the lattice {0, 1}n to some more convenient lattice. In Section 5 we define a
family of difficult functions f . In Section 6 we finish the proof of the theorem.

Instead of the lattice {0, 1}n it is convenient to use a better one. Take the

alphabet Γn consisting of letters ai for 1 ≤ i ≤ n(n+1)
2 + 1 and the alphabet

Σn = {0, 1}∪Γn. We introduce the following partial order on it: the letters ai are
incomparable; the letter 0 is smaller than all other letters; the letter 1 is bigger than
all other letters. We will be considering sequences of n such letters, i.e. the lattice
is Σnn. The order on the sequences is defined as previously: a1 . . . an ≤ b1 . . . bn
when ai ≤ bi for all i.

We formulate a general lemma, which allows to change a lattice in our problem.
For any two lattices L1, L2 we say that h : L1 → L2 is an order-preserving map,
when it preserves the order, i.e. x ≤ y implies h(x) ≤ h(y).

8 TITLE WILL BE SET BY THE PUBLISHER

Lemma 4.1. Let L1, L2 be two finite lattices and enc : L1 → L2 and dec : L2 →
L1 two order-preserving maps such that dec ◦ enc = idL1

. Then num(d, L1) ≤
num(d, L2).

Proof. In other words we should be able to use any algorithm calculating µν(d, f)
in L2 to calculate µν(d, f) in L1. Let f1 : Ld1 → L1 be the unknown function in L1.
We define f2 : Ld2 → L2 as f2(x1, . . . , xd) = enc(f1(dec(x1), . . . , dec(xd))). Note
that f2 is a monotone function if f1 was monotone, since enc and dec preserve
the order.

Let ⊥1,⊥2,>1,>2 be the minimal and maximal elements in L1 and L2. For
any x ∈ L1 we have ⊥2 ≤ enc(x), so dec(⊥2) ≤ dec(enc(x)) = x, which means
that dec(⊥2) = ⊥1. Similarly dec(>2) = >1.

Note that dec(µν(d, f2)) = µν(d, f1). This is true, because these fixpoint ex-
pressions may be replaced by a term containing applications of f and minimal and
maximal elements. This is done in a classic way, we replace the fixpoint opera-
tors by an iterated nesting. The minimal required number of iterations depends
on the structure. Here we have only two structures, L1 and L2, so we may take
the bigger of the two minimal numbers. Hence we may use the same term in L1

and L2, the difference is if we use f1 or f2, ⊥1 or ⊥2, >1 or >2. Then an easy
induction on the term structure shows that dec(µν(d, f2)) = µν(d, f1), because
dec(⊥2) = ⊥1, dec(>2) = >1, dec(f2(x1, . . . , xd)) = f1(dec(x1), . . . , dec(xd)). So
to find µν(d, f1) it is enough to find µν(d, f2), which may be found for any f2 in
num(d, L2) queries to f2. To evaluate f2 in our case it is enough to do one query
to f1. Hence µν(d, f1) may be found in num(d, L2) queries (or maybe less queries
in some other way). �

For the lattice Σnn we have the following result, from which Theorem 1.3 follows:

Lemma 4.2. For any natural n it holds num(2,Σnn) ≥ n(n+1)
2 .

This lemma is proved in the next two sections. Here we show how Theorem 1.3
follows from it.

Proof (Theorem 1.3). We will show how Theorem 1.3 follows from this lemma.

Take k such that
(

2k
k

)
≥ n(n+1)

2 + 1. From the Stirling formula follows that
(

2k
k

)
grows exponentially in k, so we may have k = O(log n). Take m =

⌊
n
2k

⌋
. From

Lemma 4.2 for m we see that num(2,Σmm) ≥ m(m+1)
2 = Ω

(
n2

logn

)
.

Now it is enough to use Lemma 4.1 to see that num(2, {0, 1}n) ≥ num(2,Σmm).
We need to define functions enc : Σmm → {0, 1}n and dec : {0, 1}n → Σmm. Each
letter from Σm will be encoded in a sequence of 2k letters from {0, 1} in the
following way: 0 is translated to the sequence of 2k zeroes, 1 to the sequence of
2k ones, any of the letters ai is translated to some sequence of 2k bits, in which

exactly k bits are equal to 1. Because n ≥ m we have
(

2k
k

)
≥ m(m+1)

2 +1, so there

are enough different such sequences to encode all letters. We use this encoding
to define enc(x): an i-th letter of x is encoded in the i-th fragment of 2k bits
and the final n − 2km bits are set to zeroes. On the other hand to read an i-th

