The pumping lemma is incorrect?

Paweł Parys
University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland
parys@mimuw.edu.pl

August 3, 2011

We will show that Lemma 9.5 in [1] is false. This lemma says that in each long enough run r of any automaton there exists a pumping pair of configurations u, v. From the definition of a pumping pair we use only the following:

- u is (strictly) before v in the run,
- $\operatorname{\rho r}(u)=\operatorname{\rho r}(v)$ (the state in u and in v is the same),
- $\pi r(u) \triangleleft_{1} \pi r(v)$.

Consider an automaton \mathcal{A} of level 3, which realizes the following program:

```
repeat forever
    push
    while topmost symbol is a do
        pop
        push3
    pop}\mp@subsup{}{2}{
    push}\mp@subsup{1}{(}{(a)
    push3
```

The stack alphabet is $\{a, b\}$, where b is used only to mark the bottom of the stack. The automaton does not read any input (it has only ϵ-transitions). Take the initial configuration [[[ba]]] (one order 1 stack with b at the bottom and a above). Started from it, the automaton has exactly one infinite run. Hence from Lemma 9.5 there is a pumping pair u, v in it. We will show that this is not true.

How our automaton works? First observe that it never makes any pop 3_{3} operation. Hence only the topmost order 2 stack is accessed. By making a push ${ }_{3}$ operation we keep a history of the current contents of the topmost order 2 stack.

Now observe how the topmost order 2 stack changes. It always contains either one or two order 1 stacks. The first of them is only increased (once per iteration of the big loop). Then it is copied, and the second stack is decreased until it becomes empty.

Assume we have a pumping pair $u, v(u$ is before $v)$. Let $\pi r(u)=\xi_{1} \ldots \xi_{k}$ and $\pi r(v)=\zeta_{1} \ldots \zeta_{l}$. The configurations u, v have the same state, which means that we are in the same point of the program. Assume first that this is after the push ${ }_{2}$ operation but before the pop_{2} operation. Thus, there are two order 1 stacks in ξ_{k} and in ζ_{l}. If u and v come from one iteration of the big loop, then the second (topmost) order 1 stack of ξ_{k} is bigger than the second order 1 stack of ζ_{l}, hence they are not in the \triangleleft_{1} relation. Otherwise some ζ_{i} for $k \leq i<l$ contains just one order 1 stack (as the push ${ }_{3}$ from the last line was executed), hence $\xi_{k} \triangleleft_{1} \zeta_{i}$ is false.

The other possibility is that both ξ_{k} and ζ_{l} contain just one order 1 stack (we are after pop ${ }_{2}$, but before push_{2}). Then ζ_{l-1} contains two stacks, and the second of them contains only the b letter, while the order 1 stack in ξ_{k} contains also a letters, hence we do not have $\xi_{k} \triangleleft \zeta_{l-1}$. This shows that a pumping pair does not exists.

References

[1] A. Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput. Sci., 400(1-3):19-45, 2008.

