The pumping lemma is incorrect?

Paweł Parys
University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland
parys@mimuw.edu.pl

August 3, 2011

We will show that Lemma 9.5 in [1] is false. This lemma says that in each long enough run r of any automaton there exists a pumping pair of configurations u, v. From the definition of a pumping pair we use only the following:

- u is (strictly) before v in the run,
- $\rho r(u)=\rho r(v)$ (the state in u and in v is the same),
- $\pi r(u) \triangleleft_{1} \pi r(v)$.

Consider an automaton \mathcal{A} of level 3, which realizes the following program:
repeat forever
push $_{2}$
push $_{3}$
pop $_{1}$
push $_{3}$
pop $_{2}$
push $_{3}$

Thus it has 6 states and one loop of transitions between them. The stack alphabet contains only the a symbol. The automaton does not read any input (it has only ϵ-transitions). Take the initial configuration $[[[a a]]]$ (one order 1 stack with two symbols). Started from it, the automaton has exactly one infinite run. Hence from Lemma 9.5 there is a pumping pair u, v in it. We will show that this is not true.

How our automaton works? First observe that it never makes any pop 3_{3} operation. Hence only the topmost order 2 stack is accessed. By making a push ${ }_{3}$ operation we keep a history of the current contents of the topmost order 2 stack.

Now observe how the topmost order 2 stack changes. It has tree possible contents, between which we loop:

$$
\begin{aligned}
x & =[[a a]], \\
y & =[[a a][a a]], \\
z & =[[a a][a]] .
\end{aligned}
$$

We have $x \triangleleft_{1} y$ and $z \triangleleft_{1} y$, but x and z are \triangleleft_{1}-incomparable.
Assume we have a pumping pair $u, v(u$ is before $v)$. Let $\pi r(u)=\xi_{1} \ldots \xi_{k}$ and $\pi r(v)=\zeta_{1} \ldots \zeta_{l}$. The configurations u, v have the same state, which means that $\xi_{k}=\zeta_{l}$. As v is strictly after u, there is $l \geq k+3$. Because $\pi r(u) \triangleleft_{1} \pi r(v)$, it has to be

$$
\xi_{k} \triangleleft_{1} \zeta_{k} \quad \text { and } \quad \xi_{k} \triangleleft_{1} \zeta_{k+1} \quad \text { and } \quad \xi_{k} \triangleleft_{1} \zeta_{k+2}
$$

We know that $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{l-1}=x, y, z, x, y, z, \ldots$ (and ζ_{l} is either equal to ζ_{l-1}, or is the next symbol). This means that

$$
\xi_{k} \triangleleft_{1} x \quad \text { and } \quad \xi_{k} \triangleleft_{1} y \quad \text { and } \quad \xi_{k} \triangleleft_{1} z
$$

But none of x, y, z satisfies this. Hence there is no pumping pair.

References

[1] A. Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput. Sci., 400(1-3):19-45, 2008.