TITLE WILL BE SET BY THE PUBLISHER 9

letter of the value of dec(y), we look at the i-th fragment of 2k bits: when it
corresponds to one of the letters ai, this ai is the result; otherwise the result is 0
or 1 depending on whether there are less than k ones in the sequence or not. Note
that dec is defined on all sequences, not only on results of enc. It is easy to see
that dec(enc(x)) = x for any x ∈ Σmm and that both functions are order-preserving
maps (mainly because encodings of different letters ai are incomparable). �

5. Difficult functions

In this section we define a family of functions used in the proof of Lemma 4.2. As
we consider only d = 2, to avoid the indexes we use y instead of x1 and x instead of
x2. A function fz,σ : Σ2n

n → Σnn is parametrized by a sequence z ∈ Γnn (which will
be the result of µy.νx.fz,σ(y, x)) and by a permutation σ : {1, . . . , n} → {1, . . . , n}
(which is an order in which the letters of z are uncovered). Note that z is from
Γnn, not from Σnn, so it can not contain 0 or 1, just the letters ai. Whenever z and
σ are clear from the context, we simply write f . In the following the i-th element
of a sequence x ∈ Σnn is denoted by x[i]. A pair z, σ defines a sequence of values
y0, . . . , yn:

yk[i] =

{
z[i] for σ−1(i) ≤ k
0 otherwise.

In other words yk is equal to z, but with some letters covered: they are 0 instead
of the actual letter of z. In yk there are k uncovered letters; the permutation σ
defines the order, in which the letters are uncovered. Using this sequence of values
we define the function. In some sense the values of the function are meaningful
only for y = yk, we define them first (assuming yn+1 = yn):

f(yk, x)[i] =

 0 if ∀j>ix[j] ≤ yk+1[j] and x[i] 6≥ yk+1[i] (case 1)
yk+1[i] if ∀j>ix[j] ≤ yk+1[j] and x[i] ≥ yk+1[i] (case 2)
x[i] if ∃j>ix[j] 6≤ yk+1[j] (case 3).

For any other node y we look for the lowest possible k such that y ≤ yk and we
put f(y, x) = f(yk, x). When such k does not exists (y 6≤ z), we put f(y, x)[i] = 1.

Lemma 5.1. The function f is monotone and µy.νx.f(y, x) = z.

Proof. First see what happens when we increase x: for any x, x′, y, i such that
x′ ≥ x, we want to prove that f(y, x′)[i] ≥ f(y, x)[i]. When y 6≤ z, for both x
and x′ we get the same result 1. Otherwise we have to compare f(yk, x

′)[i] and
f(yk, x)[i] (for some k). Whenever for x and x′ we are in the same case of the
function definition, we get the required inequality. Also when for x we have an
earlier case than for x′ it is OK (in particular when for x we have case 2, it holds
x′[i] ≥ x[i] ≥ yk+1[i]). On the other hand it is impossible, that for x′ we get an
earlier case than for x (it is easy to see looking at the conditions for choosing a
case).

Now see what happens, when we increase y: take y′ ≥ y. When for y′ there
is y′ 6≤ z, we get a result 1, which is bigger than anything else. Otherwise the

10 TITLE WILL BE SET BY THE PUBLISHER

values yk and yk′ chosen for y and y′ satisfy yk′ ≥ yk, so also yk′+1 ≥ yk+1. The
argumentation that in such case f(yk′ , x)[i] ≥ f(yk, x)[i] is identical as for the
change of x.

To calculate the fixpoint expression, first see that νx.f(yk, x) = yk+1. It follows
immediately from the definition: f(yk, yk+1) = yk+1 and for any x > yk+1 we
get f(yk, x) 6= x, because f(yk, x) differs from x on the last position i where
x[i] > yk+1[i], we get there yk+1[i] instead of x[i]. The main fixpoint satisfies
µy.νx.f(y, x) = yn = z, because yk+1 > yk for all k < n and yn+1 = yn. �

6. The proof

Now we will show that at least n(n+1)
2 queries are needed to calculate the value

of µy.νx.f(y, x), even if we allow as f only functions from our family. The problem
can be considered as a game between two players, we call them an algorithm and an
oracle. In each round the algorithm player asks a query to the function, after which
the oracle player chooses an answer (which is consistent with the previous answers).

The algorithm player wins if after n(n+1)
2 − 1 steps each function consistent with

the answers has the same value of µy.νx.f(y, x). Otherwise the oracle player wins.
We have to show a winning strategy for the oracle player.

First see informally what may happen. Consider first a standard algorithm
evaluating fixpoint expressions. It starts from y = y0 = 0 . . . 0 and x = 1 . . . 1.
Then it repeats x := f(y, x) until x stops changing, in which case x = νx.f(y, x).
For our functions it means that in each step the last 1 in x is replaced by the
corresponding letter of y1. The loop ends after n steps with x = y1. Then the
algorithm does y := x, x := 1 . . . 1, and repeats the above until y stops changing.
For any y = yk the situation is very similar: in each step the last 1 in x is replaced
by the corresponding letter of yk+1 (we may say that this letter is uncovered).

In fact, by choosing appropriate x the algorithm may decide which letter of
yk+1 he wants to uncover, but always at most one. For the algorithm only the
letter on which yk+1 differs from yk is important, as he already knows all letters of
yk. However the difference may be on any position on which yk has 0 (it depends
on σ). The oracle player may choose this position in the most malicious way:
whenever the algorithm player uncovers some letter, the oracle decides that this
is not the letter on which yk and yk+1 differs. So the algorithm has to try all

possibilities (all positions on which yk has 0), which takes n(n+1)
2 steps. He may

also ask for some other y. It can give him any profit only if he accidentally guesses
some letters of z. However the oracle may always decide that the guess of the
algorithm is incorrect (that the value of z is different).

Now we come to a more formal proof. We show a strategy for the oracle player.
During the game we (the oracle player) keep a variable cur (0 ≤ cur < n), which is
equal to 0 at the beginning and is increased during the game. Intuitively it means
how many letters of z are already known to the algorithm player. By s we denote
the number of queries already asked (it increases by 1 after each query) and by

TITLE WILL BE SET BY THE PUBLISHER 11

slok the number of queries asked for this value of cur (it increases by 1 after each
query and is reset to 0 when cur changes).

At every moment we keep a set F of functions consistent with all the answers
till now (there may be more consistent functions, but each function in our set has
to be consistent). The set will be described by a set of permutations Π and by
sets of allowed values Ai ⊆ Γn, one for each coordinate 1 ≤ i ≤ n. The sets should
satisfy the following conditions:

(1) for each i ≤ cur there is only one value of σ(i) for σ ∈ Π;
(2) in Π there are permutations σ with at least n− cur− slok different values

of σ(cur + 1);
(3) for each permutation σ ∈ Π when we take any other permutation σ′ which

agrees with σ on the first cur+ 1 arguments (σ(i) = σ′(i) for each 1 ≤ i ≤
cur + 1), we have σ′ ∈ Π as well;

(4) for each σ ∈ Π and i ≤ cur there is only one value in Aσ(i) (note that
thanks to condition 1, the value σ(i) does not depend on the choice of σ);

(5) for each σ ∈ Π and i > cur there are at least n(n+1)
2 + 1− s values in the

set Aσ(i) (note that the set {σ(i) : i > cur} does not depend on the choice
of σ, as σ(i) for i ≤ cur are fixed).

In the set F there are all functions fz,σ for which σ ∈ Π and z[i] ∈ Ai for each
i. We see that in particular at the beginning all functions are in the set F . Note,
that at each moment the value of ycur is fixed, i.e. is the same for all functions in
F (because σ(i) and z[σ(i)] are fixed for i ≤ cur).

Now we specify how the answers are done for a query x, y. Whenever y ≤ yi for
some i < cur, we answer according to all the functions in our set F . The answer of
each function is the same, as it depends only on the value of yi+1 (for the smallest
i such that y ≤ yi), which is already the same for all functions. Such question
does not give any new knowledge to the algorithm player.

Whenever y 6≤ ycur, we remove the value y[i] from the set Ai (only if it was
there, in particular only if y[i] ∈ Γn) for each i such that σ−1(i) > cur for any
σ ∈ Π (note that once again this condition is satisfied for exactly the same i for
every permutation in Π). All the conditions of F are still satisfied, as we removed
only one value from the sets Ai after one additional query was done. In other
words we remove all functions fz,σ, in which z[σ(i)] = y[σ(i)] for some i > cur.
Then for each function from F we have y 6≤ z (if y ≤ z then y[i] = 0 for each
i with σ−1(i) > cur, which means that y ≤ ycur). So we reply to the query by
a sequence of ones, which is the case for all the functions in F . Intuitively this
case talks about a situation when someone tries to guess z (or its part) instead of
gently asking for y = ycur. We prefer to answer that his guess was incorrect and
to eliminate all functions with z similar to the y about which he asked.

Consider now the case when y ≤ ycur but y 6≤ ycur−1. Let ask be the greatest
number such that x[ask] 6≤ ycur[ask] (if there is no such number we take ask = 0).
Intuitively the algorithm player asks whether σ(cur + 1) = ask; we prefer to
answer NO, so he will have to try all the possibilities until he will discover the
value of σ(cur + 1). The first case is when in Π there are permutations with

12 TITLE WILL BE SET BY THE PUBLISHER

σ(cur + 1) 6= ask. Note that this is true at least n − cur − 1 times for this
cur due to condition 2. In such case we remove from Π all the permutations
with σ(cur + 1) = ask and we answer according to all the functions left in F .
We have to argue that for each of them the answer is the same. On positions
i < ask there is always case 3, because x[ask] 6≤ ycur[ask] = ycur+1[ask] (the
equality is true, because σ(cur + 1) 6= ask). On the positions i ≥ ask there is
x[j] ≤ ycur[j] ≤ ycur+1[j] for j > i, so we fall into the first two cases. For i = ask
the result depends only on ycur+1[ask] which for all functions is equal to ycur[ask].
Consider positions i > ask. When x[i] = 0 the answer is 0 in both cases 1 and
2 (we may get case 2 only when ycur+1[i] = 0). When x[i] > 0 it has to be
ycur+1[i] = x[i], as x[i] ≤ ycur[i] ≤ ycur+1[i] 6= 1, we get case 2 and we answer
ycur+1[i] = x[i].

The last case is when all the permutations σ ∈ Π have σ(cur+ 1) = ask. Then
we choose any letter from Aask and we remove all other letters from Aask. In
other words ycur+1 becomes fixed, so answers for all the functions left in F are the
same. We increase cur (when cur becomes equal to n, we fail). It is easy to see,
that all the conditions on the set F are still satisfied.

As already mentioned, before the last case holds there has to be n − cur − 1
earlier queries for this cur (we increase cur after at least n−cur queries), so before
n(n+1)

2 queries there is no danger that cur becomes equal to n. Moreover we are
sure that in F there are functions with two different value of z (which is the result
of the fixpoint expression): it is enough to take any σ from Π and then in Aσ(n)
there are at least two values (z[σ(n)] may be equal to both of them).

7. Concluding remarks

There are two natural future directions of research. First, it is very interesting
to study whether the polynomial expression complexity can be shown for arbitrary
formulas (not being in the normalized form (1)), or whether the problem is then
equivalent to model checking in an arbitrary model. The second goal is to get an
exponential lower bound for an arbitrary number of fixed-point operator alterna-
tions in the formula. We do not see how to generalize our approach to cases of
greater alternation depth. Natural generalizations of the functions from this paper
are no longer monotone; some new ideas are needed. Notice also that for d = 3
we still have a quadratic algorithm, so a cubic lower bound can be obtained only
for d ≥ 4.

The author would like to thank Igor Walukiewicz for suggesting this topic and many
useful comments.

References

[1] A. Arnold and D. Niwiński. Rudiments of µ-calculus. Elsevier, 2001.

TITLE WILL BE SET BY THE PUBLISHER 13

[2] A. Dawar and S. Kreutzer. Generalising automaticity to modal properties of finite structures.

Theor. Comput. Sci., 379(1-2):266–285, 2007.

[3] S. Dziembowski, M. Jurdziski, and D. Niwiński. On the expression complexity of the modal
µ-calculus model checking. Unpublished manuscript.

[4] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional

mu-calculus (extended abstract). In LICS, pages 267–278. IEEE Computer Society, 1986.
[5] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for

solving parity games. SIAM J. Comput., 38(4):1519–1532, 2008.
[6] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved algorithm

for the evaluation of fixpoint expressions. In D. L. Dill, editor, CAV, volume 818 of Lecture

Notes in Computer Science, pages 338–350. Springer, 1994.
[7] D. Niwiński. Computing flat vectorial Boolean fixed points. Unpublished manuscript.

[8] S. Schewe. Solving parity games in big steps. In V. Arvind and S. Prasad, editors, FSTTCS,

volume 4855 of Lecture Notes in Computer Science, pages 449–460. Springer, 2007.
[9] S. Zhang, O. Sokolsky, and S. A. Smolka. On the parallel complexity of model checking in

the modal mu-calculus. In LICS, pages 154–163. IEEE Computer Society, 1994.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

